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ABSTRACT
We propose a new scalable algorithm for the facility-location
problem. We study the graph setting, where the cost of serv-
ing a client from a facility is represented by the shortest-path
distance on a graph. This setting is applicable to various
problems arising in the Web and social media, and allows to
leverage the inherent sparsity of such graphs.

To obtain truly scalable performance, we design a parallel
algorithm that operates on clusters of shared-nothing ma-
chines. In particular, we target modern Pregel-like architec-
tures, and we implement our algorithm on Apache Giraph.

Our work builds upon previous results: a facility location
algorithm for the PRAM model, a recent distance-sketching
method for massive graphs, and a parallel algorithm to find-
ing maximal independent sets. The main challenge is to
adapt those building blocks to the distributed graph setting,
while maintaining the approximation guarantee and limiting
the amount of distributed communication. Extensive exper-
imental results show that our algorithm scales gracefully to
graphs with billions of edges, while, in terms of quality, being
competitive with state-of-the-art sequential algorithms.

1. INTRODUCTION
Facility location is a classic combinatorial-optimization

problem. It has been widely studied in operations research
[31, 39] and theoretical computer science [1, 11, 30, 48], and
it has many different applications, e.g., in data compres-
sion [9], grammar inference [23], information retrieval [49],
and design of communication networks [43]. In the most ba-
sic setting of the problem, we are given a set of facilities F ,
a set of clients C, and costs c(f) for opening a facility f ∈ F
and d(c, f) for serving a client c ∈ C with a facility f ∈ F .
The goal is to select a subset of facilities to open so that all
clients are served by an open facility and the total cost of
opening the facilities plus serving the clients is minimized.
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Modern applications related to web graphs, large social
networks, and other such massive-scale datasets, whose size
may far exceed the memory of a single machine, could also
benefit from facility location as a general-purpose optimiza-
tion mechanism. Examples of such applications include plac-
ing caches for content delivery on the Internet [24], place-
ment of shopping centers on a road network, finding central
nodes in a social network [7]. Similar objective functions
arise in outbreak detection in networks [34].

We study the facility location problem in the graph set-
ting, where the input consists of a graph with clients and fa-
cilities being represented by vertices while the cost of serving
a client from a facility is represented by their shortest-path
distance on the graph. Our goal is to develop efficient dis-
tributed algorithms for this problem setting.

Several sequential approximation algorithms [1, 11, 30,
48], as well as parallel/distributed algorithms [13, 4] have
been devised for the facility location problem. Alas, adapt-
ing existing methods to the distributed graph setting is chal-
lenging, as the known algorithms present at least one of the
following shortcomings: (i) they assume the input to be the
full distance matrix between facilities and clients, which re-
quires Ω(n2) space and time to be materialized (where n is
the number of vertices in the graph); (ii) they are sequential
and assume that the input data reside in main memory.

In this paper, we present the first algorithm for the facility-
location problem that addresses both issues outlined above.
Our algorithm is designed for the Pregel model of computa-
tion [38]. In particular, we implement our algorithm on Gi-
raph [12], thus adding facility location to the toolbox of opti-
mization problems that can be solved for very large datasets
on modern computer clusters.

Graph setting. Most works in the the area of theoretical
computer science focus on the classical formulation of the
facility-location problem, where the input consists of the
full |F | × |C| set of distances [46]. Unfortunately, in this
setting even algorithms with linear running time (in the size
of input) are not practical when both |F | and |C| are large.

In many real-world problems the input for facility location
can be represented as a graph G = (V,E), where F and C
are vertices of G. Typically, the number of edges m = |E| is
much smaller than |F ||C|, i.e., the graph is sparse. A client
c ∈ C can be served by a facility f ∈ F even if (c, f) 6∈ E,
provided that there is a path in the graph from c to f , and
the cost d(c, f) is the induced shortest-path distance. Hence,
in this so-called graph-setting, we do not need to represent
the full |F | × |C| set of distances. This setting poses non-
trivial challenges, as such distances have to be computed
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throughout the execution of the algorithm. However, it is
crucial to leverage the sparsity of a massive input graph.

Our approach is designed for this graph-based setting. We
require that the time and space requirements of our algo-
rithm be quasilinear functions of |E|. If the graph is sparse,
as most real-world datasets are, this leads to a significantly
more scalable algorithm. Thorup [48] has proposed the only
previous (sequential) algorithm for the graph setting.

Pregel model. To cope with large problem sizes mod-
ern applications take advantage of distributed systems, such
as MapReduce [19] and Hadoop, or of variants targeted to
graph data, such as Pregel [38] and its open-source clones,
Giraph [12] and GraphLab [36]. Such systems offer several
advantages, among which, high scalability and a simple pro-
gramming interface.

