
Noname manuscript No.
(will be inserted by the editor)

Lagrangian relaxations for multiple network
alignment

Eric Malmi · Sanjay Chawla ·
Aristides Gionis

Received: date / Accepted: date

Abstract We propose a principled approach for the problem of aligning mul-
tiple partially overlapping networks. The objective is to map multiple graphs
into a single graph while preserving vertex and edge similarities. The problem
is inspired by the task of integrating partial views of a family tree (genealogi-
cal network) into one unified network, but it also has applications, for exam-
ple, in social and biological networks. Our approach, called Flan, introduces
the idea of generalizing the facility location problem by adding a non-linear
term to capture edge similarities and to infer the underlying entity network.
The problem is solved using an alternating optimization procedure with a La-
grangian relaxation. Flan has the advantage of being able to leverage prior
information on the number of entities, so that when this information is avail-
able, Flan is shown to work robustly without the need to use any ground
truth data for fine-tuning method parameters. Additionally, we present three
multiple-network extensions to an existing state-of-the-art pairwise alignment
method called Natalie. Extensive experiments on synthetic, as well as real-
world datasets on social networks and genealogical networks, attest to the
effectiveness of the proposed approaches which clearly outperform a popular
multiple network alignment method called IsoRankN.

E. Malmi
HIIT, Aalto University, Espoo, Finland
E-mail: eric.malmi@aalto.fi

S. Chawla
Qatar Computing Research Institute, Doha, Qatar
E-mail: schawla@qf.org.qa

A. Gionis
HIIT, Aalto University, Espoo, Finland
E-mail: aristides.gionis@aalto.fi

2 Eric Malmi et al.

1 Introduction

The multiple network alignment problem encodes the task of de-duplicating
vertices in a collection of graphs while preserving similarity between vertices
and edges. Vertex similarity is typically modeled by comparing vertex at-
tributes or feature vectors. Edge similarity encodes structural dependencies
among the input graphs, in particular, a desirable network alignment should
preserve the edges of the input graphs to the largest extent.

A need for data de-duplication often arises when interrelated datasets from
different sources have to be integrated. Many datasets naturally have a network
structure which is why the potential application areas of network alignment
methods are plentiful. These methods have attracted a significant amount of
attention in the area of biological networks [8], in particular for the problem of
aligning protein–protein interaction networks in order to identify functional or-
thologs across different species [13]. Other applications include social network
alignment [15, 30], ontology alignment [3], and image matching in computer
vision [9].

However, our initial motivation to study this problem arises from the ap-
plication of merging family trees (genealogical networks) which is a common
problem for genealogists. Services like Ancestry.com and MyHeritage attract
millions of paying subscribers who upload their own family tree to the service,
trying to find new relatives to add to their network. Automatic alignment of
individual family trees can help people to find new relatives and trace their
ancestry further back in time. Consider for example the top half of Figure 1,
which shows three individuals, A, B and C, and the partial views they have
on their ancestry. The bottom half shows the underlying family tree which
is hidden and unknown. The trees contain two types of information: vertex
attributes (not shown in the figure) and relationships between vertices. Due
to the difficulty of interpreting historical documents and errors in these docu-
ments, the vertices and edges of individual trees may contain errors. Further-
more, family trees are not trees in the graph-theoretic sense as they contain
cycles such as Mother–FirstChild–Father–SecondChild–Mother. Note that we
draw an edge between every parent-child pair, whereas Figure 1 follows the
layout commonly used by genealogists. In conclusion, the problem of merging
family trees is an instance of the multiple network alignment problem.

To address the multiple network alignment problem, we introduce a novel
extension of the facility location problem [27] to account for both vertex and
edge similarity. In particular, we present a non-linear extension of facility loca-
tion to specifically favor mappings where neighboring vertices are mapped to
other neighbors. To the best of our knowledge, this extension is a novel prob-
lem in its own right and of independent interest. We refer to the extension as
the facility location formulation for aligning multiple networks (Flan). Since
Flan is NP-hard, we provide an approximate solution using a Lagrangian re-
laxation approach. A practical benefit of Flan is that it allows the user to fix
the number of entities (i.e., vertices in the hidden graph) in cases when prior

Lagrangian relaxations for multiple network alignment 3

A B C

A B C

G1 G2 G3

Fig. 1 The bottom half of the figure shows an underlying but unknown family tree, indi-
cating the location of three individuals A, B and C. The square vertices represent males and
the round vertices females. Each individual has a partial view of the tree. The objective is
to reconstruct the underlying and hidden tree from the partial views shown in the top half.

information on that is available. This can help with parameter selection which
is a common problem when applying network alignment methods in practice.

Natalie, proposed by Klau and collaborators [12, 18], is one of the best
performing existing network alignment methods [8]. Similar to our approach,
Natalie formulates the pairwise problem as a non-linear integer program and
provides an approximate solution using a Lagrangian relaxation approach.
However, Natalie only supports pairwise alignments. Therefore, we investigate
three approaches to extending Natalie to multiple networks.

Finally, we present an experimental comparison between Flan and the
extensions of Natalie on synthetic data, social network data, and family tree
data. We demonstrate that Flan performs well in all of these experiments,
especially in terms of precision, whereas the proposed Natalie extensions typi-
cally yield the highest recall. Furthermore, if prior information on the number
of entities is available, Flan works robustly without any ground truth data
which is typically needed for fine-tuning method parameters.

To summarize, our main contributions are:

– We formalize the multiple network alignment problem using a novel non-
linear extension of the facility location problem. This extension captures
both the problem of inferring the vertices referring to the same entity and
the problem of inferring the underlying entity network. We refer to the
extension as the facility location formulation for aligning multiple networks
(Flan).

– We propose an alternating optimization approach to obtain an approxi-
mate solution of Flan, using the technique Lagrangian relaxation. The
advantage of the Lagrangian relaxation is that we automatically obtain
instance-level approximation bounds on the quality of the solution.

4 Eric Malmi et al.

– If prior information on the number of entities is available, Flan is shown
to work robustly without the need to use any ground truth data for fine-
tuning method parameters.

– We present three multiple-network extensions to Natalie, which is a state-
of-the-art pairwise network alignment method. A progressive extension
with edge updates (progNatalie++) is shown to provide a good ex-
perimental performance.

– The code and the data for reproducing the experiments are publicly avail-
able at: https://github.com/ekQ/flan

The rest of the paper is structured as follows. In Section 2, we present the
facility location formulation for the multiple network alignment problem, and
in Section 3, we describe the Lagrangian relaxation approach for solving it, as
well as the extensions of Natalie to multiple networks. In Section 4, we discuss
the related work, and in Section 5, provide an experimental evaluation of the
different methods. Finally, we draw conclusions in Section 6.

2 Problem formulation

The input to the network-alignment problem consists of k graphsG1 = (V1, E1),

. . . , Gk = (Vk, Ek). We define V =
⋃k
i=1 Vi to be the set of all vertices in the

k input graphs and we set n = |V |. As the correspondence between the graph
vertices is unknown initially, we assume that all vertex sets are pairwise dis-
joint. The case that some correspondences among vertices of input graphs are
known can be easily incorporated in our framework.

We assume that the input graphs are manifestations of an underlying entity
graph Ge = (U,Ee), where the vertex set U denotes the underlying entities and
Ee the edges between them. The objective of the network-alignment problem
is to infer the entity graph and find an assignment X : V → U so that each
vertex in the input graphs can be mapped to its underlying entity vertex. We
further assume that the entities are represented by a subset of the vertices in
the input graphs, that is, U ⊆ V .

