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Abstract We study the problem of finding the Longest Common Sub-Pattern
(LCSP) shared by two sequences of temporal intervals. In particular we are
interested in finding the LCSP of the corresponding arrangements. Arrange-
ments of temporal intervals are a powerful way to encode multiple concurrent
labeled events that have a time duration. Discovering commonalities among
such arrangements is useful for a wide range of scientific fields and applica-
tions, as it can be seen by the number and diversity of the datasets we use
in our experiments. In this paper, we define the problem of LCSP and prove
that it is NP-complete by demonstrating a connection between graphs and
arrangements of temporal intervals. This connection leads to a series of inter-
esting open problems. In addition, we provide an exact algorithm to solve the
LCSP problem, and also propose and experiment with three polynomial time
and space under-approximation techniques. Finally, we introduce two upper
bounds for LCSP and study their suitability for speeding up 1-NN search.
Experiments are performed on seven datasets taken from a wide range of real
application domains, plus two synthetic datasets. Lastly, we describe several
application cases that demonstrate the need and suitability of LCSP.
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Fig. 1 Example of a sequence of five events, each occurring over a time interval. The same
event label may occur multiple times in the sequence, while several temporal relations may
occur between the event intervals.

1 Introduction

Sequences of temporal intervals, also known as event-interval sequences, have
recently attracted the attention of both the databases and data mining com-
munities. Such sequences are ubiquitous and their main characteristic is that
they consist of events that are not necessarily instantaneous but may have a
time duration. Sequences of this type appear in several application domains,
such as sign language (Papapetrou et al 2009), medicine (Kosara and Miksch
2001), geo-informatics (Pissinou et al 2001), cognitive science (Berendt 1996),
linguistics (Bergen and Chang 2005), and music informatics (Pachet et al
1996).

The main advantage of event-interval sequences is that they are a general-
ization of traditional event sequences, since they do not restrict events to be
instantaneous but they allow them to have a time duration. Hence, they are
constructed by events that may exhibit different temporal relations. Formally,
event-interval sequences can be considered as an ordered multiset of events
characterized by a label, a start, and an end time value. Event labels are al-
lowed to occur multiple times within the same sequence, since such property
is required in several application domains, such as sign language (Papapetrou
et al 2009). An example of an event-interval sequence containing five labeled
events, i.e., A (occurring twice), B, C, and D, is shown in Figure 1. Fur-
thermore, multiple events of the same label can be active simultaneously. An
example of such case would be the representation of recursion, when moni-
toring the execution of a computer program. Another example would be the
presence of groups or classes of equivalent sensors, in sensor networks, where
it is unnecessary or undesired to identify the specific sensor id.

In sign language, for instance, a sentence is constructed by events that
may correspond to grammatical and syntactic expressions, or various hand
and facial gestures. Such events have a time duration and may also occur
concurrently, hence building sequences of labeled temporal intervals. Examples
of sign language event labels include “Wh-Word”, “Lowered eyebrows”, or
“Rapid head shake”. In Figure 2 we can see an example of a Wh-question
(question starting with a word prefixed by ‘Wh’). It can be observed that event
intervals may occur concurrently exhibiting several temporal relations between
them, while the same event label, i.e., “Wh-Word”, may occur multiple times
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> Who drove the car, who? 

(Lowered eyebrows) 

( Wh - Question) 

( Wh - Word) 

time 

(Rapid head shake) (Rapid head shake) 

( Wh - Word) 
(Lowered eyebrows) 

Fig. 2 Example of a sign language event-interval sequence (Papapetrou et al 2009). The
sequence represents the phrase “Who drove the car, who?” expressed using sign language
notation. It can be seen that event labels may repeat throughout the sequence while event
intervals may occur concurrently and exhibit different types of temporal relations.

within the same sequence. As another example, consider a medical database
populated by records of patients who follow a series of medication and tests
for some time period. In such setting, an event corresponds to a prescribed
drug or a medical test. Similar to the previous example, it is again apparent
that events can also occur concurrently and over a time interval.

Recent work has focused on event-interval sequences, but has mainly con-
centrated on mining frequent patterns and association rules (Kam and Fu
2000; Ale and Rossi 2000; Papapetrou et al 2009; Mörchen 2007), mining
semi-interval partial orders (Mörchen and Fradkin 2010), or discovering re-
lationships for classification (Patel et al 2008). Despite that, it is surprising
that other important problems such as similarity search and matching have
received very limited attention.

Recently, a family of methods has been proposed for similarity search
in event-interval sequence repositories (Kostakis et al 2011; Kotsifakos et al
2013). Their key approach is to use a simplified representation for each event-
interval sequence without losing crucial temporal information about the events.
Nonetheless, all existing methods have been designed for full sequence match-
ing. In other words, they attempt to quantify the dissimilarity of two given
event-interval sequences. The difference between full-sequence matching and
LCSP is the same as that between computing the string Edit Distance and
the Longest Common Subsequence (LCS) of two strings. That is, full-sequence
matching “forces” all elements in one sequence to match with at least one ele-
ment in the other sequence. In other words, it penalizes any element mismatch
between the two sequences. On the other hand, LCSS allows for gaps in the
alignment. Hence, it is more elastic to noise since outliers cannot distort the
similarity as they are not matched.

There are many application domains where it is desirable to search for
“commonalities” between two sequences, where the main task is to extract
segments of the two sequences that are similar to each other. Such task is highly
applicable in biology, known as local alignment (Smith and Waterman 1981),
as well as in time series, e.g., LCSS (Paterson and Dancik 1994). In graphs,
the problem is known as the maximum common subgraph isomorphism. In
practice, LCSP can be used for several tasks: i) given two e-sequences S, T ,
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determine the largest pattern of intervals that appears in both, ii) given a
query e-sequence pattern q, and a larger e-sequence S, determine the extent
to which q exists in S. An alternative view on the latter is that of approximate
sub-sequence querying for sequences of event-intervals.

In the case of event-interval sequences, identifying such commonalities may
be highly beneficial in various use-case scenarios. Consider the case of sign
language classification. Using a set of known profiles that characterize the
nature or structure of various sequence samples in a database, and given a
query sequence, one could compare the unknown sequence to those profiles
to determine its class. For example, suppose we have a set of common profile
patterns for various sign language expressions, such as “Wh-questions” and
“Negations”. A very common profile, for instance, for a “Wh-question” is a
“Wh-word” overlapping with “Lowered eyebrows” and a “Rapid head shake’.
This pattern can also be seen in Figure 2. Given a new, unclassified sequence
sample, existing profiles could be used to determine the class of the new sample
by identifying commonalities between the profiles and the new sequence.

In this paper, we study the problem of identifying the Longest Common
Sub-Pattern (LCSP) between two event-interval sequences. In other words,
our goal is to identify the longest commonality between the two sequences,
expressed as patterns of event intervals sharing the same temporal relations.
An example, of LCSP is shown in Figure 3. The two event-interval sequences
S and T share the same “sub-pattern” consisting of events A, B, and C.
It becomes apparent that such pattern cannot be identified by existing full
sequence matching algorithms, as they require each event interval from one
sequence to be mapped to at least one event interval in the other sequence.

A

C
B

A

C
B

A

S

T

Fig. 3 Example of the LCSP between two event-interval sequences S and T . LCSP identifies
the longest common sub-pattern between the two sequences by effectively allowing skipping
events in the matching.

In our model, we are not concerned with the actual duration of the in-
tervals nor with the time separating any intervals. Instead we focus on the
actual combination of the intervals and their relations. This makes our mea-
sure robust to any time warping. So, the two sequences {(A, 1, 2), (B, 3, 4)}
and {(A, 10, 20), (B, 50, 100)} are considered the same (each triple denotes re-
spectively the label, start and end time of an interval). The motivation and
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rational for this is that we should expect from people who practice Sign Lan-
guage, when repeating a phrase, to consume different amounts of time for each
word and the whole utterance between different attempts; similar to when pro-
nouncing a long sentence in spoken language. In the same manner, we assume
that in robot sensor data a high-level description of a situation is derived from
the combination of underlying events. For example, the gripping mechanism
was enabled throughout the whole time that the robot’s wheels were active,
so the object was transferred successfully to the target location, in contrast to
releasing at any time point half-way through which would indicate a drop.

The reader may wonder whether this problem could be simply solved by
converting event-interval sequences to discrete event sequences, hence map-
ping the LCSP problem to the Longest Common SubSequence (LCS) problem
(Thomas H. Cormen and Stein 2001). It has been demonstrated and argued
in several existing works (Kostakis et al 2011; Papapetrou et al 2009) that
event-interval sequences cannot be directly mapped to discrete event sequences
without loss of temporal information; especially when temporal relations such
as overlaps or contains are allowed between event intervals sharing the same
label. This shortfall results in side-effects for other data mining tasks; as we
demonstrate experimentally on seven real datasets in Section 7.3, LCSP can
achieve much better performance both in terms of classification accuracy and
clustering purity.

Fig. 4 An example where mapping event-interval sequences to discrete event sequences may
cause ambiguities. By adding more intervals while maintaining the same structure in both
sequences, we demonstrate that reducing LCSP to string matching produces arbitrarily bad
results.

