
Learning to Question: Leveraging User Preferences
for Shopping Advice

Mahashweta Das‡
Computer Science and Engineering Department

University of Texas at Arlington
mahashweta.das@mavs.uta.edu

Gianmarco De Francisci Morales
Yahoo! Research
Barcelona, Spain

gdfm@yahoo-inc.com
Aristides Gionis‡

Aalto University and HIIT
Espoo, Finland

aristides.gionis@aalto.fi

Ingmar Weber‡
Qatar Computing Research Institute

Doha, Qatar
ingmarweber@acm.org

ABSTRACT
We present ShoppingAdvisor, a novel recommender sys-
tem that helps users in shopping for technical products.
ShoppingAdvisor leverages both user preferences and tech-
nical product attributes in order to generate its suggestions.
The system elicits user preferences via a tree-shaped flowchart,
where each node is a question to the user. At each node,
ShoppingAdvisor suggests a ranking of products match-
ing the preferences of the user, and that gets progressively
refined along the path from the tree’s root to one of its leafs.

In this paper we show (i) how to learn the structure of the
tree, i.e., which questions to ask at each node, and (ii) how
to produce a suitable ranking at each node. First, we adapt
the classical top-down strategy for building decision trees in
order to find the best user attribute to ask at each node. Dif-
ferently from decision trees, ShoppingAdvisor partitions
the user space rather than the product space. Second, we
show how to employ a learning-to-rank approach in order
to learn, for each node of the tree, a ranking of products
appropriate to the users who reach that node.

We experiment with two real-world datasets for cars and
cameras, and a synthetic one. We use mean reciprocal rank
to evaluate ShoppingAdvisor, and show how the perfor-
mance increases by more than 50% along the path from root
to leaf. We also show how collaborative recommendation al-
gorithms such as k-nearest neighbor benefits from feature
selection done by the ShoppingAdvisor tree. Our experi-
ments show that ShoppingAdvisor produces good quality
interpretable recommendations, while requiring less input
from users and being able to handle the cold-start problem.

‡Majority of work done while at Yahoo! Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’13, August 11–14, 2013, Chicago, Illinois, USA
Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
recommendation, learning, ranking, collaborative content

1. INTRODUCTION
When shopping for a new laptop in the traditional way,

customers would walk into a shop and rely on the experi-
ence of a shopping assistant to help them select the best
laptop for their needs. A good shopping assistant would ask
questions intelligible to non-expert users, for instance, “Do
you intend to use the laptop for playing modern computer
games?”, while mapping the answers to technical product
specifications, such as, “The customer will need at least 4
gb of ram.” E-commerce has disrupted this custom in two
ways. First, customers shop online, from their homes, with-
out any human interaction involved. Second, catalogs of on-
line shops are so big and with so many continuous updates
that no human, however expert, can effectively comprehend
the space of available products. As a consequence, the cus-
tomers are left without any guidance to understand their
needs and map them to a product.

In this paper we propose a system that addresses this
need. Our system, called ShoppingAdvisor, draws inspi-
ration from a recent marketing strategy called “Which prod-
uct should I buy?” flowchart. Each box in these flowcharts
asks the prospective shopper a question, and the sequence
of answers leads the shopper to the suggested shopping op-
tion. “Which product should I buy?” flowcharts present two
problems. First, designing such flowcharts manually is time
consuming. Second, they rely on questions about technical
attributes, which an average shopper might not understand.
We address both problems by automatically designing flow-
charts that help shoppers select the best product for their
needs. An important design principle of our approach is
that we distinguish between two types of features: (i) fea-
tures in a “user space,” which contain user information such
as demographics, life-style preferences, and interests; and
(ii) features in a “product space,” which contain technical
information of the products, e.g., the cpu speed of a laptop.

ShoppingAdvisor generates a tree-shaped flowchart, in
which the internal nodes of the tree contain questions ad-
dressed to the users. These questions involve only attributes

Choosing a Digital Camera

Budget
< $500?

Weight
< 3lbs? Video?

Nikon
Coolpix

L26

Sony
Cybershot

DSC-H2

Nikon
D300S

Canon
EOS 5D

NO

NO NO YES

YES

YES

Choosing a Digital Camera

Travel-
Purpose

?

Back-
packing

?

Live
event?

Nikon
Coolpix

L26

Sony
Cybershot

DSC-H2

Nikon
D300S

Canon
EOS 5D

NO

NO YES

YES

YES NO

Figure 1: Example of “Which camera should I buy?”
flowchart (left) and its equivalent non-technical ShoppingAdvis-
or flowchart (right).

from the user space, that non-expert users can understand
easily. For instance, “Are you a student?” or “Would you be
storing videos in your laptop?”. A potential shopper, starts
from the root of the ShoppingAdvisor tree, answers ques-
tions, follows the control flow, and descends towards a leaf
of the ShoppingAdvisor tree, where they find a ranked list
of product recommendations. In fact, a user can stop an-
swering at any level in the tree as a ranking is available at
each node, not only at leafs.

At a high-level, the ShoppingAdvisor tree resembles a
decision-tree, and our method for learning its structure re-
sembles decision-tree learning algorithms. However, there
are important differences. First, given a set of users with
similar features, our system induces a ranking on all the
existing products, based on the attributes of the products.
Thus, unlike traditional decision trees in which each node
outputs a class label, we learn trees in which each node out-
puts a ranking of products. Second, unlike other tree-based
methods, in our model the splitting and ranking domains
are different. Indeed, the ShoppingAdvisor tree partitions
the users on the basis of user attributes, so that similar users
will end up in the same nodes, under the assumption that
they will prefer similar products. However, the ranking of
products at each node depends on their technical attributes.
In this way, if the system learns that, say, the storage ca-
pacity of a laptop is an important feature for a particular
user segment, the system will weigh this feature appropri-
ately and will rank high other laptops with large hard disks.
This identification of implicit relationships between user and
product attributes lets the system deal with both new users
and with new items, alleviating cold-start problems.

