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Abstract We introduce a new approach for finding overlapping clusters given pairwise
similarities of objects. In particular, we relax the problem of correlation clustering by allow-
ing an object to be assigned to more than one cluster. At the core of our approach is an
optimization problem in which each data point is mapped to a small set of labels, represent-
ing membership in different clusters. The objective is to find a mapping so that the given
similarities between objects agree as much as possible with similarities taken over their label
sets. The number of labels can vary across objects. To define a similarity between label sets,
we consider two measures: (i) a 0–1 function indicating whether the two label sets have non-
zero intersection and (ii) the Jaccard coefficient between the two label sets. The algorithm
we propose is an iterative local-search method. The definitions of label set similarity give
rise to two non-trivial optimization problems, which, for the measures of set-intersection and
Jaccard, we solve using a greedy strategy and non-negative least squares, respectively. We
also develop a distributed version of our algorithm based on the BSP model and implement
it using a Pregel framework. Our algorithm uses as input pairwise similarities of objects
and can thus be applied when clustering structured objects for which feature vectors are not
available. As a proof of concept, we apply our algorithms on three different and complex
application domains: trajectories, amino-acid sequences, and textual documents.
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2 F. Bonchi et al.

1 Introduction

In many real-world applications, it is desirable to allow overlapping clusters as data points
may intrinsically belong to more than one cluster. For example, in social networks, users
belong to numerous communities. In biology, a large fraction of proteins belong to several
protein complexes simultaneously, and genes have multiple coding functions and participate
in different metabolic pathways. In information retrieval and text mining, documents, news
articles, and web pages can belong to different categories.

In this paper, we formulate overlapping clustering as the problem of mapping each data
point to a small set of labels that represent cluster membership. The number of labels does not
have to be the same for all data points. The objective is to find a mapping so that the similarity
between any pair of points in the dataset agrees as much as possible with the similarity of
their corresponding sets of labels.

While this idea is general and could be instantiated in different clustering frameworks,
in this paper, we apply it to the setting of correlation clustering [6], a clustering paradigm
defined as follows: given a complete graph with positive and negative edges, the objective
is to partition the graph so as to minimize the number of positive edges cut by the partition
plus the number of negative edges not cut.

In our formulation, we still require a complete graph as input, but every edge is associated
with a weight, which is a number in [0, 1]. Weights represent similarity between data points
and the extent to which data points should be assigned to the same cluster. For defining dis-
tances between sets of labels, we consider two measures: a set-intersection indicator function
and the Jaccard coefficient. We also constrain the maximum number of cluster labels allowed,
either globally or per data point. These alternatives, together with the possibility of having
fractional or binary edge weights, produce a whole family of problems.

In more detail, we make the following contributions:

– We define overlapping- correlation- clustering, an optimization problem that
extends the framework of correlation clustering to allow overlaps (Sect. 2). We show
that the problem we define is NP-hard. We also discuss interesting connections of our
problem with graph coloring and dimensionality reduction (Sect. 3).

– We propose to solve the overlapping- correlation- clustering problem using a sim-
ple local-search algorithm. The iterative step of the local-search algorithm optimizes the
labels of one object, given the labels of all other objects. Applying this local optimization,
we iteratively improve the cost of the solution, until no further improvement can be made.
We apply this general framework to both variants of the problem, Jaccard coefficient and
set intersection (Sect. 4).

– In the case of the Jaccard coefficient, the iterative step of the local-search algorithm
corresponds to a new problem, which we call Jaccard- triangulation. We prove that
Jaccard- triangulation is NP-hard, and we devise a method based on non-negative
least squares, followed by post-processing of the fractional solution (Sect. 4.2). In the
case of set-intersection, the sub-problem is named hit- n- miss. This is a set-cover type
of problem, which we solve using a greedy algorithm (Sect. 4.3).

– We present a distributed version of our algorithms, implemented on a map-reduce archi-
tecture, which can be used to find overlapping clustering in extremely large datasets
(Sect. 5).

– We evaluate our algorithms on a collection of real-world datasets, showing that our algo-
rithms produce overlapping clusters that resemble the ground truth. We also experiment
with the idea of speeding up the algorithms by randomly eliminating pairs of data points
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Overlapping correlation clustering 3

from consideration. Our results show that a significant amount of pruning can be achieved
without degrading the quality of the solution. Finally, we test on a very large social-media
dataset the scalability of the distributed implementation of our methods (Sect. 6).

– We illustrate the generality of our approach and the good quality of the results we obtain,
by applying our methods on three different application domains: spatio-temporal trajec-
tory analysis, bioinformatics, and document analysis. Our experiments provide ample
evidence that our algorithms find meaningful overlapping clusters (Sect. 7).

The presentation of the paper is completed by surveying the related literature in Sect. 8
and discussing future work in Sect. 9.

2 Problem definition

We are given a set of n objects V = {v1, . . . , vn}. We are also given a similarity value s(u, v)

for each pair of objects (u, v) ∈ V × V . For instance, if the objects V represent documents,
then s(u, v) may be defined as the cosine between the vectors that represent the documents
u and v; if the objects V represent records of a database table, then s(u, v) may be defined as
the fraction of attributes that records u and v agree on, etc. Hereinafter, we simply consider
the values s(u, v) as input to our problem, and we do not make any assumption on how to
obtain those values. In this paper, we consider that the similarity function s takes values in
the interval [0, 1]. We also study the special case in which the similarity function takes only
values in the set {0, 1}.
2.1 Non-overlapping clustering

In non-overlapping clustering, we have at our disposal k cluster labels, denoted by L =
{1, . . . , k}, and the task is to assign cluster labels for each object in V . In other words, the
clustering is defined by a labeling function � : V → L . The objective is to assign labels to
objects so that, to the highest possible degree, similar objects get assigned the same label. To
make the previous statement precise, many formulations have been proposed in the literature,
among which a very general and principled one is correlation clustering.

Problem 1 (CORRELATION-CLUSTERING) Given n objects V = {v1, . . . , vn}, a pair-wise
similarity function s over V × V finds a labeling function � : V → L that minimizes the cost

Ccc(V, l) =
∑

(u,v)∈V ×V
�(u)=�(v)

(1 − s(u, v)) +
∑

(u,v)∈V ×V
�(u)�=�(v)

s(u, v). (1)

The intuition underlying the above problem definition is that if two objects u and v are
assigned to the same cluster, we should pay the amount of their dissimilarity 1−s(u, v), while
if they are assigned to different clusters, we should pay the amount of their similarity s(u, v).
In the binary case, which is the most widely studied setting for correlation- clustering,
Eq. (1) says that we should pay for the number of pairs of objects that have similarity 0
and are clustered together and the number of pairs of objects that have similarity 1 and are
clustered in different clusters.

In the traditional setting, no constraint on the maximum number of clusters is given, that
is, |L| = Θ(n). This is indeed one of the advantages of correlation- clustering: the
number of clusters is not an input parameter, but “discovered” by the method.
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4 F. Bonchi et al.

2.2 Allowing overlaps

We now discuss how we extend the definition of correlation- clustering in order to take
into account overlapping of clusters. The main idea is to redefine the mapping function �.
Instead of mapping each object to a single cluster label c ∈ L , we relax the function � so
that it can map objects to any subset of cluster labels. Let L+ be the collection of all sub-
sets of L except the empty set, that is, L+ = 2L \ {∅}, we now define the multi-labeling
function � as � : V → L+. If an object v is mapped under � to a set of cluster labels
�(v) = {c1, . . . , cs} ∈ L+, then we say that v participates in all the clusters c1, . . . , cs .

For a good clustering, similar objects should be mapped to similar sets of cluster labels.
Thus, to evaluate a solution to overlapping clustering, we define a similarity function H
between sets of cluster labels, that is, H : L+ × L+ → [0, 1]. We now have the necessary
ingredients to define the problem of overlapping correlation clustering.

Problem 2 (OVERLAPPING-CORRELATION-CLUSTERING) Given n objects V = {v1, . . . ,

vn}, a pair-wise similarity function s over V × V , and a similarity function H between sets,
find a multi-labeling function � : V → L+ that minimizes the cost

Cocc(V, �) =
∑

(u,v)∈V ×V

|H(�(u), �(v)) − s(u, v)|. (2)

Our definition of clustering aims at finding a multi-labeling that, to the highest possible
degree, maintains the similarities between objects. Note that considering the error term |H−s|
is meaningful since both H and s are similarity functions that take values in the range [0, 1].

To make our problem concrete, we need to define the similarity function H between
two sets E, F of cluster labels. In this paper, we consider two such functions: the Jaccard
coefficient J (E, F) = |E∩F |

|E∪F | , and the set-intersection indicator function I :

I (E, F) =
{

1 if E ∩ F �= ∅
0 otherwise.

