ABSTRACT

Influence-driven diffusion of information is a fundamental process in social networks. Learning the latent variables of such process, i.e., the influence strength along each link, is a central question towards understanding the structure and function of complex networks, modeling information cascades, and developing applications such as viral marketing.

Motivated by modern microblogging platforms, such as twitter, in this paper we study the problem of learning influence probabilities in a data-stream scenario, in which the network topology is relatively stable and the challenge of a learning algorithm is to keep up with a continuous stream of tweets using a small amount of time and memory. Our contribution is a number of randomized approximation algorithms, categorized according to the available space (superlinear, linear, and sublinear in the number of nodes n) and according to different models (landmark and sliding window). Among several results, we show that we can learn influence probabilities with one pass over the data, using \(O(n \log n)\) space, in both the landmark model and the sliding-window model, and we further show that our algorithm is within a logarithmic factor of optimal.

For truly large graphs, when one needs to operate with sublinear space, we show that we can still learn influence probabilities in one pass, assuming that we restrict our attention to the most active users.

Our thorough experimental evaluation on large social graph demonstrates that the empirical performance of our algorithms agrees with that predicted by the theory.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications - Data Mining

Keywords
Social network analysis, Social Influence, Streaming, Randomized approximation algorithms.
The sliding-window model. The landmark model, where the influence probabilities are computed with respect to the whole activity history of each user, and the sliding-window model, which are appropriate for forgetting data items that are not relevant, and thus adapting better to the behavioral changes occurring in the network.

Paper contributions and roadmap. The paper is organized in three main technical sections corresponding to the three memory settings: superlinear in the number of nodes \(n \) (Section 4), linear (Section 5), and sublinear (Section 6). Sections 4 and 5 are further divided in subsections presenting the STRIP methods based on the landmark model and the sliding-window model.

Our contributions are summarized as follows:

- Under the assumption that the whole social graph can be kept in memory, we present an algorithm for the landmark model (Section 4.1). For user-defined parameters \(\varepsilon, \delta > 0 \), the algorithm provides an \((\varepsilon, \delta) \)-approximation of the influence probability for all edges such that the quality of the estimates does not depend on the influence probability. Adjusting in a suitable way the exponential histogram technique, we extend the algorithm to estimate influence probabilities over time-based sliding windows (Section 4.2).

- For the setting where we are not able to keep the social graph in main memory we prove a lower bound showing that one cannot obtain an arbitrarily good approximation using sublinear memory for all edges, formalizing the intuition that it is difficult to estimate the influence probabilities among less active users in a streaming setting (Section 5.1). Then we present an algorithm whose space complexity is within a logarithmic factor of the lower bound building upon the Min-wise sampling approach (Section 5.2). We extend the algorithm to the sliding window model (Section 5.3).

- For truly large graphs, when one needs to operate with sublinear space, we need to restrict our estimation of influence probabilities only to active users. More precisely, motivated by observations on real data, we assume that user activity adheres to Zipfian distribution with parameter \(z \), i.e., assuming users are sorted in decreasing order according to their activity, for a stream of \(s \) actions in total the \(t \)th user performs \(\frac{s}{(t+1)^z} \) actions. We give an algorithm estimating the diffusion probabilities among the most active \(b = o(n) \) users for the landmark model and sketch how it can be extended to the the sliding window model in Section 6.

We present some background and related work in Section 2. In Section 3 we give some preliminaries. We perform and discuss an empirical validation of the new methods proposed in Section 7, and finally Section 8 concludes the paper.

To the best of our knowledge this is the first work on learning influence probabilities from data streams.

2. BACKGROUND AND RELATED WORK

Stream learning. Data streams are large read-once sequences of data that change with time. Actions of users in social networks are an example of data streams. Data streams are usually so large that any exact computation is prohibitively in terms of memory and time. Thus stream learning methods are becoming popular since they allow real-time analytics on evolving data, under restrictions of space complexity, giving away little accuracy, by using sketch structures [6, 1], or applying sampling techniques, or a combination of both.

Learning influence probabilities. Detecting and estimating social influence strength among the users of social networks, is becoming a hot research topic in the computational social science as well as in the marketing literature. The amount of interest that this computational problem is attracting is justified by the great business potentialities of applications such as viral marketing, for which estimating influence strength is a needed preliminary step.

Given a social network, whose nodes are users and arcs represent social relations among the users, we can associate each arc \((u, v)\) with a probability \(p_{uv} \) representing the strength of influence exerted by \(u \) on \(v \). Or in other terms, the probability that a tweet posted by \(u \) will be “retweeted” by \(v \). In this setting, a basic computational problem is that of selecting the set of users to be targeted by the viral marketing campaign: those are the users more likely to generate a large viral cascade. The first algorithmic treatment of the problem was provided by Domingos and Richardson [10]. Later, Kempe et al. [16] introduced influence maximization as a discrete optimization problem: given a budget \(k \), find the set of \(k \) nodes that maximizes the expected number of active nodes at the end of the process. The activation of nodes is governed by a probabilistic propagation model. For instance, in the Independent Cascade propagation model, when a node \(u \) first becomes active, say at time \(t \), it has one chance of influencing each inactive neighbor \(v \) with probability \(p_{uv} \). If the tentative succeeds, \(v \) becomes active at time \(t + 1 \). Following this seminal work [16], considerable effort has been devoted to develop methods for improving the efficiency of influence maximization [18, 7, 14]. The majority of this literature assumes the input social graph has already the influence probabilities associated to links, and does not address how to compute them.

Saito et al. [21] were the first to study the problem of learning the probabilities for the independent cascade model from a set of past observations, formalizing it as likelihood maximization and applying Expectation Maximization (EM) to solve it. However, the iterative nature of EM methods is really not suited for stream processing. In this paper we adopt instead the simpler frequentist definition of Goyal et al. [13].