The alignment of the input graphs is driven by the graph structure, so
that to the largest extent possible, neighbors in the input graphs should map
to neighbors in the entity graph, as well as by the similarity between vertices
in different graphs. In particular, we assume that each vertex has a set of
attributes. A distance function (dissimilarity) d(i, j) is then defined between
each pair of vertices i and j. The distance d(i, j) is derived by comparing the
attributes of i and j.

For the relationship between the input graphs and the underlying graph
we consider the following characteristics:

– The attributes of a vertex of an input graph may have been distorted from
the attributes of the corresponding entity of the underlying graph.

– The vertices of an input graph may correspond to only a subset of the
entities (Vi ⊆ U).

Lagrangian relaxations for multiple network alignment 5

– The edges between entities are preserved with probability p < 1 (not neces-
sarily fixed for all edges) so the edges of an input graph may correspond to
only a subset of the edges in the underlying entity graph. In other words,
the entity graph contains the edges of the input graphs and potentially

some missing edges, that is, Ee =
(⋃k

i=1Ei

)
∪ Em, where Em is a set of

potentially missing edges.

From the above considerations it follows that the assignment X : V → U we
are searching for should satisfy the following properties:

(P1) Vertices are mapped to entities with as similar attributes as possible.
(P2) Adjacent vertices are assigned to adjacent entities.

To find a set of entities U , the edges between them Ee, and an assignment
X : V → U that respects properties (P1) and (P2) we formulate a non-linear
integer programming (IP) problem. The IP formulation is an optimization
problem over binary variables yi and xij and an adjacency matrix B. The first
two variables encode a solution in terms of the sought set U and the assignment
X , respectively. In particular, yi indicates whether there is some vertex j ∈ V
that has been assigned to entity i, and xij indicates whether vertex i is assigned
to entity j. The binary adjacency matrix B encodes the missing edges Em to
be optimized and the edges of the input graphs EI =

⋃k
i=1Ei. The integer

program is the following

min
x,y,B

∑
j

fyj +
∑
i,j

d(i, j)xij − g
∑
i,j,k,`

AikBj`xijxk`

+ γ
∑

(i,j)/∈EI

B2
ij , (1)

such that xij ≤ yj , i, j = 1, . . . n, (2)∑
j

xij = 1, i = 1, . . . , n, (3)

∑
i∈Vm

xij ≤ 1, j = 1, . . . , n and m = 1, . . . , k, (4)

xij , yj ∈ {0, 1}, i, j = 1, . . . , n. (5)

In the above formulation, f , g, and γ are scalar parameters, while A and B are
adjacency matrices representing the graph structure of the problem instance.
In particular, entry Aik indicates whether the vertices i and k of the input
graphs are neighbors, while entry Bj` indicates whether entities j and ` are
neighbors.

The integer program presented above can be seen as a non-linear extension
of the uncapacitated facility-location problem [16]. Selecting vertex i ∈ V to
be an entity so that other vertices can be mapped to it corresponds to setting
yi = 1, which can be seen as opening vertex i as a facility. The parameter
f represents the cost of opening a facility, so the first term in the objective
function (1) penalizes for every opened entity. Note that one extreme solution

6 Eric Malmi et al.

is to consider every vertex as an entity; setting f = 0 would make such a
solution optimal.

The second term in the objective function (1) penalizes for assigning ver-
tices to dissimilar entities. Recall that d(i, j) is the distance between vertex i
and entity j, computed using the attributes of i and j, and note that the cost
is paid only when vertex i is assigned to entity j, expressed by xij = 1. The
third term uses the adjacency matrices A and B and gives a discount of g for
each pair of adjacent vertices that are assigned to adjacent entities.

The fourth term adds L2 regularization to the adjacency matrix B by
introducing cost γ for every added missing edge. Parameter γ controls the
amount of evidence needed for introducing new edges to the entity graph; if
γ = 0, the complete graph becomes the optimal solution for B, whereas if
γ = g

2 , a new edge is added when at least one pair of adjacent vertices has
been assigned to the corresponding entity pair, as shown later in Section 3.3.5.

Next we discuss the constraints of the integer program given in (2)–(4). The
first set of constraints (2) ensures that vertices are only assigned to opened
entities. The second set of constraints (3) ensures that each vertex is assigned
to exactly one entity. Finally, the third set of constraints (4) prevents two
vertices in the same input graph from being assigned to the same entity.

An alternative formulation results by having prior knowledge about the
total number of entities Ne. In this case we can set a constraint for the number
of opened entities, so the objective function (1) is replaced by

min
x,y,B

∑
i,j

d(i, j)xij − g
∑
i,j,k,`

AikBj`xijxk` + γ
∑

(i,j)/∈EI

B2
ij , (6)

and we need to include constraint∑
i

yi ≤ Ne, (7)

on top of constraints (2)–(5). Both problem formulations require three pa-
rameters as input: the first formulation requires f , g, and γ, while the second
formulation requires Ne, g, and γ.

For both of these formulations we have the following result.

Proposition 1 Multiple network alignment, as defined by optimizing objective
function (1) subject to constraints (2)–(5), or optimizing objective function (6),
subject to constraints (2)–(5) and (7), is NP-hard.

Proof Following the proof for the NP-hardness of pairwise network alignment
by El-Kebir et al. [12], we show a reduction from the Clique decision problem,
which asks to determine whether a k-vertex clique Gc = (Vc, Ec) exists in
graph G = (V,E). We consider an instance of the multiple network alignment
problem with two networks, i.e., k = 2, which are set to G1 = G (the input
graph for the Clique problem) and G2 = Gc (the k-clique). Let f = 0 (or
Ne =∞ if we consider the problem with the fixed number of entities) and

d(u, v) =

{
0, if (u = v and u ∈ V) or (u ∈ Vc and v ∈ V)

∞, otherwise,

Lagrangian relaxations for multiple network alignment 7

so that the vertices of G are encouraged to be assigned to themselves, whereas
the vertices in Gc are encouraged to be assigned to any vertices in V .

A k-vertex clique exists in G if and only if the cost of the optimal multiple
network alignment for input graphs G and Gc is −g (|E|+ |Ec|). This cost
corresponds to the sum of the discounts we get from aligning each neighbor
pair in G to itself and being able to align each neighbor pair in Gc to another
neighbor pair in G. Note that the same pairwise cost could be achieved by
aligning the neighbor pairs in Gc to non-neighbor pairs in G and adding edges
between the corresponding entities. However, this would result in a higher
overall cost due to the regularization term γ

∑
(i,j)/∈EI

B2
ij when γ > 0. ut

3 Methods

We now discuss our methods for solving the integer programs introduced in the
previous section. Our algorithms (Section 3.3) use the Lagrangian relaxation
framework, so we first give a brief overview of the framework (Section 3.1). The
Lagrangian relaxation framework is also used by Natalie by Klau et al. [12,18]
for aligning two networks. We present Natalie and propose an extension of it
to multiple networks in Section 3.2.

3.1 Background: Lagrangian relaxation framework

The Lagrangian relaxation approach [14] aims to obtain approximate solutions
to constrained optimization problems, like the ones presented in the previous
section. The method dualizes/relaxes some constraint(s) by adding them to
the objective with multipliers λ. In practice, the constraint(s) to be relaxed
are chosen so that the relaxed problem ZLD(λ) can be solved in polynomial
time.

Next, the problem ZLD(λ∗) = maxλ ZLD(λ) is solved using the subgradi-
ent method [24]. Since the value of ZLD(λ) is a lower bound for the original
problem for any λ, the value of ZLD(λ∗) yields a lower bound (`∗) for the
optimal solution. Every relaxed solution computed during the subgradient op-
timization is modified using some heuristics to construct feasible solutions for
the original non-relaxed problem. The feasible solution with the lowest cost
provides an upper bound (u∗) for the optimal solution. If `∗ = u∗, then the
optimal solution for the original problem has been found. Even for many NP-
hard problems, the optimal solution is often found in a reasonable time with
this approach [14].