Our algorithm targets a parallel shared-nothing comput-
ing environment. While other parallel algorithms have been
proposed in the literature, our approach is the first one to
target modern clusters. In particular, Blelloch and Tang-
wongsan [4] proposed a parallel facility-location approxima-
tion algorithm for the PRAM model. Our work extends this
parallel algorithm to the more scalable Pregel model.

Algorithm summary. Our approach has three phases:
(i) neighborhood sketching, (ii) facility opening, and (iii) fa-
cility selection. All three phases are fully implemented in
Giraph, and the code is open-source.1

The first phase builds an all-distances sketch (ADS) that
estimates the neighborhood function of each vertex. This
sketch is used in the second phase to decide when to open a
facility. Our sketch relies on the historic inverse probability
(HIP) estimator, recently proposed by Cohen [15].

The facility-opening phase expands balls around facilities
in parallel. It decides which facilities to open depending on
the number of clients that reside within the facility-centered
balls. To estimate the number of clients inside the balls, we
use the sketch created in the previous phase.

Finally, the facility-selection phase removes duplicate as-
signments of a client to more than one facility that might
have been created due to the parallel nature of the algo-
rithm. To accomplish this task, we need to compute a max-
imal independent set (MIS) on the 2-hop graph of the open
facilities. For this sub-problem, we design a distributed ver-
sion of a recent greedy approximation algorithm [5].

Our main challenge is to adapt and combine previous re-
sults to the distributed graph setting, while maintaining the
approximation guarantee of the algorithm, and limiting the
amount of distributed communication. Concretely, the con-
tributions of this paper are as follows:

• we provide the first Pregel solution for the facility-location
problem – our algorithm, unlike previous sequential and
PRAM ones, is deployable on clusters available in mod-
ern computing environments;

• at the same time, we do not compromise on accuracy –
our algorithm provides an approximation guarantee sim-
ilar to previous PRAM and sequential ones;

• our solution uses the sparse graph-based representation
of the facility-location problem, which improves signifi-
cantly the scalability of the method;

• our algorithm employs fundamental subproblems, all-

1https://github.com/gvrkiran/giraph-facility-
location

distances sketch and maximal independent set, for which
we provide the first implementations in the Pregel model;

• we provide an extensive experimental evaluation that
shows the scalability of our methods on very large datasets.

The rest of the paper is organized as follows. In Section 2
we formally define our problem, and discuss the background
techniques needed for our approach. Our algorithm, com-
prising of the three phases outlined above, is detailed in
Section 3, while an experimental evaluation of the different
components of our method is presented in Section 4. In Sec-
tion 5 we place our work in the context of relevant research,
while Section 6 is a short conclusion.

2. PRELIMINARIES
Problem definition. In the metric uncapacitated facility-
location problem, we are given a set of facilities F and a set
of clients C. For each facility f ∈ F and client c ∈ C, there
is a cost c(f) for opening the facility f , and a cost d(c, f)
for serving client c with facility f . The objective is to select
a set of facilities S ⊆ F to open in order to minimize the
objective function ∑

f∈S

c(f) +
∑
c∈C

d(c, S),

where d(c, S) is the distance of client c ∈ C to its closest
open facility, i.e., d(c, S) = minf∈S d(c, f).

In this paper, we are interested in the graph setting of the
facility-location problem, where we are also given a weighted
graph G = (V,E,w), with w : E → R+ a weight function
on the edges of the graph. The sets of facilities and clients
are subsets of the graph vertices (F,C ⊆ V ). The distance
between clients and facilities is given by the shortest-path
distance on the weighted graph. We assume that facility
costs and edge weights be polynomial in |V |.

We focus on the graph setting of the facility-location prob-
lem so as to leverage the sparsity of real-world graphs, such
as web graphs and social networks. This allows us to develop
practical and scalable algorithms, with running time being
quasilinear in the size of the input graph. Previous algo-
rithms for our problem, are sequential or require all pairwise
vertex distances which is not practical for large graphs.

We consider both directed and undirected graphs. For the
case of undirected graphs our algorithm offers a provable ap-
proximation guarantee, while for the case of directed graphs
the algorithm provides a practical heuristic. We focus on
the case when F = C = V , although all our claims hold for
the more general case when F,C ⊆ V .