The learning procedure defined in [13] assumes that the input propagation data is stable and sorted by the item and then by time. Of course the real stream of events does not come sorted by any criteria except time, so that the propagations corresponding to different items arrive intertwined. The learning algorithm needs two scans of this fixed and sorted database. Moreover, it keeps in memory the whole propagation of an item, plus one counter for each node and a couple of counters for each link.
3. PRELIMINARIES

We consider a social network, represented as a directed graph \(G = (V, E) \) with users corresponding to vertices and edges to social connections, such that the edge \((u, v)\) denotes that user \(v \) follows \(u \). The maximum in-degree of a vertex in \(G \) is denoted by \(\Delta \). Let \(A \) be a set of actions. The input is provided as stream \(S \) of triples \((u, a, t_u)\). Each triple denotes that user \(u \) performed action \(a \) at time \(t_u \). The number of actions in \(S \) is denoted as \(s \). An action \(a \) propagates within \(\tau \) time units from user \(u \) to user \(v \) if \((u, v) \in E \), and \(a \) is performed by \(u \) and then by \(v \) within \(\tau \) time units, i.e., there exist triples \((u, a, t_u), (v, a, t_v)\) in \(S \) with \(0 < t_u - t_v \leq \tau \). We are interested how influential is a given user \(u \), i.e., how probable is that actions propagate from user \(u \) to a user \(v \).

We consider two standard streaming models: In the landmark model one is interested in the whole history of the stream starting from a given time point to the present. Let \(\mathcal{A}_u \) denote the set of actions performed by user \(u \). We also define \(\mathcal{A}_u^\tau \) to be the set of actions propagated from \(u \) to \(v \) within \(\tau \) time units, and \(\mathcal{A}_u^\tau \) the set of actions performed by either \(u \) or \(v \). We set \(\max(\mathcal{A}, \tau) \) to be the maximum number of actions that can be performed by a user within \(\tau \) time units.

To estimate the influence probability \(p_{uv} \) between the users \(u \) and \(v \), we use the so-called Jaccard model, proposed by Goyal et al. [13], and define \(p_{uv} = \frac{s(\mathcal{A}_u^\tau \cap \mathcal{A}_v^\tau)}{s(\mathcal{A}_u^\tau) + s(\mathcal{A}_v^\tau) - s(\mathcal{A}_u^\tau \cap \mathcal{A}_v^\tau)} \), where, hereinafter, \(s(A) \) denotes the size of a set \(A \). In time-based sliding windows only the most recent actions are considered for a user-defined time threshold. Denote the window by \(W \) and the set of actions performed within the window by \(A^W \).

The notion for the actions performed by a user within the window \(W \) extends in the obvious way the notation for the landmark model. We set \(s = \arg \max_{v \in V} s(A^W) \).

Note that if we are able to keep in main memory the whole stream, we can easily compute the influence probabilities defined above. However, for high-frequency streams of very large volume this is not possible and we thus need to develop stream-processing algorithms computing approximate estimates of the influence probabilities. Naturally, our solution extends techniques developed for streaming algorithms. We review the relevant background below.

Probabilistic approximation. We say that an algorithm returns an \((\varepsilon, \delta)\)-approximation of some quantity \(q \), if it returns a value \(\tilde{q} \), such that \((1 - \varepsilon)q \leq \tilde{q} \leq (1 + \varepsilon)q\), with probability at least \(1 - \delta \) for any \(0 < \varepsilon, \delta < 1 \).

Min-wise independent functions. A family \(F \) of functions from \(U \) to \(Z \) is \(k \)-wise independent if for \(f \) : \(U \rightarrow Z \) chosen uniformly at random from \(F \)

\[
Pr[f(u_1) = c_1 \land f(u_2) = c_2 \land \cdots \land f(u_k) = c_k] = z^{-k},
\]

for \(z = |Z| \), distinct \(u_i \in U \) and any \(c_i \in Z \) and \(k \in \mathbb{N} \).

A family \(\mathcal{H} \) of functions from \(U \) to a finite totally ordered set \(S \) is called \((\alpha, k)\)-min-wise independent if for any \(X \subseteq U \) and \(Y \subseteq X \), with \(|Y| = k \) and \(0 < \alpha < 1 \), for a function \(h \) chosen uniformly at random from \(\mathcal{H} \) it holds

\[
Pr[h(y) < \min_{z \in X \setminus Y} h(z)] = (1 + \alpha) \frac{1}{\binom{|X|}{k}}.
\]

We use the notation \(h : U \rightarrow [0, 1] \) to denote that \(h \) maps \(U \) to a finite subset \(D \) of \([0, 1] \). For \(h \) being pairwise independent and \(|D| = \left|\begin{array}{c} |U| \end{array}\right|^3 \), the probability of collision, i.e., \(h(u_1) = h(u_2) \) for \(u_1, u_2 \in U \), \(u_1 \neq u_2 \), is at most \(1/|U|^3 \). We thus assume that \(h : U \rightarrow [0, 1] \) is injective with high probability and \(h(u) \) can be described using \(O(\log |U|) \) bits.

For the analysis of our algorithms we will use the following

FACT 1. Let \(c_1, c_2, c_3, c_4 \) be constants larger than 1. For any \(0 < \varepsilon < 1 \) there exists an \(\varepsilon' = \Theta(\varepsilon) \) such that

\[
\frac{(1 + c_1\varepsilon')^2}{(1 - c_1\varepsilon')^2} \leq 1 + \varepsilon, \quad \text{and} \quad \frac{(1 - c_2\varepsilon')^2}{(1 + c_2\varepsilon')^2} \geq 1 - \varepsilon.
\]

Min-wise independent hashing. Min-wise independent permutations [4, 8] is a powerful technique for estimating the Jaccard similarity \(J(A, B) = \frac{|A \cap B|}{|A \cup B|} \) between two sets \(A \) and \(B \), subsets of a ground set \(U \). In particular, \(\pi \) be a random permutation of the elements in \(U \). Define \(\pi(A) = \min_{x \in A} \pi(x) \), the smallest element of \(A \) under the permutation \(\pi \), and \(\pi(B) \) similarly. It is easy to see that \(\Pr[\pi(A) = \pi(B)] = J(A, B) \), namely, the indicator variable that the smallest elements in \(\pi(A) \) and \(\pi(B) \) are identical yields an unbiased estimator of the Jaccard similarity.