The Jaccard coefficient is a very natural function to measure similarity between sets, and
it has been used in a wide range of applications. On the other hand, in certain applications,
we might be interested in whether the cluster-label sets intersect or not: for these, we use the
set-intersection indicator.

2.3 Constraints

So far we have assumed a finite alphabet of labels and hence a maximum number of clusters
|L| = k. This can be seen as the typical constraint in which one needs to specify an upper
bound in the total number of clusters. However, for many applications, while we may have
in our disposal a large number of clusters, we may not want to assign an object to all those
clusters. For example, when clustering the users of a social network, we may want to use
hundreds or even thousands of clusters; however, we may want to assign each user only in a
handful of clusters.

Thus, we consider a second type of constraint in which we require that each object v

should be mapped to at most p clusters, that is, |�(v)| ≤ p for all v ∈ V .
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Overlapping correlation clustering 5

3 Problem characterization

In this section, we discuss the different variants of our problem, we establish its computational
complexity, and we investigate connections with other problems.

First note that, based on our discussion in the previous section, when defining an instance
of Problem 2, we have the following options:

– the similarity function s between objects may take values in the range [0, 1], or it may
take binary values in {0, 1};

– the similarity function H between sets of cluster labels may be the Jaccard coefficient J
or the intersection indicator I ; and

– we may impose the local constraint of having at most p cluster labels for each object or
we may not.

Any combination of the above options gives rise to a valid problem instance. We systemat-
ically refer to any of these problems using the notation (r, H, p), where: r ∈ {f,b} refers
to the range of the function s: f for fractional values and b binary; H ∈ {J, I } refers the
similarity function H : J for Jaccard coefficient and I for set-intersection; and p refers to the
value of p of the local constraint, so p = k means that there is no local constraint.1

As an example of our notation, by (b, H, k), we refer to two different problem instances,
where s takes binary values, H can be either J or I , and there is no local constraint.

3.1 Hardness results

Our first observation is that all instances specified by (r, H, 1) correspond to the correla-
tion- clustering problem defined in Problem 1. The reason is that when |�(v)| = 1 for
all v in V , then both the Jaccard coefficient and the intersection indicator take just 0 or 1
values. In particular, |H(�(u), �(v)) − s(u, v)| becomes 1 − s(u, v) when �(u) = �(v) and
s(u, v) when �(u) �= �(v). Thus, we easily establish that our problem is a generalization
of the standard correlation- clustering problem. Since correlation- clustering is
NP-hard, and since p = 1 is a special case of any (r, H, p) problem, the previous obser-
vation implies that the general overlapping- correlation- clustering problem is also
NP-hard. However, in order to show that the complexity of our problems does not derive
exclusively from the hardness of the special case p = 1, we provide NP-hardness results
that do not rely on such special case.

Theorem 1 The problem instances (r, I, p), with p > 1, are NP-hard.

Proof We show that the (b, I, p) problem is NP-hard, which also gives the NP-hardness
for the (f, I, p) problem. We obtain the reduction from the problem of covering- by-
cliques [27, GT17], which is the following: given an undirected graph G = (V, E) and an
integer C ≤ |E |, decide whether G can be represented as the union of c ≤ C cliques. We can
show that a zero-cost solution to the (b, I, C) problem identifies graphs having a covering by
at most C cliques, and solutions with a cost larger than zero identify graphs that do not admit
a covering by at most C cliques. Given an undirected graph G = (V, E), we construct an
instance of the (b, I, C) problem by simply setting the set of objects to be the set of nodes V .
For each edge (u, v) ∈ E , we set s(u, v) = 1, while if (u, v) �∈ E , we set s(u, v) = 0. We
also set the total number of cluster labels k = C . It is easy to verify our claim: a zero-cost
solution of (b, I, C) on input (V, s) corresponds to a covering of G by at most C cliques. 	

1 Note that we always assume that the value of k is given as input, although in our implementations this is
interpreted as an upper bound as well; the resulting clustering may have less clusters.
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6 F. Bonchi et al.

In addition, due to the inapproximability of the covering- by- cliques problem, we can
deduce that the problem instances (r, I, p) do not admit polynomial-time constant factor
approximation algorithms unless P = NP.

We now turn our attention in the problems (r, I, k), that is, using set-intersection and no
local constraint. Moreover, we consider the case in which we are allowed to use a very large
number of cluster labels, in particular k = Θ(n2).

Proposition 1 For the problem instances (r, I,Θ(n2)), the optimal solution can be found in
polynomial time.

Proof We start by giving each object a unique cluster label. Then, we process each pair of
objects for which s(u, v) ≥ 1

2 . For any such pair of objects, we make a new label, which we
assign to both objects, and never use again. Thus, for pairs with s(u, v) ≥ 1

2 , the intersection
of �(u) and �(v) is not empty, and thus, we pay |1 − s(u, v)| ≤ 1

2 . On the other hand, for
the pairs with s(u, v) ≤ 1

2 , the intersection of �(u) and �(v) is empty, and thus, we pay
|s(u, v)| ≤ 1

2 . Since I takes only 0/1 values, no other solution can cost less, and thus, the
previous process gives an optimal solution. 	


When we have binary similarities, the above process straightforwardly provides a 0 cost
solution.

Corollary 1 The problem instance (b, I,Θ(n2)) always admits a 0 cost solution that can
be found in polynomial time.

3.2 Connection with graph coloring

Given that the problem instance (b, I, k) always admits a solution of 0 cost if we allow
enough cluster labels, we next ask which is the minimum number of cluster labels k needed
for a 0 cost solution. We characterize this number by pointing out a connection with the
graph- coloring problem, whose formulation we recall next. A proper coloring of a graph
G = (V, E) is a function c : V → {1, . . . , k} so that for all (u, v) ∈ E , we have c(u) �= c(v).
The graph- coloring problem asks to find the smallest number k, known as the chromatic
number χ(G) of G, for which a proper coloring of G exists.

Going back to the binary (b, I, k) instance of the overlapping- correlation- cluster-
ing problem, given the set of objects V and similarity function s, we consider similar pairs
P+ = {(u, v) ∈ V × V | s(u, v) = 1} and dissimilar pairs P− = {(u, v) ∈ V × V |
s(u, v) = 0}. Using these, we define the graph Ĝ = (P+, Ê), with similar pairs as nodes,
and the set of edges Ê given by the dissimilar pairs as follows:

Ê = {((u, v), (x, y)) ∈ P+ × P+ | {(u, x), (u, y), (v, x), (v, y)} ∩ P− �= ∅}.

We have:

Proposition 2 The chromatic number χ(Ĝ) of Ĝ is equal to the minimum number of cluster
labels required by a zero-cost solution to the (b, I, k) problem with input (V, s).

Proof We observe that a color in Ĝ corresponds to a cluster in our problem. The colors
are assigned to pairs of objects in V , which ensures that the positive pairs P+ are satisfied.
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Overlapping correlation clustering 7

On the other hand, the constraint of having a proper coloring ensures that the negative pairs
P− are also satisfied. Thus, a proper coloring on Ĝ corresponds to a zero-cost solution on
our problem. 	


Although the previous result is theoretically interesting, it has limited practical relevance,
as we are interested in minimizing the error given a specific number of clusters.

To make the connection practically useful, we would need to relax the graph- coloring
problem, so that it allows for a less strict definition of coloring. Namely, we would like to
allow for colorings that for certain cost may allow the following relaxations: (i) (u, v) ∈ E
not necessarily implies c(u) �= c(v)—corresponding to violations on P−; and (ii) nodes may
be left uncolored—corresponding to violations on P+. We believe that this is an interesting
path that may lead to novel algorithms for overlapping- correlation- clustering. We
plan to investigate this research direction in our future work.

3.3 Connection with dimensionality reduction

We finally remark that our problem can be seen as an instance of dimensionality-reduction.
We briefly remind the problem of dimensionality reduction here: Given a set of points in a
high-dimensional space, the goal is to map each point x in the original space to a point h(x) in
space of lower dimensionality, so that for any pair of points x and y, their distance d(x, y)

in the high-dimensional space is preserved as well as possible by the distance d(h(x), h(y)) in
the lower-dimensional space. Dimensionality reduction is a problem that has been studied,
among other areas, in theory, data mining, and machine learning and has many applications,
for example, in proximity search, feature selection, component analysis, visualization, and
more. The connection between dimensionality reduction and the overlapping- correla-
tion- clustering problem, defined by Eq. (2), is apparent. However, the difference is that
dimensionality reduction methods are typically defined for geometric spaces. Alternatively,
they operate by hashing high-dimensional or complex objects in a way that similar objects
have high collision probability [12,34]. To the best of our knowledge, the case that the pro-
jected space is a set-system and similarities are measured by a set distance function has not
been considered before.