Figure 1 shows an example of a “Which camera should
I buy?” flowchart with technical questions (left) and an
equivalent example with non-technical questions produced
by ShoppingAdvisor (right). A shopper answering yes to
both questions “Do you want a camera for traveling?” and
“Do you want a camera for backpacking trips?” is more likely
to be recommended a ultra-compact camera.

We demonstrate the effectiveness of our interactive rec-
ommendation system for two categories of products: cars
and cameras. In addition to the conceptual contributions –
introducing a new problem definition and developing novel
methods to solve this problem – we also show how to mine
publicly available data to create datasets required by our
problem definition, namely, integrating information regard-
ing users, products, and reviews.

For our first use case, cars, we extract information from
Yahoo! Autos.1 We collect car specifications (numerical,
boolean and categorical attributes), as well as ratings and
reviews submitted by users. Each user review includes pros
and cons, short free-text snippets that highlight positive and
negative aspects of the car. We employ standard text-mining
techniques to extract tags such as fuel economy, stylish
and performance from the reviews. We use those tags as
user attributes: we represent each user by the set of tags
that the user has used in the pros section of his reviews.

We take a different route for cameras and use data from
flickr.2 In this case the tags used by each user to describe
their photos are used as a proxy to user interests. We extract
the cameras used to take the photos with such tags from
the metadata, and we retrieve their technical specifications
from CNET.3 Rather than using review scores from CNET, we
choose to test our framework in a different setting, where
review scores might not be available, and use popularity of
a camera in flickr as a proxy. For each tag, we count how
many pictures were taken with a given camera, and use this
number to rank the cameras.

We use mean reciprocal rank (MRR) to evaluate Shop-
pingAdvisor, and we show how the performance increases
by more than 50% along the path from root to leaf. We also
show how collaborative filtering algorithms such as k-nearest
neighbor benefits from feature selection done by Shopping-
Advisor. We obtain results of comparable quality by using
only a subset of user attributes, i.e., features for k-NN, while
producing more interpretable recommendations.

2. PROBLEM DEFINITION
We consider that our input data consists of three tables:

a user table U, a product table P, and a review table R.
The table U contains information about the users and it

has dimensions nU ×mU . That is, we assume that we keep
information for nU users, and each user is described with
mU attributes. We do not make any explicit assumption
regarding what type of information we have, it may be any
kind information, for example, registration information such
as demographics, or implicitly provided information, such as
tags used on social-media sites, or browsing behavior. Such
information expresses the interests and lifestyle preferences
of users. We use the notation ui to refer to the i-th user.

The second component of our data, the table P, is of
dimensions nP ×mP and contains product information. We
assume that we have information for nP products, and each
product is described with mP technical attributes, typically
provided by the manufacturer. For instance, for cameras the
attributes contain information such as resolution, zoom,
aperture, and weight. We use the notation pj to refer to
the j-th product.

The last component of our data is the review table R with
dimensions nC × 3, and each row describing a reviewing
action (ui, pj , sij). This row contains data about user ui

evaluating product pj with score sij . We may think of sij
as a number in an interval, say, sij ∈ [1, 5], where sij = 1
reflects a negative opinion and sij = 5 is positive.

Examples of a user table, a product table, and review table
are shown in Tables 1, 2, and 3, respectively. Note that a

1
http://autos.yahoo.com

2
http://www.flickr.com

3
http://www.cnet.com

http://autos.yahoo.com
http://www.flickr.com
http://www.cnet.com

Table 1: An example user table U.

uid Gender Age Travel Family Live Video

1 female young 1 1 0 0
2 male old 0 1 1 0
3 female young 0 0 1 1
4 male teen 1 0 0 1

Table 2: An example
product table P.

pid Weight Resolution

1 5.0 lbs 36.3 MP
2 1.7 lbs 10.1 MP
3 2.0 lbs 14.0 MP
4 4.5 lbs 28.1 MP

Table 3: An example
review table R.

uid pid Rating

1 3 4.5
2 2 3.5
3 1 4
3 3 3

user may review more than one product, and a product may
be reviewed by more than one user.

For ease of reference, we denote by P the set of all prod-
ucts and by U the set of all users in our system. The set
of all user attributes is denoted by A. Note that |P| = nP ,
|U| = nU , and |A| = mU .

The system we design and build in this paper, Shopping-
Advisor, is a decision tree that guides the users in making
their shopping decisions. We denote this tree by T . The in-
ternal nodes of the ShoppingAdvisor tree T correspond to
user attributes in A. A potential shopper is supposed to use
the tree T as a flowchart for receiving product recommenda-
tions. A user starts from the root of the tree. The root, as
any internal node, contains a user attribute a ∈ A. The at-
tribute a is perceived as a question by the user. For example,
if a is a demographics attribute, the question can be “Are
you in the a demographics group?”, while if a is a tag, the
question can be “Are you interested in tag a?” The user, by
answering this question, follows the left or right subtree, and
continues recursively answering questions in internal nodes
of T until they reach a leaf node or they decide to stop.4

The leaf nodes of T correspond to an ordering of the prod-
ucts in P. Once a shopper reaches a leaf node ` ∈ T , by
following the internal nodes of T and answering questions,
ShoppingAdvisor recommends to the shopper products in
the order specified by the leaf node `. In practice, we as-
sume that ShoppingAdvisor recommends the top-k prod-
ucts in the ordering, although the user may select a “more k
products” button. We leave such system details outside our
discussion and focus on the algorithmic abstractions.

We now define the main problem we address in this paper.

Problem 1 (ShoppingAdvisor). We are given as in-
put a product table P, a review table R, a user table U, and
integers h and k. The task is to learn a ShoppingAdvisor
tree T . Each internal node of the tree contains a question
formed by a user attribute a ∈ A. Each tree node contains
a top-k ranked list of the products P. The height of the tree
is restricted to be h.

The objective of the tree T is to provide relevant recom-
mendations on products P. A new shopper, starting from
the root, traverses down the tree T , answering at most h
questions, until reaching a leaf node, where the user receives

4In this paper we focus on identifying the attribute of interest,
and not on the task of formulating the question in a human-
interpretable way. We assume that this problem can be solved
independently, even with human supervision of the designers of
the ShoppingAdvisor application.

the top-k recommendations contained at that leaf node. The
quality of the learned tree T reflects the quality of such rec-
ommendations made to a new user/shopper.

