The network-untangling problem:
From interactions to activity timelines

Polina Rozenshtein, Nikolaj Tatti, and Aristides Gionis

HIIT, Aalto University, Espoo, Finland
firstname.lastname@aalto.fi

Abstract. In this paper we study a problem of determining when enti-
ties are active based on their interactions with each other. More formally,
we consider a set of entities V and a sequence of time-stamped edges F
among the entities. Each edge (u,v,t) € E denotes an interaction be-
tween entities v and v that takes place at time t. We view this input as
a temporal network. We then assume a simple activity model in which
each entity is active during a short time interval. An interaction (u,v,t)
can be explained if at least one of u or v are active at time t. Our goal
is to reconstruct the activity intervals, for all entities in the network, so
as to explain the observed interactions. This problem, which we refer to
as the network-untangling problem, can be applied to discover timelines
of events from complex interactions among entities.

We provide two formulations for the network-untangling problem: (7) min-
imizing the total interval length over all entities, and (#¢) minimizing the
maximum interval length. We show that the sum problem is NP-hard,
while, surprisingly, the max problem can be solved optimally in linear
time, using a mapping to 2-SAT. For the sum problem we provide ef-
ficient and effective algorithms based on realistic assumptions. Further-
more, we complement our study with an evaluation on synthetic and
real-world datasets, which demonstrates the validity of our concepts and
the good performance of our algorithms.

Keywords: Temporal networks, complex networks, timeline reconstruc-
tion, vertex cover, linear programming, 2-SAT

1 Introduction

Data increase in volume and complexity. A major challenge that arises in many
applications is to process efficiently large amounts of data in order to synthesize
the available bits of information into a concise but meaningful picture.

New data abstractions, emerging from modern applications, require new defi-
nitions for data-summarization and synthesis tasks. In particular, for many data
that are typically modeled as networks, temporal information is nowadays readily
available, leading to temporal networks [9, 19]. In temporal networks G = (V, E),
edges describe interactions over a set of entities V. For each edge (u,v,t) € E,
the time of interaction ¢, between entities u,v € V is also available.

In this paper we introduce a new problem for summarizing temporal net-
works. The main idea is to consider that the entities of the network are active
over presumably short time intervals. Edges (interactions) of the temporal net-
work between two entities can be explained by at least one of the two entities
being active at the time of the interaction. Our summarization task is to process
the available temporal edges (interactions) and infer the latent activity intervals
for all entities. In this way, we can infer an activity timeline for the whole net-
work. To motivate the summarization task studied in this paper, consider the
following application scenario.

Example. Consider a news story unfolding over the period of several months,
or years, such as Brexit. There is a sequence of intertwined events (e.g., UK ref-
erendum, prime minister resigns, appointment of new prime minister, supreme
court decision, invoking article 50, etc.) as well as a roster of key characters who
participate in the events (e.g., Cameron, Johnson, May, Tusk, etc.). Consider
now a stream of Brexit-related tweets, as events unfold, and hashtags mentioned
in those tweets (e.g., #brexit, #remain, #ukip, #indyref2, etc.). For our pur-
poses, we view the twitter stream as a temporal network: a tweet mentioning two
hashtags hi and hy and posted at time ¢ is seen as a temporal edge (h1, ho,t).
A typical situation is that a hashtag bursts during a time interval that is as-
sociated with a main event, while it may also appear outside the time interval
in a connection with other secondary events. For instance, the peak activity for
#remain may have been during the weeks leading to the referendum, but the
same hashtag may also appear later, say, in reference to invoking article 50, by a
user who wished that EU had not voted for Brexit. The question that we ask in
this paper is whether it is possible to process the temporal network of entity in-
teractions and reconstruct the latent activity intervals for each entity (hashtags,
in this example), and thus, infer the complete timeline of the news story.

Motivated by the previous example, and similar application scenarios, we
introduce the network-untangling problem, where the goal is to reconstruct an
activity timeline from a temporal network. Our formulation uses a simple model
in which we assume that each network entity is active during a time interval.
An temporal edge (u,v,t) is covered if at least one of u or v are active at time t.
The algorithmic objective is to find a set of activity intervals, one for each entity,
so that all temporal edges are covered, and the length of the activity intervals
is minimized. We consider two definitions for interval length: total length and
maximum length.

We show that the problem of minimizing the maximum length over all ac-
tivity intervals can be mapped to 2-SAT, and be solved optimally and in linear
time On the other hand, minimizing the total interval length is an NP-hard
problem. To confront this challenge we offer two iterative algorithms that rely
on the fact that certain subproblems can be solved approximately or optimally.
In both cases the subproblems can be solved by linear-time algorithms, yielding
overall very practical and efficient methods.

We complement our theoretical results with an experimental evaluation,
where we demonstrate that our methods are capable on finding ground-truth

activity intervals planted on synthetic datasets. Additionally we conduct a case
study where it is shown that the discovered intervals match the timeline of real-
world events and related sub-events.

2 Preliminaries and problem definition

Our input is a temporal network G = (V, E), where V is a set of vertices and
FE is a set of time-stamped edges. The edges of the temporal network are triples
of the form (u,v,t), where u,v € V and t is a time stamp indicating the time
that an interaction between vertices v and v takes place. In our setting we do
not preclude the case that two vertices u and v interact multiple times. As it
is customary, we denote by n the number of vertices in the graph, and by m
the number of edges. For our algorithms we assume that the edges are given in
chronological order, if not, they can be sorted in additional O(mlogm) time.

