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Abstract Recent advances in data-acquisition technologies have equipped team
coaches and sports analysts with the capability of collecting and analyzing detailed
data of team activity in the field. It is now possible to monitor a sports event and
record information regarding the position of the players in the field, passing the ball,
coordinated moves, and so on. In this paper we propose a new method to analyze such
team activity data. Our goal is to segment the overall activity stream into a sequence of
potentially recurrent modes, which reflect different strategies adopted by a team, and
thus, help to analyze and understand team tactics. We model team activity data as a
temporal network, that is, a sequence of time-stamped edges that capture interactions
between players. We then formulate the problem of identifying a small number of
teammodes and segmenting the overall timespan so that each segment can be mapped
to one of the team modes; hence the set of modes summarizes the overall team activ-
ity. We prove that the resulting optimization problem is NP-hard, and we discuss its
properties. We then present a number of different algorithms for solving the problem,
including an approximation algorithm that is practical only for one mode, as well as
heuristic methods based on iterative and greedy approaches. We benchmark the per-
formance of our algorithms on real and synthetic datasets. Of all methods, the iterative
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algorithm provides the best combination of performance and running time.We demon-
strate practical examples of the insights provided by our algorithms when mining real
sports-activity data. In addition, we show the applicability of our algorithms on other
types of data, such as social networks.

Keywords Temporal networks · Dynamic graphs · Summarising · Segmentation ·
Sports analytics · Basketball · Football · Handball · Social networks

1 Introduction

A key factor of success in most team sports, perhaps even greater than the athletic
abilities and performance of individual players, is the team strategy and game tactics:
which lineup to be used for a given game, how the team is set in the field, what
combinations the players are using to coordinate with each other (e.g., on passing the
ball), and so on. Some of the most successful teams in the sports history are known
not only for their winning achievements but also for revolutionizing the tactical theory
of their respective sport. Famous examples include the “tiki-taka” passing style of
modern-day Barcelona football team, or the “neutral trap zone” popularized by New
Jersey Devils ice hockey team during the “dead puck era”. Similarly, the “triangle
offense” popularized byPhil Jackson allowedhis teams towin 11NBAchampionships.

New technologies introduced in the field of sports analytics support the collection
of detailed high-frequency data, such as x–y positioning of the players and x–y–z
positioning of the ball in the field. Analysis of this data can provide in-depth statistics,
which can offer valuable insights to the fans, or can help teams dissect and develop
their game, or comprehend and counter that of their opponents. In addition to reporting
simple statistics (possession of the ball, distance covered, percentage of successful
passes, etc.), the collected data can form higher-level representations that can be used
to analyze and understand team tactics. As an example used in this paper, one can
view one game of a team (or a series of games) as a temporal network, where nodes
represent individual players and every pass between two players is represented as a
time-stamped edge.

In this paper we consider data recording the activity of a team in a game, or a series
of games. We assume that the data represent interactions between team players, such
as, passing the ball, moving near to each other, or being in the field at the same time.
We model this activity data as a temporal network, that is, a sequence of time-stamped
edges between nodes. We also assume that the team activity can be segmented into a
sequence ofmodes, which reflect different strategies adopted by the team. Examples of
such modes include team configurations aimed to achieve a target result (e.g., playing
offensive or defensive), combinations of players who are able to collaborate well,
systems that involve a subset of players moving and passing in a certain way, and
so on. Our goal in this paper is to develop methods that discover recurring modes
in a temporal network of team activity. Such an analysis can be a valuable tool for
providing insights into the strategy of a team.

Formulated in computer-science terms, we consider the problem of summariz-
ing temporal networks. We view temporal networks as a sequence of edges with
timestamps, which record the time that network entities interact with each other. Our
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underlying assumption is the network operates in a small number of different modes,
or summaries, and that the overall life-span of the network can be seen as a transition
between those modes. The time segment that the network operates in the same mode
is called session. Viewed in this light, at a high-level our work is related to the areas
of sequence segmentation (Bellman 1961), as well as latent modeling (Heinen 1996).
However, in the context of temporal networks, the problem of discovering recurring
modes of operation is novel.

In addition to applications in sports analytics, our problem formulation has a number
of different applications. For instance, an operator of a mobile communications net-
work would be interested in identifying the different modes under which the network
functions, and what is the best description of each one of those modes. Alternatively,
one can apply our method to summarize a social network by the means of identify-
ing the periods that the communication patterns between the members of the social
network change, and understand how those communication patterns recur over time.

We approach the problem of summarizing a temporal network from a combinatorial
point of view. We seek to segment the network life-span in k intervals and map each
of those intervals to a latent graph, chosen among a small set of h such graphs. Those
h graphs correspond to the hidden summaries that we identify.

The contributions of this work are summarized below:

– We provide a formal definition of this temporal network summarization problem,
which we name Temp- Net- Summ, and show that it is NP-hard.

– We propose and investigate several heuristics, including: an iterative algorithm
that alternates between finding the k segments and the h summaries, two algo-
rithms based on a greedy bottom–up merging approach, and a theoretical factor-2
approximation algorithm for the original problem, which is practical only for very
small values of h.

– We present a quasi-linear (1 + ε)-approximation algorithm for finding the k seg-
ments, given the h summaries.

– Finally, we have implemented all the proposed methods, and we have performed
extensive evaluation using synthetic datasets and sports-related datasets, obtaining
meaningful insights.

The rest of this paper is organized as follows. In Sect. 2 we introduce our notation,
we formally define our problem, and we discuss and prove its properties. We discuss
thework that ismost related to our paper in Sect. 3. In Sect. 4wepresent our algorithms,
including the iterative method, the theoretical factor-2 approximation algorithm, and
the two variants of the bottom–up approach, while Sect. 5 is devoted to the speed up
of the dynamic programming. Our experimental evaluation is presented in Sect. 6 and
finally, Sect. 7 provides the conclusion and directions for future work.

2 Preliminaries and problem definition

2.1 Notation

A temporal network H = (V, E) consists of a set of vertices V and a sequence of time-
stamped edges E = (e1, t1), . . . , (e�, t�), where ei ∈ V ×V . Edges can appear several
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times and multiple edges can share the same time stamps. For notational simplicity,
we will assume that time stamps are all integers. Our model assumes that the set of
vertices V remains constant, but it can be retrofitted to handle adding and removing
vertices simply by taking the union of the vertices over all time-points.

Given a temporal network H = (V, E), we define a topology graph π(H) =
(V, F), where F consists of edges, without time stamps, occurring at least once in E .
π(H) is the projection of the temporal network. We will always refer to networks
without time stamps as graphs.

Given a temporal network H = (V, E) with � edges, over its total time span [1, n],
and two time stamps a < b, we define a segment H [a, b] = (V,F) by only keeping
the edges within the time interval [a, b], that is, F = {(e, t) ∈ E | a ≤ t ≤ b}.
The definition of projection π(H [a, b]) extends to segments. Moreover, we define a
k-segmentation to be a sequence of k time intervals 〈(si , fi )〉ki=1, where (si , fi ) is a
time interval. The segments must satisfy s1 = 1, fk = n, and si = fi−1 + 1; each
interaction belongs to exactly one time interval.

For two graphsG1 = (V, E1) andG2 = (V, E2), we define the distance d(G1,G2)

to be the symmetric difference between the edge sets, that is, d(G1,G2) = |E1\E2|+
|E2\E1|.

Given ν graphs G1 = (V, E1), . . . ,Gν = (V, Eν), we define their centroid to
be a new graph C∗ = (V, E∗) that minimizes the distance d(X | G1, . . . ,Gν) =∑ν

i=1 d(Gi , X), that is,C∗ = argminX d(X | G1, . . . ,Gν). The centroid graphC∗ =
(V, E∗) can be easily computing using the majority rule: for two vertices u, v ∈ V
we set (u, v) ∈ E∗ if and only if (u, v) is an edge that is present in the majority of the
input graphs G1, . . . ,Gν .

As already discussed, we assume that the temporal network operates in a small
number of different modes, and that the overall life-span of the network can be seen as
a transition between those modes. Recall also that the time segment that the network
operates in the same mode is called session. Let us assume that there are h different
modes and k sessions. A mode is modeled by a graph C , while a session is a segment
H [a, b]. We expect that if the session H [a, b] corresponds to the mode C , then the
topology graph π(H [a, b]) resembles as much as possible the graph C ; namely, the
distance d(π(H [a, b]) ,C) is small.