Next, we demonstrate that the aforementioned mapping to discrete se-
quences can produce arbitrarily bad scores irrespective of the similarity mea-
sure used. Consider the two examples shown in Figure 4, where each event-
interval sequence consists of three intervals with the same label. In the first
case (Figure 4(a)), each event interval is fully contained within the other (in
terms of duration), while in the second case (Figure 4(b)) each event interval
overlaps with all the previous. Obviously, the mapping for both sequences is
the same, i.e., {As, As, As, Ae, Ae, Ae}. This suggests that traditional methods
for discrete event sequences may fail to capture the inherent temporal struc-
ture of such sequences, and more important, they may produce arbitrarily bad
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results especially as the number of event labels increases. In the same example,
consider the case where we have infinitely many event intervals: for Figure 4(a)
each new event interval is contained within the others, while for Figure 4(b)
each new event interval overlaps with all the previous. Both event-interval se-
quences would be mapped to the same two discrete event sequences and hence
any string matching algorithm would match them fully and their longest com-
mon subsequence would be of length 2×|S| = 2×|T |, whilst in reality S and T
share no common temporal relation between their event intervals, hence their
longest common subsequence is just of length 1, i.e., event interval A.

The main contributions of this paper are summarized as follows:

– We formally define the problem of finding the Longest Common Sub-
Pattern (LCSP) between a pair of arrangements of temporal intervals.

– We prove that the LCSP problem belongs to the complexity class of NP -
hard problems, by showing that Clique can be reduced to it under a log-
space reduction. We achieve this by establishing that arrangements can be
used to encode graphs.

– We prove LCSP ∈ NP by showing a reduction to Max Clique.
– We demonstrate an exact algorithm and prove of its correctness.
– We describe a framework for the problem variation of inexact LCSP.
– We propose three policies for under-approximating (approximating from

below) hard instances of LCSP. We benchmark them in terms of running
time and accuracy (tightness).

– We propose two upper-bounds for LCSP and study their tightness and
1-NN pruning power.

– We experiment on seven real datasets taken from various domains, includ-
ing sign language, medicine, human motion, and sensor networks, and two
additional synthetic datasets.

The remainder of this paper is organised as follows: in Section 2 we sum-
marize the related work, in Section 3 we provide the necessary definitions and
the problem formulation, then in Section 4 we present the LCSP problem,
show that it is NP-hard, and present an exact algorithm for solving it. Then,
in Section 5 we present three approximations for solving the problem and in
Section 6 we propose two upper bounds for computing LCSP. Next, in Section
7 we present our experimental evaluation and in Section 8 we provide sev-
eral motivating use cases for the applicability and suitability of LCSP. Finally,
Section 9 concludes the paper and presents directions for future research.

2 Related Work

The vast majority of related research on temporal interval sequences has so
far been focusing merely on frequent pattern and association rule mining, as
opposed to similarity matching, which is the main focus of this paper. The
simplest formulation is inspired by the idea of itemset mining and mainly
considers events to be time intervals. Hence, the task at hand is to discover
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frequently occurring patterns of intervals in databases, irrespective of labels
((Lin 2003; Villafane et al 2000)). Similar approaches (Giannotti et al 2006) fo-
cus on extracting temporally annotated sequential patterns, where transitions
from one event to another have a time duration. In such scenario, intervals
correspond to the time differences between the offset (end time) and onset
(start time) of an event.

A graph-based approach (Hwang et al 2004) represents each temporal pat-
tern by considering only two types of relations between event-intervals (fol-
low and overlap), and illustrate examples from various application domains
where discovery of temporal patterns can be applied to support crucial busi-
ness decision-making. Ale and Rossi (2000) approach the concept of a temporal
interval by modeling the lifetime of an item as the time between its first and
last occurrence.

Another family of methods on temporal intervals are those that consider se-
quences of labeled temporal intervals, and extract temporal patterns in such se-
quences. A large variety of Apriori-based techniques (Kam and Fu 2000; Abra-
ham and Roddick 1999; Chen and Petrounias 1999; Höppner 2001; Höppner
and Klawonn 2001; Mooney and Roddick 2004; Laxman et al 2007) for find-
ing temporal patterns, episodes, and association rules on interval-based event
sequences have been proposed. More sophisticated methods on pattern min-
ing in sequences of temporal intervals employ enumeration trees for candidate
generation and pruning (similar to those for traditional itemset and sequential
pattern mining). Significant speedups are achieved by BFS-based and DFS-
based enumeration on these trees (Winarko and Roddick 2007; Papapetrou
et al 2009), by reducing the inherent exponential complexity of the mining
problem. A non-ambiguous temporal interval representation is presented in
(Wu and Chen 2007) that considers start and end points of event intervals,
and converts them to a sequential representation. Nonetheless, the alphabet
size (number of event labels) as well as the overall complexity of the mining
process is increased. In addition, temporal relations such as overlaps or during
between the same event label still cannot be distinguished. Furthermore, effi-
cient methods have been proposed on mining partial orders of semi-intervals
(Mörchen and Fradkin 2010) as well as closed patterns of interval-based events
has been proposed (Chen et al 2011).

Recent work on margin-closed patterns (Fradkin and Moerchen 2010) fo-
cuses on significantly reducing the number of reported patterns by favoring
longer patterns and suppressing shorter patterns with similar frequencies. A
unifying view of temporal concepts and data models has been formulated in
(Mörchen 2007) to enable categorization of existing approaches to unsuper-
vised pattern mining from symbolic temporal data; time point-based methods
and interval-based methods as well as univariate and multivariate methods are
considered. In addition, an encoding scheme for compressing sequence data
with sequential patterns has been proposed (Lam et al 2014) for solving the
problem of compressing sequential patterns from a sequence database.

All the aforementioned approaches and formulations are beyond the scope
of this paper, since their objectives and formulations are orthogonal to ours. To
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the best of our knowledge, the only existing principled methods for assessing
the similarity of sequences of temporal intervals are Artemis (Kostakis et al
2011) and IBSM (Kotsifakos et al 2013). The first one is based on the fraction
of common temporal relations between the sequences, without taking into
account the actual time durations, while the second performs a vector-based
representation of each point in time and maps the problem to a Euclidean
distance computation between ordered sets of vectors. Additionally, a baseline
approach, called DTW-based, is presented in Kostakis et al (2011). However,
this method employs a vector-based representation of event-interval sequences
and, due to its construction, fails to consider any pair-wise temporal relation.
It should be noted that both methods assess the similarity of two sequences of
temporal intervals by performing full sequence matching ; that is each element
in one sequence should be matched to an element in the other sequence. This
objective is however orthogonal to our objective in this paper, since we are
solving a different problem: how to find the longest common subpattern shared
by two sequences of temporal intervals. Hence, we are the first to formulate
the problem of LCSP and apply it for assessing the similarity of event-interval
sequences.

3 Background

Let Σ = {E1, . . . , Em} be an alphabet of m event labels. An event that occurs
over a time interval defines an event interval and an ordered multiset of event
intervals defines an event-interval sequence. Next, we provide a more formal
definition for these two concepts.

Definition 1 (event interval) An event interval is defined as a triple S =
(E, tstart, tend), where S.E ∈ Σ and S.tstart, S.tend correspond to the start and
end time of S, respectively. S.tstart ≤ S.tend, where the equality holds when
the event is instantaneous. For ease, we also denote S.E as ES.

Definition 2 (e-sequence) A sequence of temporal intervals, or event-interval
sequence, or e-sequence, S={S1, . . . , Sn} is an ordered list of n triples (i.e.,
event intervals) that may contain duplicates. The temporal order of the event
intervals in S is ascending based on their start time and in the case of ties it
is descending based on their end time. If ties still exist, the event intervals are
sorted lexicographically.

An example of an e-sequence is shown in Figure 1. Using the above defini-
tions, this e-sequence is represented as follows:

S = {(A, 1, 10), (B, 5, 13), (C, 17, 30), (A, 20, 26), (D, 24, 30)}.

It becomes apparent that in an e-sequence there exist temporal relations
between the event intervals. Based on Allen’s model for temporal interval rela-
tions (Allen 1983; Allen and Ferguson 1994), given two event intervals A and
B, we consider the following seven relations (shown in Figure 5): before(A,B),
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meets(A,B), equal(A,B), overlapsWith(A,B), during(A,B), startsWith(A,B),
finishesWith(A,B).

More details about these relations can be found in Papapetrou et al (2009).
Let I = {r1, . . . , r|I|} denote the set of all legal temporal relations that can
exist between any pair of event-intervals. For our setting, we have |I| = 7 with

I = {meets, is equal to, overlaps with, during,finishes with, starts with, before}.

Fig. 5 The seven temporal relations between two event-intervals that are considered in this
paper.

In several applications, one may be interested not so much in the absolute
time values of the start and end points of event-intervals but rather in the
types of temporal relations between them. Hence, a simplified representation
may be used, which is called arrangement (Papapetrou et al 2009).

Definition 3 (arrangement) An arrangement A = {E ,R} of length n con-
sists of a sequence of event labels E, with |E| = n, and a set of relations
R = {R(E1, E2), R(E1, E3), . . . , R(En−1, En)}, where each R(Ei, Ej) ∈ I
denotes the temporal relation between Ei and Ej, for i = 1, . . . , n − 1 and
j = i+ 1, . . . , n.