Given a vertex u € V, we will write E(u) to be the set of edges adjacent to
vertex u, i.e., E(u) = {(u,v,t) € E}. We will also write N (u) = {v | (u,v,t) € E}
to represent the set of vertices adjacent to u, and T(u) = {¢t | (u,v,t) € E} to
represent the set of time stamps of the edges containing u. Finally, we write ¢(e)
to denote the time stamp of an edge e € F.

Given a vertex u € V and two real numbers s, and e,,, we consider the interval
I, = [Su,eu], where s, is a start time and e, is an end time. We refer to I, as
the activity interval of vertex u. Intuitively, we think of I,, as the time interval in
which the vertex u has been active. A set of activity intervals 7 = {I,}, ., one
interval for each vertex u € V', is an activity timeline for the temporal network G.

Given a temporal network G = (V, E) and an activity timeline 7" = {I.}, ¢
we say that the timeline T covers the network G if for each edge (u,v,t) € E,
we have t € I, or t € I,,, that is, when each network edge occurs at least one of
its endpoints is active.

Note that each temporal network has a trivial timeline that provides a cover.
Such a timeline, defined by I, = [min 7'(u) ,max T'(u)], may have unnecessarily
long intervals. Instead, we aim finding an activity timeline that have as compact
intervals as possible. We measure the quality of a timeline by the total duration
of all activity intervals in it. More formally, we define the total span, or sum-span,
of a timeline 7" = {I,},c by

ueV

where o(I,) = e, — S, is the duration of a single interval. An alternative way to
measure the compactness of a timeline is by the duration of its longest interval,
A = 1,).
(T) = maxo (L)
We refer to A(T) as the maz-span of the timeline 7.

Associated with the above compactness measures we define the following two
problems that we consider in this paper.

Problem 1. (MINTIMELINE) Given a temporal network G = (V, E), find a time-
line 7 = {I.},cy that covers G and minimizes the sum-span S(7).

Problem 2. (MINTIMELINE,) Given a temporal network G = (V, E) find a time-

line 7 = {I.},cy that covers G and minimizes the max-span A(T).

3 Computational complexity and algorithms

Surprisingly, while MINTIMELINE is an NP-hard problem, MINTIMELINE, can
be solved optimally efficiently. The optimality of MINTIMELINE, is a result of
the algorithm presented in Section 5. In this section we establish the complexity
of MINTIMELINE, and we present two efficient algorithms for MINTIMELINE and
MINTIMELINE o .

Proposition 1. The decision version of the MINTIMELINE problem is INP-
complete. Namely, given a temporal network G = (V, E) and a budget £, it is
NP-complete to decide whether there is timeline T* = {I,} that covers G
and has S(T*) < L.

ueV

Proof. We will prove the hardness by reducing VERTEXCOVER to MINTIME-
LINE. Assume that we are given a (static) network H = (W, A) with n vertices
W = {wy,...,w,} and a budget £. In the VERTEXCOVER problem we are asked
to decide whether there exists a subset U C W of at most ¢ vertices (|U| < ¢)
covering all edges in A.

We map an instance of VERTEXCOVER to an instance of MINTIMELINE by
creating a temporal network G = (V, E), as follows. The vertices V' consists of
2n vertices: for each w; € W, we add vertex v; and u;. The edges are as follows:
For each edge (w;,w;) € A, we add a temporal edge (v;,v;,0) to E. For each
vertex w; € W, we add two temporal edges (v;, u;, 1) and (v;, u;, 2n + 1) to E.

Let T* be an optimal timeline covering G. We claim that S(7*) < ¢ if and
only if there is a vertex cover of H with £ vertices. To prove the if direction,
consider a vertex cover of H, say U, with ¢ vertices. Consider the following
coverage: cover each u; at 2n + 1, and each v; at 1. For each w; € U, cover v;
at 0. The resulting intervals are indeed forming a timeline with a total span of /.

To prove the other direction, first note that if we cover each v; by an interval
[0,1] and each w; by an interval [2n + 1,2n + 1], then this yields a timeline 7*
covering G. The total span intervals 7* is n. Thus, S(7*) < n. This guarantees
that if 0 € I,,,, then 2n+1 ¢ I,,.,, so 2n+1 € [,,,. This implies that 1 ¢ I,,, and so
1 € I,,. In summary, if 0 € I,,,, then o(I,,) = 1. This implies that if S(7*) < ¢,
then we have at most ¢ vertices covered at 0. Let U be the set of those vertices.
Since T* is timeline covering G, then U is a vertex cover for H. a

3.1 Iterative method based on inner points

As we saw, MINTIMELINE is an NP-hard problem. The next logical question is
whether we can approximate this problem. Unfortunately, there is evidence that

such an algorithm would be highly non-trivial: we can show that if we extend
our problem definition to hyper-edges—the coverage then means that one vertex
needs to be covered per edge—then such a problem is inapproximable. This
suggests that an approximation algorithm would have to rely on the fact that
we are dealing with edges and not hyper-edges.