On the other hand, if different sessions H [a1, b1], . . . , H [aν, bν] correspond to the
same mode C , then the best graph to represent the mode C , is the centroid C∗ of the
graphs π(H [a1, b1]) , . . . , π(H [aν, bν]). Since we are using the centroid graph C∗ to
summarize a set of different sessions of H , the graph that represents a mode is also
called network summary, or simply summary.

Given a temporal network H , a k-segmentation S = 〈(si , fi )〉ki=1, and h network
summaries C = {C1, . . . ,Ch} we define a penalty score

p(H, S, C) =
k∑

i=1

min
C∈C

d(π(H [si , fi ]) ,C) , (1)

measuring the total distance of representing each segment of S with the network
summary in C that provides the best fit.
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In addition, we would like to avoid trivial solutions, in which the resulting segmen-
tation is dominated by few long segments. We achieve this by using an upper-bound
constraint R on the length of the segments in our solution. Such a constraint is analo-
gous to the Sakoe-Chiba band (Sakoe and Chiba 1971), used in dynamic time warping
(DTW) distance measure between time-series.

2.2 Problem definition

We are now ready to define the problem that we address in this paper, which we call
Temp- Net- Summ, for temporal-network summarization.

Problem 1 (Temp-Net-Summ)Given a temporal network H , the number of segments
k, the number of summaries h, and the maximum length of a segment R, find a k-
segmentation S, and a set of h summaries C = {C1, . . . ,Ch}, minimizing p(H, S, C),
such that each segment has at most length of R.

In the rest of our discussion, given a temporal network H , and parameters k, h and
R, we use p(H, k, h, R) to denote the value of the optimal solution to the Temp- Net-
Summ problem with the corresponding input. For brevity, we will often omit R and
write p(H, k, h).

We provide an example instance of the problem. The temporal network H
depicted in Fig. 1, has time span 6, and its projection π(H [1, 6]) is the graph
depicted in Fig. 2a. An optimal segmentation of H , with k = 4 and h = 2 yields
the segments: [t1, t2], [t3, t4), [t4, t5), [t5, t6]. This segmentation results in the sum-
maries depicted in Fig. 2b. Then, the temporal network can be summarized via the
sequence C1,C2,C1,C2 using those two summaries. Notice that in this example
d(π(H [1, 2]) ,C1) = 0 and d(π(H [5, 6]) ,C2 = 0); the projections of all 4 sessions
are identical to some summary. Finally, for this temporal network, p(H, 4, 2) = 0.

For the remainder of this paper we will use the following short hand notation: k and
h for the number of segments and summaries, n for the network’s time span (number
of time-points),m the number of the edges in π(H [1, n]), � the total number of edges.
Finally, R would be the maximum allowed length for a segment.

2.3 Insights into the problem

By examining the problem, we discover that it belongs to the class of NP-complete
problems. A proof for the case where h ≥ 2 follows from a reduction of the
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Fig. 1 Example of temporal network H , with |V | = 4 vertices, time span n = 6, m = 6 edges in
π(H [1, n]) and � = 12 total edges
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Fig. 2 The projection π(H [1, 6]) and the network summaries, when k = 4 and h = 2, of the tem-
poral network of Fig. 1. The two summaries C1,C2 perfectly summarize H ; p(H, 4, 2) = 0, since
d(π(H [1, 2]) ,C1) = 0 and d(π(H [5, 6]) ,C2 = 0). a Projection. b Network summaries, C1 and C2

Hypercube- Segmentation problem (Kleinberg et al. 1998). The problem remains
NP-hard even for h = 1, and we provide a more elaborate reduction.

Proposition 1 Temp- Net- Summ is NP-complete, for h ≥ 2.

Proof The proof follows via a reduction of Hypercube- Segmentation prob-
lem (Kleinberg et al. 1998) to Temp- Net- Summ. An instance of Hypercube-
Segmentation is a set of n graphs. For each graph, we create a time point with
that graph. Then we solve Temp- Net- Summ with k = n, to obtain a solution for
the first problem. Having k equal to n is a special case of Temp- Net- Summ, and is
NP-hard. Hence, Temp- Net- Summ is NP-hard in the general case. NP-completeness
follows from the fact that given a k-segmentation and the h summaries, we can verify
the solution in polynomial time with respect to the input size. �	
Proposition 2 Temp- Net- Summ is NP-hard for h = 1.

Proof Moved to “Appendix”. �	
The maximum score of any Temp- Net- Summ instance is km; k segments (ses-

sions) need to be matched to summaries, each induces a score of at most m. A very
naive algorithm guarantees a maximum scores of km/2: choose the segments and
summaries arbitrarily, and if the score is greater than km/2, replace the summaries
with their complement-graphs.

The Temp- Net- Summ problem satisfies the monotonicity property with respect
to the number of network summaries h. All else remaining equal, as the number of
summaries h increases, the score of the optimal solutionmay only decrease. Intuitively,
given a solution to the Temp- Net- Summ problem for values k and h, one can easily
obtain a solution for values k and h + 1: by selecting h out of h + 1 summaries to be
same as before, which would yield a less or equal score.

Proposition 3 p(H, k, h) ≥ p(H, k, h + 1)

However, the monotonicity property does not hold with respect to the number of
segments k, unless we allow empty segments. One may consider the case where the
same pattern repeats twice; all edges appear exactly twice and in the same order
relative to the others. Then for k = 2 and h = 1 the optimal score is zero; the optimal
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segmentation is obtained by halving the timeline. The optimal solution of the same
problem instance with k = 3 and h = 1, however, would return a non-zero score.
Since all network interactions occur only twice, and none 3 times, they would be
shared among one or two segments out of three. Thus, for each possible edge, if the
network summary contains it, then the segments that do not contain it would contribute
to the score, and vice versa.

Finally, we note that p(H, k, k) = 0 (when h = k), and the optimal solution is any
valid k-segmentation; then each mode becomes its own summary. This observation is
in line with the intuition of our problem formulation, where we would expect that the
number of network summaries is significantly smaller than the number of segments,
i.e., h 
 k.

3 Related work

Although this problem of summarizing temporal networks has not been studied before,
our paper has connections with two independent lines of work: analysis of temporal
networks and sequence-segmentation problems. In the first part of this section we are
reviewing the main themes in these two areas, and we point out the differences and
similarities with our work. In the second part we discuss other approaches from the
field of Data Mining that focus on sports analytics.

Analysis of temporal networks Researchers have considered many different models
of temporal networks, and the terminology includes names such as, dynamic graphs,
evolving graphs, time-varying graphs, etc. For instance, dynamic graph algorithms
is a classic area in graph algorithms, where the goal is to maintain graph primitives,
such as, connectivity, shortest paths, spanning trees, spanners, etc., when nodes and
edges are added or deleted (Eppstein et al. 1998; Henzinger and King 1999; Holm
et al. 2001; Thorup 2000).

Other models consider dynamic graphs as a sequence of graph snapshots. A well-
studied task in thismodel is the problemof tracking the evolution of communities (Asur
et al. 2009; Greene et al. 2010; Sun et al. 2007). Similar snapshot-based approaches
havebeen followed for the problemof detecting events in dynamicgraphs.The research
tools developed in this area include novel metrics for measuring similarity or distance
between graphs (Papadimitriou et al. 2010; Gao et al. 2010; Sricharan and Das 2014),
while a number of papers relies on matrix-decomposition methods (Ide and Kashima
2004). A recent line ofwork (Araujo et al. 2014; Shah et al. 2015) applies theMinimum
DescriptionLength (MDL)principle in order to discover instances of pre-definedgraph
patterns in dynamic graphs.

Another problem is that of mining dynamic graphs in order to detect evolving
network processes (Mongiovi et al. 2013). In networks with time-varying node- or
edge-weights, the task is to find subgraphs in a subsequence of the given snapshots,
such that the subgraphs evolve smoothly. The found subgraphs should share a given
number of edges during successive snapshots, and hence, this approach cannot be
retrofitted for the purpose of our task.