Intuitively, an arrangement can be seen as a summary of an e-sequence
with respect to the event labels and pair-wise event relations that are present
in the e-sequence. An arrangement can be generated from an e-sequence by
maintaining the interval relation structure and disregarding the exact values of
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Fig. 6 Example of an arrangement of length three and size three. The arrangement (on the
right) is extracted from the e-sequence (on the left) by removing the time stamps and by
taking into account only the temporal relations between the event intervals.

the start and end points. Finally, the length of an arrangement A is defined as
the number of its event intervals (denoted as |A|), while its size is the number
of temporal relations in A.

An example of an arrangement is given in Figure 6, where on the left
hand side we can see the original e-sequence and on the right hand side the
corresponding arrangement representation. Observe that the time stamps are
dropped and only the relation types are maintained. The length of this ar-
rangement is 3 (three event labels: A, B, and C), while its size is also 3 (three
temporal relations: A overlaps with B, A before C, and B before C).

For the remainder of this paper we essentially focus on the “arrangement”
representation of e-sequences since we are not particularly interested in abso-
lute values of event durations but only on the relations between the events;
for reasons argued in the Introduction.

4 Longest Common Sub-Pattern

In this section we formulate and study the problem of finding the Longest
Common Sub-pattern (LCSP) between a pair of arrangements of temporal
intervals. We formally define LCSP and prove that finding it is NP -complete.
We also describe a framework for finding the approximate LCSP of two ar-
rangements; a relaxation of LCSP where a certain threshold of relations dis-
agreement is allowed. Furthermore, we present an exact algorithm to retrieve
the LCSP of pairs of arrangements, which is based on dynamic programming.

Definition 4 (Longest Common Sub-Pattern) Given two arrangements,
A and B, their Longest Common Sub-pattern is the maximum sequence of
intervals

SLCSP = {SLCSP 1, SLCSP 2, · · · , SLCSP k},
such that there exist two sets of event-intervals

{Sa1, Sa2, · · · , Sak} in A, and {Sb1, Sb2, · · · , Sbk} in B

and ∀i, j s.t. 1 ≤ i < j ≤ k the following two equations hold:

ESLCSP i = ESai = ESbi. (1)
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R(ESLCSP i, ESLCSP j) = R(ESai, ESaj) = R(ESbi, ESbj). (2)

In other words, given a pair of arrangements A and B, the LCSP of that
pair is an arrangement whose event intervals are a subset of those present in
both A and B. For any pair of event intervals in the LCSP, the corresponding
pairs of event intervals in A and in B have the same type of relation. For
example, in Figure 7, the LCSP of the two arrangements (on the left and in
the middle) is the pattern formed by event intervals A,C,D (on the right).
Interval B cannot be in a common sub-pattern together with interval A or D,
since their relation is different in the two arrangements.

Fig. 7 The LCSP of the two arrangements is the sub-arrangement formed by the intervals
with labels A,C and D.

4.1 Complexity of LCSP

We prove that the LCSP problem is NP-complete by demonstrating its relation
to the Clique problem. In the decision version of Clique, given as input a graph
G and an integer k the goal is to determine whether G contains a k-clique. In
the optimization version of Clique, Max Clique, the goal is to find the maximum
clique in the input graph G. Similarly, the decision version of LCSP, namely
CSP, is to determine whether there exists a sub-pattern of size k in both of
the input arrangements. In this section, we show a reduction from Clique to
CSP. It is a well known fact that given an algorithm for the decision version
of a problem, the result of the optimization version can be retrieved using a
logarithmic number of look-ups.

Lemma 1 Any undirected graph G = (VG, EG) can be encoded as an arrange-
ment of temporal intervals.

Proof In the transformation of graphs into arrangements, each vertex ui ∈ V
corresponds to a time point ti; the correspondence between vertices and time
points is not important as long as it is consistent throughout the procedure.
For every edge e = (ui, uj) ∈ E we create interval S = (‘a’, ti, tj) (if ti < tj ,
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1 2 3 4

A

A

A

Fig. 8 An example of how a graph can be represented by an e-sequence. The list of edges
is: {(1,4),(2,4),(2,3)} while the e-sequence is encoded as: {(A,1,4),(A,2,4),(A,2,3)}.

else S = (‘a’, tj , ti)). There is no reason to specifically select ‘a’ as a label, but
it is important that all labels are the same. Unconnected vertices correspond to
time points in which no intervals start or end. Edges of the form (ui, ui) ∈ EG
can be conserved by creating instantaneous events of the form (‘a’, ti, ti). ut

An example of how a graph can be encoded as a e-sequence is shown in
Figure 8. Note that the reverse procedure, from e-sequences to graphs (with
time points still corresponding to vertices), would create multigraphs with la-
beled edges.

Theorem 1 Clique can be reduced to CSP.

Proof The graph G is transformed into an arrangementAG as described above.
Given parameter k, we create a second arrangement Ak that corresponds to
a clique of size k. An example of a 4-clique converted to an arrangement is
depicted in Figure 9. This is easily achieved by creating all possible k(k−1)/2
intervals of the form S = (a, ti, tj), with 1 ≤ i ≤ k − 1, i < j ≤ k. The result
of CSP determines the result for Clique. The whole arrangement Ak is found
in AG, or equivalently there exists a CSP between AG and Ak of size equal to
k(k − 1)/2, if and only if the graph contains a clique of size k.
Proving the last statement:

– (⇐) If graph G has a clique of size k, then there is a CSP of size k(k−1)/2:
If graph G has a clique of size k, then there exist k vertices that are fully
connected. Suppose the vertices of the clique are Vclique = {uc1, ...uck}.
The reduction would create AG containing, among others, all k(k − 1)/2
intervals of the form (a, tuc i, tuc j), with 1 ≤ i ≤ k − 1, i < j ≤ k. The
reduction would also create Ak, which contains exactly k(k−1)/2 intervals
in a pattern identical to that formed by the intervals corresponding to the
clique. Thus, there would be a CPS of size k(k − 1)/2.

– (⇒) If there exists a CSP of size k(k− 1)/2, then the graph G has a clique
of size k: If there exists a CSP of size k(k − 1)/2 then there exists a set of
intervals in AG which create a pattern identical to that of Ak. That means
there exist k(k − 1)/2 intervals in AG of the form S = (a, ti, tj) for all
1 ≤ i ≤ k − 1, i < j ≤ k. Thus, k vertices exist in G connected by edges
(ui, uj) for all 1 ≤ i ≤ k − 1, i < j ≤ k. Equivalently, k nodes in G are
fully connected. ut
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Fig. 9 An example on how to convert a 4-clique to an arrangement. All nodes are given
the same label, and each edge corresponds to an event-interval.

Fig. 10 An example of the Cartesian graph for the two arrangements given in Figure 7.
Observe that their LCSP is a 3-clique. Note that the indices of interval labels A,B,C,D are
1,2,3,4, respectively.

Theorem 2 LCSP reduces to Max Clique.

Proof This is done by transforming an LCSP instance of two e-sequences A,B
into a Max Clique instance of a single graph GAB of order |VGAB

| = nm,
where n = |A|, m = |B|. Given two e-sequences A,B, for each pair of intervals
i ∈ A, j ∈ B, we create a node with label (i, j). In other words, the set of vertex
labels of GAB is the Cartesian product of the sets of interval indices of the two
e-sequences. We add edges between the nodes with labels (i, j) and (k, l) only
if EAi

= EBj
, EAk

= EBl
and R(EAi

, EAk
) = R(EBj

, EBl
). Vertices in GAB

that correspond to pairs intervals with different labels would be disconnected.
We call this graph the Cartesian graph of two e-sequences. An example of this
graph and how to map two e-sequences to their Cartesian graph and detect
their LCSP is given in Figure 10.
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It follows naturally from the definition of LCSP, that finding the LCSP
of two e-sequences A,B is equivalent to finding the maximum clique in GAB .
Similarly, finding maximal cliques in GAB corresponds to finding maximal
common sub-patterns between A and B. ut

From the above reductions, it may appear as if LCSP is identical to finding
the Maximum Common Subgraph (MCS) of two graphs. However this is not
the case. We may transform e-sequences into graphs in two ways. First, as
described in Lemma 1, time-points correspond to vertices, and the intervals
would correspond to edges. The issue in this case would be that any two inter-
vals, each one corresponding to an edge, may have a different interval relation
(“meets”, etc). Hence, any two edges in a graph do not necessarily correspond
to (for example) overlapping intervals. In other words, there exists crucial tem-
poral information in e-sequences that should be preserved when representing
them by some other structure. Furthermore, they would be multigraphs with
labeled edges. The second transformation would consider each interval rep-
resented by a unique vertex and the relations would be denoted by the edge
labels. In this case and based on the definition of LCSP, the problem would
reduce to finding the Maximum Common Complete Subgraph. In other words,
the common subgraph should be a clique.