The Giraph platform. The algorithms presented in this
paper are designed for the Giraph platform [12], an Apache
implementation of the Pregel computational paradigm. Pregel
is based on the Bulk Synchronous Parallel (BSP) computa-
tion model, and can be summarized by the motto “think
like a vertex” [38]. At the beginning of the computation,
the vertices of the graph are distributed across worker tasks
running on different machines on a cluster. Computation
proceeds as a sequence of iterations called supersteps. Al-
gorithms are expressed in a vertex-centric fashion inside a
vertex.compute() function, which gets called on each ver-
tex exactly once in every superstep. The computation in-
volves three activities: receiving messages from the previous
superstep, updating the local value of the vertex, and send-
ing messages to other vertices.
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Algorithm 1: Build ADS sequentially

Input: Graph G(V,E)
Output: ADS of G

1 for v ∈ V do
2 ADS(v) = ∅
3 BKMH(v) = ∅ // Bottom-k min-hash

4 for v ∈ V and u ∈ {V sorted by d(v)} do
// list vertices in incr. distance from v

5 if r(u) < maxr(BKMH(v)) then
// r(u) is the hash of u

6 ADS(v) ← ADS(v) ∪ (u, d(v, u))
7 BKMH(v) ← bottomK(BKMH(v) ∪ u)

8 return ADS

Pregel also provides aggregators, a mechanism used for co-
ordination and monitoring, as well as for computing global
statistics. Each vertex can write a value to an aggregator in
superstep t, the system combines those values via a reduc-
tion operator, and the resulting value is made available to
all vertices in superstep t+ 1.

Giraph adds an optional master.compute() to the Pregel
model. This function performs centralized computation, and
is executed by a single master task before each superstep.
Aggregators written by workers are read by the master in the
following superstep, while aggregators written by the master
are read by workers in the same superstep. We employ this
feature in our implementation (see Section 3.5).

Approximate neighborhoods (ADS). The all-distances
sketch (ADS) is a probabilistic data structure for approxi-
mating the neighborhood function of a graph [15]. ADS aims
to answer the query “how many vertices are within distance
d from vertex v?”. ADS maintains a logarithmic-size sketch
for each vertex. In the sequential computational model, the
total time to build the ADS is quasilinear in the number of
graph edges. ADS-based techniques have been used to esti-
mate efficiently graph properties, such as the distance dis-
tribution, effective diameter, and vertex similarities [6, 16].

The ADS of a vertex v consists of a random sample of
vertices. The probability that a vertex u is included in the
sketch of vertex v decreases with the distance d(u, v). The
sketch contains not only the vertex u but also the distance
d(u, v). The ADS can be thought as an extension of the
simpler min-hash sketch [8, 14], which has been used for
approximate distinct counting [14, 20, 21], and for similarity
estimation [8, 14]. The ADS of v is simply the union of the
min-hash sketches of all the sets of the ` closest vertices
to v, for each possible value of `. Min-hash sketches have
a parameter k that controls the trade-off between size and
accuracy: a larger k entails a better approximation at the
expense of a larger sketch. The size of the ADS is O(k logn).

Our algorithm relies heavily on a recently-proposed ADS
structure, the historic inverse probability (HIP) estimator
[15], which extends significantly previous variants and offers
novel estimation capabilities. In particular, HIP can be used
to answer neighborhood queries for both unweighted and
weighted graphs. It can also be used to answer predicated
neighborhood queries, that is, to approximate the number
of vertices in a neighborhood that satisfy a certain predicate
on vertex attributes. We use this latter feature in to exclude
already served clients from the estimation of the number of
clients within a ball (see Section 3).

Algorithm 2: ADS in Giraph. Vertex.Compute()

Input: vertex value v, edge values E, messages M
Output: updated vertex value v′

Data: ADS = ∅; BKMH = ∅
// state variables are stored in the vertex v

1 OutMsgs = ∅
2 for m ∈M do

// the message contains the entries of the

// ADS of neighbors that were updated in

// the previous super step

3 for (u, d) ∈ m.getEntries() do
// u is the vertex.id and d its distance

4 if r(u) < maxr(BKMH) then
// if u has already reached v before,

// it will not be considered again

5 ADS ← ADS ∪ (u, d)
6 CleanUp(ADS(u), d) // for each

distance, remove an entry from

ADS(u) if its hash is not in the

bottom-k for that distance

7 BKMH ← bottomK(BKMH ∪ u)
8 OutMsgs ← OutMsgs ∪ (u, d+ e(u, v))

// for unweighted graphs

// e(u, v) is 1

// for weighted graphs, its the weight

of the edge between u and v

9 for e ∈ E do
10 sendMsgTo(e,OutMsgs)

The sequential version of ADS is presented in Algorithm 1,
and our adaptation for Giraph is shown in Algorithm 2. The
algorithm works for both weighted and unweighted graphs.
A cleanup operation is performed in line 6, which removes
those entries for which the hash is not in the bottom-k
min-hashes for a given distance (this may happen only for
weighted graphs, when the vertices processed by ADS are
discovered by a BFS and are not sorted by their distance
from a given vertex). While the cleanup step can be time-
consuming, we do not need to perform it in each superstep,
but only periodically when the size of the ADS becomes too
large. For unweighted graphs the cleanup is not needed.