Berlingerio et al. (2009) presented an algorithm for mining graph evolution rules. It
is applied to social networks and makes the assumption that the graph can only grow;
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edges may only be added. It may be extended to handle edge-deletions only if an edge
is created and deleted at most once.

Finally, another approach to summarizing network activity is by providing the
appropriate visualization techniques. Appan et al. (2006) suggested a ring-based visu-
alization of temporal networks for discovering a predefined set of patterns. Network
snapshots at different time points are depicted as concentric circles. The vertices cor-
respond to people and they are coloured if that person is active at a given network
snapshot. This approach does not provide any information the graph’s edges and can
only facilitate the analysis of small networks.

Clearly, all of the aboveworks have different goals from the summarization problem
presented here. In most cases, even the graphmodel is different. The temporal network
model we consider is the one used by Rozenshtein et al. (2014) for the task of finding
dynamic dense subgraphs, and by Kumar et al. (2015) for the task of maintaining
neighborhood sizes in sliding windows. A thorough survey on temporal networks,
discussing other problems, is provided by Holme and Saramäki (2012).

We focus on summarizing a single temporal network. In other words there is one
large underlying graph. Other works such as that by Kostakis (2014) and Rayana and
Akoglu (2016) focus on summarizing multiple different graphs.

Segmentation problems Our work is inspired by that of Gionis and Mannila (2003),
where the goal is to discover k segments in time-series data using only h centroids.
The main technical difference here is the different quality score for segments, and so
we cannot use the same techniques suggested in that paper.

If we do not limit the number of centroids, or if we fix the centroids, the optimization
problem becomes significantly simpler, leading to a classic segmentation problem
which can be solved by a dynamic program (Bellman 1961). The running time of
this program is quadratic, but efficient heuristics have been suggested by Shatkay and
Zdonik (1996), Himberg et al. (2001). Finally, Guha et al. (2006) intoduce an efficient
algorithm yielding (1 + ε) approximation guarantee. Unfortunately, we cannot use
this approach as the required conditions do not hold in our settings.

In the field of sports analytics, most methods apply domain-based approaches.
Hence, they are applicable to one or few sports, or it is non-trivial to make them
universal. Zhong and Chang (2001) showed how to segment video based on iden-
tifying the camera angle using the court’s boundaries and lines; the models for the
boundaries need to be provided by a domain expert. Their approach is applicable
to sports such as tennis and baseball that comprise of simple and recurring actions
and alternate between similar video scenes. Extensions such as that by Pei and Chen
(2003) incorporate state-transition graphs and assume that the video alternates between
these states. These graphs, too, need to be given in advance by a domain expert. For
snooker, Denman et al. (2003) devised methods for detecting events by discovering
which object has disappeared from view; this corresponds to balls going into the
pots.

Spatiotemporal analysis Another approach to segmenting the game is by using spa-
tiotemporal analysis and in particular the trajectories of the players or the ball. For
example, Wei et al. (2013) use the locations of football players in order to identify
their actions and to eventually segment the game in phases such as in-play or stoppage.
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For basketball matches, Perše et al. (2009) devise a method for segmenting the match
in offensive actions, defensive actions, or time-outs. The goal is to eventually match
each segment into a set of pre-defined in-game plays.

In addition, trajectory mining has been used for detecting formations of players;
their position relative to the field, other players, the position of the ball, etc. This is
useful for detecting the role of each player in field-hockeymatches (Lucey et al. 2013a).
Similarly, it is possible to use the team-formation data in order to gain deeper insights
into a sport and answer questions such as why the home team has an advantage (Lucey
et al. 2013b).Overall, due to the development ofmore accurate tracking systems (Hayet
et al. 2005; Stensland et al. 2014; Pingali et al. 1998), spatiotemporal analysis has
recently become a very popular research area for facilitating sports. For more details
we refer the reader to a recent survey paper by Gudmundsson and Horton (2016).

We note, however, that trajectory clustering and analysis of moving objects are both
orthogonal topics to the problem that we study in this paper, as our input data are not
trajectories, but time-stamped interactions, i.e., a temporal network.

Sports Analytics Our work can be identified in the broad area of sports analytics.
While there is no formal definition of this scientific discipline, informally, sports
analytics goes beyond the simple use of statistics for evaluating team- and player
performance (Travassos et al. 2013), and refers to the whole breadth of computer
science with application to sports (Alamar 2013).

A big part of the work in the literature refers to predictive analytics, and in partic-
ular, predicting the outcome of matches; examples of such works include predicting
game outcomes in association football (soccer) (Crowder et al. 2002; Hvattum and
Arntzen 2010) and American football (gridiron) (Harville 1980). A significant body of
work focuses on using computer vision and image analysis techniques for analyzing
segments of gameplay action and classifying them into different types (Goldsberry
2012; Halvorsen et al. 2013; Kasiri-Bidhendi et al. 2015; Maheswaran et al. 2012).

Other works focus on less mainstream sports applications and analysis of data
from a broader sports-data ecosystem. Examples include detecting match-fixing in
tennis (Rodenberg and Feustel 2014), and height-bias among basketball referees (Gift
and Rodenberg 2014). Yet in a different direction, other researchers have considered
multiplayer online games and several works have focused on analyzing such e-sports
(Chen et al. 2009).

To the best of our knowledge none of the existingworks in the area of sport analytics
addresses the problem setting or applications that we have considered in this paper.
For a more in-depth coverage of the research in sports analytics we refer the reader to
the book of Miller (2015).

4 Algorithms

The Temp- Net- Summ problem consists of finding both the k segments (sessions)
and the h network summaries (modes) such that the score is minimized.

Given any set network of summaries, we may find the segmentation that minimizes
the score function for that set, by using dynamic programming.
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Proposition 4 Consider a temporal network H, parameters k, h and R, and assume
that the set of network summaries C = {C1, . . . ,Ch} is given as input. The segmenta-
tion S that achieves the optimal value p(H, k, h) can be computed in time O(kh�R)

by dynamic programming.

The dynamic-programming algorithm, DP, is based on the following recursive
formula, which assumes as input the set of network summaries C = {C1, . . . ,Ch}.

o(i, k) = min
1≤ j<i

{o( j, k − 1) + min
x

d(π(H [ j + 1, i]) ,Cx )},

where o(i, k) denotes the cost of segmenting the time-interval [1, i] in k segments.
To use this equality efficiently, we need to be able to compute the distance

d(π(H [ j + 1, i]) ,Cx ) in constant time. Luckily, we can do this by maintaining two
binary arrays for each centroid x = 1, . . . , h, indicating if there is a particular edge in
π(H [ j, i]) ∩ Cx and Cx\π(H [ j, i]), respectively. These arrays are at most of length
O(m). We compute the above recursive formula by starting with j = i − 1 and
decreasing the value of j . Each time we decrease j , we need to add to the arrays the
edges of time point j . This can be done in constant time. Due to the limitation of the
length R of the segment, this leads to O(kh�R) running time.

A second technique to improve the speed of the method is a run-time optimization.
We observe that between consecutive time points (i.e., consecutive iterations of j)
if the edges at the new timepoint have all been seen before (if all the edges at time-
point j exist in π(H [ j + 1, i]), then π(H [ j, i])= π(H [ j + 1, i])), we may avoid
recomputing the distances. Thus, for each o(i, k), the distances will be computed in
at most m cases. We expect the first optimization to provide a greater benefit for large
values of m, while the second for cases where m is small relative to n.

On the other hand, if a segmentationS of the temporal network is given, the problem
of finding the optimal set of h network summaries for that segmentation, reduces to
the h-median problem in high-dimensional binary vectors, and it is computationally
hard.

Proposition 5 Given a k-segmentation S of a temporal network H, the problem of
finding the optimal set of h network summaries is NP-hard.

Proof The problem is known as the k-median clustering problem, which is NP-hard
in the general case. The problem remains NP-hard when the points are restricted to
vertices of the hypercube, known as theHypercube- Segmentation problem (Klein-
berg et al. 1998). �	

Although the problem is NP-hard, one can use a standard clustering algorithm,
such k-median, or k-means, to obtain a solution that will be good in most practical
situations.