To make the definition of our problem precise, we need
to quantify how we evaluate recommendations made by the
ShoppingAdvisor tree T . For this task, we use ten-fold
cross-validation. Users in the evaluation fold have reviewed
products – their scores are contained in the review table R
– and thus we can evaluate the quality of T ’s recommenda-
tions. As we need to evaluate a ranked list we can employ
standard measures from information retrieval.

As already mentioned, we model our ShoppingAdvisor
system as a decision tree. We learn the structure of the tree
by partitioning the set of users in the training set recur-
sively on the basis of available user attributes – such as, de-
mographics, tagging behavior, and so on – and then match
a test user, to the leaf node of users with whom the user
shares their preferences. For each group of users, we also
learn the product attribute weights and generate a ranking
of top-k products in the training set, in order to identify the
top products for recommendation.

3. ALGORITHMS

3.1 A general algorithmic framework
We first introduce a general algorithmic framework for

solving the ShoppingAdvisor problem. Our algorithmic
framework uses two functions as black boxes. The first is a
payoff function, used to choose the best question to ask at
any node of the ShoppingAdvisor tree T . In other words,
the function payoff determines the best user attribute a ∈ A
to partition the set of users at any node of the tree T . The
second function is a rank function, used to determine the
ranking of the products recommended to users. Learning
the rank function can be seen as learning weights on the
attributes of products, which in turn can be used to rank all
products in P; and subsequently select the top-k products.

Typically, decision trees are constructed in a top-down
fashion, where each internal node splits the training in-
stances into two or more subspaces. In the ShoppingAdvis-
or tree T , each internal node of the tree corresponds to
the set of users whose attributes match the attributes at
all internal nodes on the path from the root to that node.
Thus, we recursively partition the set of users at each in-
ternal node. The partition criterion is that the users within
each side of the split should agree on their ratings on the
products. The goal is to select the user attribute, so that
when we perform the split based on that attribute, the uni-
formity criterion on the user ratings is maximized. As an
example, if it so happens that avid hikers tend to prefer a
certain camera, for its weight, ruggedness, and ability to take
high-quality outdoors photos, then the hiking tag should be
used to split the active users at that step of the construction
of the tree.

Each tree node contains a ranking of products, induced
from a model that uses the ratings of the users belonging
to that node. Consider a shopper who has cascaded until
a node q of the tree T . If q is a leaf node, the shopper is
provided with a top-k list of product recommendations. If q
is an internal node, the shopper is asked the question that
corresponds to q, and depending on the answer cascades to
one of the two subtrees of q. The shopper is also given

the possibility not to answer the question and receive the
current recommendation at node q. This is possible since
a product ranking is available at each node. For simplicity,
in the evaluation performed in this paper, we assume that
shoppers navigate until tree leafs.

Learning the tree structure. Determining the structure
of the tree T is equivalent to choosing which user attribute
a ∈ A to use for a question at each node.

Formally, consider a tree node q and the set of users Uq

who correspond to q, namely, the set of users whose at-
tributes match the attributes at all internal nodes on the
path from the root of the tree until q. Given a candi-
date splitting user attribute a ∈ A, two subsets of Uq can
be defined: the set of users Uq(a) who match attribute a,
and the set of users Uq(a) who do not match attribute a.
For simplicity, we assume that Uq = Uq(a) ∪ Uq(a) and
Uq(a)∩Uq(a) = ∅, although it is not required as our frame-
work can handle overlapping subsets. The root node of the
tree comprises all nU users of the user table U.

To determine the best user attribute a ∈ A to split Uq

at node q we evaluate the pay-off function associated with
the sets of users resulting from the split. In particular, we
consider a combine function that maps the pay-off of the two
subsets to a single-valued measure.

payoff(q, a) = combine(payoff(Uq(a)), payoff(Uq(a)),

|Uq(a)|, |Uq(a)|, |Uq|),

where the function payoff(U) evaluates the quality of ranking
induced by a set of users U . There are a number of natural
options for the combine function, such as sum, arithmetic
mean, geometric mean and harmonic mean.

One has to consider all possible user attributes a ∈ A,
and choose as splitter the one that maximizes the pay-off.

splitter(q) = arg max
a∈A

payoff(q, a). (1)

The idea behind such a posterior goal of maximizing pay-
off is to partition the set of users into two groups, which
have similar preferences, and which rank the products in P
in a similar way. Furthermore, we aim at leveraging hidden
correlations among the set of user attributes and the set of
product attributes. For instance, in the previous example
with hikers preferring certain lightweight cameras, our tree
should learn the fact that the weight of a camera is an im-
portant feature for that specific subset of the population,
and thus, it should tend to rank lightweight cameras higher,
even if they have not been explicitly rated.

Note that our recursive algorithm is an instantiation of a
greedy heuristic. In principle, selecting the best splitter at a
certain node according to Equation (1) may lead to globally
suboptimal solutions. However, this is a cost we have to pay
due to the NP-hardness of the ShoppingAdvisor problem.

Learning product rankings. We next consider the prob-
lem of learning to rank the products in P at a given tree
node q. The input consists of users Uq belonging to node q.
We also have access to the product table P and the review
table R. In fact, we only need the rows of the review table
R corresponding to Uq, and denote the sub-table as Rq.

The objective is to learn a function rank : P → R which,
given a product p ∈ P specified by its technical attributes
(i.e., by a row in the product table P), returns a value
rank(p), which in turn can be used to induce a ranking on
the set P. We opt for a linear function, and thus the task is

to learn weight coefficients for the product attributes. Note
that in order to handle categorical attributes of products
with our linear ranking function we convert such categorical
attributes into a set of boolean attributes, and then treat
them as numerical 0–1 values.

To learn the function rank we can use any learning-to-rank
algorithm, such as Regression, RankSVM, or Gradient-
Descent. To employ such a learning-to-rank algorithm we
need to assign a score to each product p in P. Such a score
is computed as the average rating of p in the review table
Rq, that is, the average rating of p over the set of users who
correspond to the node q under consideration.