3. ALGORITHM
As discussed earlier, our algorithm consists of three phases:

(i) neighborhood sketching, (ii) facility opening, and (iii) fa-
cility selection. This section presents the main body of the
algorithm: phases (ii) and (iii). In the pseudocode pre-
sented henceforward, for and while loops are meant to be
parallel i.e., executed by all vertices in parallel.

3.1 PRAM algorithm for facility location
Our method is inspired by the algorithm of Blelloch and

Tangwongsan [4], which is developed for the PRAM model.
We adapt this algorithm to a Pregel-like platform, and also
extend it to the graph setting, as discussed in Section 2.

The algorithm operates in two phases: facility opening,
and facility selection. It starts with all facilities being un-
opened and all clients being unfrozen.

The algorithm maintains a graph H that represents the
connections between clients and open facilities. Initially, H
has F and C as vertices and an empty set of edges. During



the execution of the algorithm, if a client c is to be served by
a facility f , the edge (c, f) is added in H. During the facility-
opening phase, it is possible for a client to be connected to
more than one facility. However, in the facility-selection
phase, redundant facilities are closed and it is ensured that
each client is connected to exactly one facility.

In the facility-opening phase, each client tries to reach a
facility by expanding a ball with radius α, in parallel. The
expansion phase is iterative, and in each iteration the radius
grows by a factor of (1 + ε), where ε is a parameter that
provides an accuracy-efficiency trade-off.

The radius of the ball of a client c is denoted by α(c). If a
client c is unfrozen, the radius of its corresponding ball is set
to the current global value α, while if a client c gets frozen
it does not increase the radius of its ball anymore. When a
facility f is reached by a sufficiently large number of clients
it is declared open. In particular, a facility f is opened when∑

c∈C

max{0, (1 + ε)α(c)− d(c, f)} ≥ c(f). (1)

For a newly opened facility f , all clients c within radius α
from f are frozen, and the edges (c, f) are added in H. The
facility-opening phase continues as long as there is at least
one unopened facility and at least one unfrozen client.

At this point, as mentioned earlier, a client may be served
by more than one facility. In the facility-selection phase,
the algorithm closes the facilities that are not necessary, as
their clients can be served by other nearby facilities. This
step relies on computing a maximal independent set (MIS)
in an appropriately-defined graph H: the open facilities are
the vertices of H and there is an edge between two facilities
fa, fb if and only if there is a client c that is connected to
both fa and fb. It is easy to see that a maximal independent
set S in H has the property that each client c is connected
to exactly one facility. Clients whose facility is not in S are
assigned to the nearest open facility.

To complete the description of the algorithm, the initial
ball radius is set to α0 = γ

m2 (1 + ε), where m = |F ||C| and
γ is defined as follows. For each client c ∈ C we set

γc = min
f∈F
{c(f) + d(c, f)} ,

and then γ = maxc∈C γc. Blelloch and Tangwongsan [4]
prove the following theorem on the quality of approximation.

Theorem 1 ([4]). For any ε > 0, the algorithm of Blelloch
and Tangwongsan has an approximation guarantee of 3 + ε,
while the total number of parallel iterations is O( 1

ε
log(|F ||C|)).

3.2 Pregel-like algorithm for facility location
We now discuss how to adapt the algorithm of Blelloch

and Tangwongsan to the graph setting discussed in Sec-
tion 2, as well as in a Pregel-like platform, such as Apache
Giraph, discussed in Section 2. The main challenges we need
to tackle are the following:

• leverage the sparsity of the graph G = (V,E) to avoid
a quadratic blowup of distance computations between
facilities and clients;

• compute efficiently, in a distributed manner, a maximal
independent set on the graph H. In particular, as the
graphs H and H may be dense, it is desirable to compute
a MIS of H without materializing H nor H explicitly.

The first challenge, i.e., exploiting the sparsity of the graph,
boils down to being able to check whether Equation (1) is
satisfied so as to decide when to open a facility.

To this end, we rearrange the left-hand side of Equa-
tion (1), so as to be able to evaluate it by means of the
ADS algorithm discussed in Section 2. Observe that the α’s
take values in the range R = {α0, (1 + ε)α0, (1 + ε)2α0, . . . }.

For every facility f , let N(f, d) be the number of clients
within distance d from f , while let n(f, d) be the number of
clients whose distance from f is in the range (d/(1 + ε), d].
Suppose that all clients within distance α ∈ R from facility
f are unfrozen. In this case, we know that for all these
unfrozen clients α(c) = α, so we can rewrite the left-hand
side of Equation (1) as follows:∑

c∈C|d(c,f)≤α

max{0, (1 + ε)α(c)− d(c, f)} =

∑
d∈R|d≤α

n(f, d) ·max{0, (1 + ε)α− d},

where we replace α(c)’s with α and rearrange the terms of
the summation by grouping terms with the same value.