4 Algorithms

We propose a local-search algorithm that optimizes the labels of one object in the dataset,
when the labels of all other objects are fixed. We apply this framework both for the Jaccard
coefficient and the intersection-function variants of the problem, proposing novel algorithms
for these two local optimization problems in Sects. 4.2 and 4.3, respectively.

4.1 The local-search framework

A typical approach for multivariate optimization problems is to iteratively find the optimal
value for one variable given values for the remaining variables. The global solution is found
by repeatedly optimizing each of the variables in turn until the objective function value no
longer improves. In most cases, such a method will converge to a local optimum. The algo-
rithm we propose falls into this framework. At the core of our algorithm is an efficient method
for finding a good labeling of a single object given a fixed labeling of the other objects. We
can guarantee that the value of Eq. 2 is non-increasing with respect to such optimization
steps. First, we observe that the cost of Eq. (2) can be rewritten as
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Algorithm 1 LocalSearch
1: initialize � to a valid labeling;
2: while Cocc(V, �) decreases do
3: for each v ∈ V do
4: find the label set L that minimizes Cv,p(L | �);
5: update � so that �(v) = L;
6: return �

Cocc(V, �) = 1

2

∑

v∈V

∑

u∈V \{v}
|H(�(v), �(u)) − s(v, u)|

= 1

2

∑

v∈V

Cv,p(�(v) | �),

where

Cv,p(�(v) | �) =
∑

u∈V \{v}
|H(�(v), �(u)) − s(v, u)| (3)

expresses the error incurred by node v when it has the labels �(v), and the remaining nodes
are labeled according to �. The subscript p in Cv,p serves to remind us that the set �(v) should
have at most p labels. Our general local-search strategy is summarized in Algorithm 1.

Line 4 is the step in which LocalSearch seeks to find an optimal set of labels for an
object v by solving Equation (3). This is also the place that our framework differentiates
between the measures of Jaccard coefficient and set-intersection.

4.2 Local step for Jaccard coefficient

Problem 3 (JACCARD-TRIANGULATION) Consider the set {〈S j , z j 〉} j=1...n , where S j are
subsets of a ground set U = {1, . . . , k}, and z j are fractional numbers in the interval [0, 1].
The task is to find a set X ⊆ U that minimizes the distance

d(X, {〈S j , z j 〉} j=1...n) =
n∑

j=1

|J (X, S j ) − z j |. (4)

The intuition behind Equation (4) is that we are given sets S j and “target similarities” z j and
we want to find a set whose Jaccard coefficient with each set S j is as close as possible to the
target similarity z j . A moment’s thought can convince us that Eq. (4) corresponds exactly to
the error term Cv,p(�(v) | �) defined by Eq. (3), and thus, in the local-improvement step of
the LocalSearch algorithm.

To our knowledge, Jaccard- triangulation is a new and interesting problem, which
has not been studied before, in particular in the context of overlapping clustering. The most-
related problem that we are aware of is the problem of finding the Jaccard median, which was
recently studied by Chierichetti et al. [16]. The Jaccard-median problem is a special case of
the Jaccard- triangulation problem, where all similarities z j are equal to 1. Chierichetti
et al. provide a ptas for the Jaccard-median problem. However, their techniques seem mostly
of theoretical interest and do not extend beyond the special case where all z j = 1.

However, since Jaccard- triangulation is a generalization of the Jaccard-median prob-
lem that has been proven NP-hard [16], the following is immediate.

Theorem 2 Jaccard- triangulation is NP-hard.
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We next proceed to discuss our proposed algorithm for the Jaccard- triangulation
problem. The idea is to introduce a variable xi for every element i ∈ U . The variable xi

indicates if element i belongs in the solution set X . In particular, xi = 1 if i ∈ X and xi = 0
otherwise. We then assume that the size of set X is t , that is,

∑

i∈U

xi − t = 0. (5)

Now, given a set S j with target similarity z j , we want to obtain J (X, S j ) = z j , for all
j = 1, . . . n, or

J (X, S j ) =
∑

i∈S j
xi

|S j | + t − ∑
i∈S j

xi
= z j ,

which is equivalent to

(1 + z j )
∑

i∈S j

xi − z j t = z j |S j |, (6)

and we have one Equation of type (6) for each pair 〈S j , z j 〉. We observe that Eqs. (5) and (6)
are linear with respect to the unknowns xi and t . On the other hand, the variables xi and t
take integral values, which implies that the system of Eqs. (5) and (6) cannot be solved effi-
ciently. Instead, we propose to relax the integrality constraints to non-negativity constraints
xi , t ≥ 0 and solve the above system in the least-squares sense. Thus, we apply a non-nega-
tive least-squares optimization method (NNLS), and we obtain estimates for the variables xi

and t .
The solution we obtain from the NNLS solver has two drawbacks: (i) it does not incor-

porate the constraint of having at most p labels, and (ii) most importantly, it does not have
a clear interpretation as a set X , since the variables xi may take any non-negative value, not
only 0–1. We address both of these problems with a greedy post-processing of the fractional
solution: We first sort the variables xi in decreasing order, breaking ties arbitrarily. We then
obtain a set Xq by setting the first q variables xi to 1 and the rest to 0. We vary q from 1 to p.
Out of the p different sets Xq that we obtain this way, we select the one that minimizes
the cost d(Xq , {〈S j , z j 〉}) and return this as the solution to the Jaccard- triangulation
problem.

An alternative approach could be to optimize the sum of squares of differences of Equa-
tion (6), for all j , subject to the constraint of Equation (5), the constraint

∑
i∈U xi ≤ p, and

the constraints 0 ≤ xi ≤ 1. This formulation leads to a quadratic program, which can be also
solved by standard solvers, albeit in way less efficient than non-negative least squares. Since
this computation is performed for each object in the inner loop of Algorithm 1, in this paper,
for efficiency reason, we adopt the non-negative least-squares formulation.

4.3 Local step for set-intersection function

Following the approach of the previous section, we formulate the problem that we need to
solve for the local-improvement step of theLocalSearch algorithm (line 4 of Algorithm 1)
in the case of the set-intersection function I .

Problem 4 (HIT-N-MISS) Let C be a collection of n tuples of the from 〈S j , h j , m j 〉, with
j = 1 . . . n, where S j are subsets of a ground set U = {1, . . . , k}, while h j and m j are
non-negative numbers. A set X ⊆ U partitions C in CX = {S j | I (X, S j ) = 1} and
CX̄ = {S j | I (X, S j ) = 0}. The task is to find a set X in order to minimize the distance
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10 F. Bonchi et al.

d(X, {〈S j , h j , m j 〉}) =
∑

j |S j ∈CX

h j +
∑

j |S j ∈CX̄

m j . (7)

Once again, we should be able to verify that Eq. (7) corresponds to the cost Cv,p(�(v) | �)

defined by Eq. (3) in the case that the cluster-label similarity function H is the set-inter-
section function I . In fact, for the problem instances defined by Eq. (3), we always have
h j + m j = 1. However, since we do not know how to take advantage of the additional
structure h j + m j = 1, we just formulate Problem 4 in its generality.

The hit- n- miss problem is related to set-cover type of problems. As in set-cover, we
are given a collection C of sets S j . Each set is accompanied with two penalty scores, a hit
penalty p j and a miss penalty n j . Our task is to find a new set X in order to either hit or
miss the sets S j , as dictated by their penalty scores h j and m j . In particular, for each set S j

that X hits, we have to pay its hit penalty h j , while for each set S j that X misses, we have
to pay its miss penalty m j . The hit- n- miss problem is isomorphic to the positive-negative
partial set-cover problem, studied by Miettinen [42], who showed that the problem is not
approximable within a constant factor, but it admits an O(

√
n log n) approximation.

In our setting, we solve the hit- n- miss problem with a simple greedy strategy: Starting
from X0 = ∅, let Xt the current solution and let A = U \ Xt be the set of currently available
items (cluster labels). Then, for the next step of the greedy, we pick the item i from the set of
available items A that yields the lowest distance cost, evaluated as d(Xt ∪{i}, {〈S j , h j , m j 〉}).
We terminate when there is no further decrease in the cost or when we reach the maximum
number of cluster labels allowed, that is, t = p.

4.4 Initialization

The local-search algorithm described above requires an initial labeling of the nodes. This can
be done in several ways. In the experiments, we always use a random initialization. However,
in our future work, we plan to investigate an initialization based on solving a standard graph
coloring problem on the graph Ĝ of Proposition 2.

5 Overlapping clustering of big data

In this section, we present the distributed version of our algorithm, implemented on a map-
reduce architecture [20], which can be used to cluster really large problem instances.