3.2 Natalie

Natalie is a state-of-the-art pairwise (i.e., k = 2) network-alignment method
introduced by Klau [18]. It formulates the two-network alignment problem as

8 Eric Malmi et al.

the following integer program

max
x

∑
(i,j)∈V1×V2

σ(i, j)xij +
∑

(i,j)∈V1×V2

∑
(k,`)∈V1×V2

τ(i, j, k, l)xijxk`,

such that
∑
j∈V2

xij ≤ 1, for all i ∈ V1,∑
i∈V1

xij ≤ 1, for all j ∈ V2,

xij ∈ {0, 1}, for all (i, j) ∈ V1 × V2,

where σ(i, j) is a similarity score between vertices i and j. The parameter
τ(i, j, k, `) is a similarity score between pairs of vertices (i, k) and (j, `) which
is typically set to

τ(i, j, k, `) =

{
g, if (i, k) ∈ E1 and (j, `) ∈ E2

0, otherwise,

where g is a positive constant.
This formulation is equivalent to the formulation presented in Section 2

applied to two networks. The main difference is that we have introduced an
entity-opening cost f (or alternatively a budget Ne) to control the number of
entities when aligning partially overlapping networks. Natalie also supports
partial alignment since a vertex is not required to be matched to another
vertex. Instead it can get mapped to a gap if some of the scores σ(i, j) are
negative. The number of aligned vertices can be controlled by shifting the
scores towards more negative or more positive values. In our implementation of
Natalie,1 which is used for the experiments of this paper, we set a threshold
score for mapping a vertex to a gap instead of shifting the scores. In our
experiments, this threshold is also denoted by f for consistency.

To solve the integer program, Natalie first linearizes it and then employs
a Lagrangian relaxation approach. The derivation is similar to the one pre-
sented in Section 3.3.2 but due to the additional term in the objective (or
alternatively an additional constraint) in our formulation, we need to relax
two constraints instead of one and develop feasibility heuristics (Section 3.3.3)
whereas Natalie’s formulation allows to directly extract a feasible solution
from a relaxed one.

Natalie 2.0 [12] is an extension of the original algorithm [18]. The original
method adopts a subgradient method for updating the Lagrangian multipliers,
whereas Natalie 2.0 employs both the subgradient method and a dual descent
method to obtain stronger upper and lower bounds. Nevertheless, in this paper
we only consider the subgradient approach for updating the multipliers.

In summary, the main differences between our method and Natalie are
the following: Our method directly supports multiple network alignment (as
well as pairwise alignment) and it also optimizes the underlying entity graph,

1 The code is available at: https://github.com/ekQ/flan

Lagrangian relaxations for multiple network alignment 9

but these improvements come with the cost of having to solve a more com-
plex optimization problem. Both methods require parameters f and g, but our
method also supports specifying the number of vertices Ne instead of speci-
fying f . In addition, our method requires parameter γ which is set to g

2 as
discussed later in Section 3.3.5.

3.2.1 Adaptation to multiple networks

Klau [18] suggests that Natalie can be extended to multiple networks or
alternatively it can be used to progressively align multiple networks. In this
section, we present one possible extension to multiple networks and propose
an improvement for the straightforward progressive version of Natalie.

To find a multiple network alignment, we assume an ordering of graphs
and consider aligning vertex i with any vertex from graphs g′ = 1, . . . , g − 1.
Thus we obtain the following problem.

max
x

∑
1≤g′<g≤k

∑
(i,j)∈Vg×Vg′

σ(i, j)xij

+
∑

1≤g′<g≤k

∑
(i,j)∈V1×V2

∑
(k,`)∈V1×V2

τ(i, j, k, `)xijxk`,

such that
∑
j∈Vg′

xij ≤ 1, for all 1 ≤ g′ < g ≤ k, i ∈ Vg,

∑
i∈Vg

xij ≤ 1, for all 1 ≤ g′ < g ≤ k, j ∈ Vg′ ,

xij ∈ {0, 1}, for all 1 ≤ g′ < g ≤ k, (i, j) ∈ Vg × Vg′ ,

Natalie can be used to solve this problem with the following modifications:
(i) if a vertex is mapped to a gap, we define it to be mapped to itself, and
(ii) the last bipartite matching step (for details, see Klau [18]) must be done
for each input graph separately since two vertices from different graphs can
be mapped to the same vertex even though two vertices from the same graph
cannot.

To avoid obtaining too many entities, we assume transitivity and define
that if xab = xbc = 1, then vertices a, b, and c should all belong to the same
entity. Hence, entities can be extracted by finding connected components of
the alignment graph. However, the transitivity assumption comes with the
drawback that we cannot guarantee anymore that vertices a and a′ from the
same input graph are mapped to a distinct entity since we might have that
xab = 1 and xa′c = xcb = 1. Avoiding such injectivity violations does not seem
trivial, so in the experiments, we simply ignore the injectivity constraint in
case the aforementioned situation occurs.

This method is called Natalie in the experiments.
To solve the multiple networks alignment problem progressively, we pick

a target graph and solve k − 1 pairwise network alignment problems using
Natalie to align other graphs to it. For every vertex mapped to a gap, we

10 Eric Malmi et al.

create a new vertex in the target graph so that the vertices of subsequent
graphs can be mapped to it. This method is called progNatalie.

One limitation of progNatalie is that the edges between the original ver-
tices and the newly created vertices in the target graph are entirely absent.
Furthermore, since the edge sets are noisy, it would be useful to be able to
aggregate edge information across the graphs. Therefore, we propose progNa-
talie++ which updates target graph edges after every aligned input graph:
for each pair of neighboring input graph vertices mapped to vertices j and l
in the target graph, we create an edge (j, `) if it is not already present.

3.3 Our approach: Flan

Before discussing our method in detail, we present a high-level overview. We
adopt an alternating optimization procedure [4] which splits the variables into
two subsets {x, y} and {B}, and iteratively solves the alternating restricted
minimization problems over the two subsets. The method consists of the fol-
lowing steps.

1. Initialize the entity graph B = A.
2. Keeping B fixed, solve the optimal alignment x, y as follows

– Linearize the problem to obtain an integer linear programming (ILP)
problem (Section 3.3.1).

– Solve the integer linear program using a Lagrangian relaxation approach
(Sections 3.3.2, 3.3.3, and 3.3.4).

3. Optimize the adjacency matrix B of the entity graph, keeping x and y fixed
(Section 3.3.5).

4. Go back to step 2 unless the iteration has converged.

3.3.1 Linearizing the problem

The first step is to eliminate quadratic terms, and turn the quadratic integer
program into an integer linear program. This is achieved by introducing new
variables wijk` = xijxk`. Note that we only need to create a variable wijk`
for index quadruplets that “form a square” in the input graphs and the entity
graph (i.e., vertices i and k are neighbors and entities j and ` are neighbors)
since in all other cases AikBj` = 0 and wijk` does not play a role. We denote
by S the set of quadruplet indices for which a variable wijk` is introduced.

To ensure that the definition of variables wijk` is consistent, we introduce
the following constraints∑
`:(i,j,k,`)∈S

wijk` =
∑

`:(i,j,k,`)∈S

xijxk` ≤
∑
`

xijxk` = xij , for all i, j, k (8)

∑
k:(i,j,k,`)∈S

wijk` =
∑

k:(i,j,k,`)∈S

xijxk` ≤
∑

k∈V (i)

xijxk` ≤ xij , for all i, j, ` (9)

wijk` = wk`ij , for all i, j, k, ` (10)

Lagrangian relaxations for multiple network alignment 11

where V (i) = {v : i ∈ Vj and v ∈ Vj}, that is, the vertices of the input graph
to which vertex i belongs.