If some clients within distance α from f are frozen, the
former claim might not hold anymore, and we need a more
sophisticated solution. Our goal is then to maintain an ap-
proximation of the the left-hand side of Equation (1) incre-
mentally. Let q(f) denote the current approximation com-

puted by our algorithm. Also, for each facility f , let N̂(f, d)
be the number of unfrozen clients within distance d from f ,
while let n̂(f, d) be the number of unfrozen clients at dis-
tance in the range (d/(1 + ε), d]. At each iteration of the
ball-expansion phase, we add a term t(f, α) to q(f). This
term accounts for the increase in contribution to q(f) due to
the newly-reached unfrozen clients, while subtracting excess
contribution due to previous iterations.

The increase in contribution t(f, α) is defined as∑
d∈R|d≤α

n̂(f, d) ·max{0, (1 + ε)α− d}, (2)

if α = α0 (no excess contribution to be subtracted), and∑
d∈R|d≤α

n̂(f, d) ·(max{0, (1+ε)α−d}−max{0, α−d}), (3)

otherwise. The term t(f, α) is added to q(f) in each iteration
of the algorithm for the current value of radius α.

The terms N̂(f, d) can be computed efficiently in a dis-
tributed fashion by employing the ADS. Given that n̂(f, d) =

N̂(f, d) − N̂(f, d/(1 + ε)), it follows that also the left-hand
side of Equation (1) can be computed efficiently in a dis-
tributed fashion. To show the validity of our approximation
we need the following definition.

Definition 2. Given real numbers a, b, ε > 0, we say that
a approximates b with accuracy ε, and write a ≈ε b, if a ∈
[(1 + ε)−1b, (1 + ε)b].

Our approximation is quantified with the following Lemma,
whose proof is omitted from due to space limitations.

Lemma 3. Given ε > 0, consider the quantity q(f) com-
puted as described above, for f ∈ F . Let α be the ball radius
at the current step of the algorithm. The following holds:

q(f) ≈ε
∑
c∈C

max{0, (1 + ε)α(c)− d(c, f)}.



Algorithm 3: Pregel-like algorithm for facility location
(graph setting)

Input: Graph G = (V,E, d), facilities F ⊆ V , clients
C ⊆ V , facility opening cost c(·), accuracy ε

Output: Subset of opened facilities S
1 O ← ∅ // opened facilities

2 U ← C // Unfrozen clients

3 α← α0 ← γ
m2 (1 + ε) // Initial ball radius

4 q(f)← 0 for each f ∈ F
// next one is a sequential while

5 while (O 6= F ) and (U 6= ∅) do
6 α← α (1 + ε) // Increase ball radius

7 α(c)← α for each c ∈ U
8 O ← OpenFacilities(G,F \O,U, c(·), α, α(·), q(·))
9 for f ∈ Ō do

10 send(f, α,“FreezeClient”) // f sends a

"FreezeClient" message to all vertices

within distance α

11 for c ∈ U do
12 if c receives a “FreezeClient” message then
13 U ← U \ {c}
14 O ← O ∪O
15 if O = F and U 6= ∅ then
16 for c ∈ U do
17 α(c)← arg minf d(c, f)

18 S = MISH(G,O,C, α(·)) // Computing a MIS of H

without building H nor H
19 return S

Pseudocode for our method is shown in Algorithm 3. It
consists of two building blocks: an algorithm for deciding
which facilities to open (Algorithm 4), and an algorithm
for computing a maximal independent set of the graph H
without explicitly building such a graph (Algorithm 5). The
pseudocode for distributing messages in the graph (denoted
by the send procedure) is omitted for brevity.

During the execution of the algorithm, for each open faci-
lity f we let α(f) be the value of α when f is opened. Ob-
serve that there is an edge (c, f) in H only if (1) α(c) = α(f),
(2) c is within distance (1+ε)α(c) from f , and (3) f is open.
Therefore, storing the values for α(f) and α(c) allows us not
to materialize H, which might be very costly.

3.3 Maximal independent set
Salihoglu and Widom [45] recently proposed an implemen-

tation of the classic Luby’s algorithm [37] for computing the
MIS in a Pregel-like system such as Giraph. In our ap-
proach, we need to compute a MIS of H which is essentially
the graph H2 after removing all unopened facilities (and
their edges) from H2. As we do not materialize H nor H,
even computing the degree of a vertex in H (which is needed
in Luby’s algorithm) might require to exchange a large num-
ber of messages. Therefore, we resort to another algorithm
developed by Blelloch et al. [5] and which works as follows.