The approach can be generalized to estimating the fraction \(\frac{|\Omega(A \cup B)|}{|A \cup B|} \) for any efficiently computable predicate \(\Omega \) on the elements in \(A \cup B \). For instance, for a random permutation \(\pi \), we can obtain an unbiased estimator of the influence probability \(p_{uv} \) by keeping track of \(c_{uv} = \arg \min_{x \in \mathcal{A}_u^\tau} \pi(x) \) and \(a_{uv} = \arg \min_{x \in \mathcal{A}_v^\tau} \pi(x) \), and then checking whether \(a_{uv} = a_{uv} \) and \(a_{uv} \) has been performed within \(\tau \) time units of \(a_{uv} \). By the estimator theorem [19], with \(O\left(\frac{1}{\varepsilon^2 p_{uv}} \log \frac{1}{\delta}\right) \) independent estimators one obtains an \((\varepsilon, \delta)\)-approximation of \(p_{uv} \). The applicability of the approach on a streaming setting, follows from the fact that, as shown by Broder et al. [4], the random permutations can be replaced by efficiently computable hash functions \(h : A \rightarrow [0, 1] \).

A modification of the approach stores the \(k \) smallest hash values instead of a single hash value and returns as an estimate \(\frac{1}{k} \min_{\Omega(A \cup B)} \), where \(\min_{\Omega(A \cup B)} \) are the actions in \(A \cup B \) with the \(k \) smallest hash values. By choosing \(\Omega \) to be the function that returns the number of propagated actions in the sample, one can show that for \(k = O\left(\frac{1}{\varepsilon^2 p_{uv}} \log \frac{1}{\delta}\right) \) and an \((\alpha, k)\)-independent hash function, for some constant \(\alpha < 1/2 \), the scheme yields an \((1 + \varepsilon)\)-approximation for edges with influence probability at least \(p \) with probability more than \(1/2 \). Standard application of Chernoff bounds yields that the median of \(O(\log \frac{1}{\delta}) \) independent estimators is an \((\alpha, \delta)\)-approximation.

The latter scheme is more suitable for our purposes. Additionally, a recent improvement of the approach exponentially reduced the evaluation time of an \((\alpha, k)\)-independent hash function from \(O(k) \) to \(O(\log^2 k) \) [12]. For the theoretical analysis of our algorithms we use the following

FACT 2. Let \(A_k \) be the set of size-\(k \) subsets of \(A \) and let more than \(2/3 \) of these satisfy a certain property \(\rho \). Let \(X \in A_k \) be a set satisfying \(\rho \). Then there exists a constant \(\alpha < 1/2 \) such that an \((\alpha, k)\)-independent hash function \(h \) maps the elements of \(X \) to the \(k \) smallest hash values with probability more than \(1/2 \). The function \(h \) can be described in \(O(k) \) machine words and evaluated in time \(O(\log^2 k) \).

Sliding-time windows. Datar et al. [9] presented an algorithm for estimating the number of 1's in a stream of bits over time-based sliding windows. The algorithm relies on a data structure based on exponential histograms. We adjust the approach such that we can apply min-wise independent hashing over sliding windows. As a result we can keep
track of the minimum element, according to a random permutation π, in the sliding window. In the analysis of our algorithms we will use the following

FACT 3. Let W be a time-based window and w be the number of actions performed within W. Keeping an exponential histogram with $O(\log w/(\varepsilon))$ buckets for each user, one can compute the minimum hash value of at least $(1-\varepsilon)w$ of the actions in W.

4. SUPERLINEAR SPACE

In this section we assume that the whole graph fits in memory and for each user we can store all actions performed within τ time units. We present algorithms for the landmark and the sliding-window model. The algorithms provide an (ε, δ)-approximation for the influence probability p_{uv} of all $(u, v) \in E$, and the complexity does not depend on p_{uv}.

4.1 Landmark model

The superlinear-space landmark-model algorithm, shown as Algorithm 1, works as follows. For each user u we keep a data structure Q_u recording the performed actions together with a hash table H_u recording the time each action in Q_u has been performed. For each directed edge (u, v) we keep a counter $c(A_{uv})$ recording the number of actions propagated from u to v within time τ, respectively. For each user u we keep a sketch MinHash_u of the actions. The sketches of the users u and v will be used to estimate $s(A_{uv})$ [1]. For a pairwise independent hash function $h: A \rightarrow [0, 1]$ the sketch for user u consists of the k smallest hash values of the actions performed by u. For each incoming triple (u, a, t_u) we update Q_u and H_u by first deleting all actions performed more than τ time units ago and adding the pair (a, t_u). Then we evaluate the hash value of the action performed and update MinHash_u, i.e., we add $h(a)$ to u’s sketch if it is smaller than the largest value or there are less than k hash values in the sketch. Next we check which of u’s neighbors have already performed a within time τ and increment $c(A_{uv})$. At the end we estimate $s(A_{uv})$ as proposed in [1] by returning k/h_k, where h_k is the k-th smallest hash value in $\text{MinHash}_u \cup \text{MinHash}_v$.

THEOREM 1. Let $G = (V, E)$ be a connected graph over n vertices and m edges, and S be a stream of s actions. There exists an algorithm computing an (ε, δ)-approximation of the influence probability of all edges in expected amortized time $O(n(\Delta + \log \frac{1}{\varepsilon}) + \frac{m}{\varepsilon})$ and space $O(m + n(\max\{A, \tau\} + \frac{1}{\varepsilon} \log \frac{1}{\delta}))$ in only one pass over S.