After the linearization step and dropping the regularization term which
does not affect the minimum when B is fixed, we obtain the following integer
linear program, where B is fixed

min
x,y,w

∑
i

fyi +
∑
i,j

d(i, j)xij − g
∑

(i,j,k,`)∈S

wijk` (11)

such that xij ≤ yj , i, j = 1, . . . n (12)∑
j

xij = 1, i = 1, . . . , n (13)

∑
i∈Vm

xij ≤ 1, j = 1, . . . , n and m = 1, . . . , k (14)

∑
`:(i,j,k,`)∈S

wijk` ≤ xij , for all i, j, k (15)

∑
k:(i,j,k,`)∈S

wijk` ≤ xij , for all i, j, ` (16)

wijk` = wk`ij , for all i, j, k, ` (17)

xij , yi, wijk` ∈ {0, 1}, for all i, j, k, `. (18)

Note that the number variables in (11) is potentially very high, which
could prevent us from solving problem instances of a realistic size. However,
this shortcoming can be overcome by a technique known as blocking in the
entity-resolution literature [6]. The idea is to consider that each vertex can be
mapped not to every other vertex but only to a set of candidate entities. These
candidates are typically determined by selecting entities above a similarity
threshold or by taking the c most similar entities.2 This is also known as
sparse network alignment [3, 12].

3.3.2 Solving an instance of the relaxed problem

To solve the integer linear program (11)–(18), we adopt the Lagrangian relax-
ation approach. We start by dualizing constraints (13) and (17), which yields

2 Like in the case of Natalie, we assume an ordering of graphs and consider aligning
vertex i with itself or any vertex from graphs g′ = 1, . . . , g − 1. In other words, we avoid
considering simultaneously vertex i as an entity for vertex j and j as an entity for i, which
we have observed to result in larger duality gaps.

12 Eric Malmi et al.

the following problem

ZLD(λ) = min
x,y,w

∑
i

fyi +
∑
i,j

d(i, j)xij − g
∑

(i,j,k,`)∈S

wijk`

+
∑
i

λi

(
1−

∑
j
xij

)
+

∑
(i,j,k,`)∈S

λijk` (wijk` − wk`ij)

= min
x,y,w

∑
i

λi +
∑
i

fyi +
∑
i,j

(d(i, j)− λi)xij (19)

+
∑

(i,j,k,`)∈S

(2λijk` − g)wijk`

subject to constraints (12), (14)–(16), and (18).

Despite the fact that the relaxed problem has integral variables (as we have
not relaxed constraint (18)), as we show next, the problem can be solved in
polynomial time for any given λ.

Theorem 1 The relaxed problem (19) can be solved in polynomial time.

Proof The relaxed problem can be decomposed into two problems, so that the
first one is over variables x and y, and the second one is over variables w. In
particular, the relaxed problem can be written as

ZLD(λ) = min
x,y

∑
i

λi +
∑
i

fyi +
∑
i,j

[d(i, j)− λi + vij(λ)]xij (20)

such that xij ≤ yj , i, j = 1, . . . n

xij , yi ∈ {0, 1} i, j = 1, . . . n,

where

vij(λ) = min
w

∑
k,`:(i,j,k,`)∈S

(2λijk` − g)wijk` (21)

such that
∑

`:(i,j,k,`)∈S

wijk` ≤ 1, for all k

∑
k:(i,j,k,`)∈S

wijk` ≤ xij , for all `

wijk` ∈ {0, 1}, for all k, `.

Notice that problems (20) and (21) are equivalent to the relaxed problem (19)
despite the fact that in (20) the terms vij(λ) are multiplied by xij . The reason
is that all variables xij and wijk` are either 0 and 1, and whenever a xij is 0,
then wijk` are also 0, for all k and `.

Observe that a variable vij is defined for each xij , and the value of vij is
given as a solution to the minimization problem (21). Given that the variables
xij in the second constraint are either 0 and 1, it is not hard to see that the
minimization problem (21), together with the corresponding constraints, is a

Lagrangian relaxations for multiple network alignment 13

minimum-cost matching problem. Thus the value of each vij can be computed
using the Hungarian algorithm. Furthermore, given λ and x, all these min-
imization problems are independent, and thus, the value of each vij can be
computed separately.

Once we have computed vij , we can solve ZLD easily after observing that
the optimal value of xij is given by

xij =

{
yj , if d(i, j)− λi + vij(λ) ≤ 0

0, otherwise,

enabling us to write

ZLD(λ) = min
y

∑
i

λi +
∑
i

fyi +
∑
j

(∑
i

min{0, d(i, j)− λi + vij(λ)}

)
yj

= min
y

∑
i

λi +
∑
i

(f + Ci)yi

such that yi ∈ {0, 1},

where Ci =
∑
i min{0, d(i, j)− λi + vij(λ)}. Hence we get

yi =

{
1, if f +

∑
j min{0, d(j, i)− λj + vji(λ)} < 0

0, otherwise.
(22)

If instead of setting cost f for opening an entity we want to set a constraint
for the number of opened entities, the final minimization problem would take
the form

ZLD(λ) = min
y

∑
i

Ciyi

such that
∑
i

yi = Ne and yi ∈ {0, 1}.

This problem can be solved by sorting yi based on the coefficients Ci and
setting yi = 1 for the Ne smallest coefficients. ut

In Section 3.3.4 we discuss how a solution to the problem ZLD(λ), for a
given vector λ, is used within the Lagrangian relaxation method. Before that,
we present our methods for finding a feasible solution to the multiple network-
alignment problem from a solution to the relaxed problem (Section 3.3.3).

14 Eric Malmi et al.

3.3.3 Finding a feasible network alignment

Once we have obtained the optimal solution x∗, y∗, w∗ for the relaxed problem,
we still need to obtain a feasible solution for the original network-alignment
problem. Note that although the solution x∗, y∗ of the relaxed problem is
integral, it is not necessarily feasible, since we have relaxed the constraint∑
j xij = 1 and hence, some vertices may be mapped to zero or more than one

entities.
We will next show that transforming the optimal solution x∗, y∗ of the

relaxed problem to a feasible solution for the original non-relaxed and non-
linearized network-alignment problem with minimal additional cost in ZLD(λ)
is an NP-hard problem. In fact, the problem is related to set cover, and thus,
we propose an algorithm that is based on a greedy approach.

We will show that both of the versions we consider lead to an NP-hard
problem: (i) when parameter f is given as input (and thus, the number of
open entities depends on f); and (ii) when the number of opened entities Ne
is given as input. Recall that in the former case, y∗ is obtained by opening
the entities with negative coefficients (according to (22)), while in the latter
case y∗ is obtained by opening the entities with the Ne smallest coefficients.
As already mentioned, the optimal y∗ may lead to some vertices not being
assigned to any entities. The hardness of the problem of finding a feasible
solution based on y∗ stems from the fact that more (or different) entities need
to be opened in order to ensure feasibility. Both versions of the problem (for
fixed f and fixed Ne) can be compactly formulated as follows:

min
y

∑
i

C ′i yi, (23)

such that a matching between the vertices and

opened entities exists, (24)(∑
i

yi = Ne, i = 1, . . . , n,

)
(25)

yi ∈ {0, 1}, i = 1, . . . , n, (26)

where C ′i = f + Ci if f is fixed, and C ′i = Ci if the number of entities Ne
is fixed, and Ci =

∑
i min{0, d(i, j) − λi + vij(λ)} as defined in the previous

section. Constraint (25) is only included in the case of fixing the number of
entities Ne. The hardness result is stated and proven next.