Initially, all vertices are active and a unique ID is assigned
randomly to each of them. Let π(f) be the ID for facility f .
Then, in parallel, each active vertex v checks whether its ID
is the minimum among its neighbors. If this is the case, v is
included in the maximal independent set and all its neigh-

Algorithm 4: OpenFacilities(G,D,U, c(·), α, α(·), q(·))
Input: Graph G = (V,E), unopened facilities D,

unfrozen clients U , facility opening cost c(·),
current radius α, radius for frozen clients and
opened facilities α(·), facility contribution from
clients q(·)

Output: Newly opened facilities O
1 for f ∈ D // For each unopened facility

2 do
// use ADS Algorithm 2

3 Compute n̂(d, f) for each f ∈ F and d ∈ R
4 if α = α0 then
5 Compute t(f, α) as in Equation (2)
6 else
7 Compute t(f, α) as in Equation (3)
8 q(f)← q(f) + t(f, α)
9 if q(f) ≥ c(f) then

10 add f in O

// α’s allow not to materialize H nor H
11 α(f)← α

12 return O

bors become inactive. This process is iterated O(log2 n)
times. It can be shown that, with high probability, the se-
lected vertices induce a maximal independent set.

As we do not materialize H nor H, we need to slightly
modify the algorithm by Blelloch et al. [5]. Recall that there
is an edge (c, f) in E(H) only if (1) α(c) = α(f), (2) c is
within distance (1+ ε)α(c) from f , and (3) f is open. More-
over, there is an edge (fa, fb) in E(H) if there exist c ∈ C
such that (c, fa) and (c, fb) ∈ E(H). After determining its
ID π(f), each facility f sends a message (π(f), α(f)) to all
vertices within distance (1 + ε)α(f) from f . Each client c
collects all messages (π(f), α(f)), and retains only the pairs
(π(f), α(f)) corresponding to the facilities f that c is con-
nected. Then, each client computes the minimum ID πmin

among all the facilities it is connected to, and sends back a
message containing πmin to all such facilities. Each facility
f is included in the maximal independent set if an only if
πmin = π(f), in which case it sends πmin to all neighbor-
ing facilities (in H) so that they are removed from the set of
active vertices. The last step is performed by letting each fa-
cility f send πmin to all clients c within distance (1+ ε)α(f),
which in turn deliver such message to all facilities within
distance (1 + ε)α(c). For pseudocode see Algorithm 5.

In Section 4, we evaluate the proposed algorithms against
the algorithm proposed by Salihoglu and Widom [45].

3.4 Approximation guarantee and running time
Combining Theorem 1, Lemma 3, and the fact that ADS

provides an approximation to the values of n̂(f, d), we can
show an approximation guarantee for our algorithm.

Theorem 4. For any ε > 0 and any integer k ≥ 1, Al-
gorithm 3 has an approximation guarantee of 3 + o(1) + ε.
The total number of parallel iterations is O( δ

ε
log2(n)), while

the total number of messages exchanged by vertices is O(m),
with each message requiring O(k logn) bits.

The parameter k is related to the bottom-k in ADS. Ob-
serve that we are able to derive the same approximation
guarantees of Thorup [48], but in a distributed setting.



Algorithm 5: MISH(G,O,C, α(·))
1 S ← ∅, A← O
2 for f ∈ A do
3 π(f)← RAND([1, n3])
// next one is a sequential for

4 for i = 1, . . . , dlog2 ne do
5 for f ∈ A do
6 send(f, (1 + ε)α(f), (π(f), α(f)))
7 for c ∈ C do
8 πmin = min(π(f),α(f)):α(f)=α(c) π(f)

send(c, (1 + ε)α(c), πmin)
9 for f ∈ A do

10 if πmin = π(f) then
11 S ← S ∪ {f}
12 A← A \ {f}
13 send(f, (1 + ε)α(f), πmin)

14 for c ∈ C do
15 if c receives πmin, send(c, (1 + ε)α(c), πmin)
16 for f ∈ A do
17 if πmin < π(f), A← A \ {f}
18 return S

Theorem 4 holds only for undirected graphs. For directed
graphs our guarantee does not hold, even though our algo-
rithm can be adapted in a straightforward manner. In our
experiments we have used directed graphs as well, and the
performance of the algorithm is equally good.

With respect to the running time, the overall number of
supersteps required by the algorithm is proportional to the
diameter δ of the graph. This follows from the hop-by-hop
communication between clients and facilities. Thus, as typ-
ically real-world graphs have small diameter, we expect our
algorithm to terminate in a small number of supersteps.

3.5 Implementation in Giraph
The facility-opening phase consists of two subroutines,

ball expansion and client freezing, which are implemented
by the vertices and masters compute functions. Initially,
the algorithm expands the balls around the potential facili-
ties in parallel. When one of the balls encompasses a large
enough number of clients, the facility at the center of the
ball opens. At this point, all clients within the ball freeze,
via the FreezeClients subroutine. The algorithm then re-
sumes expanding the balls in parallel until another facility
opens. This phase terminates when no unfrozen client re-
mains, condition monitored by the master via a sum aggre-
gator. By the end of the algorithm, vertices are either open
facilities, or frozen clients with at least one facility serving
them. Clients may have multiple facilities serving them as
a result of concurrent openings or intersecting balls.