4.2 LCSP with errors

Suppose we can relax the strict definition of the problem and allow a certain
number of interval relations to not be identical. In other words, we are inter-
ested in finding a largest common sub-pattern where a certain threshold of
error is allowed. This corresponds to finding sets of vertices in the Cartesian
graph (see proof of Theorem 2 for definition) that would form a dense sub-
graph that is a few edges far from being a clique. More formally, the problem
translates to finding quasi-cliques in the Cartesian graph; a quasi-clique is an
induced sub-graph of k vertices with α

(
k
2

)
edges, α ∈ (0, 1], k ≤ |VG|. The

value of α denotes the density of the quasi-clique. In the LCSP context, 1−α
would denote the allowed error rate.

In this work, we do not study any further the problem of explicitly ex-
tracting an LCSP with errors, since the problem of extracting quasi-cliques
was studied recently by (Tsourakakis et al 2013; Jiang and Pei 2009; Liu and
Wong 2008).

4.3 An exact algorithm for LCSP

We present an exact algorithm, based on Dynamic Programming (DP), to
retrieve the LCSP between pairs of arrangements. The algorithm constructs
arrangements using pairs of intervals such that each interval in a pair corre-
sponds to one interval from each sequence. Those constructed arrangements



Finding the Longest Common Sub-Pattern in Sequences of Temporal Intervals 15

are a subset of all the maximal sub-arrangements. The final goal is to find the
maximal sub-arrangement that has the largest size.

4.3.1 Computing LCSP

The main steps of the exact Dynamic Programming algorithm are depicted
in Algorithm 1. The final state of the DP array for the two arrangements in
Figure 7 is depicted in Table 1.

The input of the algorithm comprises of two arrangementsA = {SA1,· · · ,SAm}
and B = {SB1,· · · ,SBn}. We denote by LCS(i, j), 1 ≤ i ≤ |A|, 1 ≤ j ≤ |B|,
the set of maximal CSPs between {SA1,· · · ,SAi} and {SB1,· · · ,SBj}, where
each CSP must include an interval corresponding to SAi and SBj ; in other
words Ai is matched to Bj . If ESAi 6= ESBj then LCS(i, j) = {∅}, otherwise
we identify the maximal sub-arrangement that spans the prefixes of the two
arrangements and matches Ai is matched to Bj . The key intuition here is that
we can infer LCS(i, j) if we know all previous LCS(p, q), with 1 ≤ p < i and
1 ≤ q < j.

Unlike the case of the longest common subsequence for strings, in arrange-
ments it is not sufficient to know only LCS(i − 1, j − 1), LCS(i − 1, j) and
LCS(i, j − 1). Furthermore, given any element from LCS(p, q), it is not suffi-
cient to simply append the new interval. Actually, it is not even correct. The
reason is that all other previous intervals may have different relations with
SAi and SBj and not necessarily a before relation. For example, in Figure 7
the interval labeled as “D” has a different relation with the interval labeled
as “B” in the two arrangements respectively, although “C” is the previous of
“D”. Thus, it is not sufficient to check just the relation with the last interval.
Instead, SAi and SBj must be checked against all intervals of the sub-solution
and keep only those that have the same relation (thus, it is possible to have
|LCS(p, q)| ≥ |LCS(i, j)|); this is performed using the ⊗ operation that we
explain below. We will abuse the notation LCS(i, j) to denote alternately both
any or all of the maximal sub-arrangements produced at point (i, j).

Critical to our algorithm is the ⊗ operation that is applied between a
sub-arrangement and a pair of intervals. In particular, LCS(p, q) ⊗ (i, j) de-
notes the arrangement that occurs from the interval corresponding to SAi
and SBj , and the event-intervals in LCS(p, q) whose correspondents have the
same relations with intervals SAi and SBj in A and B respectively. For ex-
ample, in Figure 7, suppose that {B,C} has been discovered as a common
sub-arrangement and the algorithm is now examining the pair of intervals
with label “D”, then by applying the ⊗ operation on those two parts, the re-
sulting common pattern would be {C,D}, because intervals labeled “B” and
“D” do not share the same relation in the two e-sequences. So, in our notation
this translates to: {(2, 2), (3, 3)} ⊗ (4, 4) = {(3, 3), (4, 4)}. This latter solution
would not be stored in the DP array since it is contained within the maximal
solution {(1, 1), (3, 3), (4, 4)}.
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D ∅ ∅ ∅ [(1, 1), (3, 3), (4, 4)]
C ∅ ∅ [(1, 1), (3, 3)], [(2, 2)(3, 3)] ∅
B ∅ [(2, 2)] ∅ ∅
A [(1, 1)] ∅ ∅ ∅

A B C D

Table 1 Final view of the DP array of the exact LCSP algorithm on the instance of Figure
7

Algorithm 1 LCSP of Arrangements
Input: Arrangements A,B
Output: LCSP(A,B)

for i = 1 to |A| do
for j = 1 to |B| do

if label(SAi) 6= label(SBj) then
LCS(i, j) = {∅}

else
subarrangements = ∅
for all sub-problems (p, q) of (i, j) do

for all solutions Sk(p, q) of LCS(p, q) do
subarrangements = subarrangements

⋃
( Sk(p, q)⊗ (i, j))

end for
end for
M = keepMaximal(subarrangemets)
LCS(i, j) = M

end if
end for

end for
return arg max

i,j
LCS

4.3.2 Properties of LCSP

Below we provide several key observations, insights and properties (their proofs
are provided in Appendix A) to demonstrate the correctness of Algorithm 1.

Clearly, solving the LCSP implies finding the CSP of maximum size. Fur-
thermore, since LCSP is NP -complete, so unless P = NP , we should expect
some part of the exact algorithm to perform exhaustive search. As explained
above, for each LCS(i, j) all LCS(p, q) must be examined to discover the one
that yields the actual longest common sub-pattern. In addition, for a single
LCS(i, j), multiple solutions may exist, e.g. for LCS(3, 3), in the instance of
Figure 7, the two solutions are {A,C} and {B,C}. None of the solutions can
be discarded since it is not clear which one would be the appropriate choice
for the next sub-problems. Trying to match intervals with different labels does
not result to valid solutions (for any 1 ≤ i ≤ m, 1 ≤ j ≤ n, if ESAi 6= ESBj
then LCS(i, j) = ∅.), so we examine in detail the opposite case.

If ESAi = ESBj , we prove the correctness of the procedure based on the
following properties.
Property 1. If all previous sub-problems LCS(p, q) yield ∅ as their solution,
then LCS(i, j) is composed only of one interval, that corresponds to SAi and
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SBj .
Property 2. The LCS(p, q) ⊗ (i, j) operation yields a common sub-pattern
of {ESA1, ..., ESAi} and {ESB1, ..., ESBj}.
Property 3. The LCS(p, q) ⊗ (i, j) operation yields a maximal CSP, that
matches Ai to Bj , with the involved intervals up to that point.

The above properties guarantee that at a given step, maximal common
sub-patterns are retrieved. However, we need to prove that the best solution
is also retrieved.

Property 4. Given the set Mi−1,j−1 of all maximal CSPs among {SA1,
· · · , SAi−1} and {SB1,· · · ,SBj−1}, we can construct the set of maximal CSPs
among {SA1, · · · , SAi} and {SB1, · · · , SBj} that match SAi to SBj , by keep-
ing from each µ ∈ Mi−1,j−1 only the intervals whose corresponding intervals
in A,B share the same relations with SAi and SBj respectively.

Conversely, in order to acquire LCS(i, j), in the worst-case one needs to
examine all previous maximal CSPs. However, if intervals SAi and SBj have
a ‘follow’ relation with all previous intervals, then for LCS(i, j), one only
needs to consider the maximal CSPs of maximum size over all pairs of sub-
arrangements and append to them the new corresponding interval. So, we
identify that the need to search exhaustively is restricted to the subproblems
corresponding to pairs of intervals that have some overlap with SAi and SBj .
Finally, since the method at point (i, j) returns the maximal CSP(s) whose last
interval corresponds to SAi and SBj , the LCSP of the two whole arrangements
is found by selecting the cell (i, j) which contains the largest sub-arrangement.

4.3.3 Extensions of Algorithm 1

We must note several key extensions of Algorithm 1. First, the algorithm can
support constraints so that the retrieved LCSP does not pair together spe-
cific pairs of intervals. For example, while our problem formulation considers
only relations among intervals, certain pairs of intervals may perhaps differ
significantly in duration so that the user would not want to allow the algo-
rithm to match them. This is achieved simply by extending accordingly the
if-condition of Algorithm 1, and hence marking in the DP array the cells
corresponding to the disallowed pairs with an empty set, as if the labels were
different. For any disallowed pair, this will result in not producing any CSP
that implies that they are matching counterparts.

The second extension is similar to the first but with the opposite inten-
tion. By replacing the function in the if-condition, that checks label equality,
with a different function, we may allow common sub-arrangements assuming
equivalence among intervals with different labels. This is more general than
simply mapping them to new distinct labels.