The main idea for a distributed implementation of Algorithm 1 is to note that in Step 4
of the algorithm, in each iteration, the labels of a nodes v ∈ V can be computed with access
to the input similarity matrix and the labels at the neighboring nodes at the current iteration.
Thus, in each iteration of the algorithm, the new labels for each node v ∈ V can be computed
independently, provided that each node has read access to the input similarity matrix and
the labels of its neighboring nodes. In order to organize the distributed computation for new
per-node labels, and the read access to the input similarity matrix and the labels from other
nodes, we use Pregel [40], a distributed-computing paradigm for graph algorithms.

5.1 Pregel basics

Pregel is a framework for distributed computing for graph algorithms, which is based on
the Bulk Synchronous Parallel model of computation [55]. Like map-reduce programs [20],
Pregel programs are designed to run on clusters with thousands of nodes but are nonetheless

123



Overlapping correlation clustering 11

very simple for a programmer to express. We make use of Giraph,2 an implementation
of the Pregel framework for Hadoop,3 the well-known open-source implementation of the
map-reduce model. Giraph programs run on Hadoop as regular map-reduce applications,
which makes deploying them on an existing Hadoop installation rather easy.

Next, we give a brief overview of Pregel. For full details, the reader is referred to the
original paper that introduced the framework [40]. Pregel is motivated by the family of graph
algorithms in which computation can be expressed as a relatively simple operation that is
executed on the nodes of the graph over a number of iterations. For example, in the standard
iterative algorithm for PageRank [11], on each iteration, the score of every node is updated
given the scores of its neighboring node. The crucial property is that the iterative update
operation can be performed in parallel for all the nodes of the graph. We can thus assign
all nodes of the graph to separate processing units, which communicate with each other the
updated node scores between the iterations of the computation.

Consequently, the basic unit of computation in a Pregel program is the node. As stated
above, all nodes can in theory execute their update operation simultaneously, but in practice,
a Pregel program is run using a number of worker machines, each of which processes sequen-
tially a subset of the nodes of the graph. Computation takes place in supersteps, which in our
case correspond to iterations of the for loop of Algorithm 1. To write a Pregel application,
the programmer only needs to specify the algorithm that a single node executes on every
superstep. All remaining functionalities of the distributed application, such as message pass-
ing and checkpointing, are handled by the framework.

Communication between nodes in a Pregel program is straightforward. At the start of a
superstep, every node may receive a number of messages from its neighbors. Likewise, at
the end of a superstep, the nodes may send messages to their neighbors. The Pregel frame-
work routes messages to their recipients once all nodes have completed their update opera-
tions in the current superstep. The messages are delivered at the start of the next superstep.
A node can also vote to halt the computation if it considers itself finished. For example, in our
case, a node will vote to halt if its set of labels did not change during the current superstep.
A node that has voted to halt no longer executes in subsequent supersteps unless it receives
a message from one of its neighbors. Receiving a message re-activates a halted node. The
distributed computation finishes when all nodes have voted to halt.

5.2 Overlapping correlation clustering with Pregel

We now discuss in more detail how our general local-search algorithm (Algorithm 1) can
be implemented as a Pregel program. We only need to specify the algorithm that each node
executes during every superstep. The outline of this algorithm is given in Algorithm 2. In
the first superstep (superstep 0), all nodes simply initialize themselves with a random set of
labels and send these labels to their neighbors. In subsequent supersteps, every node first
checks whether certain stopping conditions are satisfied and votes to halt if this is the case.
We use two stopping conditions. The first one is a threshold on the cost. If the cost drops
below this value, all nodes vote to halt. The second is a simple upper bound on the number
of iterations. Otherwise, the node reads the messages it has received and uses the updated
label sets of its neighbors to recompute its own label set. If the label set changes, the node
sends this set to its neighbors. Otherwise, the node votes to halt.

2 http://incubator.apache.org/giraph/.
3 http://hadoop.apache.org/.
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Algorithm 2 Computation at a Pregel node
1: if superstep = 0 then
2: initialize labels at random
3: send label set to neighbors
4: else
5: if stopping conditions met then
6: vote to halt
7: else
8: receive updated label sets from neighbors
9: recompute new labels
10: if labels did not change or previous solution had lower cost then
11: vote to halt
12: else
13: assign new labels as our label set
14: send label set to neighbors

An important difference between the sequential and the distributed implementations of
Algorithm 1 is that the sequential variant updates the label sets of one object at a time, while
the distributed algorithm updates all objects simultaneously. That is, when updating labels
of object v in iteration i , the sequential algorithm uses the newest possible labels of the
neighboring objects. In contrast, when the distributed implementation updates labels of v in
iteration i , it can only use neighbor labels from iteration i −1. This has the drawback that the
cost is not guaranteed to decrease at every step, and the distributed algorithm is more prone
to get stuck at a non-optimal solution.

We tackle this problem with a simple approach based on randomization. On every itera-
tion, the distributed algorithm updates only a random subset of the objects. Our randomized
approach is motivated by the following consideration: Suppose that the distributed variant
updates only one object in each iteration. Then, the distributed algorithm mimics the compu-
tation of the sequential algorithm albeit in a very inefficient way and loses all the benefits of
parallelization. By updating a randomly chosen fraction of the objects, we explore variants
that lie between the fully parallelized (update all) and the fully sequential algorithm (update
only one). In Sect. 6.3, we conduct experiments to quantify the performance of the distributed
algorithm as a function of the fraction of nodes that are updated.

6 Experimental evaluation

In this section, we present our experimental evaluation regarding performance and quality of
the obtained clustering. In the next section, we show how to apply our framework and obtain
meaningful overlapping clusterings in three different application domains.

6.1 Recovering ground-truth overlapping clusterings

Our first experiment is aimed at assessing under what conditions our algorithms, named
occ- jacc (Jaccard) and occ- isect (set-intersection indicator), can reconstruct a ground-
truth clustering.

We consider two publicly available datasets (emotion and yeast), originally used in
the context of multi-label classification. In these datasets, each example is associated with
multiple labels, as opposed to the single-label classification paradigm in which is example is
assigned to only one class. Such a labeling can be interpreted as a ground-truth overlapping
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Overlapping correlation clustering 13

clustering g, where each label induces a cluster. In this experiment, the input to our algo-
rithms is the Jaccard coefficients between the labels of every object pair. For occ- isect, we
convert the weights to positive and negative edges by labeling the edge as positive unless
the Jaccard coefficient is equal to zero. The emotion dataset has 593 objects and 6 labels.
The yeast dataset has 2,417 objects and 14 labels. More information on the datasets can be
found at http://mulan.sourceforge.net/datasets.html.

Performance is evaluated by comparing the labeling � produced by the algorithms, with
the ground-truth clustering g, using the measures of precision and recall, as adapted for the
overlapping-clustering task by Banerjee et al. [5]:

precg(�) = |P(�) ∩ P(g)|
|P(�)| and recg(�) = |P(�) ∩ P(g)|

|P(g)| ,

where P(x) = {(u, v) : x(u) ∩ x(v) �= ∅} is the set of pairs of objects with at least one
common label in labeling x . We also report the average cost-per-edge, that is, the cost of the
solution Cocc(V, �) as in Eq. (2), divided by the number of edges in the input.

We consider both the case where the algorithm is given only the total number of clusters
k, as well as the variant where also the node-specific bound on the number of labels, denoted
p, is given. In the former case, p was not specified, while in the latter case, k was fixed to
the true number of distinct labels.

Medians of the metrics over 30 trials together with 90 % confidence intervals are shown in
Figs. 1 and 2 for the occ- jacc and occ- isect algorithms, respectively. With the emotion
dataset occ- jacc performs better than occ- isect, with yeast the situation is reversed.
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Fig. 1 Cost-per-edge, precision, and recall of occ- jacc as a function of k, the total number of distinct labels
(top row), and as a function of p, the maximum number of labels per node (bottom row)
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Fig. 2 Same as in Fig. 1, but for the occ- isect algorithm

Observe that in the case where p is varied, precision is high already for low values. As p
increases recall also increases, which is an expected behavior, as the number of pairs that
belong to the same cluster tends to increase when overlaps are allowed.

6.1.1 Comparison with non-negative matrix factorization methods

We also compare the overlapping clusterings produced by our methods with a state-of-the-art
method for symmetric non-negative matrix factorization (snmf) [33]. The connection
between our problem and snmf is discussed in the related work, Sect. 8.4. The comparison is
performed again on the basis of precision and recall in recovering ground-truth overlapping
clusterings, in the emotion and yeast datasets.

We implemented in Matlab the α-snmf algorithm by He et al. [33] and initialized it with
vectors containing a uniform random sample in the interval [0, 1]. In all experimental set-
tings, the algorithm was run for 500 iterations; by checking the error plots, we verified that
the method always converged in less than 100 iterations. The number of clusters k was set to
the number of clusters for the ground truth, that is, k = 6 for emotion and k = 14 for yeast.
For the occ- jacc and occ- isect algorithms, the results shown are obtained by considering
the median over 30 runs, as in the previous experiments.