We now describe in detail the implementation of this phase
of the algorithm in Giraph. The communication and coor-
dination between the two main subroutines is particularly
interesting. In Giraph, the communication between master
and workers happens via aggregators.

How to “call a subroutine”? While expanding the balls,
we use a boolean aggregator called SwitchState to monitor
if any facility was opened in the current superstep. Every
vertex can write a boolean value to this aggregator, and the
master can read the boolean and of all the values in its next
superstep. The value of the aggregator is computed effi-

ciently in parallel via a tree-like reduction. If SwitchState

is true, the master writes to another aggregator State that
represents the current function being computed. By set-
ting the value of State to FreezeClients, the master can
communicate to the vertices to switch their computation,
effectively mimicking a subroutine call.

How does FreezeClients work? The vertices execute
different subroutines by switching on the State aggregator.
When FreezeClients is executed, each facility opened in
the last superstep sends a “FreezeClient” message to all the
clients within the current radius of the ball. This message
contains the ID of the facility, and the distance it needs to
reach, i.e., the radius. Each client that receives this mes-
sage gets activated modifies its state to frozen by the faci-
lity whose ID is in the message, and propagates the message
to its own neighbors, as explained next. When a vertex
deactivates, it writes true on the SwitchState aggregator.
When all the vertices terminate and deactivate, the master’s
SwitchState aggregator (which is a boolean and) becomes
true. The master can then resume the OpenFacilities rou-
tine by writing on the State aggregator.

How to send a message to all vertices at distance d?
In Giraph, messages are usually propagated along the graph,
hop-by-hop. A vertex v that wants to send a message M
to all veritces within distance d, sends to each neighbor u
a message containing M, as well as, the remaining distance
d− d(v, u), if such a distance is larger than zero. The mes-
sage is then in turn propagated by u to its neighbors if the
remaining distance is larger than zero. If a vertex receives
multiple copies of the same message M it propagates only
the one with maximum remaining distance. This subroutine
takes several supersteps to complete, proportional to the dis-
tance to reach, and sends a number of messages proportional
to the number of edges within distance d.

How to estimate the number of unfrozen clients?
We employ ADS to estimate N(fi, d), i.e., the number of
unfrozen clients within distance d from fi. We achieve this
by using the predicated query feature of ADS. Given that
ADS is composed by a sample of the vertices in a graph (for
each possible distance), we can obtain an unbiased sample
of a subset of the vertices that satisfy a predicate simply by
filtering the ADS with such predicate. That is, we can apply
the condition a posteriori, after having built the ADS.

However, there is another issue to solve in our setting.
The predicate we want to compute (unfrozen) is dynamic,
as clients are frozen continuously while the algorithm is run-
ning. Therefore, we implement this predicate by maintain-
ing explicitly the set of frozen clients. Whenever a client is
frozen, it writes its own ID to a custom aggregator which
computes the set union of all the values written in it. At
the next superstep, each facility has access to this set, and
can use it to filter the ADS for the following query. Notice
that, even though this set can grow quite large, it can be ap-
proximated by using a Bloom filter at the cost of decreased
accuracy in the estimate. Our experiments are not affected
by this issue, so for simplicity we do not explore the use of
Bloom filters, and defer its study to a later work.

4. EXPERIMENTS
We test our approach using several datasets on a shared

Giraph cluster containing up to 500 machines. We design
our experiments to answer the following questions:



Table 1: Datasets.

Name |V | |E| Description

FF10K 10k 712k

Forest Fire random graphs
FF100K 100k 11M
FF1M 1M 232M
FF10M 10M 1.6B

RMAT10K 213 3M

R-MAT random graphs
RMAT100K 217 5M
RMAT1M 220 30M
RMAT10M 223 500M

ORKUT 3M 117M Orkut social network
TUMBLR 10M 166M Tumblr reblog network
USROAD 23M 58M Complete road network of the USA
UK2005 39M 1.4B Web graph of the .uk domain
FRND 65M 1.8B Friendster social network

Q1: What is the performance of ADS and how does it affect
the main algorithm? (Section 4.1)

Q2: How does our algorithm compare with state-of-the-art
sequential ones, in terms of quality? (Section 4.2)

Q3: What is the scalability of our approach in terms of time
and space? (Section 4.3)

Q4: How do the two implementations of MIS compare with
each other? (Section 4.4)

Parameters. There are two parameters of interest in our
approach: the parameter k of the bottom-k min-hash, which
regulates the space-accuracy trade-off of ADS, and the pa-
rameter ε, which regulates the time-accuracy trade-off in the
facility-location algorithm.