4.1 An iterative algorithm

From our discussion so far, it follows that given the network summaries we can find the
optimal segmentation (for those summaries) by dynamic programming. Additionally,
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Algorithm 1: Iterative algorithm
Data: H : the temporal network; k: number of segments; h: number of summaries; R: interval length

bound.
1 C = random_summaries(H );
2 repeat
3 S = segment(H , C, k, R);
4 C = cluster(S, h);
5 until convergence;

given a k-segmentation of the temporal network, we can find a good set of summaries,
via a clustering algorithm. This leads to an iterative algorithm that alternates between
solving these two problems; depicted in Algorithm 1.

The Iterative algorithm starts off by creating random summaries; for each summary,
each edge is addedwith probability 0.5. For the clustering phase, we have implemented
the analogous of k-means++ (Arthur and Vassilvitskii 2007).

4.2 A greedy approach

In this section we describe two variants of a greedy approach. We start our discussion
by considering a different interpretation of the Temp- Net- Summ problem: given the
set of all edges, the end goal is to derive a k-segmentation of the network’s time-span,
so that the resulting segments are, when divided into h groups, as similar as possible
to each other. Hence, our goal should be try to create similar segments. We follow a
bottom-up approach, where initially each time point is a segment; hence we have n
segments. The problem reduces to performing n− k merges of consecutive segments,
in order to finally acquire k segments. The merges should happen in a way that builds
similar patterns among different segments.

The first approach relies on attempting to minimise the final score by greedily
merging the most similar pairs of consecutive segments. At first, we need to compute
the n − 1 distances between timepoints ti and ti+1, for i = 1, . . . , n − 1. This can be
done in O(�) time. We merge the pair of consecutive intervals that yield the lowest
distance. Ties are broken arbitrarily. For the example of Fig. 1, at the first step, the
algorithm would merge the single time-point segments of t1 and t2, or those of t5 and
t6. In both cases, the segments’ distance is 1.

After each merge, we need only to compute the distance between the newly formed
segments and its two neighboring segments, left and right; the rest of the distances
remain the same. In addition, we incorporate the limit on the length of the intervals by
checking the length of the intervals before considering to merge them. We will do at
most n−k merges, and a single merge requiresO(m) time. This yields a total running
cost O((n − k)m). We refer to this method as the simple greedy method.

The above method favors the merge of similar consecutive segments. As a result,
after each step, we can expect that the remaining segments would be increasingly
different to each other. The original goal was the opposite. Hence, we may derive an
additional variation of this algorithm. Instead of merging the most similar consec-
utive segments, at each step the algorithm merges those consecutive segments that
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Algorithm 2: Simple Greedy Algorithm
Data: H : the temporal network; k: number of segments; h: number of summaries; R: interval length

bound.
1 for i = 1, . . . , n − 1 do
2 compute d(intervals[i], intervals[i + 1]);
3 while |intervals| > k do
4 i∗ = argmin d(intervals[i], intervals[i + 1]) ;
5 merge(intervals[i∗], intervals[i∗ + 1]);
6 compute d

(
intervals[i∗], intervals[i∗ + 1]);

7 compute d
(
intervals[i∗ − 1], intervals[i∗]);

when merged will result in being the most similar to any other existing segment. This
approach is an order of magnitude slower than the simpler greedy approach; without
using sophisticated data structures for keeping scores, the running time is O(n3m).

For the example of Fig. 1, at the first step, this approach would merge the single
time-point segments of t1 with t2 since the result would be identical to that of t4, or
those of t5 and t6 to match that of t3. Unlike the simple greedy heuristic, the second
variant is able to find the optimal solution for the example of Fig. 1.

4.3 A factor-2 approximation algorithm

Finally we present a factor-2 approximation algorithm that is only useful for a limited
set of cases. It relies on the idea that for the clustering problem, in any cluster there
exists (at least) one data-point that minimises the sum of distances to the remaining
data-points of the cluster. This is not the mean/median of the cluster in the optimal
solution, but it can be used as an approximate solution to it. In our problem setting, as
described previously, the set of possible points for the clustering instance consists of
the set of graphs that correspond to all possible segments of the temporal network.

It follows that for finding the best network summaries C = {C1, . . . ,Ch} we may
use, as an approximate solution, graphs that correspond to existing segments. In par-
ticular, for each cluster, there exists one segment whose corresponding graph (its
projection) minimises the sum of distances from all other segments in the cluster.
Choosing that graph provides a factor-2 approximation for the cluster. And if we
can find the approximate network summaries for all clusters, we can then apply the
dynamic-programming algorithm to find the final segmentation, which will also be
within a factor-2 approximation of the optimal solution.

As described previously, the candidate summaries are the projections of all possible
segments of the temporal network. There are

( n
2h

)
such segments. In other words, we

need to consider all possible h-size subsets of the set of all segments of the temporal
network, then for each subset apply theDP algorithm, and keep the solution that yields
the best score.

For h = 1, we need to find the single segment of the temporal network, which,
when used as summary, yields the lowest score. For h = 2, we need to find the best
pair of segments, and so on. It follows that the overall complexity of the method is
O(n2h) multiplied by the complexity of the DP algorithm. Since h is in the exponent,
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we expect this method to be highly inefficient for large datasets and for cases where
h ≥ 2.

5 Speeding up the dynamic program

We saw that if we know the centroid graphs we can compute the optimal segmentation
with a dynamic-programming approach. Unfortunately, this method becomes too slow
for very large sequences as R, the window size, must grow at least linearly with the
sequence length. In this section, we present an algorithm that runs in quasi-linear
time and provides an (1 + ε) approximation. For notational simplicity, we ignore the
window size constraint as it is trivial to incorporate.

5.1 Definition of auxiliary problem

Assume that we are given a temporal network H . Let us define

in(a, b,C) = |E(C)\E(π(H [a, b]))|

and

out(a, b,C) = |E(π(H [a, b]))\E(C)|.

Note that the symmetric distance d(π(H [a, b]) ,C) used in the penalty function in
Equation (1) is equal to in(a, b,C) + out(a, b,C).

To solve the original problem faster, we consider another, more difficult, problem.

Problem 2 Given a temporal network H , a set of h summaries C, a budget on the
number of segments k, and a budget for edges o, find a segmentation

{
(a j , b j ,C j )

}k
j=1,

minimizing

k∑

j=1

in
(
a j , b j ,C j

)
such that

k∑

j=1

out
(
a j , b j ,C j

) ≤ o,

and C j ∈ C. We will denote the objective score of this segmentation by q(H, k, o).
We will abbreviate q(H [1, i], k, o) by q(i, k, o).

We can solve this problem exactly with the following recursive equality,

q(i, k, o) = min
C∈C

min
o′≤o

min
j≤i

q
(
j − 1, k − 1, o′) + in( j, i,C) , (2)

such that out( j, i,C) ≤ o − o′.
Using this equality directly is highly inefficient. Note that iterating over j requires

O(n�) steps, alone, where n the number of time stamps and � is the total number of
timestamped edges. Our first step is to reduce this to O(� log n) steps.
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5.2 Optimizing the convex problem

We will now show that we can compute min j≤i q
(
j − 1, k − 1, o′) + in( j, i,C) fast.

We argue that this minimization problem is an instance of the following minimization
problem.

Problem 3 Let n be an integer, and define P = {(x, y), 1 ≤ x ≤ y ≤ n}. Let f :
P → R be a function such that

f (x1, y1) − f (x2, y1) ≤ f (x1, y2) − f (x2, y2),

for x1 ≤ x2 ≤ y1 ≤ y2 Also let g : P → {0, 1} be a function such that g(x1, y1) ≤
g(x2, y2) for x1 ≤ x2 ≤ y2 ≤ y1. Compute

b(i) = argmin
j

{ f ( j, i) | g( j, i) = 1} ,

for every i . The ties are solved by picking the larger index.

It is easy to see that f ( j, i) = q
(
j − 1, k − 1, o′) + in( j, i,C) satisfies the condi-

tions for f , and the function g( j, i) = I [out( j, i,C) ≤ o − o′], where I [S] = 1, if
statement S is true, and 0 otherwise, satisfies the condition for g.

Let us now show the benefits of this setup. If f and g can be computed in constant
time, then we can use smawk algorithm to compute b in O(n) time (Aggarwal et al.
1987). This is however not possible since we cannot compute f and g in constant
time. Fortunately, we can obtain a solver with slightly worse running time. The key
lemma for this solver states that b is monotonic.