As the α-snmf algorithm produces fractional solutions, we have to use a rounding
threshold for deciding cluster membership. In Fig. 3, we report the results in terms of precision
and recall as a function of the rounding threshold. As occ- jacc and occ- isect algorithms
do not need this threshold, their corresponding lines are flat.
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Overlapping correlation clustering 15

Fig. 3 Comparison with symmetric non-negative matrix factorization (snmf) [33] in recovering ground-truth
overlapping clusterings. For the snmf algorithm, the precision and recall is shown as a function of the rounding
threshold for deciding the cluster assignment

From the results shown in Fig. 3, we conclude that in most cases our overlapping-clustering
methods outperform the snmf method. Additionally, our methods perform robustly without
having to set an additional parameter, such as the rounding threshold. In contrast, the snmf
algorithm is quite sensitive to the rounding threshold, especially for the yeast dataset. The
only case that the snmf algorithm performs somewhat robustly and it is not so sensitive
to the rounding threshold parameter is for the emotion dataset with the set-intersection
measure—upper right plot in Fig. 3.

6.2 Pruning the input

In the basic form, the input to our algorithms contains all |V |×|V | pairwise similarities. How-
ever, it turns out that there can be a lot of redundancy in this input. Often we can prune most of
the pairwise comparisons with negligible loss in quality. This is an important characteristic,
as it allows us to apply the algorithms also for larger datasets. Selecting the best set of edges
to prune is an interesting problem in its own right. In this experiment, we took the simple
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Fig. 4 Pruning experiment using occ- jacc. Cost-per-edge and precision and recall as a function of the
pruning threshold q
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Fig. 5 Running time of occ- jacc as a function of the pruning threshold q

approach and prune edges at random: an edge is taken in consideration with probability q
(called the pruning threshold) independently of the other edges.

In Fig. 4, we show edge-specific cost as well as precision and recall as a function of
q for the occ- jacc algorithm (the curves are again medians over 30 trials). Clearly with
these example datasets, the pruning threshold can be set very low. Also, there is a noticeable
“threshold effect” in the cost-per-edge that may serve as an indicator to find the pruning
threshold in a setting where a ground truth is not available. This suggests that in practice it
is not necessary to use all pairwise comparisons, a sample of the graph may be enough. In
fact, the results for yeast shown in Figs. 1 and 2 were computed with q = 0.05.

In terms of computational speedup, pruning has a very positive effect. Figure 5 shows the
running time of occ- jacc (Python implementation on a 1.8 ghz cpu) as a function of q for
both datasets. As expected, the dependence between running time and q is roughly linear.
For emotion, we observe a weaker effect due to the small size of the data. With yeast,
the advantages are more evident. Without pruning (q = 1.0) occ- jacc clusters yeast in
roughly 6 min. We can reduce this to about 35 s by setting q = 0.05 and still get very good
results as was seen in Fig. 4.

It is also of interest to see how fast the algorithms converge, and how the convergence
depends on the pruning threshold q . That is, how does the cost evolve over the execution of
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Fig. 6 Median (over 30 trials) cost-per-edge as a function of the iteration number of the occ- jacc algorithm

Fig. 7 Same as in Fig. 6, but for the occ- isect algorithm

the algorithm? This is shown in Figs. 6 and 7 for occ- jacc and occ- isect, respectively. As
expected the plots confirm that the stronger the pruning the sooner the methods converge.

6.3 Distributed overlapping correlation clustering

We implemented the occ- isect algorithm as a Pregel program as described in Sect. 5. We
refer to this distributed implementation of the occ- isect algorithm as occ- mr. The purpose
of the experiments described in this section is twofold. First, we show how the our overlap-
ping-clustering algorithms can be scaled up by using a distributed implementation. Second,
we study special characteristics of the distributed implementation, which was discussed in
Sect. 5.2. In particular, we show that selecting the fraction of vertices that are updated on
each superstep can have a considerable effect on the performance of the algorithm.

For these purposes, we use a dataset obtained from Flickr,4 a popular online community
for image and video sharing. We consider a set of 78.5 million users who are affiliated to some

4 http://www.flickr.com/.
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interest groups, that is, group of users with a common interest in photos regarding a specific
subject or technique (for example, “Nikon Selfportrait” or “HDR Panoramas”).
For each pair of users, we compute the Jaccard coefficient of the interest groups they belong to.
This process produces approximately 26.2 million non-zero similarities that are used as input
for our clustering.

6.3.1 Degree of parallelism

As a first experiment, we studied how much parallelization actually speeds up computation.
The occ- mr algorithm is prone to communication overhead, as the worker machines must
communicate updated label sets to each other after every superstep. For dense graphs, such
communication overhead may result in a lot of messages being routed from node to node.
Moreover, simply loading the input from the distributed file system may introduce a lot of
overhead.

The running time of the algorithm is proportional to both the global number of labels (k),
as well as the local bound (p). By increasing these two parameters, we can make the computa-
tion at a single vertex more costly. Thus, to test the performance of the algorithm with respect
to these two parameters, we run the occ- mr algorithm on the flickr dataset with k = 50
and p = 5 (labeled as “easy” instance), as well as k = 200 and p = 20 (labeled as “hard”
instance). We expect the benefits of a distributed implementation to be stronger when the
local optimization step takes a longer time to compute, as is the case with the “hard” instance.

Figure 8 shows the running time of the occ- mr algorithm as a function of the number
of worker nodes. The time required for actual computation (including message passing), and
the time required for the data-loading phase is shown separately. For both “easy” and “hard”
instances, we observe a clear decrease in the running time as the number of worker nodes
increases from 25 to 200—a factor of 8. However, while in the “easy” instance, the running
time decreases by a factor of 3.2, in the “hard” instance, it decreases by a factor of 5.5. This
effect verifies our hypothesis that parallelization is more useful for certain parameter settings.
For the “easy” instance, the running time starts to be dominated by communication overhead
with 100 worker machines or more, as indicated by the negligible decrease in computation
time from 100 to 200 worker nodes.

Moreover, as the number of workers increases, loading and distributing the input slows
down. Since both “easy” and “hard” instances use the same input, there is obviously no dif-
ference between their loading steps. It is worth noting, however, that when running “easy”
on 75 or more machines, merely loading and distributing the input takes longer than actual
computation. With “hard” this effect does not happen until 200 or more workers.

Clearly, these results are to a certain degree specific to the Pregel framework that is being
used, in our case Giraph. However, in practice, all Pregel programs are subject to similar
issues.

6.3.2 Fraction of updated nodes

The distributed implementations of our overlapping-clustering algorithms are likely to
perform better if only a subset of the objects is updated on each iteration. We study this
empirically by running the occ- mr algorithm on the flickr dataset with different update
probabilities. Evidently, low update probabilities should lead to slow convergence, as only a
few nodes are updated in each superstep. Even if the algorithm is likely to converge to a very
good solution eventually, this might take too many iterations in practice. By increasing the
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Fig. 8 Left Running time of the occ- mr algorithm (without the time spent on loading the input) using the
flickr dataset as a function of cluster size for two parameter settings, where easy: k = 50, p = 5, and hard:
k = 200, p = 20. Time spent on loading and distributing the input across worker nodes is shown separately.
Right Clustering cost (per edge) as a function of the probability of a node being updated in an iteration of
the occ- mr algorithm. (Note the logarithmic scale on the y axis.) The experiment was run with the flickr
dataset, setting k = 100 and p = 10. Computation was stopped after 75 iterations, or when the clustering cost
was below 10−7. The plot is based on 10 independent trials

update probability, we allow the algorithm to take “longer” steps but also increase the risk of
getting stuck in a local optima. The main purpose of this experiment is to show that by setting
the update probability to a suitable value, the algorithm will find a very good solution in a
reasonable number of supersteps. To this end, we set an upper bound of 75 on the number of
supersteps and observe the cost of the solution at this point.

The results of this experiment are shown in Fig. 8, please see the caption of the figure
for details on the other parameters. Overall, we observe that the update probability plays a
very important role. Clearly, the “fully parallelized” variant (update probability 1.0) is unable
to find good solutions. And as expected, with low update probabilities, the allotted 75 su-
persteps are not enough for the algorithm to converge. With this particular dataset (flickr)
and the given parameters, a suitable update probability seems to be around 0.6, although the
differences between 0.5 and 0.8 are very small.

Figure 9 illustrates this phenomenon in more detail for different update probabilities. We
observe that during the first 10–15 supersteps, the clustering cost decreases roughly by one
order of magnitude independent of the update probability. After this, the algorithm enters a
phase with very slow convergence, until it starts to head toward a low-cost solution. However,
the precise moment when this happens strongly depends on the update probability, with 0.6
having the best performance in this particular example. Note that this experiment cannot rule
out the possibility of the algorithm eventually breaking out of the phase of slow convergence
also when the update probability is equal to 1.0. It merely suggests that given a budget on
the number of supersteps performance can be considerably improved by adjusting the update
probability to a suitable value.