Luckily, we can consider meaningful subproblems. Assume that we are given
a temporal network G' = (V, E) and we also given a set of time point {my}, ¢y,
i.e., one time point m, for each vertex v € V, and we are asked whether we can
find an optimal activity timeline 7" = {I,}, . so that the interval I, of vertex
v contains the corresponding time point m,,, i.e., m, € I, for each v € V. Note
that these inner points can be located anywhere within the interval (not just,
say, in the center of the interval). This problem definition is useful when we know
one time point that each vertex was active, and we want to extend this to an
optimal timeline. We refer to this problem as MINTIMELINE,, .

Problem 3. (MINTIMELINE,,) Given a temporal network G = (V, E') and a set of
inner time points {m.,}, .y, find a timeline 7 = {I,, } o that covers G, satisfies
m, € I, for each v € V, and minimizes the sum-span S(7).

Interestingly, we can show that the MINTIMELINE,, problem can be solved
approximately, in linear time, within a factor of 2 of the optimal solution. The
2-approximation algorithm is presented in Section 4.

Being able to solve MINTIMELINE,,, motivates the following algorithm for
MINTIMELINE, which uses MINTIMELINE,,, as a subroutine: initialize m, =
(min T'(v) +max T(v))/2 to be an inner time point for vertex v; recall that T'(v)
are the time stamps of the edges containing v. We then use our approximation
algorithm for MINTIMELINE,, to obtain a set of intervals {I,} = {[sy,€u]},cy
We use these intervals to set the new inner points, m,, = (s, + €,)/2, and repeat
until the score no longer improves. We call this algorithm Inner.

3.2 Iterative method based on budgets

Our algorithm for MINTIMELINE, also relies on the idea of using a subproblem
that is easier to solve.

In this case, we consider as subproblem an instance in which, in addition
to the temporal network G, we are also given a set of budgets {b,} of interval
durations; one budget b, for each vertex v. The goal is to find a timeline 7 =
{I},cy that covers the temporal network G and the length of each activity
interval I, is at most b,. We refer to this problem as MINTIMELINE;.

Problem 4. (MINTIMELINE,) Given a temporal network G = (V, E) and a set
of budgets {b,},cy, find a timeline 7 = {I,},. that covers G and satisfies
o(ly) < b, for each v € V.

Surprisingly, the MINTIMELINE;, problem can be solved optimally in linear
time. The algorithm is presented in Section 5. Note that this result is compatible
with the NP-hardness of MINTIMELINE, since here we know the budgets for

individual intervals, and thus, there are an exponential number of ways that we
can distribute the total budget among the individual intervals.

We can now use binary search to find the optimal value A(T). We call
this algorithm Budget. To guarantee a small number of binary steps, some
attention is required: Let T = t1,...,t, be all the time stamps, sorted. As-
sume that we have L, the largest known infeasible budget and U, the small-
est known feasible budget. To define a new candidate budget, we first define
W(i) ={t; —t; | L <t; —t; < U}. The optimal budget is either U or one of the
numbers in W (). If every W (i) is empty, then the answer is U. Otherwise, we
compute m(z) to be the median of W (i), ignore any empty W (2). Finally, we test
the weighted median of all m(i), weighted by |W(%)|, as a new budget. We can
show that at each iteration > |W(i)| is reduced by 1/4, that is, only O(logm)
iterations is needed. We can determine the medians m(i) and the sizes |W(i)|
in linear time since T is sorted, and we can determine the weighted median in
linear time by using a modified median-of-medians algorithm. This leads to a
O(mlogm) running time. However, in our experimental evaluation, we use a
straightforward binary search by testing (U + L)/2 as a budget.

4 Approximation algorithm for MinTimeline,,

In this section we design a 2-approximation linear-time algorithm for the MIN-
TIMELINE,, problem. As defined in Problem 3, our input is a temporal network
G = (V,E) and a set of interior time points {m,}, . As before, T'(v) denotes
the set of time stamps of the edges containing vertex v.

Consider a vertex v and the corresponding interior point m,. For a time
point ¢ we define the peripheral time stamps p(t;v) to be the time stamps that
are on the other side of ¢ than m,,,

{seTW)|s>t} ift>m,,
p(tiv) =< {se€ Tw)|s<t} ift<m,,
T(v) if t =m,,.

Our next step is to express MINTIMELINE,,, as an integer linear program. To do
that we will define a variable z, for each vertex v € V and time stamp ¢ € T'(v).
Instead of going for the obvious construction, where x,; = 1 indicates that v is
active at ¢, we will do a different formulation: in our program x,; = 1 indicates
that t is either the beginning or the end of the active region of v. It follows that
the integer program

min Z [t — my|Tot,

v,t
such that Z Tys + Z ZTys > 1, for all (u,v,t) € E
sep(vst) s€p(ust)

solves MINTIMELINE,,,. Naturally, here we also require that z,; € {0,1}. Min-
imizing the first sum corresponds to minimizing the sum-span of the timeline,

while the constraint on the second sum ensures that the resulting timeline cov-
ers the temporal network. Note that we do not require that each vertex should
have exactly one beginning and one end, however, the minimality of the optimal
solution ensures that this constraint will be satisfied, too.