The third extension applies to the score returned by the algorithm. Since
our DP algorithm computes many maximal common sub-patterns, and most
importantly maintains the actual pairings, one may apply a custom cost or
utility function on each found pattern and return the optimal under that
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function. For example, the cost function might be related to the difference
in time duration of the paired intervals. This is a post-computation filtering
step and for each DP array cell the algorithm will still compute maximal
CSPs based on the interval relations. Hence, there are no guarantees that the
retrieved LCSP is the optimal under all possible cost functions, nor do we
study this particular problem any further in this work.

4.3.4 Complexity of Algorithm 1

For the DP algorithm, LCS(i, j) must be computed for all possible pairs of
i and j. To compute each LCS(i, j), it is necessary to check all the solutions
of all O(|A| · |B|) sub-problems; checking a solution requires linear time with
respect to the size of the LCS, which is at most min{|A|, |B|}. Hence, the total
complexity of the algorithm is O(n3 ·m2 ·s), if n ≤ m, where s is the maximum
number of solutions over all LCS(i, j). This does not prove that we have found
a polynomial time algorithm for NP -complete problems, since s, the number
of solutions, can be exponential in the size of the input.

Computationally hard instances of Clique reduce to hard instances of
LCSP. In such cases, the exact algorithm has to search among a number of
solutions which is exponential in the size of the arrangements. Despite that,
this is not a characteristic only of arrangements containing intervals which all
have the same label.

In Figure 11 we display a category of instances where any event-interval
label appears exactly once, yet the number of candidate solutions stored at
each point of the dynamic programming algorithm is exponential in the size
of the arrangements. In particular, the number of partial solutions is O(2

n
2 ).

There exist multiple LCSPs with size equal to half the size of the original ar-
rangements. They contain only one event-interval for every pair of overlapping
event-intervals in the first arrangement.

A

B

C

D

E

Y

Z

A

B

C

D

E

Y

Z

Fig. 11 A category of arrangement pairs where any event-interval label appears exactly
once, yet the number of candidate solutions stored at each point of the dynamic programming
algorithm is exponential in the size of the arrangements.

If one of the two arrangements, in an instance of LCSP, is a proper subset
of the other, then using our exact algorithm one could extract all the appear-
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ances of the smaller arrangement in the larger. From an alternative scope,
this implies that the performance of our exact algorithm can be improved
by implementing run-time optimizations such as breaking once the smaller
arrangement is found in the larger.

5 Polynomial Time and Space Approximations

In Section 4.1 we proved that the LCSP problem belongs to the class of NP-
hard problems. This makes the use of any exact algorithm impractical for
handling all problem instances. Furthermore, we demonstrated that Clique is
as hard as the decision version of LCSP. While it still remains open whether
inapproximability results for Clique (H̊astad 1996; Feige et al 1991) are carried
over to LCSP, the above reduction provides strong reasons to believe that they
do. So, in our efforts to devise usable techniques that would yield approximate
solutions, instead of focusing on designing fully polynomial-time approxima-
tion schemes (FPTAS), we restrict our aforementioned exact algorithm so that
it terminates in polynomial time.

We transform the exact algorithm into a greedy algorithm. For each cell
of the DP array, the algorithm maintains only the solutions of maximum size.
For example, while computing LCS(i, j), assume that the algorithm had dis-
covered several solutions of size 4, and then discovers one of size 5. The latter
is retained and all the other are purged. Similarly, while computing the values
for the same cell, if a larger solution is found, those of size 5 are discarded.
This prevents the algorithm from performing exhaustive search. However, Fig-
ure 11 depicts an instance for which even this greedy approach will produce an
exponential number of solutions w.r.t. the size of the input. Hence, we further
force the algorithm to restrict the number of solutions it maintains at each
cell of the DP array. In other words, we establish that the time complexity
O(m2 · n3 · s) remains polynomial by ensuring that the value of s remains
polynomial. At any step (i, j) of the algorithm, it is impossible to know in
advance which solutions are the ones that would allow the greedy algorithm
to reach the optimal solution.

We experiment with three natural strategies for limiting the number of
solutions, namely First seen, Last seen, and Random. This restriction can be
seen as having a buffer of limited size that is responsible for maintain the
solutions. More precisely, we have:

– First seen: at each step LCS(i, j) and for a buffer of size b, the first b
solutions of (only) maximum size are retained while the rest are ignored.

– Last seen: at each step LCS(i, j) only the last b solutions of maximum
size are retained.

– Random: We randomly retain b solutions of maximum size. We achieve
that by applying Reservoir sampling (Vitter 1985).
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6 Upper bounds

Regardless of the efficiency of the approximations strategies presented ear-
lier, their Ω(m2 · n2) complexity is prohibitive for brute-force 1-NN searches
in large-scale systems. In order to inexpensively prune many of the required
comparisons, one of the common practices is to use upper-bounds (or lower-
bounds for distance functions) (Vlachos et al 2006); another common practice
is of course indexing. In this section we define two upper bounds for LCSP.

The first upper bound requires linear time and relies on the count of com-
mon interval labels. Given an arrangement A over the label alphabet Σ, we
construct uA, a |Σ|−dimensional vector that stores for each event label in Σ
the count of event-intervals in A that share that label.

Definition 5 (Upper Bound UBCI) Given arrangements A,B, the upper
bound UBCI is defined as

UBCI(A,B) =

|Σ|∑
i=1

min{uAi , uBi }

Proof Since the LCSP of A,B can be only a subset of the common intervals,
the following holds:

UBCI(A,B) ≥ LCSP (A,B),∀A,B .

ut

UBCI ’s linear time complexity is the lowest possible. However, it focuses
only on the labels and ignores any temporal order information. We can expect
UBCI to fail in cases where the dataset’s arrangements contain a fixed or
similar amount of intervals of every label. If a higher complexity is allowed,
one can take advantage of the order of the intervals in each arrangement.
This can be achieved by applying the longest common subsequence algorithm
for symbolic sequences. In this case each symbols would be the label of an
intervals. However, for O(nm) time complexity, a slightly tighter bound can
be achieved, again using LCS but this time using the starting and ending point
of the intervals instead of their labels. This approach imposes a constant factor
of 4 to the complexity, since the symbols are twice as many as the intervals.

Given an e-sequence or arrangement A, we can map it to its semi-interval
sequence representation CA (Mörchen and Fradkin 2010) (a semi-interval is a
tuple (E, t), where E is the label interval and t is a time point). Every interval
is replaced by two symbols corresponding to its start and end point. Such
symbols can be the interval label followed by distinctive letters, for example ’ s’
and ’ e’, to distinguish between the start and end points. In our case, the order
of the symbols is the order in which they happen. In case of concurrency, the
symbols follow the partial order of the corresponding intervals. The absolute
time values are discarded. An example of the semi-interval sequence is depicted
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in Figure 4. We need to point out that this upper bound, namely UBCPS , is
equivalent to applying LCSS to our problem.

We formally define UBCPS and prove that it is an actual upper bound by
first proving the following lemma.

Lemma 2 The semi-interval sequence representation of the LCSP of two ar-
rangements A,B is a subsequence of the semi-interval sequences of both ar-
rangements.

Proof The intervals that belong to the LCSP appear in the same order in A,B,
and as a result so do their start and end points. Consequently, the start- and
end-symbols appear in the same order in the semi-interval sequence and they
form a subsequence of length 2 ∗ |LCSP (A,B)|.

Definition 6 (Upper Bound UBCPS) Given arrangements A,B, the upper
bound UBCPS of LCSP is defined as

UBCPS(A,B) =
LCS(CA, CB)

2
.

Proof Suppose that UBLCSP is not an upper bound to LCSP . Then the
following does not hold:

UBCPS(A,B) ≥ LCSP (A,B),∀A,B .

Then, there would exist a pair of arrangements such that the LCS of their
semi-interval sequences is less or equal to twice the size of their LCSP. In
such case, and by using Lemma 2, the semi-interval sequence corresponding
to LCSP would be greater or equal to the LCS of the semi-interval sequences.
This cannot hold. Hence, UBCPS is a valid upper bound to LCSP. The above
requires that concurrent semi-intervals are sorted in a consistent manner. ut

7 Experiments

We explored the effectiveness of the proposed polynomial approximation tech-
niques, and demonstrated the efficiency of the proposed bounds by studying
their pruning power and tightness. In addition, we conducted experiments to
evaluate the performance of LCSP in terms of 1-NN and 3-NN classification
and clustering against the standard state-of-the-art LCSS technique.

The datasets and source code used in our experiments are available online 1.

1 http://users.ics.aalto.fi/kostakis/software/lcsp/
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Dataset # of e-sequence size # of # of max e-seq. interval size
e-seq. min. max. average labels classes length mean stdev min max

ASL-BU 873 3 40 17 216 9 5901 594 590 3 4468
Auslan2 200 9 20 12 12 10 30 20 12 1 30
Blocks 210 3 12 6 8 8 123 17 12 1 57

Context 240 47 149 81 54 5 284 69 81 1 284
Hepatitis 498 15 592 108 63 2 7555 634 1093 1 7555
Pioneer 160 36 89 56 92 3 80 36 21 1 80
Skating 530 27 143 44 41 6 6829 576 672 1 6829

BigSynth 5000 20 20 20 5 0 149 6 6 1 44
Cliques 13 3 105 43 1 0 14 4 3 1 14

Table 2 Statistical details of the used datasets.