7 Applications

In this section, we discuss the results of applying our method for clustering three differ-
ent datasets: movement trajectories, proteins, and documents. Our objective is to provide
evidence that our algorithms not only give high-quality clusters but they also find meaning-
ful overlaps.

123



20 F. Bonchi et al.

Fig. 9 Medians of 10 iterations of cost-per-edge as a function of iteration number when running the occ- mr
algorithm on the flickr dataset using different update probabilities. Note the logarithmic scale on the y axis

7.1 Overlapping clustering of trajectories

Spatio-temporal data mining is an active research area with a wide variety of applications,
such as mobility management, video surveillance, mobile social networks, and ecology.
The basic entities in analysis are usually trajectories of moving objects, that is, sequences
〈(x0, y0, t0), . . . , (xn, yn, tn)〉 of observations in space and time. Trajectories may have
different lengths, and therefore, it is not feasible to simply view them as vectors and use
standard distance functions. Moreover, the different nature of space and time implies differ-
ent granularity and resolution issues. While there has been extensive research on clustering
trajectories [26,38,44], to the best of our knowledge, the problem of overlapping clustering
of trajectories has been largely left unexplored.

As a motivating example of why overlapping clustering of trajectories is a meaningful
task, consider a well-shaped cluster Ci of trajectories of gps-equipped cars going from a
south-west suburb to the city center between 8 and 9 am, and another cluster C j moving
inside the city center along a specific path, from 3 to 4 pm. Now consider a trajectory that
moves from the south-west suburb to the city center in the morning, and within the city
center in the afternoon: it is very natural for this trajectory to belong to both clusters Ci and
C j .

Developing overlapping clustering of trajectories within our framework is fairly straight-
forward. We just need to compute a distance (or similarity) for every pair of trajectories. We
choose the edr distance [14], which has the important feature of being time-tolerant, that is,
it is defined even between two trajectories of different length. We normalize the edr distance
to stay in the range [0, 1], and to make it suitable for our method, we convert distances to
similarities: sim(u, v) = 1 − edr(u, v).

We use animal movement data generated by the Starkey project and analyzed over the
years by many zoologists.5 The dataset contains the radio-telemetry locations of elks, deer,
and cattle from 1993 to 1996. We select to work on all the three species together and only

5 http://www.fs.fed.us/pnw/starkey/.
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Table 1 Result of clustering on the Starkey93 dataset

C1 C2 C3 C4 C5 Clusters

16E 6D 3E 2D 3E 5E 3E 2D C1

4E 2D 38C ∅ 1E 30C C2

13E 6D 9E ∅ C3

21E 2D ∅ C4

3E 2D 33C C5

On the diagonal, we report the population of each cluster, using C, D, and E to distinguish between the number
of cattle, deer and elks, respectively. In the non-diagonal cells of the matrix, we report the population of the
overlap among two clusters

for 1993. The dataset contains only 88 trajectories, corresponding to 33 elks, 14 deer, and 41
cattle, but each trajectory is very long. The whole dataset has 79,987 (x, y, t) observations;
an average of 909 observations per trajectory.6

Studying overlapping trajectory clusters in this context might be of zoological interest, as
discussed by Coe et al. [17]:

These three species have important social, ecological, and economic values. Under-
standing their interspecific interactions may clarify two recurring issues in their man-
agement: competition for food and competition for space, both of which may result in
decreased animal fitness. […] Accurate predictions of ungulate distributions over time
and space may help managers regulate densities and understand effects of specific un-
gulates on ecosystem processes. […] Overlapping distributions could be evidence for
competition or dependence. Non-overlap could be an expression of active avoidance
or ecological separation, which occurs when two species evolved together.

In the following, we report the results of a clustering obtained with our overlapping cor-
relation-clustering framework with k = 5 and p = 2 (i.e., 5 clusters, and each trajectory
can belong to at most 2 clusters). Interestingly, in this context, both definitions of similarity
between sets of elements (i.e., Jaccard and set-intersection indicator) yield very consistent
clusterings, with just few elements assigned to a different cluster.

In Table 1, we report the results obtained with the Jaccard definition. It is important to
recall that we are only clustering the trajectories, that is, sequences of spatio-temporal obser-
vations without any additional information. In particular, we do not use information of the
species to which a trajectory corresponds. However, we can observe that two clusters C2 and
C5 contain mostly cattle, and few individuals of the other species, while the other 3 clusters
do not contain any cattle. In particular, cluster C4 contains mainly elks.

This is in line with the zoological domain knowledge. Cattle are introduced in late spring
or early summer for the grazing season. During summer elks and deer avoid cattle, but in
late summer and fall, the three species overlap in some areas, due to competition for forage
resources that have become depleted [17].

It is interesting to observe that cluster C5 is almost perfectly covered by clusters C1 and
C2. In Fig. 10, we plot the trajectories of each cluster in space and time. We can see that
the clusters C3 and C4, which contain only elks and deer, cover most of the available area,
while clusters C1, C2, and C5 contain individuals that almost never enter in the area with

6 We computed the edr distance using the following space- and time-tolerance parameters: Δx = Δy = 2.5K
and Δt = 500K.
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Fig. 10 Plots in space and time of all the trajectories in the five clusters obtained in the Starkey93 dataset.
Time axis is ×108 and it counts elapsed seconds since 12/31/87, which represents a starting point of the
Starkey Ungulate Research project

Y smaller than 5, 014K. The cluster C2 contains almost all cattle that enter the area only in
late spring (time greater than 1.724), plus few elks and deer that belong to C1 as well, which
move closer to the cattle than what the others in C3 and C4 do.

Summarizing: clusters C3 and C4 contain elks and deer that stay away from cattle; cluster
C1 also contains only elks and deer, but those moves in higher Y coordinates where cattle
also move; cluster C2 is the cattle cluster and it contains few elks and deer; finally cluster C5
is a mixed cluster that overlaps with C2 only for the cattle and with C1 for the elks and deer.

7.2 Overlapping clustering of protein sequences

An important problem in genomics is the study of evolutionary relatedness of proteins using
sequence data. We use our algorithms to cluster proteins to homologous groups given pair-
wise similarities of amino-acid sequences. Such similarities are computed by the sequence
alignment tool Blast [3]. We follow the approach of Paccanaro et al. [46] and Nepusz
et al. [45] and compare the computed clustering against a ground truth given by scop, a
manually crafted taxonomy of proteins [43]. The scop taxonomy is a tree with proteins at
the leaf nodes. The ground-truth clusters used in the experiments are subsets of the leafs, that
is, proteins, rooted at different scop superfamilies. These are nodes on the 3rd level below
the root.
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Table 2 Precision, recall, and their harmonic mean F-score, for non-overlapping clusterings of protein
sequence datasets computed using scps and the overlapping clustering algorithms

Dataset Baseline scps occ- isect occ- jacc
Prec Prec/recall/F-score Prec/recall/F-score Prec/recall/F-score

D1 0.21 0.56 / 0.82 / 0.664 0.70 / 0.67 / 0.683 0.57 / 0.55 / 0.561

D2 0.17 0.59 / 0.89 / 0.708 0.86 / 0.83 / 0.844 0.64 / 0.63 / 0.637

D3 0.38 0.93 / 0.88 / 0.904 0.81 / 0.43 / 0.558 0.73 / 0.39 / 0.505

D4 0.14 0.30 / 0.64 / 0.408 0.64 / 0.56 / 0.598 0.44 / 0.39 / 0.412

Baseline is the precision of a baseline that assigns all sequences to the same cluster
The highest F-score is indicated in bold

We compare our algorithm with the scps algorithm [45,46], a spectral method for clus-
tering biological sequence data. The experiment is run using four datasets from Nepusz et
al. [45]. Those datasets contain pre-computed sequence similarities in the range [0, 1] for
various subsets of proteins, together with the ground-truth clusterings.7 The dataset D1 con-
tains 669 sequences and 5 ground-truth clusters, D2 contains 587 sequences and 6 clusters,
D3 contains 567 sequences and 5 clusters, and D4 contains 654 sequences and 8 clusters.