Relaxing the integrality constraint and considering the program as linear
program, allows us to write the dual. The variables in the dual can be viewed as
positive weights o, on the edges, with the goal of maximizing the total sum of
these weights.

To express the constraints on the dual, let us define an auxiliary function
h(v,t,s) as the sum of the weights of adjacent edges between ¢ and s,

h(v,t,s) = Z {a. | e € E(v), t(e) is between s and t},

where, recall that, F(v) denotes the edges adjacent to v and t(e) denotes the
time stamp of edge e € E. The dual can now be formulated as

max Z ae, such that h(v,t,my) <|t—m,|, forallv eV, t € T(v),
ecE

that is, we maximize the total weight of edges such that for each vertex v and
for each time stamp t, the sum of adjacent edges is bounded by [t — m,|.

We say that the solution to dual is mazimal if we cannot increase any edge
weight a, without violating the constraints. An optimal solution is maximal but
a maximal solution is not necessarily optimal.

Our next result shows that a maximal solution can be used to obtain a 2-
approximation dynamic cover.

Proposition 2. Consider a mazimal solution . to the dual program. Define a
set of intervals T = {I,} by I, = [min X,,, max X,,|, where

Xy ={m,}U{t € T(w) | h(v,t,my) = [t —myl}.
Then T is a 2-approximation solution for the problem MINTIMELINE,,.

Proof. We first show that a maximal dual solution is a feasible timeline. Let
e = (u,v,t) be a temporal edge. If p(t;v)N X, =0 and p(¢;u)N X, = 0, then we
can increase the value of a,. without violating the constraints, so the solution is
not maximal. Thus ¢ € I,, U I,,, making 7 a feasible timeline.

Next we show that the resulting solution 7 is a 2-approximation to MIN-
TIMELINE,,. Write 2, = min{X,} and y, = max{X,}. Let 7* be the optimal
solution. Then

S(T) = Z |xv - mvl + |yv - mvl = Z h(v,xv,mv) + h(v7yv7m'u)

veV veV
§Z Z ae:2Zae§2S(’T*),
veEV e€ E(v) eck

where the second equality follows from the definition of X, the first inequality
follows from the fact that a. > 0, and the last inequality follows from primal-
dual theory. This proves the claim. ad

We have established that as long as we can obtain a maximal solution for the
dual, we can extract a timeline that is 2-approximation. We will now introduce
a linear-time algorithm that computes a maximal dual solution. The algorithm
visits each edge e = (u,v,t) in chronological order and increases o, as much as
possible without violating the dual constraints. To obtain a linear-time complex-
ity we need to determine in constant time by how much we can increase a,. The
pseudo-code is given in Algorithm 1, and the remaining section is used to prove
the correctness of the algorithm.

Algorithm 1: Maximal, yields 2-approximation to MINTIMELINE,,.

bv] +— oo for v € V;
alv] « 0 for v € V;
foreach e = (u,v,t) € E in chronological order do
e min{z(u),z(v)} ; {see Eq. (2)}
if ¢ < m, then b[v] < min{b[v] — ae,my —t — e} ;
else afv] - a[v] + ae ;
if t < my then bfu] < min{b[u] — ae,my —t — e} ;
else afu] + alu] + ae ;

Let us enumerate the edges chronologically by writing e; for the i-th edge,
and let us write a; to mean «.,. We will also write ¢; for the time stamp of e;.
Finally, let us define k, to be the smallest index of an edge (u,v,t) with ¢ > m,,,
and o, to be the largest index of an edge (u,v,t) with ¢t < m,,.!

For simplicity, we rewrite the dual constrains using indices instead of time
stamps. Given two indices ¢ < j, we slightly overload the notation and we write

h(v,i,j) = Z{ozg | ee € E(v), £is between i and j}.
The dual constraints can be written as
h(v,i,00) < |t; —my|, if i <ky, and h(v,i, k) <|t; —myl, if i >k,. (1)

Each dual constraint is included in these constraints. Eq. (1) may also contain
some additional constraints but they are redundant, so the dual constraints hold
if and only if constraints in Eq. (1) hold.

As the algorithm goes over the edges, we maintain two counters per each
vertex, a[v] and b[v]. Let e; = (u,v,t) be the current edge. The counter a[v] is
maintained only if ¢ > m,, and the counter b[v] is maintained if ¢ < m,. Our
invariant for maintaining the counters a[v] and b[v] is that at the beginning of
j-th round they are equal to

a[v] = h(v,ky,5) and blv] = rglin{te —my — h(v, 0, — 1)}
<J

The following lemma tells us how to update «; using a[v] and b[v].

L If there is an edge exactly at m.,, then k, = 0,.

Lemma 1. Assume that we are processing edge e; = (u,v,t). We can increase
o by at most

min{z(u),z(v)}, where (2)

(w) = t —my — afw] if 2 ko,
= min{m,, — t,blw]} if j < ky.

Proof. We will prove this result by showing that a, < z(v) if and only if all
constraints in Eq. (1) related to v are valid. Since the same holds also for u the
lemma follows. We consider two cases.

First case: j < k. In this case we have z(v) = min{m,,—t, bjw]|} = miny<;{t,—
my, — h(v, £, 0,)}, before increasing «;. This guarantees that if a; < z(v), then
h(v,£,0,) < |ty —my|, for every £ < j. Moreover, when o; = z(v) one of these
constraints becomes tight. Since these are the only constraints containing o;, we
have proven the first case.