PROOF. For a user u we keep a queue Q_u recording the performed actions together with the corresponding time as well as a hash table H_u containing the actions. For each user we also maintain the k actions with the smallest hash values seen so far. Clearly, Q_u and H_u consists of $O(\max\{A, \tau\})$ pairs since we maintain the invariant that the first and last action in Q_u are performed within τ time units. Also each pair is added and deleted exactly once to a given Q_u and H_u, thus each incoming action is processed in expected constant amortized time. We observe that storing the incident edges for each user u in a hash table, we can access the neighbors of a user u in expected time bounded by $O(\Delta)$.

UPDATE maintains the k smallest hash values of actions performed by each user. One can use a priority queue, this however incurs an additional $\log k$-factor for the running time. Instead, for each user u we maintain the k-th largest hash value $h_{k_{\text{max}}}$. Then for an incoming triple $(u, a, t)\varepsilon$ we check whether $h(a) < h_{k_{\text{max}}}$ and if so, we store $h(a)$ in a auxiliary data structure $\text{MinHash}^{\text{aux}}$. Once there are k values in $\text{MinHash}^{\text{aux}}$, we find the median in $\text{MinHash}_u \cup \text{MinHash}^{\text{aux}}$ and update MinHash_u to contain the k minimum hash values. The median can be found in $O(k)$ time by a deterministic algorithm [2], thus we update MinHash_u in constant amortized time. Looking-up in a hash table takes expected constant time. For each edge (u, v) $\text{ESTIMATE}_{(u, v)}$ computes $h_{k_{\text{max}}}$, the k-th smallest hash value in $\text{MinHash}(u) \cup \text{MinHash}(v)$. As shown by Bar-Yossef et al. [1], for $k = O(\frac{1}{\varepsilon})$ the value $1/h_{k_{\text{max}}}$ is an $(1 \pm \varepsilon)$-approximation of $s(A_{uv})$ with probability at least $2/3$. Thus the median of $\log \frac{1}{\varepsilon} = O(\log \frac{1}{\delta})$ such estimators is an (ε, δ)-approximation of the number of performed actions for all edges. The (ε, δ)-approximation of the influence probabilities then follows from Fact 1.

4.2 Sliding window model

A straightforward extension of Algorithm 1 for the sliding window model is to combine it with the exponential histogram approach using $t = O(\frac{1}{\varepsilon})$ buckets. In each bucket we will keep the k smallest hash values and at the end, using Fact 3, we will be guaranteed to have the k smallest hash values for at least $(1 - 2\varepsilon)$ of the actions performed by each user. However, we can make use of the fact that hash

Algorithm 1: STRIP - SUPERLINEAR MEMORY

PROCEED

INPUT: Social graph $G = (V, E)$, stream S of s actions, threshold τ, int k, pairwise independent hash $h: A \rightarrow [0, 1]$

Load G in memory.

for $(u, a, t) \in S$ do

Q_u\text{enqueue}(a, t).

H_u\text{add}(a, t)

\text{UPDATE}($\text{MinHash}_u, h(a), k$)

while Q_u is not empty do

$(a_u, t_u) \leftarrow Q_u$\text{last}()

if $|t_u - t| > \tau$ then

Q_u\text{remove}()

H_u\text{remove}(a, t)

else

break;

for $(v, u) \in E$ do

if H_u\text{contains}(a, t_u)$ and $t_u - t_v \leq \tau$ then

$c(A_{uv})++$

ESTIMATE \text{UNION} \text{ SIZE}

INPUT: vertex u, vertex v, int k

$\text{MinHash}_u \leftarrow \text{MinHash}_u \cup \text{MinHash}_v$

$h_k \leftarrow$ the k-th smallest value in MinHash_u

return k/h_k

ESTIMATE \text{ INFLUENCE} \text{ PROBABILITIES}

INPUT: Social graph $G = (V, E)$

for $(u, v) \in E$ do

$s(A_{uv}) \leftarrow \text{ESTIMATE}$ \text{UNION} \text{ SIZE}(u, v, k)

return $c(A_{uv})/s(A_{uv})$
values are random and thus it is very improbable that the k smallest actions will come all from the same bucket. We formalize this intuition in the next theorem and show that for a sufficiently random hash function it suffices to store only the smallest $O(\frac{k}{\varepsilon} \log \frac{k}{\varepsilon})$ hash values per bucket.

Theorem 2. Let $G = (V, E)$ be a connected graph over n vertices and m edges, S be a stream of s actions and W a time-based sliding window. There exists an algorithm computing an (ε, δ)-approximation of the influence probability of all edges over a time-based sliding window in expected amortized time $O(s(1 + \log \frac{n}{\varepsilon} \log \frac{k}{\varepsilon}) + \frac{m}{\varepsilon^2}k)$ and space $O(m \log \frac{k}{\varepsilon} + n(\max\{A, \tau\} + \frac{k}{\varepsilon} \log^2 (\frac{k}{\varepsilon}) \log w \log \frac{1}{\delta}))$ in only one pass over S.

Proof. We use a bit-counter over sliding windows to estimate $s(A^{W}_{u,v})$. In order to estimate $s(A^{W}_{u,v})$ we extend the exponential histogram approach as follows. Consider a given user u and assume that s actions are performed within the window. We maintain $t = \frac{1}{\varepsilon} \log \frac{n}{\varepsilon}$ buckets of width 2^t for $0 \leq i \leq \log \frac{n}{\varepsilon}$, each keeping track of $2^t \leq \varepsilon w/2$ actions.