Proposition 2 Finding the optimal set of open entities, as defined in (23)–
(26), is an NP-hard problem both when the entity-opening cost f is fixed, and
when the number of entities Ne is fixed.

Proof We give a reduction from the optimization version of the weighted set
cover problem. We consider a special case where the number of sets is equal
to the number of items to be covered, which still keeps the problem NP-hard.
Let {1, 2, . . . , n} be a set of items to be covered, S a collection of n sets, and

Lagrangian relaxations for multiple network alignment 15

M(j) the sub-collection of sets that contain item j, for j = 1, . . . , n. Each
set Si is associated with a cost C ′i.

By using variable yi to denote whether set i is included in the cover or not,
the weighted set cover problem can be written as

min
y

∑
i

C ′i yi, (27)

such that
∑

c∈M(j)

yc ≥ 1, j = 1, . . . , n, (28)

yi ∈ {0, 1}, i = 1, . . . , n.

Now we observe that this is a special case of problem (23) where each vertex
is considered to be its own graph andM(i) denotes the set of candidate entities
for vertex i, thus making constraints (24) and (28) equivalent. Furthermore,
we could add constraint (25), without loss of generality, by setting Ne = n,
which proves the result for both cases of fixed f and fixed Ne. ut

The Lagrangian framework itself does not require us to find the optimum
y, which we have shown to be NP-hard, but the further the feasible y we
obtain is from the optimum, the larger the duality gap will be, and thus we
want to come up with a reasonable way of finding an approximate solution.

Greedy methods are known to give good approximations for set cover prob-
lems and hence we adopt a greedy approach for finding y. Next we present
a high-level overview of this approach—the details can be found from the
publicly available source code.3

In the case of fixed Ne, we start opening entities one-by-one after ranking
them primarily by how many vertices from different input graphs can be as-
signed to each entity and secondarily by the coefficient of each entity, until a
matching between vertices and opened entities exists. Note that this greedy
strategy is different than the usual “normalized cost” strategy that is used
for weighted set cover, however, we prefer to prioritize the selection of entities
based on the number of matching vertices, as we have a budget Ne on the num-
ber of entities that we can open. When all vertices are matched by at least one
opened entity, we can still open extra entities based on the coefficients until
the number of open entities is Ne. Finally, we find a feasible assignment x by
matching the input graphs to the open entities with the Hungarian algorithm
one graph at a time—note that all these matching problems are independent,
so the order we process the graphs does not matter. The edge weights for the
matching problem are given by d(i, j)− λi + vij(λ) from (20).

In the case of fixed f , we initially set y = y∗. Then we start again matching
input graphs one at a time and open extra entities along the way if a matching
cannot be found otherwise.

3 The implementation of the feasibility heuristics is available at: https://github.com/

ekQ/flan

16 Eric Malmi et al.

3.3.4 Solving the full Lagrangian relaxation

Recall from Section 3.1 that for the full Lagrangian relaxation algorithm
we wish to find λ as close to the optimal vector λ∗, that is, ZLD(λ∗) =
maxλ ZLD(λ), as possible. Such a vector is found by the subgradient method [24].
In particular, we start with λ = 0, as well as a trivial upper bound u∗ = ∞
and lower bound `∗ = −∞ to the optimal cost of the original problem.

Then we start an iterative process: in each iteration, we solve ZLD(λ), as
described by Theorem 1, for the current value of λ. This solution is trans-
formed to a feasible solution for the network-alignment problem, as discussed
in Section 3.3.3, and the two solutions are used for updating the bounds `∗

and u∗. Next, a new vector λ is computed by the subgradient update

λti = λt−1i + θt(1−
∑

j
xij),

λtijk` = λt−1ijk` + θt(wijk` − wk`ij),

where xij and wijk` are part of the relaxed solution. For θt, we adopt the same
update rules used in Natalie 2.0 [12].

The iterative process continues by solving ZLD(λ) for the new vector λ and
repeating the aforementioned steps until a convergence criterion |u∗ − `∗| ≤ ε
is satisfied or the maximum number of iterations (300 in our experiments) is
satisfied.

3.3.5 Inferring the edges of the entity graph

The edges of the underlying entity graph are unknown. A reasonable initial
guess can be obtained by setting B = A, but some edges may be missing from
this initial guess as (i) A does not contain any edges between vertices from
different graphs, and thus, there will not be any edges between entities that
correspond to vertices in different input graphs, and (ii) the vertices of an
input graph may correspond to only a subset of the entities.

To infer the missing edges when x and y are fixed, we need to minimize the
objective function (1) with respect to the elements of B which correspond to
the potentially missing edges.4 We decompose the third term of the objective
function and denote all the terms which are constant with respect to the
optimized elements ofB by C. This allows us to write the optimization problem

4 For simplicity, we write “minB objective” although the objective is being minimized
only w.r.t. elements Bjl, where (j, `) /∈ EI .

Lagrangian relaxations for multiple network alignment 17

as

min
B

∑
j

fyj +
∑
i,j

d(i, j)xij − g
∑

(j,`)∈EI

∑
i,k

AikBj`xijxk`

− g
∑

(j,`)/∈EI

∑
i,k

AikBj`xijxk` + γ
∑

(j,`)/∈EI

B2
j`

= min
B

C +
∑

(j,`)/∈EI

−g∑
i,k

AikBj`xijxk`

+ γB2
j`

= min

B
C +

∑
(j,`)∈Em

Bj`

γBj` − g∑
i,k

Aikxijxk`

 .

This is solved by setting Bj` = 1 whenever term γBj` − g
∑
i,k Aikxijxk` is

negative, which happens when∑
i,k

Aikxijxk` >
γ

g
.

In all of our experiments, we set γ = g
2 , which means that we add an edge

between entities j and ` if there is at least one pair of neighboring vertices
that is aligned to entities j and `.

4 Related work

The Lagrangian relaxation framework has been successfully applied to many
NP-hard optimization problems [14]. Cornuejols et al. [10] show that it is well
suited for the uncapacitated facility location problem where the one-to-one
constraint on sites and facilities is relaxed. Klau [18] later shows that it is
also applicable to the pairwise network alignment problem where a symmetry
constraint is relaxed. Our multiple network alignment method combines these
two ideas and relaxes both the one-to-one constraint (13) and the symmetry
constraint (17) to make the relaxed problem feasible. Another related applica-
tion of the Lagrangian relaxation approach is by Althaus and Canzar [1] who
adopt it for multiple sequence alignment.

A recent survey by Elmsallati et al. [13] provides an overview of thirteen
different network alignment methods. While the application focus of the sur-
vey is on protein–protein interaction networks, the techniques described are
general and can be applied to different domains. Out of the thirteen meth-
ods, only three support multiple network alignment, namely, IsoRankN [20],
SMETANA [23], and NetCoffee [17]. IsoRankN is a multiple network extension
of the earlier IsoRank method [25] which is inspired by the PageRank algo-
rithm, SMETANA is a greedy method based on a semi-Markov random walk
model, and NetCoffee employs simulated annealing to optimize an objective
function developed for multiple network alignment.

18 Eric Malmi et al.

Clark and Kalita [8] present an experimental survey on ten different pair-
wise alignment methods. In many of the experiments presented in the survey,
Natalie [12, 18] yields the highest accuracy and it is also reported to have a
fast running time [12]. Therefore, one of our objectives is to extend Natalie to
support multiple networks. This extension and the differences between Natalie
and our method Flan have been discussed in Section 3.2.