Second case: j > k,. If ¢ < j, the sum h(v,?,k,) does not contain «;, so
the corresponding constraint remains valid. If £ > j, then the corresponding
constraint is valid if and only if h(v, j, k,) < |t; — m,|. This is because ay = 0
for all ¢ > j. But z(v) corresponds exactly to the amount we can increase «; so
that h(v, j, k,) = |t; — m,|. This proves the second case. O

Our final step is to how to maintain a[v] and b[v]. Maintaining a[v] is trivial:
we simply add «; to alv]. The new b[v] is equal to

rEI1<in{tg —my — h(v,4,j)} = min{b[v] — oj, m, —t — j}.
<j

Clearly the counters a[v] and b[v] and the dual variables a. can be maintained
in constant time per edge processed, making Maximal a linear-time algorithm.

5 Exact algorithm for MinTimeline,

In this section we develop a linear-time algorithm for the problem MINTIME-
LINE,. Here we are given a temporal network G, and a set of budgets {b,} of
interval durations, and all activity intervals should satisfy o(I,) < b,.

The idea for this optimal algorithm is to map MINTIMELINE; into 2-SAT.
To do that we introduce a boolean variable z,; for each vertex v and for each
timestamp t € T'(v). To guarantee the solution will cover each edge (u,v,t) we
add a clause (zy¢ V x4t). To make sure that we do not exceed the budget we
require that for each vertex v and each pair of time stamps s,t € T(v) such
that |s —t| > b, either x,5 is false or z,; is false, that is, we add a clause
(mys V 72yt). It follows immediately, that MINTIMELINE; has a solution if and
only if 2-SAT has a solution. The solution for MINTIMELINE; can be obtained
from the 2-SAT solution by taking the time intervals that contain all boolean
variables set to true. Since 2-SAT is a polynomially-time solvable problem [1],
we have the following.

Proposition 3. MINTIMELINE, can be solved in a polynomial time.

10

Solving 2-SAT can be done in linear-time with respect to the number of
clauses [1]. However, in our case we may have O(m2) clauses. Fortunately, the
2-SAT instances created with our mapping have enough structure to be solvable
in O(m) time. This speed-up is described in the remainder of the section.

Let us first review the algorithm by Aspvall et al [1] for solving 2-SAT. The
algorithm starts with constructing an implication graph H = (W, A). The graph
H is directed and its vertex set W = P U has a vertex p; in P and a vertex g¢;
in @ for each boolean variable x;. Then, for each clause (x; V x;), there are two
edges in A: (¢; — p;) and (g; — p;); The negations are handled similarly.

In our case, the edges A are divided to two groups A; and As. The set
A; contains two directed edges (gut — put) and (que — pot) for each edge
e = (u,v,t) € E. The set Ay contains two directed edges (p,t — ¢us) and
(pvs = qut) for each vertex v and each pair of time stamps s,t € T'(v) such that
|s — t| > b,. Note that A; goes from @ to P and Ay goes from P to Q. Moreover,
|A1| € O(m) and |4s] € O(m?).

Next, we decompose H in strongly connected components (SCC), and order
them topologically. If any strongly connected component contains both p,; and
Gut, then we know that 2-SAT is not solvable. Otherwise, to obtain the solution,
we start enumerate over the components, children first: if the boolean variables
corresponding to the vertices in the component do not have truth assignment?
then we set x,; to be true if p,; is in the component, and x,; to be false if ¢,; is
in the component

The bottleneck of this method is the SCC decomposition, which requires
O(|W| + |A]) time, and the remaining steps can be done in O(|W|) time. Since
|[W| € O(m), we need to optimize the SCC decomposition to perform in O(m)
time. We will use the algorithm by Kosajaru (see [10]) for the SCC decompo-
sition. This algorithm consists of two depth-first searches, performing constant-
time operations on each visited node. Thus, we need to only optimize the DFS.

To speed-up the DFS, we need to design an oracle such that given a vertex
p € P it will return an unwvisited neighboring vertex ¢ € @ in constant time. Since
|Q| € O(m), this guarantees that DFS spends at most O(m) time processing
vertices p € P. On the other hand, if we are at ¢ € @, then we can use the
standard DFS to find the neighboring vertex p € P. Since |A;| € O(m), this
guarantees that DFS spends at most O(m) time processing vertices ¢ € Q.

Next, we describe the oracle: first we keep the unvisited vertices @ in lists
L[v] = (gut € Q; ot is not visited) sorted chronologically. Assume that we are at
Dyt € P. We retrieve the first vertex in £[v], say qys, and compare if |s — ¢| > b,.
If true, then ¢, is a neighbor of p,:, so we return q,s. Naturally, we delete g,
from £[v] the moment we visit g,s. If |s —¢| < by, then test similarly the last
vertex in £[v], say qys . If both ¢us and g,s are non-neighbors of p,;, then, since
£[v] is sorted chronologically, we can conclude that ¢[v] does not have unvisited
neighbors of p,:. Since p,+ does not have any neighbors outside £[v], we conclude
that p,: does not have any unvisited neighbors.