Let $k = O(\frac{1}{\varepsilon^2})$. Since h maps the w actions uniformly at random to values in $[0, 1]$, we expect k hash values to be at most k/ε. By Markov’s inequality the probability that the k-th smallest value is larger than $3k/\varepsilon$ is at most $1/3$. Next we bound the number of small hash values in a given bucket. For a bucket recording at most εw actions we expect $3k \varepsilon = O(\frac{1}{\varepsilon^2})$ hash values in the bucket to be smaller than $3k/\varepsilon$. For a fully random hash function, by Chernoff bounds the probability that the number of hash values smaller than $3k/\varepsilon$ is more than $O(k \log k)$ is $1/(8t)$. Thus, for uniformly distributed hash values in $[0, 1]$, a fraction of $1/(8t)$ of the size-x subsets of the actions in a given bucket, for $x = O(k \log k) = O(\frac{1}{\varepsilon^2} \log \frac{1}{\varepsilon})$, will constitute of actions with hash values all smaller than $3k/\varepsilon$. Thus, by Fact 2, there exists constant $\alpha < 1/2$ such that an (α, x)-independent hash function guarantees with probability $1/(6t)$ that the hash values for at most x actions in a given bucket are smaller than $3k/\varepsilon$. By the union bound we find the k smallest hash values for the buckets of given width with probability at least $5/6$, thus the total space to compute the smallest $O(\frac{1}{\varepsilon^2} \log \frac{1}{\varepsilon})$ hash values is $O(\frac{1}{\varepsilon^2} \log^2 (\frac{1}{\varepsilon}) \log w)$. Each action is processed in amortized time $O(\log \frac{1}{\varepsilon})$.

From Fact 3 it follows that we might not have a record for εw of the actions in $A^{W}_{u,v}$ and $A^{W}_{v,u}$. In the worst case we thus have not considered $2\varepsilon s(A^{W}_{u,v})$ different actions and we compute an $(1+\varepsilon)$-approximation of the quantity $(1-2\varepsilon)s(A^{W}_{u,v})$ with probability at least $2/3$. Since the bit-counter for $s(A^{W}_{u,v})$ computes an $(1+\varepsilon)$-approximation of the number of actions propagated from u to v, by Fact 1 it follows that by rescaling ε, i.e., $\varepsilon := \varepsilon/c$, for some constant $c > 0$, we have an $(1+\varepsilon)$-approximation of the influence probabilities for an edge (u, v) with probability at least $2/3$. Thus, the success probability for detecting the k smallest hash values and obtaining an $(1+\varepsilon)$-approximation from them is $(5/6) \cdot (2/3) > 1/2$. Taking the median of $O(\log \frac{1}{\varepsilon})$ estimates yields the claimed result. \(\square\)

5. LINEAR SPACE

We now move to the more interesting case, presenting algorithms that require space linear in the number of vertices. Our algorithms are appropriate for dense networks, and when we assume that there is $O(n)$ available space but not $O(m)$, the so-called semi-streaming model [11]. From the empirical point-of-view it is known that social networks become denser over time [17] and it is conjectured that $m = \Omega(n^{1+\varepsilon})$ for some constant $\varepsilon > 0$. Also, it is feasible to keep the number of actions for each user performed within τ time units only for relatively small τ. If one is interested in learning the probabilities over longer time intervals, one has to store a considerable fraction of the stream in memory.

5.1 Lower bound

Before providing our algorithms, we discuss that linear space in the number of nodes is necessary if one wants to learn the influence probabilities on all edges with certain accuracy. Intuitively, we need to store some information about each vertex in the social graph because the influence probability on a given edge (u, v) can be high even if the number of actions performed by u and v is very small.

The proof of the next theorem can be found in the Appendix. It uses a simple reduction from the Bit-VECTOR DISJOINTNESS problem for binary vectors over n bits which is known to have communication complexity of $\Omega(n)$ bits [15]. Note that the result holds for randomized algorithms even if they are allowed to make a constant number of passes on the data stream.

Theorem 3. Let $G = (V, E)$ be a connected graph over n vertices and m edges, and S be the action stream. Consider any randomized streaming algorithm A that makes a constant number of passes over E and S. Assume that A distinguishes with probability more than $1/2$ the following two cases (1) all edges have influence probability at most $1/(d-1)$, for any $d \geq 3$, vs. (2) there is an edge with influence probability $1/2$. Then A needs $\Omega(n)$ bits in expectation.

5.2 Landmark model

Algorithm 2 is based on min-wise independent sampling. We assume $h : A \rightarrow [0, 1]$ is t-wise independent, for t that will be specified later. For each incoming action (u, v) we keep a sample MinHash_{uv} of the k actions with the smallest hash values performed by him/her together with the time-stamp the action was performed. For each incoming action (u, a, t) we evaluate $h(a)$ and update MinHash_{uv}, to contain the k actions with smallest hash values. After processing the stream, for a given edge (u, v) we determine the (at most) k actions with the smallest hash values in $\text{MinHash}_{uv} \cap \text{MinHash}_{vu}$, and in Prop($\text{MinHash}_{uv}^{k}, \tau$) we count how many of them propagated from u to v within τ time units.

Theorem 4. Let $G = (V, E)$ be a connected graph over n vertices and m edges, and S be a stream of s actions. There exists an algorithm returning an (ε, δ)-approximation of the influence probability p_{uv} of all arcs (u, v) with $p_{uv} \geq p$ in amortized time $O(s \log^2 (\frac{1}{\varepsilon^2}) + \frac{m}{\varepsilon^2}k) \log \frac{k}{\varepsilon}$ and space $O(\frac{1}{\varepsilon^2} \log \frac{k}{\varepsilon})$ in one pass over S.