Lemma 1 Let f , g and b as stated in Problem 3. Then b(i) ≤ b( j) for i < j .

Proof Fix i < j and assume that b(i) > b( j). By definition of f ,

f (b( j), i) − f (b(i), i) ≤ f (b( j), j) − f (b(i), j).

Due to our assumption, g(b( j), i) ≥ g(b( j), j) = 1, and so the optimality of b(i)
guarantees that

f (b(i), i) ≤ f (b( j), i).

Combining the two inequalities leads to

0 ≤ f (b( j), i) − f (b(i), i) ≤ f (b( j), j) − f (b(i), j)

or f (b(i), j) ≤ f (b( j), j), which contradicts the definition of b( j). �	
The trick is now to compute b(i) in interleaved fashion, and use the previously

computed values to bound possible candidates for b(i). The order of solving b(i) is as
follows:We first split the data in half, say at c and compute the entry in b(c). Lemma 1
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Algorithm 3: ConOpt( f, g) solves Problem 3
1 n ← number of points;
2 s[i] ← −∞ for i = 1, . . . , n;
3 b[i] ← 1 for i = 1, . . . , n;
4 t ← �log2(n − 1)�;
5 foreach Δ = 2t , 2t−1, . . . , 1 do
6 i ← 1 + Δ;
7 while i ≤ n do
8 u ← b[i − Δ];
9 v ← i ;

10 if i + Δ ≤ n then v ← b[i + Δ] foreach j = u, . . . , v do
11 if f ( j, i) ≤ s[i] and g( j, i) = 1 then
12 b[i] ← j ; s[i] ← f ( j, i);

13 i ← i + 2Δ;

14 return b;

now implies that b(i) in the first half should be smaller or equal than b(c) and b(u)

in the second half should be larger or equal than b(c). We continue recursively this
divide-and-conquer approach. The pseudo-code is given in Algorithm 3. We have the
following key result.

Proposition 6 Let n, f and g as given in Problem 3. Assume that there is a data
structure D( j, i) that allows us to compute f ( j, i) and g( j, i) in constant time. More-
over, assume that we can obtain D(1, 1) in O(n) time and we can update D( j, i) to
D( j +1, i) or D( j, i +1) in amortizedO(�/n) time. ThenConOpt solves Problem 3
in O(� log n) time.

By amortized time, we mean that as we move indices i and j from 1 to n, the total
update time is at most O(�).

Proof Define b∗ to be the solution to Problem 3. Let us first prove the correctness by
induction over Δ: We claim that for fixed Δ, after the while-loop, b[i] = b∗(i) is the
solution for any i = 1 + (2k + 1)Δ ≤ n, where k ≥ 0. If Δ = 2t . Then the only
possible i is 1, so the claim holds automatically. Assume that the claim holds for 2Δ.
Then b[i −Δ] = b∗(i −Δ) and, if exists, b[i +Δ] = b∗(i +Δ). Lemma 1 guarantees
that b[i − Δ] ≤ b∗(i), and b∗(i) ≤ b[i + Δ] or b∗(i) ≤ i . This is exactly the interval
over which j iterates, which proves the claim.

To prove the running time first notice that we have at mostO(log n) different values
of Δ. In addition, for a fixed Δ, i only increases during the iteration, and since u for
a current i is equal to v for the previous i , j only increases for a fixed Δ. We can now
use the data structure D by first initializing it to D(1, 1) before the while loop, and
updating it whenever i or j increases. Since i, j ≤ n, we use at most O(�) updates
for a fixed value of Δ. This proves the proposition. �	

To complete the argument, we need to show that we can compute in( j, i) and
out( j, i) in amortizedO(�/n) time. Note that i and j only move to the right. First, we
can safely assume that each edge is represented by an integer between 1 and m ≤ n.
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Algorithm 4: FastDP(H, C, k, ε), solves approximately the segmentation given
the centroids.
1 � ← number of edges in H ;
2 n ← number of time points in H ;
3 O ← ∅; o ← 0;
4 while o ≤ �k do
5 append O with o;
6 o ← �1 + (1 + ε)o�;
7 s ← array of size n × k × (|O| − 1);
8 s[i, 1, x] ← min

C∈C {in(1, i,C) | out(1, i,C) < (1 + ε)ox };
9 foreach d = 2, . . . , k do

10 foreach C ∈ C do
11 foreach 1 ≤ x ≤ y < |O| do
12 f (i, j) ← s[ j − 1, d − 1, x] + in(i, j;C);
13 g(i, j) ← out(i, j;C) ≤ (1 + ε)oy − ox ;
14 b ← ConOpt( f, g);
15 update s[i, d, y] using b[i], if better;

16 return the segmentation responsible for s[n, k, x] with the lowest penalty p;

We use two arrays, one for in and the other for out, both of lengthm to store the counts
of edges in a current interval. Everytime we move i or j we update the appropriate
array, as well as the count of non-zero entries. Every edge is added or deleted only
once, which gives us total update time of O(�). This will provide us with the needed
data structure.

5.3 Approximation algorithm

We can now use the described technique to optimize Equation (2) over j and i but
we still need to address o and o′. Note that they are upper-bounded by nk, which can
be significantly large. The trick is not to use every possible value of o. Instead, it is
enough to consider only a geometric sequence 1, (1 + ε), (1 + ε)2, and so on. To
compensate for the ignored values, we need to relax the constraint in Equation (2) to
out( j, i,C) ≤ (1 + ε)o − o′. That is, we allow the number of out-edges to be slighly
higher. This leads to Algorithm 4.

Proposition 7 The computational complexity of FastDP(S, C, k, ε) is O(k|C|ε−2�

log n(log2 �k)).

Proof Let O as defined by FastDP. We must have |O| ∈ O(log(�k)/ log(1 + ε)) ⊆
O(log(�k)ε−1). The number of ConOpt calls is O(|O|2k|C|). The proposition now
follows from Proposition 6. �	

Our next step is to prove the approximation guarantee. In order to do that we need
to show that the total number of out-edges of the obtained solution is not far from the
exact solution.
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Proposition 8 Fix i , d, and y, and let S be the segmentation responsible for the
score s[i, d, y] by the end of FastDP. Let O as defined by FastDP. Let oy be the yth
entry in O. Let o′ be the total number of out-edges in S. Then o′ ≤ (1 + dε)oy, and
s[i, d, y] ≤ q(i, d, o), for any o ≤ (1 + ε)oy.

Proof We will prove this using induction over d. The result holds automatically for
d = 1.

To prove the general case, let us assume that we have just computed b that is
responsible for S. Since f and g satisfy the conditions of Problem 3, the obtained b
solves the problem min f ( j, i), such that g( j, i) = 1. Note that g imposes weaker
constraints than the enforced constraint in Eq. 2. This, and the induction assumption,
implies immediately the second inequality.

To prove the first inequality, let us write r to be the total number of out-edges of S,
without the last segment, r = o′ − out(b[i], i). Induction assumption now states that
r ≤ (1 + (d − 1)ε)ox . We have

o′ = out(b[i], i) + r

≤ (1 + (d − 1)ε)ox + (1 + ε)oy − ox
= (d − 1)εox + (1 + ε)oy
≤ (1 + dε)oy,

which completes the proof. �	

We can now state the main result of this section.

Proposition 9 FastDP(H, C, k, ε/k) returns a segmentation yielding (1 + ε)-
approximation guarantee in O(k3|C|ε−2� log n(log2 �k)) time.

Proof The computational complexity follows immediately from Proposition 7. Let
S∗ be the segmentation optimizing p, and let o be the number of out-edges in S∗. Let
i be the number of in-edges in S∗, i + o = p(H,S∗). Let ox ∈ L be the value such
that ox ≤ o ≤ (1+ ε)ox . Let S be the segmentation responsible for s[n, k, ox ]. Let o′
be the number of out-edges in S. Proposition 8 implies that

p(H,S) = s[n, k, ox ] + o′

≤ s[n, k, ox ] + (1 + ε)ox
≤ s[n, k, ox ] + (1 + ε)o

≤ i + (1 + ε)o

≤ (1 + ε)p
(
H,S∗) .