2 Due to the property of implication graph, either all or none variables will be set in
the component.

11

Using this oracle we can now perform DFS in O(m) time, which in turns
allows us to do the SCC decomposition in O(m) time, which then allows us to
solve MINTIMELINE;, in O(m) time.

6 Related work

To the best of our knowledge, the problem we consider in this paper has not
been studied before in the literature. In this section we review briefly the lines
of work that are most closely related to our setting.

Vertex cover. Our problem definition can also be considered a temporal version
of the classic vertex-cover problem, one of 21 original NP-complete problems in
Karp’s seminal paper [12]. A factor-2 approximation is available for vertex cover,
by taking all vertices of a maximal matching [6]. Slightly improved approxima-
tions exist for special cases of the problem, while assuming that the unique
games conjecture is true, the minimum vertex cover cannot be approximated
within any constant factor better than 2 [13]. Nevertheless, our formulation can-
not be mapped directly to the static vertex-cover problem, thus, the proposed
solutions need to be tailor-made for the temporal setting.

Modeling and discovering burstiness on sequential data. Modeling and
discovering bursts in time sequences is a very well-studied topic in data min-
ing. In a seminal work, Kleinberg [14] discovered burstiness using an exponen-
tial model over the delays between the events. Alternative techniques are based
on modeling event counts in a sliding window: Ihler et al [11] modeled such a
statistic with Poisson process, while Fung et al [5] used Binomial distribution.
Additionally, Zhu and Shasha [26] used wavelet analysis, Vlachos et al [23] ap-
plied Fourier analysis, and He and Parker [8] adopted concepts from Mechanics
to discover burst events. Finally, Lappas et al [15] propose discovering maximal
bursts with large discrepancy.

A highly related problem for discovering bursty events is segmentation. Here
the goal is to segment the sequence in k coherent pieces. One should expect
that time periods of high activity will occur in its own segment. If the overall
score is additive with respect to the segments, then this problem can be solved
in O(n%) time [3]. Moreover, under some mild assumptions we can obtain a
(1 4 €) approximation in linear time [7].

The difference of all these works with our setting is that we consider net-
worked data, i.e., sequences of interactions among pairs of entities. By assuming
that for each interaction only one entity needs to be active, our problem becomes
highly combinatorial. In order to counter-balance this increased combinatorial
complexity, we consider a simpler burstiness model than previous works: in par-
ticular, we assume that each entity has only one activity interval. Extending
our definition to more complex activity models (multiple intervals per entity, or
multiple activity levels) is left for future work.

Event detection in temporal data. As the input to our problem is a se-
quence of temporal edges, our work falls in the broad area of mining temporal

12

networks [9, 19]. More precisely, the network-untangling problem can be consid-
ered an event-detection problem, where the goal is to find time intervals and/or
sets of nodes with high activity. Typical event-detection methods use text or
other meta-data, as they reveal event semantics. One line of work is based of
constructing different types of word graphs [4, 18, 24]. The events are detected
as clusters or connected components in such graphs and temporal information
is not considered directly.

Another family of methods uses statistical modeling for identify events as
trends [2, 17]. Leskovec et al. [16] and Yang et al. [25] consider spreading of
short quotes in the citation network of social media. These methods rely on
clustering “bursty” keywords. Our setting is considerably different as we focus on
interactions between entities and explicitly model entity activity by continuous
time intervals.

Information maps. From an application point-of-view, our work is loosely re-
lated with papers that aim to process large amounts of data and create maps
that present the available information in a succinct and easy-to-understand man-
ner. Shahaf and co-authors have considered this problem in the context of news
articles [21, 22] and scientific publications [20]. However, their approach is not
directly comparable to ours, as their input is a set of documents and not a tem-
poral network, and their output is a “metro map” and not an activity timeline.

7 Experimental evaluation

In this section we empirically evaluate the performance of our methods.

Setup. We first test the algorithms on synthetic datasets and then present a
case study on a real-world social-media dataset.

For the Synthetic dataset, we start by generating a static background net-
work of n = 100 vertices with a power law degree distribution (we use the
configuration model with power law exponent set to 2.0). Then for every vertex
we generate a ground-truth activity interval and we add 100 interactions with
random neighbors. These interactions are placed consequently with unit time
distance, and thus each activity interval has length of £ = 99 time units. We
place the ground-truth activity intervals on a timeline in an overlapping man-
ner, and we control their temporal overlap using a parameter p € [0,1]. When
p = 0, all intervals are disjoint and every timestamp has only one interaction,
thus, it should be easy to find the correct activity intervals. When p = 1, all
intervals are merged into one, and every time stamp has 100 of different interac-
tions, so there is a large number of solutions whose score is even better than the
ground-truth solution. In all cases Synthetic has 10000 interactions in total.

For the case study we use a dataset collected from Twitter. The dataset
records activity of Twitter users in Helsinki during 12.2008-05.2014. We con-
sider only tweets with more than one hashtag (666487 tweets) and build the

3 The implementation of all algorithms and scripts used for the experimental
evaluation is available at https://github.com/polinapolina/the-network-untangling-
problem.