To compare our algorithms with the scps algorithm, we first computed non-overlapping
clusterings of all four datasets. All algorithms were given the correct number of clusters
as a parameter. Results of comparing the resulting clusters with the ground-truth clusters,
in terms of precision, recall, and F-score are shown in Table 2. The scps algorithm has
a higher recall in every case, but with datasets D1, D2, and D4, the occ- isect algorithm
achieves a substantially higher precision. In practice, this means that if occ- isect assigns
two sequences to the same cluster, they belong to the same cluster also in the ground truth
with higher probability than when using scps.8

We also conduct a more fine-grained analysis of the results using the scop taxonomy. In
fact, different cluster “errors” should have different cost, depending on the distance on the
taxonomy. If we misplace a protein in two clusters that are extremely close in the taxonomy,
the error should have a small cost. Following this intuition, we define the scop similarity
between two proteins as follows:

sim(u, v) = d(lca(u, v))

max(d(u), d(v)) − 1
, (8)

where d(u) is the depth of a node in the tree (the root is at depth 0), and lca(u, v) denotes
the lowest common ancestor of the nodes u and v. The above similarity has a value of zero if
lca(u, v) is the root, and a value of one if lca(u, v) is the common parent of u and v. Based
on sim(u, v), we define the cost of a clustering by paying 1 − sim(u, v) for two proteins that
ends in the same cluster, and sim(u, v) for two proteins belonging to different clusters, as in
Eq. (1) and similarly to Eq. (2) for the overlapping clusterings.

The results of Table 3 suggest that the overlapping correlation-clustering algorithms find
a clustering that is better in agreement with the scop taxonomy than the clusterings found
by scps. However, while allowing overlaps is beneficial, we do not observe a significant
improvement as the node-specific constraint p is increased. Moreover, we observe that only
a small number of proteins are assigned to multiple clusters. We conjecture that this is due

7 The datasets and the scps implementation are available at http://www.paccanarolab.org/software/scps/.
8 Note that these numbers are not directly comparable with the ones reported by Nepusz et al. [45] as they
define precision and recall in a slightly different way.

123

http://www.paccanarolab.org/software/scps/


24 F. Bonchi et al.

Table 3 Comparing clustering cost based on distance on the scop taxonomy, for different values of p, the
maximum number of labels per protein

scps p = 1 p = 2 p = 3

occ- isect
D1 0.231 0.196 0.194 0.193

D2 0.188 0.112 0.107 0.106

D3 0.215 0.214 0.214 0.231

D4 0.289 0.139 0.133 0.139

occ- jacc

D1 0.231 0.208 0.202 0.205

D2 0.188 0.137 0.130 0.127

D3 0.215 0.243 0.242 0.221

D4 0.289 0.158 0.141 0.152

to the similarities produced by Blast, which imply very well defined clusters in most of the
cases. Nevertheless, it is worth noting that our methods, regardless of the parameters used,
do not find unnecessarily large overlaps, when this is not dictated by the data.

7.3 Overlapping clustering of documents

As documents can belong to multiple topics, using our framework to find overlapping clusters
of documents is a well-motivated application. We run our overlapping-clustering algorithms
on a dataset of 1,500 papers published at nips workshops.9 The bag-of-words dataset was
converted to similarities as follows. First, we compute the Jaccard coefficient between the
bags-of-words of every pair of documents, but we only consider terms that appear at least five
times in the documents. Second, we convert the Jaccard coefficients to binary labels with a
threshold of 0.05. The threshold was set to a value slightly larger than zero, because for most
pairs of papers, the intersection of word sets was non-empty. We tried various combinations of
k and p parameters with occ- isect and found that k = 6 and p = 2 gives the lowest cost
of 0.182 per edge. Allowing overlaps is essential, as with k = 6 and p = 1, we obtain a
cost of 0.225 per edge.

Table 4 shows the top-10 words in terms of tf·idf of each cluster. Term frequency (tf)
is the number of documents in a cluster that contain the given term, while inverse document
frequency (idf) is defined in the standard manner over the entire collection. Clearly, the
clusters represent different topics, with C1 corresponding to algorithms, C2 to hardware, C3

to pattern recognition, C4 to artificial neural networks, and C6 to biological neural networks.
Cluster C5 is more difficult to label given the top-10 words, but a deeper inspection reveals
it to contain keywords related to models of (visual) perception, and papers such as A Model
for Resolution Enhancement (hyperacuity) in sensory representation (Zhang and Miller, nips
1988) and Scale Mixtures of Gaussians and the Statistics of Natural Images (Wainwright,
nips 1999).

Table 5 shows the co-occurrence counts of each cluster together with cluster size on the
diagonal. From this, we immediately see that many papers have been assigned to more than
one cluster. Overlap is therefore not an exception, but indeed, most papers naturally cover two
topics. We can also observe that the cluster C5 is kind of an outlier as it has no overlap with

9 http://archive.ics.uci.edu/ml/datasets/Bag+of+Words.
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Table 4 Top-10 words in terms of tf·idf in each cluster computed from the nips data

C1 Method algorithm problem error parameter distribution probability vector space number

C2 Circuit chip analog voltage vlsi current implementation neuron signal transistor

C3 Training performance data test number task recognition set error image

C4 Unit output weight layer input training hidden pattern system information

C5 John david michael visual natural connectionist images scale left representation

C6 Cell neuron activity response visual cortex firing synaptic inhibitory stimulus

Table 5 Co-occurrence counts of nips papers in different overlapping clusters

C1 C2 C3 C4 C5 C6

C1 (algorithms) 868 1 253 472 0 3

C2 (hardware) 1 97 0 43 0 29

C3 (pattern recognition) 253 0 523 270 0 0

C4 (artificial neural networks) 472 43 270 946 0 111

C5 (perception) 0 0 0 0 52 0

C6 (biological neural networks) 3 29 0 111 0 186

the other clusters. This might be explained by the somewhat different terminology used in
sensory-perception research. Also, some combinations of clusters are very rare. For example,
only one paper has been assigned to both C1 (algorithms) and C2 (hardware). This paper hap-
pens to be Constrained Optimization Applied to the Parameter Setting Problem for Analog
Circuits by Kirk et al. (nips 1991). Likewise, the combination C1 (algorithms) and C6 (bio-
logical neural networks) contains only three papers, which are Optimal Sampling of Natural
Images: A Design Principle for the Visual System? (Bialek et al., nips 1991), Refractoriness
and Neural Precision (Berry and Meister, nips 1998), and Population Decoding Based on
an Unfaithful Model (Wu et al., nips 2000).

Intuitively, the clusters found seems to be topically coherent and meaningful, as well as
their overlaps.

8 Related work

We review research related to our paper, grouped in four different themes, correlation clus-
tering, overlapping clustering, constraint clustering, and applications.

8.1 Correlation clustering

The problem of correlation- clustering was first defined by Bansal et al. [6]. In their
definition, the input is a complete graph with positive and negative edges, and no threshold
on the maximum number of clusters is given. The objective is to partition the nodes of the
graph so as to minimize the number of positive edges that are cut, and the number of negative
edges that are not cut—corresponding to our problem instance (b, H, 1). This is an APX-
hard optimization problem that has received a great deal of attention in the field of theoretical
computer science [1,2,13,21,29,53].
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The best-known approximation algorithm for this problem has been obtained by Charikar
et al. [13] who give an LP-based algorithm that achieves an approximation factor of 4. The
algorithm of Charikar et al. combined with a reduction by Bansal et al. [6, Theorem 23]
provides a deterministic 9-approximation algorithm for correlation clustering when the edge
weights satisfy the probability condition — that is, for every edge (i, j), the cost for taking
that edge is Xi j ∈ [0, 1], while the cost for splitting an edge is 1 − Xi j —even if they do not
satisfy the triangle inequality.

When the edge weights are arbitrary, the problem is equivalent to the multicut problem,
as shown by Demaine et al. [21], and there is a O(log n)-approximation bound. If one con-
siders the corresponding maximization problem, that is, maximize the agreements rather
than minimize disagreements, then the situation is much better. Even in the case of graphs
with arbitrary edge weights, there is a 0.76-approximation algorithm using semi-definite
programming [13,53].

Recently, Ailon et al. [1] considered a variety of correlation-clustering problems. They
proposed an algorithm that achieves expected approximation ratio 5 if the weights obey the
probability condition. If the weights Xi j obey also the triangle inequality, then the algorithm
achieves expected approximation ratio 2.

Giotis and Guruswami [29] consider correlation clustering when the number of clusters
is given, while Ailon and Liberty [2] study a variant of correlation clustering where it exists
an unknown correct clustering of the data and the goal is to minimize the number of dis-
agreements between the produced clustering and the ground-truth clustering. Correlation
clustering is also closely related to the problem of clustering aggregation [28].

To the best of our knowledge, no previous work has consider the possibility of overlaps
in correlation clustering, that is, (r, H, p), with p > 1.

8.2 Overlapping clustering

In 1979, Shepard and Arabie introduced the adclus algorithm [52] for additive clustering,
which perhaps can be considered the first overlapping-clustering method. Additive clustering
assumes that the similarity of any two objects is a simple additive function of weights associ-
ated with properties that are shared by both objects. Based on this model adclus estimates
(i) which subsets of a given set of objects correspond to positively weighted properties, and
(ii) the numerical values of those weights. The method, which has been later applied in the
marketing domain [4], subsumes hierarchical clustering as a special case and can be regarded
as a discrete analog of principal components analysis.