Proof. Assume that h is t-wise independent, for t to be specified later. Consider an edge $(u, v) \in E$. We are interested in those sets MinHash_{uv}^{k} of k elements containing $(1+\varepsilon)p_{uv}$ actions that propagated from u to v. The number of such sets follows hypergeometric distribution. We expect $p_{uv}k$ actions in MinHash_{uv}^{k} to have propagated from u to v. With some algebra we bound the variance of the random variable counting the number of propagated actions in MinHash_{uv}^{k}. By Chebyshev’s inequality it follows that for
k = \mathcal{O}\left(\frac{1}{\epsilon^2 p}\right) at most 1/3-rd of the k-subsets will not yield a (1 \pm \epsilon)-approximation of p_{uv}. From Fact 2 there exists a constant \alpha < 1/2 such that for h being (\alpha, k)-independent, with probability at least 2/3 the k smallest hash values correspond to a set of size k which provides an (1 \pm \epsilon)-approximation. A standard application of Chernoff’s inequality and the union bound yields that the median of \mathcal{O}(\log \frac{2}{\epsilon}) estimates will be an (\epsilon, \delta)-approximation for all \((u, v)\ with p_{uv} \geq p\).

The sets \text{MinHash}_u for each user can be stored in an indexed array allowing constant time access. We maintain the k smallest hash values in a priority queue and update it for each newly performed action. We need h to be t-wise independent for \(t = \mathcal{O}\left(\frac{1}{\epsilon^2 p}\right)\) and by [12] h can be represented in space \(\mathcal{O}\left(\frac{1}{\epsilon^2 p}\right)\) and evaluated in time \(\mathcal{O}(\log^2 \frac{1}{\epsilon p})\).

\[\square\]

\begin{algorithm}[h]
\caption{Algorithm 2: STRIP - LINEAR MEMORY}
\textbf{Compute Samples}
\begin{algorithmic}
\State \textbf{Input:} stream \(S\) of actions, threshold \(\tau\), a parameter \(k\), t-wise independent hash function \(h: A \rightarrow [0, 1]\)
\For {\((u, a, t) \in S\) do}
\State \text{MinHash}_u.update((h(a), t), k).
\EndFor
\State \textbf{Single Estimate}
\begin{algorithmic}
\State \textbf{Input:} users \(u, v\), a set of samples \text{MinHash}_uv for all users \(z\)
\State Let \text{MinHash}_uv^k be the k entries with the smallest hash value in \text{MinHash}_uv \cup \text{MinHash}_v
\State return \(\text{Prop\text{[MinHash]}}_uv^k\)
\end{algorithmic}
\end{algorithmic}
\end{algorithm}

5.3 Sliding window model

We extend the previous algorithm to estimate the influence probabilities over sliding windows. The main idea is to guarantee that the required \(\mathcal{O}\left(\frac{1}{\epsilon^2 p}\right)\) smallest hash values of actions performed within the window are kept with constant error probability. We achieve this by adjusting the exponential-histogram technique.

\textbf{Theorem 5.} Let \(G = (V, E)\) be a connected graph over \(n\) vertices and \(m\) edges, \(S\) be a stream of \(s\) actions and \(W\) a time-based sliding window of at most \(w\) actions. There is an algorithm returning an \((\epsilon, \delta)-\text{approximation of the influence probability} p_{uv}^W\) of all edges with \(p_{uv}^W \geq p\) in amortized time \(\mathcal{O}(s(\log^2 \frac{1}{\epsilon^2} + \frac{m}{\epsilon^3 p^3 \log \frac{2}{\delta}}) \log \log \frac{2}{\delta})\) and space \(\mathcal{O}(\frac{1}{\epsilon^2 p} \log^2 \frac{1}{\epsilon}) \log \log \frac{2}{\delta}\) in one pass over S.

\textbf{Proof.} Assume for each \(i\) we maintain \(t\) buckets of width \(2^t\), \(0 \leq i \leq \log \frac{m}{\epsilon^2}\) for \(t \geq \frac{1}{\epsilon^2}\). Similarly to the proof of Theorem 2, we can show that storing \(\mathcal{O}(\frac{1}{\epsilon} \log \frac{1}{\epsilon})\) values per bucket, we can compute with constant error probability \(p_t < 1/4\) the required smallest \(k = \mathcal{O}(\frac{1}{\epsilon^2 p})\) hash values.

The construction of exponential histograms implies that in the last bucket, i.e., the bucket keeping track of the oldest actions, we might have recorded \(k\) hash values of actions not performed within the window. Consider a directed edge \((u, v)\) and assume the worst case that we have no record of \(w/(2t)\) actions performed by \(u\) within the window and all of them have propagated from \(u\) to \(v\). This happens when either for \(u\) or \(w\) we have not recorded hash values of actions performed within the window and propagating from \(u\) to \(v\). Therefore, as shown in Theorem 4 we can obtain with error probability less than \(1/2\) an \((1 \pm \epsilon)\)-approximation of the quantity \(s(A_{uv}^{w/(2t)})\) for \(k = \mathcal{O}(\frac{1}{\epsilon^2 p})\). This yields an additive approximation of \(\epsilon p_{uv} - \frac{w}{m} A_{uvw}\). From \(s(A_{uv}) \leq 2w\) and \(p_{uv} \geq p\) we obtain that for \(\tau \geq \frac{1}{p}\), we will have an \((1 \pm \epsilon)\)-multiplicative approximation with error probability \(p/2 < 1/4\). Similar reasoning applies to the case when we have no record of \(w/(2t)\) actions performed by \(u\) and no of them propagated to \(v\).

Thus, with error probability less than \(1/2\) we have an \((1 \pm \epsilon)\)-approximation of the influence probability for a given arc. Running \(\mathcal{O}(\log \frac{1}{\delta})\) copies in parallel and taking for each edge the median of the estimates, the approximation holds for all arcs with probability at least \(1 - \delta\).

\[\square\]

6. SUBLINEAR SPACE

For the landmark model we combine the algorithm from Section 5.2 with hashing based algorithms for mining heavy hitters in data streams, e.g., [6]. The main idea in these algorithms is to distribute the heavy items to different bins by a suitably defined hash function. Then one shows that the contribution from non-heavy items in each bin is not significant and one can obtain high quality estimates for the heaviest items. In Algorithm 3 we apply the approach to active users but instead of estimating the activity, we are interested in obtaining a sample of the actions performed by active users. By recording the actions with the smallest hash values in each bin, we will show that with high probability a large fraction of those will be for actions performed by an active user.