Apart from the biological problems, network alignment has been previously
applied at least to ontology alignment by Bayati et al. [3]. The authors present
a novel approach for solving the pairwise graph alignment problem based on
the use of belief propagation (BP): given two networks the BP algorithm begins
by defining a probability distribution on all matchings between the networks
and then using a message passing algorithm to approximately infer a matching
which gives the maximum a posterior (MAP) assignment. However, again the
BP algorithm is restricted to pairwise alignment and it is not clear how a
generalization to the multiple alignment case can be derived.

Multiple network alignment can also be seen as a collective entity reso-
lution problem [5, 26]. In the future work, it would be interesting to study
the applicability of multiple network alignment methods to typical collective
entity resolution problems, such as author disambiguation.

The problem of merging family trees has been recently studied by Kouki
et al. [19], who employ a greedy method, and Malmi et al. [22], who study
an active learning setting. Furthermore, entity resolution for genealogical data
has been previously studied, for example, by Efremova et al. [11] and Christen
et al. [7]. There are also methods developed for a related problem of tree
alignment, for example, in the context of web data extraction [29]. However,
these methods are not applicable to family trees since the latter contain cycles.

5 Experimental evaluation

In this section, we present experiments on synthetic and real-world datasets.
Our real-world data are social networks and genealogical trees. In each of these
scenarios, the input graphs are only partially overlapping and the number of
graphs is more than two.

A common challenge when applying network alignment methods in practice
is the tuning of the method parameters. In the methods studied in this paper,
the parameters are: f , which controls the dissimilarity of vertices we are willing
to align instead of keeping them separate, and g, which controls the balance
between the importance of aligning neighbors to neighbors vs. aligning vertices
to similar vertices. If ground truth data is available, the parameter values can
be tuned via cross-validation but otherwise, it is common to resort to using
some default parameter values.

Motivated by the challenge of parameter selection, the focus of the follow-
ing experiments is on studying the sensitivity of the methods to the selection
of f which is crucial when aligning partially overlapping networks. We study
both the performance of different methods for a range of f values and the per-

Lagrangian relaxations for multiple network alignment 19

formance of Flan when prior knowledge on the number of entities is available
and thus the selection of f is not required.

Method naming conventions. The following methods are compared
in the experiments: Natalie, progNatalie, and progNatalie++ (Sec-
tion 3.2) are our multiple-network extensions of the pairwise method originally
presented in [18]. Flan is our facility-location-based method for multiple net-
work alignment, whereas Flan0 is a baseline method which only solves the
Lagrangian relaxation once and does not update B, the adjacency matrix
for entities. cFlan Ne refers to the version of Flan with Ne as the fixed
number of entities. Both Flan and cFlan Ne run the alternating optimiza-
tion procedure for at most five iterations since the solution typically does not
improve anymore after that. IsoRankN [20] is a popular multiple network
alignment method. Instead of f , it has parameter alpha which controls the
relative weight of network and sequence data, taking values between 0 and 1.
The other parameters of IsoRankN are set to K = 30, thresh = 10−4, and
maxveclen = 106, based on the recommendations in the README file of the
program. Finally, method Unary, which is only used in Section 5.3, refers to
progNatalie where discount g for the quadratic term is set to zero so the
method aligns the vertices only based on their attribute similarity.

5.1 Aligning synthetic networks

We start by describing the data generation process and then present the re-
sults.

5.1.1 Data

First, we generate an underlying entity graph using the preferential attachment
model [2] with 100 vertices and 2 as the number of edges new vertices are
attached with. Then we sample a label for each vertex from a set of 33 unique
labels so that there will be 3 vertices with a duplicate label on average. The
labels are treated as attributes and the distance between two vertices is set to
0 if their labels are the same and 1 otherwise. Only the vertices with the same
label are considered as candidate entities.

Second, we generate 10 manifestations of the entity graph which serve
as the input graphs. The manifestations are generated by picking a random
seed vertex and then doing random walk until 30 distinct vertices have been
discovered.

Third, we corrupt the edges of the input graphs to make the alignment
problem more challenging. We first discard 20 % of the graph edges, chosen at
random, and then we add 10 % more edges, again selected at random. This
process is done independently for each input graph.

The optimization problem corresponding to the alignment of these graphs
contains 1 500 variables xij and 1 300 variables wijk` on average, depending
on the initialization.

20 Eric Malmi et al.

0.0 0.5 1.0 1.5

f

0.40

0.45

0.50

0.55

0.60

0.65

P
re

ci
si

on

0.0 0.5 1.0 1.5

f

0.0

0.2

0.4

0.6

0.8

R
ec

al
l

0.0 0.5 1.0 1.5

f

0.1

0.2

0.3

0.4

0.5

0.6

F
1

sc
or

e

0.0 0.5 1.0 1.5

f

50

100

150

200

250

#
of

en
ti

ti
es

progNatalie

progNatalie++

Natalie

FLAN0

FLAN

cFLAN 75

cFLAN 100

cFLAN 125

IsoRankN0.0 0.5 1.0 1.5

f

0

10

20

30

D
u

al
it

y
ga

p

Fig. 2 Aligning partial random graphs, varying the cost f of opening an entity.

5.1.2 Results

We set g = 0.5 and vary f . Parameter g controls the balance between ver-
tex attribute distances and the pairwise discounts, but since in this case the
attribute distances are 0 for each candidate entity, only the proportion f/g
matters. The proportion can be varied merely by varying f .

The results are shown in Figure 2. Precision and recall are computed based
on the set of vertex pairs which are predicted to correspond to the same entity
(P) and the set of vertex pairs that truly correspond to the same entity (T)
as follows

precision =
|P ∩ T |
|P|

, recall =
|P ∩ T |
|T |

.

Lagrangian relaxations for multiple network alignment 21

0 50 100 150 200 250 300

Iteration

−350

−300

−250

−200

−150

−100

C
os

t

f = 0.2

Feasible solution

Relaxed solution

0 50 100 150 200 250 300

Iteration

−150

−100

−50

0

50

C
os

t

f = 1.2

Fig. 3 Evolution of the cost of the feasible solution, which yields an upper bound, and the
relaxed solution, which yields a lower bound. For f = 0.2 the algorithm finds the global
minimum and converges in 280 steps.

In terms of precision, progNatalie++ and Flan yield the best over-
all performance. Both of these methods clearly outperform their counterparts
Flan0 and progNatalie that do not infer the underlying network. In terms
of recall, Natalie and progNatalie++ obtain the best performance, par-
ticularly with higher f valuer. All of these methods clearly outperform Iso-
RankN when f is sufficiently large.

We also study the scenario that we have some prior knowledge about the
number of entities, 100, allowing us to employ cFlan. The results show that
by setting the constraint on the number of entities above or below the true
number, we can either improve precision or improve recall, respectively. This
observation can be leveraged in the case that one of the measures is more
important than the other. Although, it is possible to obtain a higher precision
or recall compared to cFlan by carefully selecting f , in overall, cFlan works
rather robustly, providing good alignments without having to fine-tune f .

Finally, in the bottom-middle plot of Figure 2, we show the duality gaps
for all the methods except for the progressive ones since they solve several
alignment problems and hence do not provide a single duality gap value. The
gaps are relatively small compared to the total number of variables, 2 800, but
we can notice that especially for Flan0, the duality gap increases with f .
Figure 3 shows two examples on how the duality gap evolves when using
Flan0. For Flan, the gaps are smaller, which shows that by updating the
adjacency matrix B and solving the optimization problem again the problem
becomes easier and the Lagrangian relaxation tighter.

5.2 Aligning social networks

The social network alignment problem refers to the problem of finding match-
ing users across different social networks, such as Facebook and Twitter. This
problem points out privacy concerns as identifying a person’s user handles

22 Eric Malmi et al.

Table 1 The CS-Aarhus multiplex dataset before and after removing some people to have
only partially overlapping networks. The last row shows the number of distinct vertices after
combining the datasets.