This completes the proof. �	

123



O. Kostakis et al.

Table 1 Datasets overview Dataset Time span n Graph size m

NBA 11315 147

Handball 38 21

Premier league 38 200

Twitter WorldCup 39988 139254

Enron 200704 143695

Reality mining 307 13786

6 Experimental evaluation

In this section we present our empirical evaluation. Section 6.1 contains a description
of the datasets, while in Sect. 6.2we evaluate our algorithms. Finally, Sect. 6.3 contains
our case-studies on real datasets.

6.1 Datasets

For our experimental evaluation we used the following dynamic networks. Table 1
contains an overview of the datasets.

NBADallas Mavericks This is a dataset with play-by-play information of the National
Basketball Association’s matches for the season 2014–2015. Two players interact if
they are present on the court at the same time. Substitutions are allowed only during
possession-changes, so the time granularity is on a per-possession basis. We focus on
the Dallas Mavericks team.

Handball (Pers et al. 2006) the CVBase06 handball dataset. Vertices correspond to
players and edges between players to passes of the ball. It contains 38 different plays
(series of passes) that lead to a shot, a steal or any other action that interrupts the passes
among the team’s members.

Premier League This dataset contains the starting lineups of every football (soccer)
match of the Premier League (English national championship) during the season 1996-
’97. Two players interact if they appear on the same team’s lineup of a given match.
We focus on the Arsenal FC team.

Twitter World Cup (Rayana and Akoglu 2016) This is a collection of tweets from
before and during the 2014 football World Cup. The vertices are hashtags or users and
an interaction is a co-occurrence in a tweet. We set the time granularity to one hour.

Enron dataset (Klimt and Yang 2004) This is the collection of email messages
exchanged between the employees of Enron. In this network, each employee is a
vertex and an email between two employees denotes an interaction.

RealityMining (Eagle andPentland2006)This is a real-life social network.Eachvertex
corresponds to a human. An interaction takes place if two humans are in proximity,
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Table 2 Indicative running times & scores for different parameter values

Dataset (k, h) Score Runtime (s)

Iterative Greedy Iterative Greedy

Twitter (10, 5) 23 109,567 173,902 234

Twitter (20, 5) 62,061 166,710 199,409 200

Enron (2, 1) 116,894 121,294 282,346 9114

RealityM. (10, 1) 21,185 31,424 124 2

RealityM. (10, 5) 488 16v025 291 2

and the mobile phone’s Bluetooth component belonging to one human discovers the
phone of the other.

Finally, to test the behavior of our methods with respect to specific parameters,
we create artificial dynamic networks. For each time point, we create an instance of
G(n, p) Erdős-Rényi graphs.

In order to enable repeatability of our experiments, and to facilitate future research
efforts, we provide our methods’ source code1 and the NBA, Handball, and Premier
League datasets2.

For the Enron dataset and the Twitter World Cup datasets, we have removed any
edges that appear only once. The rationale is that since we are interested in finding
recurring patterns, we know in advance that such edges will only add to the score (for
any k > 1). Due to the datasets’ size these edges that appear only once will skew the
obtained scores.

6.2 Methods benchmark

In this section we provide the results from benchmarking our methods. The goal is to
gain insights into their performance in terms of quality of solutions and running times.

Due to the fact that some of themethods are randomized, unless stated otherwise,we
executed each of those methods 3 times. We report the best score of the 3 executions.
The reported runtimes are the mean runtimes. In addition, we have limited the iterative
algorithm to 5 iterations between the segmentation and the clustering phase.

Table 2 reports runtimes and scores over some of the real datasets, for different val-
ues of k and h.We omit the results for the sophisticated greedy and the 2-approximation
algorithm, since their runtime for the larger datasets exceeded our 5-daymargin. How-
ever, the important insight is that the sophisticated greedy does not offer any advantage
over the simpler variant. In particular, its score was worse or similar to that of the sim-
ple and its running time several orders of magnitude longer. Between Iterative and
Simple Greedy, we notice a clear trade-off between performance and running time.
Iterative provides better results but requires more time.

1 https://doi.org/10.5281/zenodo.290629
2 https://doi.org/10.5281/zenodo.160509
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Fig. 3 Benchmark for varying time span. a Running times (log-log). b Scores

Table 3 Scores for the experiments with synthesized ground truth, for different values of segments k,
summaries h, network time-span n, and number of distinct edges m

Parameters Scores

k h n m Iterative Simple Greedy Soph.Greedy

10 2 1000 50 0 14 43

20 2 1000 50 0 49 118

10 2 10,000 50 0 23 68

We benchmark our methods in terms of run-time, over different values of time span
n, graph size m, and parameters k and h, using Erdős-Rényi graphs; the value of only
one parameter is changed every time. Figure 3 depicts the results for different values
of n. When varying k and h, the Iterative appears to perform faster as h increases, but
without a solid trend.We also observe that all methods scale linearly with respect tom.

We examine the quality of the solutions achieved by our methods, with “planted”
(pre-defined) sessions andmodes.The idea is thatwe alreadyknow theoptimal solution
and its value. First, we create a set of h distinct random sub-networks of equal length.
Then we synthesize the temporal network as a sequence of k random selections (with
replacement) from the h sub-networks. Clearly, for those values of k and h, the optimal
solution yields zero score; p(H, k, h) = 0.

Table 3 depicts the mean scores for different values of k and h, after 10 independent
executions. We remind that maximum possible score in any instance of the problem is
km. Iterative is able to retrieve the optimal solution in all cases. The greedy approaches
never manage to achieve that; again, the sophisticated greedy is worse.

6.2.1 Combining the iterative and greedy methods

Our iterative implementation begins of with a set of random summaries and then
alternates between segmenting the timeline and clustering the segments. Instead, the
simple greedy algorithm is the fastest and returns a segmentation of the timeline based
on the actual timeline data. Due to this, we investigate whether starting the iterative
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Table 4 Scores when benchmarking Iterative versus Greedy+Iterative

Dataset (k, h) Iterative Greedy+Iterative Greedy

RealityM. (10, 1) 13,500 14,176 22,832

RealityM. (10, 3) 28,127 30,607 32,202

NBA (10, 1) 207 207 341.4

NBA (200, 4) 2547.9 2585.3 3622.5

algorithm from the segmentation of the simple greedy approach provides any benefit.
Table 4 depicts the mean scores from 10 independent comparisons (best of 1). We
have added the mean scores of the stand-alone greedy for reference.

We notice that if Iterative starts with the segmentation provided by the greedy
algorithm, the results are in the general caseworse than executing Iterativewith random
summaries; only for the NBA dataset and k = 10, h = 1 did both methods reach the
same solution.Wepresume that the iterative procedure gets trapped in a local optimum.
On the other hand, starting from the segmentation provided by the greedy method,
allows the iterative procedure to reach a solution faster. The average running time was
reduced by 14 and 19% for the Reality Mining and NBA datasets respectively. Hence,
there is a trade-off between performance and running time.

6.3 Mining social networks

In this section we present our study of mining real temporal networks taken from the
field of sports and social networks. We demonstrate the applicability of our methods
on datasets related to basketball, football (soccer) and handball. In particular we sum-
marize: (i) basketball in-game team formations over a season, (ii) handball in-game
passing behavior (iii) football team lineups over the whole season. In addition, we
explore the Twitter World Cup dataset.

The goal of the following experiments is not only to demonstrate the broad appli-
cability of our methods, but additionally to prove their effectiveness and usefulness
for the specific field of Sports Analytics. We aim to simulate part of the analysis
performed by professionals of the field by discovering meaningful modes and their
corresponding segments in temporal networks of varying time-granularity taken from
a range of sports. Finally, in Sect. 6.3.4, by analyzing the Twitter dataset, we make a
first attempt to identify the significance and impact of various sports events on social
media.

6.3.1 Summarizing basketball in-game team formations

Westudy theNBAdataset and attempt to gain helpful insights for the teamof theDallas
Mavericks. The goal is to discover the common team formations. In other words, we
want to identify in what combinations does the coach use his players.