\textbf{Theorem 6.} Let \(G = (V, E)\) be a connected graph over \(n\) vertices and \(m\) edges, \(S\) be a stream of \(s\) actions. Let the user activity follow Zipfian distribution with parameter \(\alpha\) and let \((u_1, u_2, \ldots, u_n)\) be the users sorted according to their
activity. There exists a one-pass streaming algorithm computing an \((\varepsilon, \delta)\)-approximation of the influence probabilities of all edges \((u_i, u_j)\) with \(p_{u_i, u_j} \geq p\) for \(i, j \leq b\) in time \(T\) and space \(S\) such that:

- if \(z < 1\), then \(S = \mathcal{O}(\frac{\varepsilon^{-1}\log\frac{1}{p}}{\varepsilon^2p})\) and \(T = \mathcal{O}(\frac{(s \log \frac{1}{\varepsilon} + \frac{s^2}{\varepsilon^2p}) \log \frac{1}{p}}{\varepsilon^2p})\).
- if \(z > 1\), then \(S = \mathcal{O}(\frac{\varepsilon^{-1}\log\frac{1}{p}}{\varepsilon^2p})\) and \(T = \mathcal{O}(\frac{(s \log \frac{1}{\varepsilon} + \frac{s^2}{\varepsilon^2p}) \log \frac{1}{p}}{\varepsilon^2p})\).

We can extend the algorithm to handle the sliding window model under the assumption that the user activity within the window adheres to Zipfian distribution. We adjust the exponential histograms approach such that each bucket records a certain number of bins recording the smallest hash values. As in the previous sections, this incurs an additional cost of \(\text{polylog}(\frac{1}{\varepsilon}, w)\) to the space complexity of the algorithm.

7. EXPERIMENTAL EVALUATION

The goal of our experiments is twofold. First, to show that the proposed approach is indeed applicable to learning influence probabilities in real social networks and yields results that confirm the theoretical analysis. Second, to compare the algorithms for the different memory models. Note that we did not try to optimize the space usage since it heavily depends on low-level technical details. For example, in our Java implementation we worked with data structures provided by the java.util package. However, a hash table then automatically wraps primitive data types as objects, which considerably increases the space usage. While such details can greatly influence the performance, they are beyond the scope of the present work.

Details on the implementation. We used tabulation hashing [5] to implement the hash function. (See, e.g., [20] for details.) The approach is very efficient and each hash function can be stored in fast cache and evaluated in constant time. The scheme yields only 3-wise independence but recently Chernoff-like concentration on the estimates provided by algorithms using tabulation hashing with a single hash function were shown [20]. Therefore, we worked with only one hash function instead of taking the median of several estimates provided by different functions.

Experimental settings. The algorithms were implemented in Java and experiments performed on a Windows 7 machine with 3.30 GHz clocked processor and 4 GB RAM. We experimented on two real-world datasets. For both datasets we extend the available stream of events, by creating synthetic data in a smart way: the synthetic stream is generated by an instance of the Independent Cascade model that fits the available real data, as explained next.

The first dataset is obtained by crawling the public timeline of Twitter and tracking the propagation of hashtags across the network. The second dataset has been crawled from Flixster \(^1\), one of the main web communities which allows to share ratings on movies and to meet other users with similar tastes. The propagation log records the time at which a user rated a given movie. An item propagates from \(v\) to \(u\), if \(u\) rated the item shortly after the rating by \(v\). The datasets basic statistics are reported in Table 1.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Twitter</td>
<td>26,488</td>
<td>1,636,462</td>
<td>6,883</td>
</tr>
<tr>
<td>Flixster</td>
<td>29,357</td>
<td>425,228</td>
<td>585</td>
</tr>
</tbody>
</table>

Table 1: Characteristics of the real-world datasets.

For 100,000 items propagated through the Twitter network we obtain a stream of about 36 million actions. For the Flixster network we propagate 1,000,000 items obtaining a stream of about 27 million actions. The synthetic datasets exhibit similar characteristics to the original data with skewed activity among users and, not surprisingly, similar distribution of the influence probabilities.

For a directed edge \((u, v)\), we denote the approximation of the influence probability \(p_{uv}\) by \(\tilde{p}_{uv}\). We evaluate the quality of the estimates of all edges \((u, v)\) s.t. \(p_{uv} \geq 0.05\) with respect to average relative error, Pearson correlation coefficient and Spearman rank correlation [3].

Evaluation. Table 3 shows the quality of the estimates for varying number of samples. As expected, the best estimates are obtained for Algorithm 1, the superlinear space model, since the number of propagations for any \((u, v)\) is computed exactly and we only estimate the number of different actions performed by \(u\) or \(v\). The left-most plot in Figure 1 confirms that the quality of the approximation does not depend on the influence probability. Due to the sparsity of the graph structure of the two considered networks, the space complexity of Algorithm 1 is comparable to the space-usage by Algorithm 2. However, the running time is more than an order of magnitude larger and this is due to the fact that for each incoming triple \((u, a, t_u)\) we explicitly need to check whether \(v\) has performed \(a\) within \(t_u\) time units of \(t_u\) for all arcs \((v, u)\). Instead, in Algorithm 2 each incoming triple is processed in constant amortized time. The exact numbers are in Table 2, where the space is the number of stored samples and the time is given in seconds.