Putting the learning components together. We now
discuss the interaction of the two learning ingredients: learn-
ing the tree structure and learning the product ranking. We
first observe that the ranking function we learn at a tree
node q depends on the set of users (and their ratings on
products) who correspond q. We write rankU to emphasize
the dependance of the ranking function from a set of users U .
The quality of ranking can be evaluated using a quality mea-
sure eval. Functions such as precision, recall, normalized dis-
counted cumulative gain (ndcg), and mean reciprocal rank
(mrr) can be used as eval functions. We write eval(rankU) to
denote the quality of a rankU ranking measured by such an
eval measure. Finally, we recall that a good user attribute
to split a tree node q is a user attribute that induces sub-
populations with good rankings in each one. The quality of
the ranking should be reflected in the payoff function used.
Thus we set

payoff(U) = eval(rankU). (2)

In the next section we discuss our considerations for the
functions payoff, rank, and eval.

3.2 The LearnSATree algorithm
Our proposed algorithm, LearnSATree, for learning Shop-

pingAdvisor tree is an instance of the general algorithm
presented in the previous section, with judicious choices for
the functions payoff, rank, combine, and eval. We now dis-
cuss more in detail those choices. We first introduce our
learning-to-rank model and we define the function rank that
learns weights of product attributes.

Learning to rank. The goal is to learn a weight vector w =
{w1, . . . , wmP } for the mP technical attributes of the prod-
ucts P. As discussed in the previous section, the learn-
to-rank algorithm is applied to each tree node q. Assume
that for a node q we have a set Pq of training instances.
Those training instances are a subset of products of P ac-
companied with review scores from the users associated with
node q. Following the notation of the previous section, the
training instances are the result of joining the product table
P with the review sub-table Rq. For learning the ranking
function rank we employ a pairwise RankSVM method [13].
In this approach, the training instances under consideration
are expanded into a set of preference pairs. Namely, we cre-
ate ordered pairs of products (pi,pj) where the product pi

has higher score than the product pj from the users in the
tree node q. Let us denote the set of such ordered pairs by
P2

q. We then find the weight vector w = {w1, . . . , wmP } by
optimizing a pairwise objective function:

min
w∈RmP

λ2 ‖w‖2 +
∑

(pi,pj)∈P2
q

loss
(
wT · (pi − pj)

) ,

where loss is a suitably-defined loss function, such as hinge
loss, i.e., loss(y) = max(0, 1−y). For the class of linear rank-
ing functions, the objective of attaining an optimal rank-
ing function rank∗, i.e., finding the weight vector w so that
the number of inversions is minimized, is NP-hard [7], and
the RankSVM algorithm provides an approximate solution.
Once the weight vector w is learned, the rank function is de-
fined as rank(p) = wT · p, and it induces a ranking on the
whole set of products P by rank(p1) ≥ . . . ≥ rank(pnP).

Besides promoting the popular products belonging to the
training instances for the users of node q, our method en-
sures that all products will be ranked, even products that
have not been reviewed by the set of users in node q. This
property helps us handle the cold-start problem, where a
new product arrives in the system and initially there is very
little feedback available for that product.

Next we evaluate the quality of the ranking generated by
our method, which according to Equation (2) defines the
payoff function.

Evaluating the ranking. The learning-to-rank model in-
duces a ranking rank(p1) ≥ . . . ≥ rank(pnP) on the prod-
ucts in P. The quality of this ranking is measured by the
eval function. Our eval function measures the number of
correctly-ranked pairs in the ranking generated for the prod-
ucts in Pq, that is, the products in our training set in the
node q. So, assuming that the set Pq contains n products,
we have

eval(rank) =
2 |{(pi,pj) ∈ P2

q | rank(pi) > rank(pj)}|
n(n− 1)

.

Note that the reason why we use this evaluation function,
rather than other measures mentioned before such as pre-
cision, recall, and ndcg, is that minimizing the number of
inversions is the most common way to optimize a pairwise
learning-to-rank function. In other words, our choice of the
eval function stems from the RankSVM approach.

Likewise, we choose to use sum as the combine function.
Indeed, by summing the number of correctly ranked pairs
we are guaranteed by RankSVM that the eval function is
monotonically increasing with the height of the tree. In
analogy with decision trees, this property allows for effective
pruning strategies while building the tree.

Stopping criterion. The construction of a decision tree
has another critical element: deciding when to stop growing
the tree. Ideally, the algorithm will stop its recursive parti-
tioning of the subspaces along one (or both) direction(s) if
the perfect ranking is achieved in the left and right children
nodes, i.e., the payoff associated with splitting by attribute
a ∈ A for node q is 0. In reality, we first grow the tree
to its entirety, and then employ post-pruning with the aim
of removing sections of the tree that provide little power to
capture user preferences. For example, for a node q split by
tag travel, if its child node is split by the near-synonomous
tag vacation, our post-pruning rules should trim the child
node (or, the associated set of nodes). We employ pruning
rules on the validation set. Our most significant stopping
condition, in addition to the regular rules, follows from the
observation that – the number of inversions due to our rank-
ing model on a set of training instances belonging to a node
montonically decreases with the decrease in size of the train-
ing set along a root-to-node path.

4. EXPERIMENTS
We evaluate our ShoppingAdvisor system with both real

and synthetic data. Our primary objective is to demonstrate
the effectiveness of our system by comparing the quality
of recommendations returned by our system with recom-
mendations made by baseline system(s) not leveraging user
attributes. We highlight how popular collaborative recom-
mendation technique(s) benefit from our system. Besides a
quantitative comparison of the recommendation quality, we
also conduct a detailed use-case evaluation, where we show
that recommendations with consideration of shoppers’ per-
sonal preferences are superior to those by traditional state-
of-art systems. We also show the scalability of our algorithm
by studying the running time under varying parameters.