13

— Inner
0.9 s s
o 2. 52 --- Budget
0.8 S N
g 2 £ 20
207 e %
1] S £ 19
£06 e ¢
bl F=1 S 10
0.5 2 =
— Inner 0. <]
. o
o4t ... Budget =
03 o, 1
95 06 07 08 09 L0 5 06 07 08 09 1.0 05 06 0.7 08 0.9 1.0
(a) percent of overlaps (b) percent of overlaps (C) percent of overlaps

Fig.1: Output of both algorithms for different overlaps p in the ground truth
activity intervals. All values are averaged over 100 runs. (a) F-measure of cor-
rectly identifies active time-stamped vertices, (b) L, total activity interval length
divided by true total activity interval length, (¢) M, maximum activity interval
length divided by true maximum activity interval length.

55 50,
0.98 550 S 45)
j= =
0.96 S 49 S 40
= 4.0 <
Zo.o4] 35
© S 3.5 £
s 8
3092 ° o 30
2 3.0 g
090}, B 25 ® 25
T K]
0.88 < 5 o 20
0.8 1. 1
T 2 3 4 5 6 7 8 9 10 T 2 4 5 6 7 8 9 10 T 2 3 4 5 6 7 8 9 10
(a) iterations (b) iterations (C) iterations

Fig.2: Convergence of Maximal algorithm. Overlap p is set to 0.5, values are
averaged over 100 runs. (a) Precision, Recall and F-measure, (b) L, relative
total length, (c¢) M, relative length of the maximum interval.

co-occurrence network of these hashtags: vertices corresponding to hashtags and
time-stamped edges corresponding to a tweet in which two hashtags are men-
tioned. The temporal network contains 304 573 vertices and 3292699 edges.

Results from synthetic datasets. To evaluate the quality of the discovered
activity intervals we compare the set of discovered intervals with the ground-
truth intervals. For every vertex u we define precision P, = IET‘, where TP,
is the set of correctly identified moments of activity of u, and F, is the set of all
discovered moments of activity of u. Similarly, we define the recall for vertex wu
as R, = |‘TAIZT‘ , where A, is the set of true moments of activity of u. We calculate
the average precision and recall: P = ﬁ > ey Puand R = ﬁ > wecy Ru; and
report the F-measure F = %.

In addition to F-measure, we calculate the relative total length L and the
relative maximum length M. Here, L is the total length of the discovered intervals
divided by the ground-truth total length of the activity intervals. Similarly, M
is the maximum length of the discovered intervals divided by the true maximum
length of activity intervals.

We test both algorithms on the Synthetic dataset with varying overlap pa-
rameter p. The results are shown in Figure 1. All measures are averaged over

14

winwin| [1 [
xbone | 1
yandex| [1 1 n
webdesign 1

vision I I
walkbase
winner [} I I
younited | " 1]
zenrobotics| |
slush13 e

nokiaegm
illuusioy

Eureview [} |
nuijankopautus; ’
I \
1

here;
kirkkonumm | 1
nokia

tyopaikkal I pe— 'l 1 1
elop
nordisf [}] |
mtvema f "

bestvideo, 1
brony | ——— |
emaazin 1

ema201

exo|
bestpop
emazing|

worldwideactexo, F o
voteaustinmahone
01.11 04.11 07.11 10.11 13.11 16.11 19.11 22.11 25.11 28.11 30.11

Fig. 3: Part of the output of Maximal algorithm on Twitter dataset for Novem-
ber’13. Intervals of activity of co-occurring tags, seeded from hashtags #slushi13,
#mtvema and #nokiaemg.

100 runs. Note that in the Synthetic dataset all activity intervals have the same
length, thus, if during binary search the correct value of budget is found, then
automatically all vertices receive the correct budget.

Figure 1.a demonstrates that for algorithm Maximal the F-measure is typi-
cally high for all values of the overlap parameter, but drops, when p increases.
On the other hand, Figure 1.b shows that algorithm Maximal takes advantage
of the overlaps and for large values of p it finds solutions that have better score
than the ground truth. This however, leads to decrease in accuracy. As for the
maximum interval length, shown in Figure 1.c, algorithm Maximal is not de-
signed to optimize it and it typically finds few large intervals, while keeping the
total length low. Budget finds solutions of correct total and maximum lengths
on the Synthetic dataset for all values of overlap parameter p.

In Figure 2 we show how the solution of Maximal evolves during iterations
with re-initialization. After a couple of iterations the value and quality (F-
measure, precision and recall) of the solution are improved significantly. During
the next iterations the value of the solution does not change, but the quality
keeps increasing. The method converges in less than 10 iterations.

Scalability. Both Budget and Inner use linear-time algorithms in their inner
loops and the number of needed outer loop iterations is small. This means that
our methods are scalable. To demonstrate this, we were able to run Maximal
with a network of 1 million vertices and 1 billion interactions in 15 minutes,
despite the large constant factor due to the Python implementation.

Case study. Next we present our results on the Twitter dataset. In Figure 3 we
show a subset of hashtags from tweets posted in November 2013. We also depict
the activity intervals for those hashtags, as discovered by algorithm Maximal.
Note that for not cluttering the image, we depict only a subset of all rele-
vant hashtags. In particular, we pick 3 “seed” hashtags: #slush13, #mtvema

15

and #nokiaemg and the set of hashtags that co-occur with the “seeds.” Each
of the seeds corresponds to a known event: #slush13 corresponds to Slush’13 —
the world’s leading startup and tech event, organized in Helsinki in November
13-14, 2013. #mtvema is dedicated to MTV Europe Music Awards, held on 10
November, 2013. #nokiaemg is Extraordinary General Meeting (EGM) of Nokia
Corporation, held in Helsinki in November 19, 2013.