In Tables 4 and 5 we evaluated the quality of estimates for time-based sliding windows. We choose a time threshold for the window such that the number of actions in the windows is approximately 10% and 20% of the stream, respectively. In order to obtain the smallest \(k\) hash values

\(^1\)http://www.cs.sfu.ca/~jia25/personal/datasets/
overall, we observed that tabulation hashing’s randomness allows us to store only the smallest $O(k \log k/t)$ hash values in each of the t buckets of given width. The processing of the stream was stopped at a random point and we evaluated the quality of the estimates. Due to lack of space we do not include the exact time and space complexities but we observe that for the smaller window the space-savings are small, using between 50% and 85% of the total window size for a varying number of samples. For the larger window, better space savings were observed using between 35% and 70% of the window size, clearly indicating that our approach is advantageous to storing the whole window only for larger windows. For the sublinear space model we concentrated only on the 500 top users and even for the smaller window were able to achieve relatively good space savings, varying between 18% and 40% of the window.

In a summary, we see reasonably good estimates on the influence probabilities by storing just a few hundreds hash values. For larger streams the advantages of the approach become more significant. Also, while the superlinear memory algorithm yields better estimates, this comes at the price of a much worse processing time. For denser social networks this drawback will be even more pronounced.

8. CONCLUSION AND FUTURE WORK

Microblogging platforms as twitter are becoming large real-time generators of social data-streams. In this paper, we presented STRIP, a suite of streaming methods for computing the influence strength along each link of a social network. To the best of our knowledge, these are the first streaming methods that compute influence probabilities. The STRIP methods builds upon a wise use of probabilistic approximations, min-wise independent hashing functions, and streaming sliding windows. These methods works in several scenarios, depending on the available memory and whether we are interested in the whole history of the stream or only in more recently performed actions.

In our future investigation, we plan to extend the present work in two directions. First, we plan to use adaptive size windows, so that the data analyst does not need to decide a priori what is the optimal window. Second, we plan to implement the STRIP suite of methods using distributed stream systems, to be able to process social data-streams in a distributed fashion.

Acknowledgements. This work done while the first author was visiting Yahoo! Research, Barcelona and supported by the Danish National Research Council under the Sapere Aude program. We would like to thank Rasmus Pagh for valuable suggestions about the analysis of the algorithm.

9. REFERENCES

Table 2: Complexity of the algorithms. The running time is given in seconds and the space is the number of samples stored in memory.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Twitter</th>
<th>Flixster</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.539,93</td>
<td>1.091,27</td>
</tr>
<tr>
<td>150</td>
<td>2.342,12</td>
<td>1.389,76</td>
</tr>
<tr>
<td>200</td>
<td>3.081,68</td>
<td>1.387,96</td>
</tr>
<tr>
<td>250</td>
<td>3.639,12</td>
<td>1.393,65</td>
</tr>
<tr>
<td>300</td>
<td>4.127,04</td>
<td>1.395,02</td>
</tr>
<tr>
<td>350</td>
<td>4.799,32</td>
<td>1.393,86</td>
</tr>
<tr>
<td>400</td>
<td>5.478,57</td>
<td>1.397,03</td>
</tr>
<tr>
<td>450</td>
<td>5.925,66</td>
<td>1.396,58</td>
</tr>
<tr>
<td>500</td>
<td>6.498,56</td>
<td>1.397,16</td>
</tr>
</tbody>
</table>

Table 3: Quality of the estimates for the landmark model for various number of samples.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Twitter</th>
<th>Flixster</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.0573</td>
<td>0.9008</td>
</tr>
<tr>
<td>150</td>
<td>0.0502</td>
<td>0.9915</td>
</tr>
<tr>
<td>200</td>
<td>0.0461</td>
<td>0.9922</td>
</tr>
<tr>
<td>250</td>
<td>0.0402</td>
<td>0.9937</td>
</tr>
<tr>
<td>300</td>
<td>0.0372</td>
<td>0.9969</td>
</tr>
<tr>
<td>350</td>
<td>0.0301</td>
<td>0.9969</td>
</tr>
<tr>
<td>400</td>
<td>0.0283</td>
<td>0.9973</td>
</tr>
<tr>
<td>450</td>
<td>0.0226</td>
<td>0.9974</td>
</tr>
<tr>
<td>500</td>
<td>0.0243</td>
<td>0.9991</td>
</tr>
</tbody>
</table>

Table 4: Quality of estimates for a sliding window of length approximately 10% of the stream.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Twitter</th>
<th>Flixster</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.0685</td>
<td>0.9951</td>
</tr>
<tr>
<td>100</td>
<td>0.0555</td>
<td>0.97</td>
</tr>
<tr>
<td>150</td>
<td>0.0374</td>
<td>0.9983</td>
</tr>
<tr>
<td>200</td>
<td>0.0335</td>
<td>0.9969</td>
</tr>
<tr>
<td>250</td>
<td>0.0257</td>
<td>0.9973</td>
</tr>
<tr>
<td>300</td>
<td>0.0229</td>
<td>0.9993</td>
</tr>
</tbody>
</table>

Table 5: Quality of estimates for a sliding window of length approximately 20% of the stream.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Twitter</th>
<th>Flixster</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.1612</td>
<td>0.9565</td>
</tr>
<tr>
<td>100</td>
<td>0.1282</td>
<td>0.9861</td>
</tr>
<tr>
<td>150</td>
<td>0.0434</td>
<td>0.9883</td>
</tr>
<tr>
<td>200</td>
<td>0.0305</td>
<td>0.9959</td>
</tr>
<tr>
<td>250</td>
<td>0.0287</td>
<td>0.9977</td>
</tr>
<tr>
<td>300</td>
<td>0.0201</td>
<td>0.9918</td>
</tr>
<tr>
<td>50</td>
<td>0.1033</td>
<td>0.9034</td>
</tr>
<tr>
<td>100</td>
<td>0.0528</td>
<td>0.9569</td>
</tr>
<tr>
<td>150</td>
<td>0.0325</td>
<td>0.9751</td>
</tr>
<tr>
<td>200</td>
<td>0.0291</td>
<td>0.9806</td>
</tr>
<tr>
<td>250</td>
<td>0.0268</td>
<td>0.9837</td>
</tr>
<tr>
<td>300</td>
<td>0.0175</td>
<td>0.9911</td>
</tr>
</tbody>
</table>