4.1 Datasets
Car dataset: Our first dataset, named Car, is extracted
from Yahoo! Autos. We focus on new cars listed for the year
2010 spanning 34 different brands. There are several models
for each brand, and each model offers several trims.5 Since
each trim defines a unique attribute-value specification, the
total number of trims that we crawl are the 606 products in
our dataset. The products contain technical specifications as
well as ratings and reviews, which include pros and cons. We
parse a total of 60 attributes: 25 numeric, and 35 boolean
and categorical (which we generalize to boolean). The total
number of reviews we extract is 2 180. In this dataset we do
not have user information, and thus we consider that each
user has reviewed only one car. Thus, the total number of
users is also 2 180. Since the ShoppingAdvisor system con-
siders tags as form of user feedback, we extract tags from the
reviews using the keyword extraction toolkit AlchemyAPI.6

We process the text listed under “pros” in each review to
identify a set of 15 desirable tags such as fuel economy,
comfortable interior and stylish exterior.

Camera dataset: Our second dataset, named Camera, is
on cameras. For extracting user preferences for this dataset
we take a different route. Rather than using an e-commerce
site such as Yahoo! Shopping or Amazon, we use a social-
content site such as flickr. Our intention is to capture user
preferences by the tags that people use to describe their
photos. So we assume that flickr tags such as food, na-

ture, animal and landscape are meaningful representations
of user preferences. Furthermore, we intend to leverage the
hidden associations between photo tags and cameras. As an
example, of the 3 000 photos in our flickr dataset tagged as
food, Canon EOS 20D, Canon EOS 350D, Canon EOS 400D
and Nikon D80 have been used 1 200 times while 550 other
cameras have been used the rest of the times. T herefore,
a shopper looking for a camera for taking food photos will
be recommended a camera from among Canon EOS 20D,
Canon EOS 350D, Canon EOS 400D and Nikon D80.

The technical specifications of the cameras are retrieved
from CNET. Our flickr dataset sample has 135 025 photos up-
loaded by 37 064 users using 9 365 cameras; the tag vocab-
ulary size is 422 240. We clean the dataset to consider only
those instances in which (i) the cameras have well-defined
set of technical specifications in CNET and are not phone
cameras or digital camcorders; (ii) the tags are valid En-
glish words; and (iii) a user has used at least two cameras.

5Trims denote different configurations of standard equipment.
6
http://www.alchemyapi.com/api/keyword/

http://www.alchemyapi.com/api/keyword/

Our final reduced flickr dataset has 11 468 photos and 10 845
tags from 5 647 users and 654 cameras. Since the number of
tags is huge, we use latent Dirichlet allocation (LDA) tech-
nique and aggregate the tags into 25 topics based on their
co-occurrence. We then express user preferences at the level
of LDA topics. Thus, our Camera dataset has 11 468 in-
stances in the review table R. It has 5 647 users described
by 25 attributes (tag topics) in the table U. And it has 654
cameras in the table P. Some indicative user attributes, i.e.,
tag topics, are the following: wildlife (tags: birds, zoo,
etc.), food (tags: fruit, market, etc.), sports (tags: car,
tennis, etc.), and so on. Those tag topics correspond to the
questions required to build the ShoppingAdvisor tree.

Synthetic dataset: We generate a large matrix of di-
mension 4 000 × 12 corresponding to the review table R.
There are 200 products in the product table P, each hav-
ing 20 boolean attributes and 1 000 users in the user table
U, and 20 tags in the review table R. We randomly assign
the products to the users for the 4 000 comments. We split
the 20 independent and identically distributed attributes
into four groups, where the value is set to 1 with proba-
bilities of 0.75, 0.15, 0.10 and 0.05, respectively. For each of
the 10 tags, we pre-define relations by randomly picking a
set of attributes that are correlated to it. A tag is set to 1
with a certain probability if the majority of the attributes
in its pre-defined relation have boolean value 1. In order
to generate rating scores for each of the 4 000 user-item in-
teractions, we randomly distribute the 1 000 users into ten
categories. For each user category, we pre-define relations
by randomly picking a set of tags that are preferred by the
users in that category. A user rates a product high, medium
or low based on the proportion of his preferred tags in the
tag vector corresponding to the product she has reviewed.

4.2 Experiment setup and evaluation metrics
In order to evaluate our recommender system, we partition

each of our datasets into training and test sets via ten-fold
cross-validation. We use the training set for building our
ShoppingAdvisor system, and measure its performance on
the test set. We also consider a part of the training set as
a validation set in order to optimize the model parameters,
i.e., in order to post-prune the decision tree. The main eval-
uation metric that we use in our experiments to measure the
quality of recommendations is mean reciprocal rank (MRR),
which is a meaningful measure for single-item retrieval.

Mean reciprocal rank (MRR): In information retrieval
MRR measures how far away from the first retrieved doc-
ument the first relevant one is. In our datasets, with one
relevant item per test user, we measure the recommenda-
tion quality by finding out how far from the top of the list
the relevant item is. The reciprocal rank of a test user is
the multiplicative inverse of the rank of the relevant item
for that test user. The mean reciprocal rank is the average
of the reciprocal ranks of results for all test cases

MRR =
1

k

k∑
i=1

1

ranki
,

where k is the number of instances in the test set and ranki

is the position of the i-th test user’s relevant item in the
ranked list of items returned. Note that, we partition our
dataset into training and testing in such a way that the test
set consists of users who have rated items high. In this way,

for each user in the test set there is a highly relevant item
and thus the MRR measure is meaningful.

Our second quantitative indicator is efficiency, i.e., run-
ning time for training; testing is fast as it only involves de-
scending down the ShoppingAdvisor tree and receiving a
recommendation at a leaf. The training time involves build-
ing the decision tree, as well as learning the ranking model
for each possible split in a node. Clearly, the learning to
rank module, i.e., RankSVM is an expensive operation es-
pecially since it requires to build the preference matrix each
time. We employ techniques to pre-materialize part of the
preference matrix, and thus reduce training time (more de-
tails in Section 4.4). We also present a detailed report of
anecdotal evidence for real data in Section 4.5 as a qualita-
tive validation of the effectiveness of the system.
Parameter settings: In our experiments, we use Quinlan’s
C4.5 algorithm to build the decision tree. For RankSVM,
we use Olivier Chappelle’s RankSVM implementation, and
we set the training error penalization parameter C to 0.001
for Synthetic and Car datasets, and 0.0001 for the Camera
dataset. The total number of instances in the Car dataset
available for partitioning into train and test set is around
10 000. We select a subset of the total data for training and
testing (maintaining ten-fold cross-validation requirements)
in order to avoid running out of memory. For the Camera
and the Synthetic dataset, we work with the complete data.