In a professional setting, this would provide knowledge and insights on how to
defend; in modern basketball especially, understanding the combination of skills in a
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Fig. 4 Summaries discovered in the NBA dataset. a The smallest summary for k = 200, h = 8. b The
intersection of the remaining summaries, for k = 200, h = 8. c The most common summary for other
values of k, h

team is critical for deciding on the offensive play and, consequently for the opponents,
how to defend (Obradovic 2007). This analysis is also useful for the sports of ice-
hockey, to discover lines, and in gridiron football, or North American football, to
identify frequent line-ups.

The dataset has information regarding 56 games, and sinceNBAbasketball matches
have 4 quarters but rarely players are on the pitch for a whole quarter, we set k = 200
and h = 8.

Using the iterative algorithm, the best solutionwe acquire has cost 2088 (for the sim-
ple greedy algorithm the scorewas 3187). The smallest summary in size is the 5-clique,
presented in Fig. 4a. The remaining summaries are larger, and overlap significantly
in pairs. The intersection of all the remaining summaries is a 3-clique presented in
Fig. 4b, while in pairs the intersection may consist of up to 34 edges. The 5-clique
also appears if we set k = 200 and h = 4.

By modifying the values of k and h, or when the iterative algorithm fails to find the
5-clique, the most frequent summary is a 5-vertex star-graph with the same vertices as
the previous 5-clique; presented in Fig. 4c. The above results correlate with the club’s
payroll. The 5 players in the clique were the most highly paid in the roster. The other
3 players are substitutions players. In addition, the same order applies in total playing
time for that season.

6.3.2 Summarizing in-game team-passing activity; handball

Our methods also apply to play-by-play game summarization. We apply our Iterative
algorithm to theCVBase06handball dataset. The goal is to summarise a team’s strategy
using as few modes as possible.

The dataset contains 38 different plays (series of passes) that lead to a shot, a steal
or any other action that interrupts the passes among the team’s members.

By examining different values for h, and setting k = n = 38, we discover that the
number of unique plays is 26 (if we don’t consider the counts of passes between each
pair of players).

Indicatively, Fig. 5 depicts two of the three summaries discovered by using the
Iterative algorithm with k = 14 and h = 3. The total cost (p(H, 14, 3)) is 12. The
summary of Fig. 5a corresponds to 4 plays, inducing a cost of 6, while that of Fig. 5b
corresponds to a unique play. The third summary contains a single pass between
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Fig. 5 Discovered summaries
of the handball in-game passing
plays, for k = 14 and h = 3.
The third summary is a single
edge between players ‘3’ and
‘4’. a Mode 1. b Mode 2
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Fig. 6 Minimum number of
modes (h, summaries) required
to perfectly summarize the
Handball dataset, as a function
of the number of sessions (k,
segments)

players ‘3’ and ‘4’, and is the centroid of the single- or two-pass plays, inducing the
remaining cost.

Due to the fact that the players are only denoted by an id number, and hence the
results are not informative, we plot the minimum number of summaries (h) required
to perfectly summarize the Handball dataset as a function of the number of sessions
(k); the results are depicted in Fig. 6. That is, the found summaries cover perfectly the
found segments, p(H, k, h) = 0. For example, if we want to divide the team’s activity
into 25 segments, then we can perfectly summarize them using only 18 summary
graphs.

Summarizing in-game team-passing activity can be used for both the opponents’
and own team. For opponents, it provides direct insight on how they play, revealing
patterns and roles, that can be beneficial for beating them. For coaching staff who
analyze the plays of their own team, the above approachprovides an evaluationmeasure
for the team’s performance. Consider for example a team that wants to play in a highly
versatile way, then the minimum value of h that yields p(H, k, h) = 0 should be high.
Alternatively, if the team’s goal is to be very principled and not deviate from the
coaches’ instructions, then the score p(H, k, h), with h equal to the number of agreed
plays, provides a direct evaluation of the team; lower values indicate better adherence
to the plan.

6.3.3 Identifying modes in football (soccer) lineups

We can apply our methods to summarising networks of more coarse-grained time
granularity, such as football-team starting lineups. The question we answer is the
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Fig. 7 Two of the three summaries discovered in Arsenal FC’s starting lineups during the 1996–1997
Premier League season. These two summaries are 11-cliques, resulting in the above 11-player lineup
summaries. The parameters were set to k = 20 and h = 3. a Regime 1. b Regime 2

following: “given one football team’s starting lineups over the whole season, can
we summarise them? In other words, can we identify which groups of players gen-
erate the lineups over the course of time?”. We look into the staring lineups of
Arsenal FC, during the 1996–1997 Premier League (national championship) com-
petition.

We apply our Iterative method. By setting k = n = 38 and varying the number
of modes h, we discover 25 unique lineups. The next question is whether we can
summarize the evolution of the lineups with fewer sessions and modes. For k = 20
and h = 3, we obtain three summaries. Two of them are 11-cliques and correspond to
11-player starting lineups; they are depicted in Fig. 7. These two summaries are the
centroids for 14 and 5 of the sessions respectively. The third summary (figure omitted)
is not a clique and consists of 18 vertices (players). It is matched to only a single
session.

For k = 10 and h = 3, one of the summaries is identical to that in Fig. 7a and it
corresponds to 8 out of 10 sessions.

6.3.4 Analyzing Twitter activity during the 2014 World Cup

We further demonstrate the applicability of our methods beyond temporal networks
corresponding to teams. We focus on online social media activity, and in particular
we analyze the Twitter World-Cup dataset. Tweets (twitter messages) are aggregated
into 24 hour granularity, resulting in 79 days. The network’s nodes are individual
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(a) (b)

Fig. 8 Heatmaps based on the symmetric difference of the edges, for the Twitter World Cup dataset, with
k = 16 and h = 5. Sessions are ordered by time. a h modes’ heatmap. b k sessions’ heatmap

hashtags (for example #fifa), and an edge exists between two hashtags if they co-
occur in a tweet. We aim to gain insights into the evolution of tweets’ content over
time.

We apply the Iterative algorithm by setting k = 16 (79/16 ≈ 5 days), h = 5,
and w = 1.5. Figure 8a depicts the heatmap of the distance matrix between the sum-
maries; darker corresponds to greater distance. The output summaries are singificantly
different from each other.

Figure 8b depicts the heatmap of the distance matrix between segment-graphs.
We notice that the first 5 segment graphs, together with the 13th have relatively low
distance. This is due to the fact that the graphs are small. While from the 8th to the
12th are large graphs that are significantly different from each other. The mapping of
segments to cores is: 2, 2, 2, 2, 2, 3, 5, 4, 2, 2, 2, 2, 2, 2, 1, 2, respectively. While
we don’t discover any session periodicity in the tweets, we discover that overall the
content evolves over time.

We also discover that there is an overlap among several modes. For example, the
third, fourth and fifth summaaries share 598 edges. This is expected since hashtags
such as #sports #football, #soccer, #brazil and others correspond to very generic
but yet relevant terms for that period. Moreover, these hashtags are high-degree
nodes in the summary-graphs. On the other hand, by examining the session-graphs,
we notice hashtags that are highly connected but their temporal locality is very
narrow; for example #brazilvsgermany 3 co-appears with 914 other hashtags but
only within a single segment. In summary, we witness two phenomena: first, the
content changes significantly over time but new terms manage to become very
central. Second, there is a body of terms that remain relevant throughout many
sessions.

Figure 9 depicts the aforementioned discoveredmodes; for visual clarity, the graphs
contain only those nodes with degree greater than the 50th largest degree value. We

3 This hashtag refers to the first semi-final of the 2014World Cup held in Brazil. Germany beat home-team
Brazil by 7–1.
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Fig. 9 Linear layouts of 5 summaries discovered for the Twitter World Cup dataset, for k = 38 and h = 2.
The plotted graphs contain only those vertices with degree greater or equal to the 50th largest degree value
of each graph. Blue edges are unique to a summary, red edges occur in each summary, and the remaining
edges are colored green (Color figure online)

notice that the hashtags in the sumamries form communities. For example, those for
football (soccer) are separated from those of American football. Similarly, there is a
cluster of hashtags relating to music bands, that also happens to re-appear.

123



Discovering recurring activity in temporal networks

7 Concluding remarks

We considered the problem of summarizing temporal networks via discovering recur-
ring activity. Our underlying assumption is that the temporal network operates in a
small number of different modes, and the life-span of the network can be summa-
rized by time-intervals in which the network operation makes transitions between
these different modes. Among other applications, our problem formulation is moti-
vated by discovering recurring team formations and recurring team strategies in sports
analytics.