7.1 Experimental Setup

For our experiments we used real and synthetic datasets.

Real Datasets. For our experiments we used seven real datasets. A summary
of the statistical details for each dataset is shown in Table 2. Below, we describe
each dataset in more detail:

– ASL-BU (Papapetrou et al 2009). Event labels correspond to grammatical
or syntactic forms (e.g., wh-word, wh- question, verb, noun, etc.) as well
as facial or gestural expressions (e.g., head tilt right, rapid head shake,
eyebrow raise, etc.). An e-sequence is an expression of a sentence using
sign language.

– Auslan2 (Mörchen and Fradkin 2010). The e-sequences were derived from
the Australian Sign Language dataset available in the UCI repository2.
Each event interval represents a word like girl or right.

– Blocks (Mörchen and Fradkin 2010). Event labels correspond to visual
primitives obtained from videos of a human hand stacking colored blocks
and describe which blocks are touched as well as the actions of the hand
(e.g., contacts blue or red, attached hand red, etc.). Each e-sequence rep-
resents one of eight different scenarios including atomic actions, such as
pickup, or complete scenarios, such as assemble.

– Context (Mörchen and Fradkin 2010). Event labels were derived from cat-
egoric and numeric data describing the context of a mobile device carried
by humans in different situations. Each e-sequence represents one of five
different scenarios such as street or meeting.

– Hepatitis (Patel et al 2008). The dataset contains information about pa-
tients who have either Hepatitis B or Hepatitis C. The event intervals
represent the results of 63 regular tests. Each e-sequence describes a series
of tests taken by a patient.

– Pioneer (Mörchen and Fradkin 2010). This dataset was constructed from
the Pioneer-1 dataset available in the UCI repository. Event intervals cor-
respond to the input provided by the robot sensors. Each e-sequence in the
dataset describes one of three scenarios: gripping, move, turn.

2 http://www.ics.uci.edu/mlearn/MLRepository.html
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– Skating (Mörchen and Fradkin 2010). Event intervals describe muscle ac-
tivity and leg position of 6 professional In-Line Speed Skaters during con-
trolled tests at 7 different speeds on a treadmill. Each e-sequence represents
a complete movement cycle.

Synthetic Datasets. We implemented a random e-sequence generator that
takes as input certain parameters and produces a synthetic dataset of event-
interval sequences. The generator, that takes as input several parameters,
works as follows: an initial interval is produced. For each additional inter-
val, one of the 7 relations is chosen uniformly and that is enforced between the
new and the last interval. If the chosen relation does not completely define the
boundaries of the interval (e.g. it is not a matches relation) then one or both
are chosen randomly based on the input parameters. This allows to create
cases of overlapping starting and endpoints and at the same time enables to
define the expected lengths of the intervals. The label of each interval is also
chosen uniformly from the given set. The source code is publicly available3.
By using our generator, we create a big synthetic dataset (BigSynth) intended
mostly for scalability experiments.

We also manually create a smaller dataset, ‘Cliques’, and as the name sug-
gests it corresponds to the e-sequence representation of cliques. In particular
it contains all cliques of size 3 to 15. This is intended to test the tightness of
our approximation algorithms. The statistics of both datasets are depicted in
Table 2.

Evaluation Metrics. We benchmark the three approximation policies for
three different buffer sizes in terms of approximation tightness. We define ap-
proximation tightness as the value of the following ratio:

Tapprox =
ApproxLCSP (A,B)

LCSP (A,B)
. (3)

Since these policies are under-approximating LCSP, T ∈ [0, 1]. Clearly, we
desire values closer to 1. To avoid favoring instances of smaller arrangements
by having fixed sized limit on stored solutions, for each instance the buffer size
was set to be equal to a fraction of the size of the shortest arrangement. The
values we selected were n/2, n/5 and n/10.

We benchmark the two upper bounds in terms of tightness and pruning
power under 1-NN search. The pruning power is the ratio of pruned compar-
isons under the LCSP algorithm for linear-scan 1-NN searches, when we first
use the upper bound. Similarly to before, we define the tightness of an upper
bound as the average value of the following fraction:

TUB =
UB(A,B)

LCSP (A,B)
, (4)

over all pairs of arrangements in the dataset. For the upper bounds, the tight-
ness value’s codomain is [1,∞). To distinguish among the two tightness values,

3 http://users.ics.aalto.fi/kostakis/software/intgen lcsp.zip
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if it is not clear from the context, we will refer to the first as approximation
tightness.

7.2 Experimental Results

When computing the similarity matrices of all datasets using the LCSP exact
algorithm, we were able to complete the process for only 4 out of 7 datasets:
Auslan2, Blocks, Pioneer and ASL. The rest of the datasets (Hepatitis, Context
and Skating) contain “very hard instances”. With very hard instances we refer
to those instances for which the algorithm requires more than 8GB of main
memory (Java implementation). So, in our experiments we use those values
given by the most expensive variations of all three polynomial approximation
policies; when the number of stored solutions at each step are n/2.

The time required to compute the LCSP of all N2 pairs of e-sequences, for
each dataset, is depicted in Table 3. For the case of the datasets containing
hard instances, the values in brackets denote the run-time of the Random
approximation policy with n/2 buffer size.

Dataset Time
Asl 14”

Auslan2 1.5”
Blocks <1”
Pioneer 15”

Context* - (5h 42’)
Hepatitis* - (8h 25’)
Skating* - (15’)
BigSynth 140h
Cliques 4h 58’

Table 3 Running time of exact LCSP algorithm. For datasets with hard instances, the
number in brackets denotes the run-time of Random approximation policy with n/2 buffer
size.

Polynomial Approximation Policies. The average approximation tight-
ness for all datasets and all policies was between 99% and 100%. In Tables
4 and 5 we show the average and minimum approximation tightness, respec-
tively, for each of the seven datasets and three strategies studied in this paper.

As expected, a smaller buffer size resulted to worse values on average. For
the harder instances we noticed that the Random policy provided slightly
better results than First seen and Last seen. A reason for that is that the
latter policies can be seen as hill-climbing heuristics that always make the same
choice at every step of the solution space traversal. As a result, they restrict
themselves to a specific region of the whole solution space and are bound to
be trapped in local maxima. On the other hand, the Random policy does
not restrict itself to a specific region of the solution space since it randomly
selects solutions if needed. However, it faces the hazard of missing the global
maximum if it randomly discards all the paths leading to it.
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Dataset first seen last seen random
n/2 n/5 n/10 n/2 n/5 n/10 n/2 n/5 n/10

ASL-BU 0.9999 0.9996 0.9967 0.9997 0.9994 0.9957 0.9999 0.9996 0.9967
Auslan2 1 0.9999 0.9997 1 0.9998 0.9997 1 0.9999 0.9997
Blocks 1 0.9995 0.9995 0.9999 0.9992 0.992 1 0.9995 0.9994

Context - 0.9997 0.9992 - 0.9996 0.9989 - 0.9998 0.9993
Hepatitis - 0.9985 0.9961 - 0.9979 0.9947 - 0.9991 0.9966
Pioneer 1 0.9999 0.9999 0.9999 0.9999 0.9998 1 1 0.9999
Skating - 0.9991 0.9963 - 0.9983 0.9926 - 0.9993 0.9961

Table 4 For each of the seven datasets we show the average approximation tightness for
each of the three approximations.

Dataset first seen last seen random
n/2 n/5 n/10 n/2 n/5 n/10 n/2 n/5 n/10

ASL-BU 0.75 0.667 0.5 0.75 0.667 0.5 0.75 0.667 0.5
Auslan2 1 0.91 0.8889 1 0.91 0.875 1 0.91 0.8889
Blocks 1 0.667 0.667 0.8 0.667 0.667 1 0.667 0.667

Context - 0.9063 0.9032 - 0.9117 0.909 - 0.9393 0.903
Hepatitis - 0.6667 0.6667 - 0.6667 0.6 - 0.6667 0.6667
Pioneer 1 0.9523 0.9167 0.9583 0.9166 0.9167 1 1 0.9167
Skating - 0.7272 0.6667 - 0.75 0.6 - 0.7777 0.69

Table 5 For each of the seven datasets we show the minimum approximation tightness for
each of the three approximations.

Surprisingly, we also notice that in the datasets with very hard instances,
there are few instances where a smaller buffer provided a better solution even
for First seen and Last seen; for Random this is something to be expected
due to the randomness in selecting solutions from the sub-problems. This is
counter-intuitive but can be explained. By allowing more solutions to be stored
at each (i, j)−th step of the dynamic program, we allow those solutions to be
the reason more solutions are created in succeeding steps. However, the latter
solutions do not necessarily lead to the optimal solution. Instead, they act as
noise and they compete for the buffer with those solutions that would allow
to achieve the global optimum.

In terms of execution time, the speedup provided by the approximation
policies for computing the distance matrix of the big synthetic dataset was
35.35, 50.35 and 67.3 times for buffers of size n/2, n/5 and n/10 respectively;
First seen was slightly faster than Last seen and Random. Still, since our
approximation algorithms require polynomial time and the exact algorithm is
exponential in the worst case, as the size of the instances increases, the possible
difference in running time is in the general case unbounded.