Method # of vertices # of edges Used # of vertices Used # of edges

Lunch 60 193 40 85
Facebook 32 124 32 124
Co-author 25 21 25 21

Leisure 47 88 40 64
Work 60 194 40 85

Total 61 620 60 379

across multiple service can lead to highly increased user profiling accuracy.
However, it also comes with useful applications—for instance, a social net-
working service can provide helpful friend suggestions for a new user if it can
identify the user’s profile in another service.

5.2.1 Data

We study the multiplex dataset from Aarhus University [21]. The dataset
contains five networks between the employees of the Department of Computer
Science. Table 1 shows statistics about these networks.

All attributes of the vertices have been anonymized but the true align-
ment of users is known through user IDs. We make two modifications to the
dataset. First, we select at most 40 users from each network in order to make
the alignment problem more challenging by having only partially overlapping
networks. Second, we sample a name label for each user ID so that each label is
shared by three user IDs on average. Candidate entities are formed by taking
the vertices with the same label.

An example of a social network alignment problem is presented in Figure 4
where each name label is assigned a distinct color.

5.2.2 Results

Figure 5 shows the results for the social network experiment. The relative per-
formance of the methods is similar to the previous experiment. However, this
time the precision difference between progNatalie++ and Flan is higher.
Precision of IsoRankN is not shown in the figure to make the differences
between the other methods more visible but it is always between 0.34 and
0.40.

5.3 Aligning family trees

Services like Ancestry.com and MyHeritage attract millions of paying sub-
scribers who upload their ancestry information to the service, trying to find

Lagrangian relaxations for multiple network alignment 23

G1 (Lunch) G2 (Facebook) G3 (Co-author)

G4 (Leisure) G5 (Work) Entity graph

Fig. 4 An instance of the social network alignment problem. Vertices can only be aligned
to other vertices with the same color. Entity graph depicts the set of underlying entities and
edges between them.

new relatives to add to their family tree. These family trees (or directed acyclic
graphs to be more precise) are prone to error since they are constructed based
on noisy historical records, which are often challenging to interpret. Further-
more, they overlap only partially since each genealogist typically starts to
expand their own tree so that it is connected to others only after going back a
sufficient number of generations. Therefore, network alignment methods seem
to be ideal tools for aggregating family trees from different users. However,
apart from two recent works [19, 22], we are not aware of previous published
work on applying network alignment methods on genealogical data, which is
the aim of this experiment.

5.3.1 Data

We have obtained a family tree containing 64 208 people constructed by an
individual genealogical researcher in Finland. To be able to have a ground
truth to compare against, we take this tree as the underlying entity graph and
sample subgraphs of it to be aligned.

First, we sample 10 subgraphs as follows. We start by picking a seed person
and then doing random walk until 100 distinct people have been discovered.

Second, from the different attributes associated with each person, we con-
sider only the first name, last name, and birth year in this experiment. Birth
year is corrupted by rounding it to the nearest ten. For the first and the last
name, we use lists of alternative spellings of names obtained from the Ge-
nealogical Society of Finland. The name of each person found on these lists is

24 Eric Malmi et al.

0 1 2 3 4 5

f

0.50

0.55

0.60

0.65

P
re

ci
si

on

0 1 2 3 4 5

f

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
ec

al
l

0 1 2 3 4 5

f

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
1

sc
or

e

0 1 2 3 4 5

f

50

75

100

125

150

#
of

en
ti

ti
es

progNatalie

progNatalie++

Natalie

FLAN0

FLAN

cFLAN 50

cFLAN 61

cFLAN 70

IsoRankN0 1 2 3 4 5

f

0

20

40

60

D
u

al
it

y
ga

p

Fig. 5 Aligning the layers of a multiplex graph with randomized usernames. On average,
there are three persons with a duplicate name.

randomly replaced by one of its alternative spellings. For instance, the alter-
native spellings for name Jean are Jan, Jans, Janne, and Jannes.

When selecting candidate entities for each individual, we find people from
other trees born in the same decade and select up to 5 people with the most
similar names. Name similarity is computed as the average of the Jaro–Winkler
string similarity [28] of the first names and last names. The Jaro–Winkler
similarity is a popular choice for de-duplicating name records.

Lagrangian relaxations for multiple network alignment 25

0 1 2 3

f

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on

0 1 2 3

f

0.0

0.2

0.4

0.6

0.8

R
ec

al
l

0 1 2 3

f

0.2

0.4

0.6

0.8

F
1

sc
or

e

0 1 2 3

f

600

700

800

900
#

of
en

ti
ti

es

progNatalie

progNatalie++

Natalie

FLAN0

FLAN

cFLAN

Unary

IsoRankN
0 1 2 3

f

0

20

40

60

D
u

al
it

y
ga

p

Fig. 6 Aligning family trees, varying the cost f of opening an entity.

5.3.2 Results

Now that the vertex similarities are not constant for each candidate match,
varying g could potentially change the results. However, for simplicity, we
again set g = 0.5 and focus on studying parameter f . The alignment results
are shown in Figure 6.

This time also Flan0 and progNatalie yield a good performance since
the edges of the input graphs have not been corrupted so updating B does not
provide any significant improvements. Comparing cFlan with other methods,
we observe that unless the user is able to set f between 0.5 and 1.5, cFlan
obtains the highest F1 score. The parameter Ne has been set by counting the
true number of entities using the ground truth data. In practice, when the

26 Eric Malmi et al.

10 20 30

Number of graphs
(100 people per graph)

0

250

500

750

1000

1250

1500

T
im

e
(s

ec
)

progNatalie

progNatalie++

Natalie

FLAN0

FLAN

cFLAN

Unary

IsoRankN

0 500 1000

Number of people per graph
(4 graphs)

0

2000

4000

6000

8000

10000

T
im

e
(s

ec
)

Fig. 7 Running times of the studied algorithms on family tree data.

ground truth is not available, we could be able to estimate Ne, for example,
based on census records by counting how many people used to live in the area
that the family trees cover.

In this experiment, we also included method Unary which aligns vertices
only based on attribute similarities and cost f for leaving a vertex unaligned.
The performance of this method is in overall the lowest after IsoRankN which
suggests that it is, indeed, important to consider also the structure of the
networks when aligning family trees.

5.4 Scalability

Finally, we study the running times of the different alignment methods. We
use family trees as the dataset, varying the number of graphs and the number
of people per graph. The results averaged over 10–30 random initializations of
the graphs are shown in Figure 7.

First, we notice that Flan and cFlan have the highest running times
which is natural as they both solve the alignment problem up to five times,
updating B between the runs. Their running times are not, however, five times
higher compared to Flan0, which can be explained by (i) the alternating op-
timization sometimes converging (i.e. returning the exact same solution com-
pared to the previous iteration) in less than five iterations, and (ii) the problem
getting easier with the updated and presumably more accurate B matrices,
thus leading to a faster convergence of the subgradient optimization.

Second, when aligning four graphs with 1 400 vertices each, the running
time is almost three hours with Flan, suggesting that the current Python
implementation of Flan would not be scalable enough for input graphs with
104 vertices or more. However, with a more optimized implementation one
could expect significant speedups. For instance, a Matlab implementation of
the pairwise Natalie,5 which heavily uses matrix operations and is written

5 The implementation is available at https://www.cs.purdue.edu/homes/dgleich/codes/
netalign/ and has been used in [3] and in [22].