Regardless of these ancient roots, overlapping clustering has not seen many results in the
last decades. Recently, Xiong et. al. [59] study clustering models with the aim of preserving
predefined structure (patterns) in the data. This will often produce overlapping clusters, as a
pattern can belong to multiple clusters in a natural way. SimClus [30] is a very recent set-
cover-based clustering algorithm that can produce overlapping clusters. SimClus also uses
pairwise similarities of the objects, but technical fundamentals and underlying assumptions
of the algorithm are completely different from our approach. In [30], the objective is to assign
an object to at least one cluster so that the similarity between every object and its cluster
representative is lower bounded some predefined threshold.

One close sibling is fuzzy clustering [10,32,41], where each data point has a membership
value in all the clusters. In this context, cluster membership is soft, while we are interested
in hard cluster assignments. Obviously, a hard (and overlapping) cluster assignment can be
obtained by thresholding membership values. The prototypical fuzzy clustering method is
fuzzy c-means [31], which is essentially a soft version of k-means.

123



Overlapping correlation clustering 27

Driven by the need to cluster microarray gene expression data, various methods for over-
lapping clustering [9,50] and overlapping bi-clustering (or co-clustering) [15,25] have been
produced in bioinformatics [39].

Recently, mixture models approach have been generalized to allow overlapping clusters.
Banerjee et al. [5] generalize the work of Segal et al. [50] that was specifically designed for
gene expression data: while the original model was working with constant variance Gaussi-
ans, Banerjee et al. generalize it to work with any regular exponential family distribution, and
corresponding Bregman divergence. The work of Banerjee et al. [5] has later been extended to
co-clustering by Shafiei and Milios [51]. Multiplicative mixture models have been proposed
as a framework for overlapping clustering by Fu and Banerjee [24].

Our work distinguishes from this body of research as it develops within the correlation-
clustering framework, and thus, it has a different input and different objective functions.

8.3 Constrained clustering

The binary version of correlation clustering (b, H, 1) with positive and negative links
can be seen as a soft instance of clustering with must-link (ml) and cannot-link (cl)
constraints, for which exists an extensive literature [7,8,35,56,57]. However, in con-
strained clustering, you have distances among the objects and some ml and cl constraints,
while in correlation clustering, distances and constraints coincide and they are all you
have.

Interesting results by Davidson and Ravi [18,19] show that given a set of ml and cl
constraints determining whether there exists a feasible clustering is NP-hard, as well as
intractable is the problem of, given a set of constraints for which no feasible solution exists
for a particular number k of clusters, identifying the minimum number of constraints to be
relaxed so that a feasible solution exists.

While presented in the context of ml and cl constraints, the work by Scripps and Tan [49]
essentially deals with a binary version of correlation clustering, and it adopts “cloning” to fix
the problem of bridge nodes (or “bad triplets” in the terminology of Ailon et al. [1]). Clon-
ing essentially means allowing overlaps; therefore, the problem they deal with is our binary
version of overlapping correlation clustering. In the notation we introduce in this paper, their
problem is exactly (b, I, k) with no predefined number of clusters. However, as implied by
Corollary 1, such a problem always admits a straightforward zero-cost solution. Scripps and
Tan [49] are interested only in zero-cost solutions, while trying to minimize the number of
clones (i.e., overlaps). Instead, we consider the problem of finding minimum cost solutions
with a prefixed number of clusters, or with a constraint on the maximum number of clusters
an object can belong.

8.4 Non-negative matrix factorization

In the non-negative matrix factorization (NMF) problem [37], the goal is to decompose
a given matrix A ∈ Rm×n into the product of two non-negative matrices W ∈ Rm×k

and H ∈ Rk×n , so that the product WH approximates as well as possible the origi-
nal matrix A. The quality of the decomposition is typically measured with the Frobe-
nious matrix norm ||A − WH||2F . It is also assumed that the dimension k is much smaller
than the dimensions m and n. In the symmetric version of the non-negative matrix fac-
torization problem (snmf) [22,33], the input matrix A is symmetric, that is, A ∈ Rn×n

and A = AT , and the goal is to find a non-negative matrix X ∈ Rk×n so that A ≈
XT X.
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The snmf problem has many similarities with our problem. Consider that the input matrix
A = [ai j ] represents the pairwise object similarities, that is, ai j = s(i, j). The factor matrix
X can be viewed as mapping from each object i ∈ V to a k-dimensional vector, namely, to the
i th column xi of the matrix X = [x1 . . . xn]. Should the matrix X have 0–1 values, the mapping
of i ∈ V to xi can be interpreted as a membership vector to k clusters, and thus, the solution
to the snmf problem has a natural interpretation as an overlapping clustering. Furthermore,
the objective function of the snmf problem would be ||A−XT X||2F = ∑

i, j |ai j −〈xi , x j 〉|2,
where 〈·, ·〉 denotes the dot-product operation. A similar problem definition has been con-
sidered in the statistics literature, with the goal of modeling graphs using dot-product repre-
sentations [48].

On the other hand, there are also many differences of the approaches described above with
the problem we consider in this paper. First, we do not consider the dot-product between
representation vectors; instead, we focus on the measures of set-intersection and Jaccard.
Second, in the above-mentioned problems, there is no integrality constraint for the entries
of the solution matrix X, and thus, there is no immediate interpretation of the solution as
overlapping clustering. One way to obtain integral solutions is to round the fractional solu-
tions using a threshold parameter. This approach is actually explored in our experiments in
Sect. 6.1.1, where it is shown that, compared against ground-truth, our overlapping-clustering
algorithms outperform the snmf-based algorithms for a wide range of the rounding threshold
parameter.

8.5 Applications

Developments in overlapping clustering have mainly been driven by the concrete needs
of applications. We already discussed the case of microarray gene expression data. Other
application domains where overlapping clusters occur naturally are text mining [36], social
networks, and social media.

Partitioning the nodes of a social network is a problem typically referred to as community
detection and which has been extensively studied in particular in the literature of complex-net-
works analysis [23]. However, only few researchers have addressed the problem of detecting
overlapping communities. For a survey on the topic please, see the work of Fortunato [23,
Section 11].

The best-known approach to detecting overlapping communities is the CFinder algorithm
based on clique percolation [47]. According to this method, communities are discovered by
finding k-cliques and merging them when they share k − 1 nodes. As a node can belong to
multiple cliques, the method generates overlapping communities.

Tang and Liu [54] start from the observation that, while users are naturally involved in more
than a community, edges usually belong to a single community. Therefore, they cluster edges
instead of nodes. This approach results in overlapping communities of nodes. Following up
this work, Wang et al. [58] study the problem of discovering overlapping groups in social
media. They propose a co-clustering framework based on users and tags. Users are not con-
nected trough a social network, instead they are implicitly connected by their common inter-
ests that are expressed by the tags they use. The method creates co-clusters of tags and users.

9 Conclusions and future work

We present a novel formulation for overlapping clustering in the context of correlation clus-
tering. The main idea is to map data points to a small set of labels, so that similarities between
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label sets preserve the original similarities between data points. In this respect, our problem
statement has a flavor of dimensionality reduction, yet the labels obtained from the mapping
can be used to express membership in overlapping clusters.

To solve the resulting optimization problem, we propose a local-search algorithm,
initialized with the labeling obtained by a graph coloring heuristic. The iterative step of the
local-search algorithm optimizes the labels of one object, given the labels of all other objects.
We apply such a local optimization until we obtain a solution that no further improvement
can be made. The local step of our iterative algorithm, optimizing the labels of one single
object given the labels of all other objects turns out to be an interesting sub-problem.

We experiment with the proposed algorithm on real datasets with overlapping clusters.
Our evaluation shows that our algorithm produces overlapping clusters that resemble the
ground truth. We also experiment with the idea of speeding up the algorithm by randomly
eliminating from consideration pairs of data points. Our results show that significant amount
of pruning can be achieved without degrading the quality of the solution.

We believe that the framework we introduced can be extended in many interesting direc-
tions.

First, we plan to instantiate our approach in different application domains. Beyond finding
novel applications, we would like to investigate different approaches to solve the optimization
problems we propose, for example, using non-local-search algorithms such as the idea based
on relaxed graph coloring, mentioned in Sect. 3. Another interesting opportunity, worth of
further investigation, is to apply graph coloring solutions for the initialization step, as dis-
cussed in Sect. 4.4. We plan also to study, both from a theoretical and practical points of
view, the problem of actively selecting the pairs of objects for which to require the similarity
value.

Furthermore, we would like to study alternative problem definitions, using different objec-
tive functions, and introducing additional constraints. Finally, an interesting open problem
is to design an approximation algorithm for the Jaccard- triangulation problem.
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