4.3 Quality evaluation
To validate the effectiveness of ShoppingAdvisor, we

compare its performance with baseline RankSVM.

RankSVM: This is a pairwise learning-to-rank algorithm [13]
that generates recommendations by learning item-feature
weights. Our LearnSATree algorithm employs Rank-
SVM for learning to rank, therefore we can consider this
technique equivalent to the ranked list returned by Shop-
pingAdvisor at the root, before a potential shopper an-
swers any question.

We also compare the performance of k-NN with a variant,
described below in order to demonstrate how Shopping-
Advisor is useful to existing recommendation techniques:

k-NN: This is standard collaborative-filtering algorithm that
matches a test user to a set of users in the training set, and
returns a ranked list of items by aggregating the item lists
for the top neighbor users in the training set.

SA.k-NN: Feature selection and weighting has an impor-
tant role in improving the effectiveness of a k-NN learner.
ShoppingAdvisor allows k-NN to select a subset of fea-
tures, i.e., tags by traversing down the tree, and then per-
form k-NN (user-based or item-based) on the reduced fea-
ture space. It is particularly useful since collaborative rec-
ommendation algorithms assume the availability of user pref-
erences for matching similar users with similar interests,
which may not be the case in reality. Moreover, user pref-
erences drift rapidly over time and it is better to elicit user
responses before making recommendations.

Table 4 presents a comparison of recommendation quality,
measured by average MRR over 10 folds, of ShoppingAdvis-
or with RankSVM, and k-NN with SA.k-NN for both the
synthetic and the real datasets. The average height of the
trees for the Car, Camera, and Synthetic datasets are 15, 19
and 7, respectively. The average number of questions users
in test set answer to receive their recommendation in the leaf
nodes of ShoppingAdvisor are 12, 12 and 6, respectively.

Table 4: MRR comparisons of ShoppingAdvisor with Rank-
SVM and k-NN with SA.k-NN for Car, Camera, and Synthetic
datasets.

Dataset RankSVM ShoppingAdvisor k-NN SA.k-NN

Car 0.013 0.019 0.020 0.022
Camera 0.012 0.019 0.029 0.029
Synthetic 0.060 0.231 0.604 0.580

Table 5: Training time of ShoppingAdvisor for Car, Camera,
and Synthetic datasets.

Dataset Training Features Materialized Time
Set Size (tags) Preference Pairs (in sec)

Car 1900 15 36000 256
Camera 5000 25 50000 2168
Synthetic 3500 10 40000 1950

Table 6: Training time increases rapidly when exact preference matrix is considered (Synthetic dataset).

Training Exhaustive Train Time MRR Materialized Train Time MRR
Set Size Preference Pairs (in sec) Preference Pairs (in sec)

50 965 0.948 0.045 483 0.726 0.045
100 3766 6.029 0.097 1883 1.472 0.093
150 8382 46.366 0.131 4191 2.549 0.128
200 14831 209.462 0.199 7416 3.375 0.196
250 23089 649.030 0.204 11545 5.927 0.203
300 33204 1526.300 0.200 16602 9.935 0.200

We observe that leveraging shopper preferences clearly
yields better quality recommendations (i.e., at the leaf nodes
of ShoppingAdvisor) than those returned when the user
does not answer any questions (i.e., RankSVM at the root
node). The increment in quality is around 50% for both real
datasets from root to leaf (see last two columns in Table 4).
The average MRR score for k-NN and SA.k-NN are compa-
rable for all three datasets. This indicates that SA.k-NN
returns recommendations of very high quality to the users
by asking a smaller number of questions than what the k-NN
method would be asking. For the Camera dataset, the k-NN
method reaches a quality score of 0.029 by asking 25 ques-
tions (since the number of tag topics in the dataset is 25)
while SA.k-NN achieves the same accuracy by asking only
12 questions, on average. Furthermore, an additional ben-
efit of SA.k-NN compared to k-NN is that SA.k-NN does
not require the recommender to be aware of the shopper
preferences, and is therefore useful in handling new users.

Note that our ShoppingAdvisor system is also capable
of handling new products, without existing reviews, by us-
ing their technical attributes, while the recommendations of
k-NN are restricted to products with reviews in the training
set. Finally, the tree structure in ShoppingAdvisor and
SA.k-NN provides a logical explanation of the recommen-
dations being returned, while the recommendations of k-NN
are not easily interpretable.

4.4 Performance evaluation
Next, we present the time taken for training our system

for synthetic and real datasets. The training time is the time
taken to build the tree, which includes the time to execute
RankSVM for all possible user attributes in a node. For
example, in order to decide the splitting question for the
root node from the pool of 15 questions in the Car dataset,
our algorithm has to perform RankSVM 30 times (15 for
each children node). RankSVM is an expensive operation
since it builds the preference matrix from the set of training
instances belonging to a node.

The first section of Table 6 shows the increase in train-
ing time, averaged over 10 folds, with increase in number of
training instances for synthetic data. MRR is obtained on
a set of 20 test instances sampled from the synthetic data.
Employing this method for the Camera and Car datasets,
which have a few thousand instances in the training set,

would be very expensive. Therefore, we materialize a pref-
erence matrix for all training instances in a dataset, and use
that to acquire the preference pairs to be considered for a
RankSVM operation. However, such materialized prefer-
ence matrices for the Camera and Car datasets would take
several days to build and would be several gigabytes in size.
Therefore, for each item in training set, we make a random
selection of preference pairs from the space of all training in-
stances, instead of opting for all possible pairs. The second
section of Table 6 shows the train time and the recommen-
dation quality when 50% of the preference pairs are consid-
ered from the pool of all possible preference pairs, under the
same framework settings. We observe that while training
time drops sharply, there is hardly any decrease in MRR.
This indicates that we achieve faster training time without
compromising RankSVM performance quality. When the
number of training instances drops in the deeper level nodes,
the number of preference pairs that can be retrieved from
the materialized preference matrix may fall too, thereby re-
quiring to generate the preference pairs at run time. On the
other hand, classifying a test user is extremely fast. Table 5
shows the training time for the different datasets, along with
the number of materialized preference pairs in input.