Lagrangian relaxations for multiple network alignment 27

partly in C++, solves three pairwise family tree alignment problems in 5.1 sec-
onds, whereas our implementation of progNatalie, which also solves three
pairwise problem when the number of input graphs is four, runs in 1 050 sec-
onds for family trees with 1 400 vertices. Thus our implementation is over 200
times slower.

Third, we notice that the running times grow superlinearly when increas-
ing the number of people per graph. Although the number of vertices grows
linearly, the complexity of the algorithm is superlinear since it requires solving
a bipartite matching problem which takes O

(
n3
)

using the Hungarian algo-
rithm. Nevertheless, the running times do not appear to grow exponentially
despite the problem being NP-hard.

6 Conclusions

We formalized the multiple network alignment problem using a novel extension
of the facility location problem. The problem is NP-hard, but we were able to
obtain good approximate solutions using a Lagrangian relaxation approach,
called Flan, which also provides bounds on the quality of a solution.

A practical advantage of Flan is that it has an option to specify the num-
ber of entities. This allows Flan to work robustly without any other ground
truth data which would typically be needed to fine-tune the parameters of a
network alignment method via cross-validation before applying the method.
This can be a significant advantage when solving a new problem instance
where ground truth data is unavailable. Furthermore, in addition to aligning
the input networks, Flan infers the underlying entity network.

We also presented and evaluated three multiple-network extensions to Na-
talie, which is a state-of-the-art pairwise network alignment method. A pro-
gressive extension with edge updates (progNatalie++) was shown to pro-
vide a good experimental performance.

As a practical guideline for solving multiple network alignment problems,
we recommend first trying out progNatalie++, which is computationally
less expensive than Flan since it does not consider a single large problem
but decomposes it into multiple, smaller pairwise alignment problems. How-
ever, if prior information on the number of entities, i.e., the number of distinct
elements in all the input graphs together, is available, then Flan is recom-
mended. For instance, in the case of family trees, such prior information could
be possible to extract from separate census records. Finally, if the main goal is
to achieve a high recall, it is recommended to use Natalie with a high value
of f parameter, which yields lower F1 scores compared to progNatalie++
and Flan but often achieves the highest recall.

Acknowledgements The authors are grateful to Pekka Valta and the Genealogical Society
of Finland for providing the family tree dataset, to Jukka Suomela for useful discussions on
Flan, to Gunnar W. Klau for his advice on extending Natalie to multiple networks, and
to the anonymous reviewers for their constructive comments. This work was supported by
Academy of Finland project “Nestor” (286211).

28 Eric Malmi et al.

References

1. Althaus, E., Canzar, S.: A Lagrangian relaxation approach for the multiple sequence
alignment problem. Journal of Combinatorial Optimization 16(2), 127–154 (2008)

2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

3. Bayati, M., Gleich, D.F., Saberi, A., Wang, Y.: Message-passing algorithms for sparse
network alignment. ACM Transactions on Knowledge Discovery from Data (TKDD)
7(1), 3 (2013)

4. Bezdek, J.C., Hathaway, R.J.: Convergence of alternating optimization. Neural, Parallel
& Scientific Computations 11(4), 351–368 (2003)

5. Bhattacharya, I., Getoor, L.: Collective entity resolution in relational data. ACM Trans-
actions on Knowledge Discovery from Data (TKDD) 1(1), 5 (2007)

6. Christen, P.: Data matching: concepts and techniques for record linkage, entity resolu-
tion, and duplicate detection. Springer Science & Business Media (2012)

7. Christen, P., Vatsalan, D., Fu, Z.: Advanced record linkage methods and privacy aspects
for population reconstruction—a survey and case studies. In: Population Reconstruc-
tion, pp. 87–110. Springer (2015)

8. Clark, C., Kalita, J.: A comparison of algorithms for the pairwise alignment of biological
networks. Bioinformatics 30(16), 2351–2359 (2014)

9. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern
recognition. IJPRAI 18(3), 265–298 (2004)

10. Cornuejols, G., Fisher, M.L., Nemhauser, G.L.: Location of bank accounts to optimize
float: An analytic study of exact and approximate algorithms. Management science
23(8), 789–810 (1977)

11. Efremova, J., Ranjbar-Sahraei, B., Rahmani, H., Oliehoek, F.A., Calders, T., Tuyls, K.,
Weiss, G.: Multi-source entity resolution for genealogical data. In: Population Recon-
struction, pp. 129–154. Springer (2015)

12. El-Kebir, M., Heringa, J., Klau, G.W.: Natalie 2.0: Sparse global network alignment as
a special case of quadratic assignment. Algorithms 8(4), 1035–1051 (2015)

13. Elmsallati, A., Clark, C., Kalita, J.: Global alignment of protein-protein interaction
networks: A survey. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics PP(99), 1–1 (2015). DOI 10.1109/TCBB.2015.2474391

14. Fisher, M.L.: The Lagrangian relaxation method for solving integer programming prob-
lems. Management science 27, 1–18 (1981)

15. Goga, O., Loiseau, P., Sommer, R., Teixeira, R., Gummadi, K.P.: On the reliability
of profile matching across large online social networks. In: Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 1799–1808. ACM (2015)

16. Hochbaum, D.S.: Heuristics for the fixed cost median problem. Mathematical program-
ming 22(1), 148–162 (1982)

17. Hu, J., Kehr, B., Reinert, K.: NetCoffee: a fast and accurate global alignment ap-
proach to identify functionally conserved proteins in multiple networks. Bioinformatics
p. btt715 (2013)

18. Klau, G.W.: A new graph-based method for pairwise global network alignment. BMC
Bioinformatics 10(Suppl 1), S59 (2009)

19. Kouki, P., Marcum, C., Koehly, L., Getoor, L.: Entity resolution in familial networks.
In: Proceedings of the 12th Workshop on Mining and Learning with Graphs (2016)

20. Liao, C.S., Lu, K., Baym, M., Singh, R., Berger, B.: IsoRankN: spectral methods for
global alignment of multiple protein networks. Bioinformatics 25(12), i253–i258 (2009).
DOI 10.1093/bioinformatics/btp203

21. Magnani, M., Micenkova, B., Rossi, L.: Combinatorial analysis of multiple networks.
arXiv:1303.4986 (2013)

22. Malmi, E., Terzi, E., Gionis, A.: Active network alignment: a matching-based approach.
arXiv:1610.05516 (2016)

23. Sahraeian, S.M.E., Yoon, B.J.: SMETANA: Accurate and scalable algorithm for prob-
abilistic alignment of large-scale biological networks. PLOS ONE 8(7), e67,995 (2013)

Lagrangian relaxations for multiple network alignment 29

24. Shor, N.Z.: Minimization methods for non-differentiable functions, vol. 3. Springer
Science & Business Media (2012)

25. Singh, R., Xu, J., Berger, B.: Global alignment of multiple protein interaction networks
with application to functional orthology detection. Proceedings of the National Academy
of Sciences 105(35), 12,763–12,768 (2008)

26. Singla, P., Domingos, P.: Entity resolution with markov logic. In: Proceedings of the
Sixth International Conference on Data Mining, ICDM’06, pp. 572–582. IEEE (2006)

27. Vazirani, V.V.: Approximation Algorithms. Springer (2001)
28. Winkler, W.E.: String comparator metrics and enhanced decision rules in the fellegi–

sunter model of record linkage. In: Proceedings of the Section on Survey Research
Methods, pp. 354–359. American Statistical Assn. (1990)

29. Zhai, Y., Liu, B.: Web data extraction based on partial tree alignment. In: Proceedings
of the 14th international conference on World Wide Web, pp. 76–85. ACM (2005)

30. Zhang, J., Yu, P.S.: Multiple anonymized social networks alignment. In: Proceedings of
the IEEE International Conference on Data Mining, ICDM ’15. IEEE (2015)