We formally defined the temporal-network summarization problem, and proved
its NP-hardness. We then presented a number of different algorithms, including an
iterative algorithm based on dynamic programming and clustering, an approxima-
tion algorithm that is practical only for one mode, as well as heuristic methods
based on greedy approaches. Another technical contribution is a quasi-linear (1+ ε)-
approximation segmentation algorithm, which is used in the inner loop of the iterative
algorithm.

We demonstrated the practical qualities of our methods with an evaluation on real-
world and synthetic datasets. Among the greedy approaches, the simple is faster than
the sophisticated and in our experiments it still managed to achieve better scores. The
iterative algorithm discovers solutions of better quality, compared to the simple greedy
approach, but can be up to two orders of magnitude slower. Surprisingly, when setting
as a starting point of the iterative algorithm the solution found by the simple greedy
approach, compared to starting from a random state, the running time is reduced but
solution quality deteriorates.

In addition, we performed several case-studies in which we use our approach to
obtain meaningful insights. When analyzing the basketball dataset, our algorithms
were able to discover results that correlate with other information such as player
salary. In the future it would be interesting to investigate strategies for combining
our methods together with other information such as score at each time point. This
would facilitate coaches in getting an even better understanding of the teams under
examination. For example, which team formation scoresmore points or which conceds
the least. The same applies not only to the football starting lineups analysis but also
to the lineups after any substitutions.

In the handball passing activity dataset, we examined the total number of modes
under which a team operates, which are required to perfectly summarize the whole
game. It would be interesting to see how this number correlates with the outcome of
the game in various sports. Whether a low number of modes suggests that the team is
able to perfectly execute the plays instructed by the coach, or whether a more diverse
gameplay is the key to victory.

We also examined the applicability of our methods to Twitter. We discovered that
certain hashtags have a short lifetime but become very popular since they co-occur
with a high number of other hashtags. On the other hand, another group of hashtags
remain prevalent throughout the whole network time span.
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Appendix: Proof of NP-hardness

To prove the np-hardness we use the following problem.

Problem 4 (Satisfy) Assume that we are given q formulas over � variables {vi } of
form ¬z = x ∧ y, where x , y, and z are boolean variables or their negations. Decide
whether these clauses can be simultaneously satisfied with v1 being set to true.

Proposition 10 Satisfy is NP-complete.

Proof We will prove the hardness by reduction from 3SAT. Assume an instance of
3SAT with n variables and m clauses.

For each i th clause with two literals x ∨ y, add ¬ci = ¬x ∧ ¬y.
For each i th clause with three literals x ∨ y ∨ z, add two formulas hi = ¬x ∧ ¬y

and ¬ci = hi ∧ ¬z.
If the i th clause contains one literal x , then refer to x as ci .
Addm−1 variables v1, . . . , vm−1, and formulas vi = vi+1∧ci , for i = 1, . . . ,m−

2, and vm−1 = cm−1 ∧ cm .
It follows that i th clause can be satisfied if and only if ci can be set to true. All ci s

can be set to true if and only if v1 can be set to true. �	
Proposition 11 (k, 1)-segmentation is NP-hard.

Proof We will prove the hardness by reduction from Satisfy. Assume that we are
given an instance of Satisfy with q formulas and � variables.

We begin by specifying the vertices. The total number of vertices is 1+3+2�+ r ,
where r = (20q + 12� + 2)(3 + 2�).

The first vertex is α, and every edge will be adjacent to α. The next three vertices
are t1, t2, and t3. Our construction will make sure that (α, ti ) ∈ E(G).

The next 2� vertices correspond to the variables and their negations, we will denote
them by vi and ui , for i = 1, . . . , �. We will denote by X the set of possible edges
between α and these vertices. Define X ′ = X\ {(α, u1), (α, v1)}.

Finally, the last r vertices are auxiliary vertices that will allow us to force segmen-
tation borders. We will denote the set of possible edges between these vertices and α

by B.
Our interation network consists of 3 parts, which in turn consists of sections. All

these sections and parts are combined consecutively.
The first part, say P1, consists of 2� sections, each containing 5 time points. The

first � sections are defined as

(α, vi ) : 1 1
(α, ui ) : 1 1
(α, t1) : 1 1 1 1
(α, t2) : 1 1 1 1
(α, t3) : 1 1 1

for every e ∈ B : 1 1 1

They last � sections are copies of the first � sections, except that they also contain the
remaining edges from X at 1st, 3rd, and 5th time point.
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The second part, say P2, consists of 2q sections, each containing 7 time points.
Let ci = (¬z = x ∧ y) be the i th formula. By using the same letters to represent
the corresponding vertices, taking account negations, we define the i th section, where
i = 1, . . . , k, as

(α, x) : 1 1 1
(α, y) : 1 1 1
(α, z) : 1 1 1 1
(α, t1) : 1 1 1 1 1 1

(α, t2), (α, t3) : 1 1 1 1 1 1 1
for every e ∈ B : 1 1 1 1 1

The (q + i)th section is a copy of i th segment, except that they also contain the
remaining edges from X at 1st, 3rd, and 5th–7th time points.

The last part, say P3, consists of 10q + 6� + 2 sections, each consisting of 1 single
time point. Each section contains B, (α, ti ), and (α, u1). Moreover, every even section
contains edges in X ′.

We set k = 20q + 12�+ 2. We claim that Satisfy is true if and only if the optimal
segmentation has a score of

σ =|P1|/2 × (3(2� − 2) + 2) + |P2|/2 × (5(2� − 3) + 12) + |P3|/2 × (2� − 2) .

We will prove this in several steps.
Step (i): Every e ∈ B is contained in every segment exactly once. First, note that

this segmentation is possible since B occurs at k different time points, the optimal cost
of any such segmentation is bounded by r/2, the number of possible edges times half
the number of segments. Note that each e ∈ B occurs at the exact same time point.
Thus there is an optimal solution with every e ∈ B either present or absent from the
core. Assume that there is a segment that disagrees with the core. Then the cost is at
least r . Consequently, every segment must contain every e ∈ B. Since B occurs at k
different time points, each segment can contain only one instance of each e ∈ B.

Step (ii): It follows immediately, that the borders of the sections are included in
the borders of the optimal segmentation. Moreover, each section in P1 part is divided
into 3 segments, each section in P2 is divided into 5 segments, each section in P3
corresponds to exactly 1 segment.

Step (iii): (α, ti ) ∈ E(G), u1 ∈ E(G) and v1 /∈ E(G). This follows immediately
from the fact that each section in P3 corresponds to one segment, and |P3| > k/2, that
is, P3 contains the majority of the segments.

Step (iv): The cost of i th and (i + 1)th section in P1 is at least 3(2� − 2) + 2. This
bound is reached if and only if G contains either ui or vi , but not both. First note,
that the middle segment in both sectons contains the 3rd time point. This means that
the remaining edges in X will occur exactly 3 times in 6 segments. Thus, they induce
a cost of 3(2� − 2). A brute-force enumeration now implies that the involved edges
induce a cost of at least 1, and this is possible if and only if G contains either ui or vi ,
but not both.
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Step (v): The cost of i th and (i + 1)th section in P2 is at least 5(2�− 3)+ 12. This
bound is reached if and only if (α, z) /∈ E(G) ⇔ (α, x) ∈ E(G) and (α, y) ∈ E(G).
First note, that the 2nd segment in both sectons contains the 3rd time point, and the 4th
and 5th segments consists of exactly one time point. This implies that the remaining
edges in X will occur exactly 5 times in 10 segments. Thus, they induce a cost of
5(2� − 3). A brute-force enumeration now implies that the involved edges induce a
cost of at least 6, and this is possible if and only if (α, z) /∈ E(G) ⇔ (α, x) ∈ E(G)

and (α, y) ∈ E(G).
Step (vi): The cost of an odd and even section in P3 is equal to 2�−2. This follows

from the fact that the edges in X ′ occur exactly once in these two sections.
Step (vii): Steps (iv)–(vi) imply that σ is a lower bound for the optimal score. This

bound is reached if and only if, the lower bounds of each section is reached. This can
happen if and only if each sentence in Satisfy can be satisfied. �	
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