4.5 Examples of ShoppingAdvisor trees
Figures 2 and 3 present snapshots of ShoppingAdvisor

trees built for the datasets Car and Camera, respectively. In
Figure 2, a user is asked if they would like to buy a stylish
car. A yes takes her to the next question about the interior
of the car. If the user does not express any requirement for a
comfortable and roomy interior, ShoppingAdvisor specifi-
cally asks if they are interested in a great audio system inside
the car. On the other hand, a user who wants a car that has
good fuel economy is immediately asked if acceleration is
important, since fuel-efficient cars have slower acceleration.

Table 7 presents the top recommendations at three nodes
of the tree shown in Figure 2. We observe that inclusion of
the fuel economy condition brings in a hybrid car and an
ecoboost car in the top recommendations, while exclusion of
requirements of a fuel-efficient car makes ShoppingAdvisor
recommend a Audi, which is known to compromise mileage
for performance. Again, the presence of Jeep Grand Chero-
kee SRT-8 in all three nodes reflects its popularity in 2010.

Figure 2: ShoppingAdvisor for the Car dataset. Figure 3: ShoppingAdvisor for the Camera dataset.

Table 7: Example of top car recommendations at three
nodes of tree in Figure 2.

ShoppingAdvisor Top Cars For Recommendation

Stylish Exterior = NO Jeep Grand Cherokee SRT-8
Dodge Challenger SRT-8
Volvo XC60 AWD

Stylish Exterior = NO Jeep Grand Cherokee SRT-8
Fuel Economy = NO Dodge Challenger SRT-8

Audi Q5 Premium quattro Tiptronic
Stylish Exterior = NO Lincoln MKS 3.5L EcoBoost AWD
Fuel Economy = YES Jeep Grand Cherokee SRT-8

Ford Escape Hybrid

Table 8: Example of top camera recommendations at three
nodes of tree in Figure 3.

ShoppingAdvisor Top Cameras For Recommendation

Photoshoot = YES Canon EOS Digital Rebel XS
Nikon D80
Fujifilm FinePix S3

Photoshoot = YES Canon EOS Digital Rebel XS
People = NO Olympus E-3

Nikon D50
Photoshoot = YES Canon EOS Digital Rebel XS
People = YES Canon EOS 30D

Nikon D80

Similarly in Figure 3, a user is asked if they are interested
to buy a camera for photoshoot purposes, and if the photo-
shoot to be conducted is for people, and if it is focused on
face shots. Thus, we see that ShoppingAdvisor narrows
down the preferences of the shopper, and helps recommend
cameras tailored to her needs. The camera recommenda-
tions at three nodes of the tree are shown in Table 8. For
example, one of the top cameras recommended to her, Canon
EOS 30D, introduced an auto image rotation feature in or-
der to make better use of the LCD display especially dur-
ing portrait-orientated shots. Again, for the shopper who
is looking for a camera for shooting events and not people,
ShoppingAdvisor recommends Olympus E-3 which hap-
pens to be a lightweight digital SLR camera. The presence
of the Canon EOS Digital Rebel XS in all three nodes re-
flects its popularity among flickr members.

5. RELATED WORK
Our research is motivated by the observation that people

with limited domain knowledge feel better supported when
presented with qualitative product information rather than
technical details [2]. This fact is even more important when
the complexity of the product calls for an expert-driven ap-
proach, which identifies the needs of the user rather than
proposing options based on product features [9].

From a technical point of view, our recommender system
can be thought of as a mixture of collaborative filtering, in-
teractive eliciting of user preferences, and learning-to-rank.
Recommendation is traditionally formulated as the problem
of estimating ratings for items that have not been seen by a
user [16]. Once these ratings are estimated, a recommenda-
tion is built by picking the items with highest rating. How-
ever, we are not actually interested in the estimated ratings,
but only in the induced ranking. A more recent formulation

makes this assumption explicit, and casts the recommenda-
tion task as a ranking problem [3]. Given this formulation,
techniques from the learning-to-rank literature can be ap-
plied to learn personalized ranking functions.

Learning to rank. Our framework uses a learning-to-rank
algorithm as a basic building block to generate recommenda-
tions. We chose to use SVM-rank [13], but other algorithms
like RankBoost [8] would be equally viable.

Probabilistc Boost Tree (PBT) [19] builds a tree in which
each node is an instance of a boosting algorithm. The tree
grows by splitting the training instances based on the classi-
fication performed at each node. While PBT performs classi-
fication, our algorithm performs ranking. TreeRank [6] uses
a tree-based algorithm to solve the bipartite ranking prob-
lem, where each element has a binary relevance label and the
goal is to rank all relevant items on top. Such binary rele-
vance is not adequate to express complex user preferences.

E-commerce. Application of recommender systems to e-
commerce dates back to the ’90s [17]. While early works of-
ten mined transaction logs, more recent works focus on user
ratings, especially for digital media like movies and news.
Adomavicius and Tuzhilin [1] provide an overview of recom-
mender systems and their categorization into content-based,
collaborative filtering and hybrid.

Amazon’s “customers who bought” feature is based on co-
buying information [14]. Similarly, Hsu et al. [11] create a
recommender system for e-commerce based on mining trans-
action logs that uses a probabilistic graphical model to han-
dle skew and sparseness in data. Our work does not rely
on transaction logs and only takes into account implicit or
explicit user feedback.

Our system bears resemblance to Bayesian networks, where
each node is a decision tree and each edge represents user
details [5]. In our case the network is a decision tree with

constraints; user details are elicited explicitly via questions;
nodes are instances of a learning-to-rank algorithm.

As the recommendations provided by our system derive
from eliciting user preferences, they are easy to explain to
the user. Explanation of recommendation has been shown to
be effective in increasing the acceptance of recommendations
[10]. Our recommendation system naturally lends itself to a
keyword-style explanation, which has been found to be the
most effective kind of explanation [4].