From the Cliques dataset, we witness that the approximation algorithms
are able to achieve an accuracy of 100%, for arrangements corresponding to
cliques of up to size 15. However, when attempting to investigate their per-
formance on larger cliques, we notice a computational blow up for cliques of
size around 18. This is due to the fact that for such hard instances, the O(n6)
complexity becomes a significant drawback.
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Dataset 1-NN Pruning Power Tightness
ASL 99.2 1.26

Auslan2 89.8 1.15
Blocks 94.3 1.25
Pioneer 59.5 1.52

Context* 40.4 1.40
Hepatitis* 30.1 2.59
Skating* 55 1.64
BigSynth 52.4 1.54
Cliques 46.7 1.00

Table 6 Tightness and pruning power for UBCPS

Dataset 1-NN Pruning Power Tightness
Asl 73.2 1.98

Auslan2 86.0 1.19
Blocks 87.5 1.75
Pioneer 20.2 1.96

Context* 20.21 1.6
Hepatitis* 4.7 5.03
Skating* 10.9 2.25
BigSynth 1.9 2.54
Cliques 46.7 1.00

Table 7 Tightness and pruning power for UBCI
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Fig. 12 Tightness (left) and pruning power (right) of the two upper bounds on all datasets.

Upper bounds. The results of the tightness and pruning power experiments
can be seen in Table 6 and Table 7, as well as in Figure 12. As mentioned
previously, we were not able to compute the similarity matrices for the three
datasets marked with an asterisk, so for those the values correspond to those
obtained by the approximation policies. For UBCPS we witnessed average
tightness values between 1.15 and 2.59, while the average pruning power was
from 30.1% to 99.2%. For UBCI , the values were worse, as expected. For the
tightness, the average values observed were between 1.19 and 5.03. For the
3 datasets that we do not have the exact scores, the values might be much
higher than the ground truth, since it is not clear by how much the policies are
under-approximating LCSP. The average pruning power observed was between
1.9% and 87.5%.
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Scalability. We investigate the scalability of our methods on the big sythetic
dataset. We monitor the time required for 1-NN queries, when using linear
(brute-force) scan and the exact algorithm for LCSP, and we compare that to
a linear scan with the use of UBCPS for pruning. We don’t consider the UBCI
since its prunning power is insignificant (see Table 7). The dataset does not
contain any instances that our method cannot compute, so we do not employ
any of the approximation strategies.

We witness that the time needed for computing each instance of UBCPS is
constant, given that all e-sequences contain the same number of intervals and
as a result the same number of symbols when mapped to strings. On the other
hand, there is a variable number of sub-solutions that need to be investigated
when computing the LCSP instances.

The total time required to perform all 1-NN queries for the synthetic
dataset via a linear scan requires 95.5% more time than if UBCPS is used
first.

7.3 Comparison to LCSS; k-NN classification and clustering

LCSS solves a problem similar to LCSP, that is easier to compute. Hence,
we need to justify the need for LCSP. The fundamental difference between
the two techniques is that they are defined for different types of sequences,
and hence different types of longest common subpatterns. For the case of
LCSP the subpattern is an arrangement, while for LCSS the subpattern is a
symbolic sequence. In the previous sections we examined the performance of
LCSS (which is equivalent to UBCPS , as pointed out in Section 6), and showed
that it can be used as a pruning technique for computing the correct LCSP.
Hence it becomes apparent that LCSS does not and cannot compute LCSP.

For providing a more extensive comparison between LCSS and LCSP, we
further proceed to benchmark the two techniques for the tasks of k-NN clas-
sification and clustering. The results clearly demonstrate that for most cases
LCSS is inferior to LCSP, and hence LCSP should be preferred.

First, LCSS was used for 1-NN and 3-NN classification. For each dataset,
we consider each e-sequence as a query and the remaining e-sequences as the
database. The class of query is assigned to be the class of its nearest neigh-
bor, i.e., the database e-sequence with the highest similarity score. Hence, the
classification accuracy is then the fraction of e-sequences in the dataset that
are correctly classified using the remaining ones. The results are depicted in
Table 8. We see that LCSS outperforms LCSP only for the cases of “ASL” and
“Blocks” dataset and this happens for both 1-NN and 3-NN. For all remaining
cases, LCSP provides better classification accuracy for both 1-NN and 3-NN
respectively.

Next, we evaluated the performance of LCSS and LCSP for the task of
clustering. Since we do not have a feature space, we employed k-medoids.
The number of clusters (the value of k) was set equal to the predefined num-
ber of classes for each dataset (see Table 2). For each dataset, we performed
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LCSS 1NN LCSP 1NN LCSS 3NN LCSP 3NN
ASL 73.23% 63.57% 68.5% 58.17%

Auslan2 26% 27% 24% 29.0%
Blocks 81.9% 80.95% 91.42% 87.61%

Context* 77.91% 86.6-87.08% 73.75% 85.83-86.25%
Hepatitis* 66.26% 66.66-68.07% 68.47% 70.88-71.28%

Pioneer 95% 97.5% 93.75% 96.25%
Skating* 76.22% 93.02% 71.69% 92.08-93.02%

Table 8 Classification accuracy of LCSS and LCSP under 1-NN and 3-NN classification
schemes.

10 clustering sessions, and for each session the basic algorithm was executed
1000 times, while the best solution was retained. Since both LCSP and LCSS
provide similarity scores, those were transformed to distances by computing

1 − s(S1, S2)

min(|S1|, |S2|)
, where s(S1, S2) is the value of LCSS or LCSS between

sequences S1 and S2. For the clustering evaluation metric, we compute the
clustering purity. The average clustering purity for each dataset over the 10
sessions is depicted in Table 9; for ASL we omit the results since each sample
may belong to multiple classes. We observe that LCSS yields better values only
for the Hepatitis dataset, while for the Blocks dataset the values are similar.
For the rest of the datasets, LCSP clearly outperforms LCSS.

LCSS LCSP
Auslan2 0.17 0.25
Blocks 0.61 0.61

Context* 0.46 0.54
Hepatitis* 0.61 0.59

Pioneer 0.64 0.73
Skating* 0.58 0.69

Table 9 Average clustering purity of LCSS and LCSP under k-medoids.

8 Use-cases of LCSP

In this section we describe several use-cases to demonstrate the need and suit-
ability of LCSP. Furthermore, we demonstrate how LCSP is a more appro-
priate distance measure than full-sequence matching. We perform some pilot
studies related to classification via profiling, system verification and anomaly
detection for the fields of sign language (ASL) and sensor data (Pioneer robot).

Sign Language Profile-based Classification. We demonstrate the suit-
ability and applicability of LCSP for performing profile searching and clas-
sification in the sign language domain based on given sign language profiles.
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Wh-question

Wh-question

Lowered eye-brows

Wh-word Head pos: 

forward

Wh-word Wh-question

Lowered eye-brows

Head pos: 

forward

Wh-word

Wh-question Combined

Fig. 13 Example of two profile arrangements for a “Wh-Question” (left) in American Sign
Language, and their combination.

In a sign language setting the objective is to classify a set of unknown
e-sequences based on the existence of a “profile” arrangement that determines
the class label of each e-sequence. Examples of profile arrangements are given
in Figure 13 (left part), where the profiles are characteristic arrangements
that describe American Sign Language e-sequences of the class “Wh-question”
(Papapetrou et al 2009). Note that such profiles are, in general, expected to be
much shorter than the target unclassified e-sequences. For example, in our ASL
dataset, the average e-sequence size is 17 while the maximum is 40, whereas
the size of a typical ASL profile is usually not longer than 4 (Papapetrou et al
2009). Given a set of profiles, for each e-sequence in the dataset we examine
whether it contains one or more of these profiles. If so, then the e-sequence
is assigned with the corresponding class(es). Determining the existence of a
profile in an e-sequence is accomplished by LCSP; simply by checking if their
LCSP is as long as the profile. Clearly, this check is impossible to perform via
full-sequence matching algorithms, such as Artemis (Kostakis et al 2011), since
their objective is orthogonal to that of LCSP. Furthermore, we witnessed in
all cases that, under Artemis, the NN ranks of the profiles are arbitrary, since
all points in the query are “forced” to match a database counterpart, while
differences in size between query and database sequences also highly distort
the matching. An additional advantage of using LCSP for this task is that
several profiles can be combined into a single profile, and then a threshold
check is sufficient. For example, the profiles in Figure 13 can be combined
into one, making it sufficient to check whether the LCSP of the combined
profile and an unknown e-sequence contains 3 or more intervals. LSCP achieved
100% precision, which was expected. The reason for that is simply that if the
profile arrangements exist in a classified arrangement, then LCSP is able to
fully detect them and make the correct assignment(s). By adding more profile
arrangements to cover all cases, the recall of the classification increases and
all the relevant e-sequences may be retrieved.