For each hashtag we plot its entire interval with a light color, and the dis-
covered activity interval with a dark color. For each selected hashtag, we draw
interactions (co-occurrence) with other selected hashtags using black vertical
lines, while we mark interactions with non-selected hashtags by ticks.

Figure 3 shows that the tag #slush13 becomes active exactly at the start-
ing date of the event. During its activity this tag covers many technical tags,
e.g. #zenrobotics (Helsinki-based automation company), #younited (personal
cloud service by local company) and #walkbase (local software company). Then
on 19 November, the tag #nokiaemg becomes active: this event is very narrow
and covers mentions of Microsoft executive Stephen Elop. Another large event
is occurring around 10 November with active tags #emazing, #ema2013 and
#mtvema. They cover #bestpop, #bestvideo and other related tags.

8 Conclusions

In this paper we introduced and studied a new problem, which we called net-
work untangling. Given a set of temporal undirected interactions, our goal is
to discover activity time intervals for the network entities, so as to explain the
observed interactions. We consider two settings: MINTIMELINE, where we aim to
minimize the total sum of activity-interval lengths, and MINTIMELINE,, where
we aim to minimize the maximum interval length. We show that the former prob-
lem is NP-hard and we develop efficient iterative algorithms, while the latter
problem is solvable in polynomial time.

There are several natural open questions: it is not known whether there
is an approximation algorithm for MINTIMELINE or whether the problem is
inapproximable. Second, our model uses one activity interval for each entity. A
natural extension of the problem is to consider k intervals per entity, and/or
different activity levels.

Acknowledgements. This work was supported by the Tekes project “Re:Know,”
the Academy of Finland project “Nestor” (286211), and the EC H2020 RIA
project “SoBigData” (654024).

References

[1] Aspvall B, Plass MF, Tarjan RE (1982) A linear-time algorithm for testing
the truth of certain quantified boolean formulas. IPL 14(4):195

[2] Becker H, Naaman M, Gravano L (2011) Beyond trending topics: Real-world
event identification on twitter. In: ICWSM

Bellman R (1961) On the approximation of curves by line segments using
dynamic programming. CACM 4(6)

Cataldi M, Di Caro L, Schifanella C (2010) Emerging topic detection on
twitter based on temporal and social terms evaluation. In: MDMKDD
Fung GPC, Yu JX, Yu PS, Lu H (2005) Parameter free bursty events de-
tection in text streams. In: VLDB

Gary MR, Johnson DS (1979) Computers and intractability: A guide to the
theory of NP-completeness

Guha S, Koudas N, Shim K (2006) Approximation and streaming algorithms
for histogram construction problems. TODS 31(1):396-438

He D, Parker DS (2010) Topic dynamics: An alternative model of bursts in
streams of topics. In: KDD

Holme P, Saraméki J (2012) Temporal networks. Physics reports 519(3):97—
125

Hopcroft JE, Ullman JD (1983) Data structures and algorithms, vol 175.
Addison-Wesley Boston, MA, USA:

Ihler A, Hutchins J, Smyth P (2006) Adaptive event detection with time-
varying poisson processes. In: KDD

Karp RM (1972) Reducibility among combinatorial problems. In: Complex-
ity of computer computations

Khot S, Regev O (2008) Vertex cover might be hard to approximate to
within 2 — e. JCSS 74(3)

Kleinberg J (2003) Bursty and hierarchical structure in streams. DMKD
7(4):373-397

Lappas T, Arai B, Platakis M, Kotsakos D, Gunopulos D (2009) On
burstiness-aware search for document sequences. In: KDD

Leskovec J, Backstrom L, Kleinberg J (2009) Meme-tracking and the dy-
namics of the news cycle. In: KDD

Mathioudakis M, Koudas N (2010) Twittermonitor: trend detection over
the twitter stream. In: KDD

Meladianos P, Nikolentzos G, Rousseau F, Stavrakas Y, Vazirgiannis M
(2015) Degeneracy-based real-time sub-event detection in twitter stream.
In: ICWSM

Michail O (2016) An introduction to temporal graphs: An algorithmic per-
spective. Internet Mathematics 12(4):239-280

Shahaf D, Guestrin C, Horvitz E (2012) Metro maps of science. In: KDD
Shahaf D, Guestrin C, Horvitz E (2012) Trains of thought: Generating in-
formation maps. In: WWW

Shahaf D, Yang J, Suen C, Jacobs J, Wang H, Leskovec J (2013) Information
cartography: creating zoomable, large-scale maps of information. In: KDD
Vlachos M, Meek C, Vagena Z, Gunopulos D (2004) Identifying similarities,
periodicities and bursts for online search queries. In: SIGMOD

Weng J, Lee BS (2011) Event detection in twitter. In: ICWSM

Yang J, Leskovec J (2011) Patterns of temporal variation in online media.
In: WSDM

Zhu Y, Shasha D (2003) Efficient elastic burst detection in data streams.
In: KDD