User preferences. The cold start problem of collabora-
tive filtering is usually addressed by eliciting user prefer-
ences [15]. The state-of-the-art is example critiquing [20]: a
user is presented an example recommendation and asked to
critique it by operating on the attributes of the item. How-
ever, while example critiquing works for suggesting items
whose domain is common knowledge, it implicitly assumes
that the user understands the domain and all its attributes.
Our system avoids this assumption by eliciting preferences
via an interactive questionnaire on lifestyle questions about
the user rather technical questions about the item.

Stolze and Ströbel [18] present an interactive system that
is similar to ours in spirit. The system recommends tech-
nical products by a asking a series of questions that start
from high-level needs of the user and transition to technical
features of the item. Users are clustered into “target groups”
according to their similarity in evaluation structure. While
the idea is similar to ours, the authors only describe the
interaction between the system and the user without dis-
cussing how how such a system would be built and which
algorithm would power the recommender system. Our sys-
tem is also closely related to the problem of constraint-based
recommender systems [12], which interact with users to col-
lect user preferences before making recommendations. How-
ever, users typically submit their preferences in the form of
explicit requirements or scoring rules on technical dimen-
sions. Indeed, our system is able to automatically build a
non-technical question tree.

6. CONCLUSION
We have proposed a novel recommender system that helps

users to shop for technical products. Our system, Shopping-
Advisor, draws inspiration from manually-created flowcharts
used to guide shoppers in their purchases. The fundamental
design principle is to learn a flowchart that contains ques-
tions that are understandable to non-expert users. We thus
aim to elicit answers from a user feature space rather than
a product feature space.

The first goal of ShoppingAdvisor is to automatically
build such a flowchart, where each node is a question. The
user follows a path by answering those questions, and stops
upon reaching a recommendation. We modeled our problem
as a decision tree, and showed how to build the flowchart by
adapting the classical approach used for decision trees.

The second goal of ShoppingAdvisor is to produce a
suitable recommendation at each node of the flowchart, so
that the user may stop answering at any time. We employed
a learning-to-rank approach to provide a list of top-k recom-
mendations for the user given the current answers. This ap-
proach allows our framework to implicitly leverage the cor-
relations between user preferences and product attributes,
thereby providing a solution for the typical cold-start prob-

lem found in pure collaborative filtering. Furthermore, it
provides a simple way to interpret the recommendations.

We compared our system with a baseline, and demon-
strated the effectiveness of our approach. We showed how
collaborative filtering methods such as k-NN benefits from
feature selection by ShoppingAdvisor. We also provided
examples that confirm the easy interpretability of the rec-
ommendations provided.

We intend to evaluate the applicability of our proposed
framework to other novel applications, e.g., explore hashtags
in tweets to guide news article recommendation, etc.

7. REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next generation

of recommender systems: A survey of the state-of-the-art
and possible extensions. TKDE, 17(6):734–749, 2005.

[2] L. Ardissono and A. Goy. Tailoring the Interaction with
Users in Web Stores. UMUAI, 10(4):251–303, 2000.

[3] S. Balakrishnan and S. Chopra. Collaborative ranking. In
WSDM, pages 143–152, 2012.

[4] M. Bilgic and R. J. Mooney. Explaining Recommenda-
tions: Satisfaction vs. Promotion. In Beyond Personaliza-
tion, workshop, 2005.

[5] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis
of predictive algorithms for collaborative filtering. In UAI,
pages 43–52, 1998.

[6] S. Clémençon and N. Vayatis. Tree-based ranking methods.
T-IT, 55(9):4316–4336, 2009.

[7] W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to
order things. J. Artif. Int. Res., 10(1):243–270, 1999. ISSN
1076-9757.

[8] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient
boosting algorithm for combining preferences. JMLR, 4:933–
969, 2003.

[9] R. T. Grenci and P. A. Todd. Solutions-driven marketing.
CACM, 45(3):64–71, 2002.

[10] J. L. Herlocker, J. A. Konstan, and J. Riedl. Explaining
collaborative filtering recommendations. In CSCW, pages
241–250, 2000.

[11] C.-N. Hsu, H.-H. Chung, and H.-S. Huang. Mining Skewed
and Sparse Transaction Data for Personalized Shopping Rec-
ommendation. Machine Learning, 57(1):35–59, 2004.

[12] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich. Rec-
ommender Systems: An Introduction. Cambridge University
Press, 2010. ISBN 9780521493369.

[13] T. Joachims. Training linear SVMs in linear time. In KDD,
pages 217–226, 2006.

[14] G. Linden, B. Smith, and J. York. Amazon.com recommen-
dations: item-to-item collaborative filtering. Internet Com-
puting, 7(1):76–80, 2003.

[15] B. Peintner, P. Viappiani, and N. Yorke-Smith. Preferences
in interactive systems: Technical challenges and case studies.
AI Magazine, 29(4):13–24, 2008.

[16] P. Resnick, N. Iacovou, M. Sushak, P. Bergstrom, and
J. Riedl. GroupLens: An open architecture for collabora-
tive filtering of netnews. In CSCW, pages 175–186, 1994.

[17] J. B. Schafer, J. Konstan, and J. Riedi. Recommender sys-
tems in e-commerce. In EC, pages 158–166, 1999.

[18] M. Stolze and M. Ströbel. Recommending as Personalized
Teaching. In Designing Personalized User Experiences in
eCommerce, volume 5, pages 293–313. Springer, 2004.

[19] Z. Tu. Probabilistic Boosting-Tree: Learning Discriminative
Models for Classification, Recognition, and Clustering. In
ICCV, pages 1589–1596, 2005.

[20] P. Viappiani, B. Faltings, and P. Pu. Preference-based search
using example-critiquing with suggestions. JAIR, 27(1):465–
503, 2006.

	Introduction
	Problem definition
	Algorithms
	A general algorithmic framework
	The LearnSATree algorithm

	Experiments
	Datasets
	Experiment setup and evaluation metrics
	Quality evaluation
	Performance evaluation
	Examples of ShoppingAdvisor trees

	Related Work
	Conclusion
	REFERENCES