This methodology may be applied to a wide range of applications by se-
lecting the appropriate profile sequences.
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System Verification. Next, we demonstrate the applicability of LCSP for
system verification. Run-time system verification can be seen as a special case
of classification. E-sequences would denote observed telemetry or executions
of a system or program. In the task of system verification, each observed e-
sequence would fall into either the category of “acceptable” or “unacceptable”
executions. Suppose we have defined a set of “undesired properties” in the
form of arrangements. We need to determine whether they are present in the
e-sequence that is being examined. If one or more such properties are contained
in whole, or above certain threshold, then the e-sequence is regarded as a vio-
lating execution and the system does not comply to the required specifications.
Examples of such applications include robot sensors, and sensor networks in
general, as well as the execution of computer programs.

For the case of the Pioneer dataset, suppose that an undesirable property
is that the robot’s gripping mechanism moves upwards. The naive approach
to detect this would be to create a list of ‘if’ clauses for all

(
k
2

)
possible pairs

of states and then to check the values of all
(
t
2

)
possible pairs of time points

(k is the number of different states, t the duration of the e-sequence in time
units). Instead, we can use LCSP and the property arrangement of the gripping
mechanism moving updwards, as depicted in Figure 14. Simply, if the LCSP
between the robot’s execution monitoring e-sequence and the property has
length greater than 1, regardless of the specific intervals, then one can be sure
that the mechanism has moved upwards. Consequently, the execution should
be classified as non-conforming to the requirements. In the Pioneer dataset, we
are able to retrieve 6 e-sequences that contain an upward movement. We can
apply the same approach for the gripper’s downward movement. This yields 10
e-sequences in which the gripper moves downwards. The two retrieved sets of
e-sequences, that happen to be disjoint, constitute the whole set of e-sequences
that belong to the ‘gripper’ class of the dataset. This approach would not have
been possible when using full-sequence matching.

Gripper very low
Gripper low

Gripper high
Gripper very high

Fig. 14 Arrangement correpsonding to the “undesired property” of the Pioneer’s gripping
mechanism moving upwards. Each interval corresponds to a different state of the gripper.

Similarly, if we were to verify the correctness of a controlled execution
environment (sandbox) for computer programs, where intervals correspond to
the time that a particular function is active (in the stack frame), the Figure
4(b) would correspond to an undesirable property. This is due to the fact that
a called function cannot return before the return of any function that has been
called from within itself. Hence, if the LCSP of the execution e-sequence with
that property has length greater or equal to 2, it would prove that our system
malfunctions.
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Anomaly Detection. LCSP can also be applied for the purpose of anomaly
detection. Suppose that we have a set of “necessary behaviours” in the form
of arrangements. Using LCSP, we are able to potentially detect the absence,
in whole or fraction, of a series of such arrangements. In the case of robot
sensor data (Pioneer dataset), we could use these predefined arrangements to
detect anomalies in robot movement data that correspond to, e.g., the robot
moving straight and not turning. A requirement for the robot to move straight
is having both its wheels rotate with the same velocity simultaneously. Hence,
in such dataset an event label would represent both the wheel location and
its velocity range, e.g., RW-Vel-low would correspond to the Right Wheel
moving with low velocity, while LW-Vel-high would correspond to the Left
Wheel moving with high velocity. It also becomes apparent that these events
will have a time duration and hence each wheel velocity will correspond to an
event interval, e.g., the left wheel is moving with low velocity for 10 seconds.
Based on the above, our requirement that the robot is moving straight is
fulfilled when the event intervals corresponding to different wheel velocities
“match”.

Using the “necessary behaviour” depicted in Figure 15 as an arrangement
of six events, we expect that the LCSP of this behaviour arrangement, call
it Q, and any e-sequence S corresponding to moving straight should have
an even amount of intervals (|LCSP (S,Q)| = 2k, k ∈ Z+); one or more
pairs of intervals and for each pair, each interval corresponding to one of the
wheels. From our Pioneer dataset, we discover 14 out of 102 e-sequences of
the specific class are being detected as anomalous. Manual verification of the
result revealed that the intervals in question exhibited an ‘overlap’ relation
instead of ‘match’, offset by a few time points (this is possibly due to noise in
the recording phase, or when transforming the original data to e-sequences).
Clearly, such approach cannot be applied when using a full-sequence matching
algorithm.

RW-Vel-low

LW-Vel-low

RW-Vel-medium

LW-Vel-medium

RW-Vel-high

LW-Vel-high

Fig. 15 Behaviour arrangement for confirming that the Pioneer robot moves straight. Each
interval of the top row “matches” its counterpart in the bottom row. The intervals denote
the angular velocity of the right and left wheels.

Similarly, we can implement an ASL “grammar checker”. By maintaining
a list of grammatical rules in the form of arrangements, we then use LCSP
to determine the conformance of the user input to those rules. Suppose we
would like to verify the grammar rule for modal verbs. In ASL grammar,
modal verbs come before or after the main verb of the clause. To verify the
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correctness of the signed utterance, we can create two rules, one for each case.
Then by using LCSP we should verify that either one appears as whole in the
utterance, otherwise the grammar is incorrect. Alternatively, we can combine
the two cases into a single rule, as depicted in Figure 16. In this case, the
check must be that the size of the LCSP between the rule and the signed
utterance must be of size at least 2. Applying the described approach on our
ASL dataset, we discovered two utterances did not follow this rule; it happens
that in both of these cases the word “rain” is denoted as a noun instead of a
verb.

Modal Verb Verb Modal Verb

Fig. 16 Combined behaviour arrangement for confirming that modal verbs are used cor-
rectly in ASL.

9 Conclusions

We formally defined the problem of finding the LCSP problem for sequences of
event-intervals. In addition, we proved that the LCSP problem belongs to the
complexity class of NP -hard problems by showing that Clique can be reduced
to it under a log-space reduction. This was achieved by establishing that ar-
rangements of temporal intervals can be used to encode graphs. We also proved
that LCSP∈ NP by proving that it reduces to Max Clique. Moreover, we in-
troduced an exact algorithm for solving the LCSP problem. Furthermore, we
proposed three policies for under-approximating hard instances of LCSP and
constructed the two upper-bounds for speeding up 1-NN searches under LCSP.
Finally, we experimented on seven real datasets taken from various domains,
including sign language, medicine, human motion, and sensor networks, and
two synthetic datasets.

There are several directions for future work. On the practical side, we
would be interested in experimenting with the use of LCSP in more real-world
applications and examine the benefits it provides in comparison to the use of
symbolic sequences or time-series. On the theoretical part, we demonstrated
that Clique reduces to the decision version of LCSP. So, for the near future we
plan to examine whether the inapproximability results demonstrated in the
past for Clique hold for LCSP, too. However, a stronger result that we demon-
strated is the fact that arrangements of temporal intervals can in certain cases
be viewed as a generalization of graphs. Given the strong interest recently in
graph mining and event-interval sequence mining, the most significant ques-
tion that arises is how many of the ideas, algorithms and theoretical results
can be exchanged between those two fields.

Finally, modifying the problem we just studied, we would be interested
in devising fast algorithms for exact sub-sequence matching. We are curious
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whether we will discover the same complexity bounds as the maximum com-
mon subgraph problem.
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APPENDIX A

Proof of the properties described in Section 4.3.2
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1. Supposing that LCS(i, j) was composed of more than one interval, then
there must exist a pair of intervals with the same label in {SA1, .., SAi−1}
and {SB1, .., SBi−1}. That is a contradiction since it would imply that not
all previous sub-problems yield ∅ as their solution.

2. By applying the operation LCS(p, q)⊗(i, j) or, equivalently selecting from
LCS(p, q) only the intervals that induce similar relations to the corre-
sponding interval of i and j, we make sure that the interval corresponding
to i and j has the same relations to the previous intervals in the produced
arrangement. Conversely, the existing intervals have the same relations to
the correspondent of i and j. Additionally, pairs of existing intervals of
LCS(p, q) have identical relations with their correspondents in A and B;
this was examined when each interval was added to the solution of the
previous sub-problems.

3. In other words, the ⊗ operator does not discard extra intervals. Suppose
that the maximal CSPs are correctly retrieved for all previous sub-problems
LCS(p, q), but not for LCS(i, j). This would imply that an interval be-
longing to a maximal CSP of {ESA1, . . . , ESAi} and {ESB1, . . . , ESBj}
(where Ai is matched to Bj) exists but was not selected for LCS(i, j).
But since the not-selected interval belongs to a maximal CSP then it has
the same relation to SAi and SBj . So, since the relations are the same,
the interval would have been selected for LCS(i, j), which contradicts to
the previous. Thus, the algorithm at point (i, j) returns maximal CSPs of
{ESA1, . . . , ESAi} and {ESB1, . . . , ESBj} that matches ESAi to ESBj .

4. Suppose there exists a maximal CSP that matches Ai to Bj but was not
discovered. This would imply that by removing the interval corresponding
to Ai and Bj , one is left with common a sub-pattern s. Then, either s ⊆
r, r ∈ Mi−1,j−1 or not. In the first case, s must have been retrieved when
performing r⊗(i, j), so this cannot be. So, it can only be that s is maximal
but then it must hold that s ∈Mi−1,j−1. Contradiction.
An alternative approach is that in the Cartesian graph GAB (see proof of
Theorem 2 for exact definition), this corresponds to finding all maximal
cliques containing the vertex u labeled (i, j) by checking all previously
found maximal cliques and for each one returning its intersection with the
neighbors of u.