Datasets. Table 1 summarizes the datasets used in our ex-
periments. We use both synthetic and real-world datasets.
We use two types of synthetic datasets and create instances
with exponentially increasing sizes to test the scalability of
our approach. We choose graph-generation models that re-
semble real-world graphs. The first type of synthetic graphs
is generated using the Forest Fire (FF) model [33], where
the forward burning probability is set equal to 0.3 and the
backward equal to 0.4. The second type of synthetic graphs
uses the recursive matrix model (RMAT) [10] with param-
eters a = 0.45, b = 0.15, c = 0.15, and d = 0.25.2 This
model can only generate graphs with a number of vertices
that is a power of 2. For weighted graphs, we assign weights
between 1 and 100, uniformly at random.

4.1 Evaluation of ADS
We perform experiments to assess the quality of the ADS

estimates. To the best of our knowledge, we are the first to
implement and test ADS on Giraph on a large scale. First,
we evaluate the quality of ADS approximation by comparing
against exact neighborhood sizes. Then, we experiment with
the time taken for computing the ADS as a function of k.

Accuracy vs. k: To evaluate the accuracy of the estimates
produced by ADS, we need to compute exact neighborhood
sizes. Since such computation is infeasible for large graphs,
we compute exact neighborhood sizes on a sample of ver-
tices. For each neighborhood distance (from 1 to 20 for
unweighted graphs, and from 100 to 2000, at increments of

2For both models, FF and RMAT, we use the default pa-
rameters that the data generators come with.
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Figure 1: ADS relative error vs. k (unweighted graphs).
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Figure 2: ADS relative error vs. k (weighted graphs).

100, for weighted graphs), we sample 100 random vertices
and compute their exact neighborhood sizes. For each sam-
pled vertex and each distance, we compute the relative error
as |SE−SADS|/SE , where SE is the exact neighborhood size
and SADS the ADS estimate. Relative error averages and
variances across the 2000 samples are reported in Figure 1
(unweighted) and Figure 2 (weighted).

We can see that the estimates are of high quality. In most
cases, even for small values of k, the average relative error
is less than 50%. The variance is also small.

Time vs. k: Next, we measure the time taken to compute
the ADS as a function of k, as shown in Figure 3. We clearly
see that even for graphs with 1 million vertices and k as large
as 500, the algorithm finishes in less than 800 seconds.

Space requirements: Since increasing the value of k does
not increase the time taken by the algoritom, one would as-
sume that we could use a very high value of k in order to
improve the quality of approximation of ADS. The bottle-
neck, though, is the size of the ADS, which is proportional
to k. In our setting, we have a limitation of 3.5 GB of mem-
ory per machine, which makes it infeasible to store an ADS
for large graphs with very large values of k (say, n > 10m
and k > 200). Recall, however, that the size of the ADS
is proportional to nk logn, thus, the value of k can increase
linearly with the number of available machines.
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Table 2: Relative cost of the Giraph algorithm against the
sequential one (k = 200).

Type |V | |E| ε = 0.01 ε = 0.1 ε = 1

FF 1k 11k 1.21 1.46 2.56
FF 2k 25k 1.15 1.60 2.45
FF 3k 60k 1.07 1.75 2.47
FF 4k 67k 1.08 1.48 2.16
FF 5k 121k 1.05 1.5 2.13
FF 6k 206k 1.01 1.41 2.02
FF 7k 268k 1.03 1.33 1.67
FF 8k 380k 1.03 1.25 1.55
FF 9k 520k 1.01 1.18 1.41
FF 10k 712k 1.02 1.09 1.43
RMAT 210 100k 1.08 1.55 1.88
RMAT 211 200k 1.06 1.36 1.7
RMAT 212 500k 1.05 1.35 1.73
RMAT 213 800k 1.05 1.24 1.44
RMAT 214 1000k 1.02 1.14 1.39

4.2 Facility-location algorithm
We evaluate the quality of the solutions produced by our

distributed algorithm by comparing against a simple sequen-
tial baseline. We evaluate the performance and the running
time of the algorithm as a function of ε.

Comparison with sequential algorithm: As a baseline
we use the sequential approximation algorithm by Charikar
and Guha [11], which achieves an approximation ratio of

(2.414+ε) and has running time of Õ(n2/ε). The sequential
algorithm assumes the availability of all-pairs shortest path
distances, which is very expensive to compute, even for small
graphs. Therefore, we perform our evaluation with graphs
consisting of no more than 10 K vertices.

Table 2 shows the results of the comparison in terms of
relative cost, which is defined as the cost of the sequential
algorithm divided by the cost of our algorithm, for different
values of ε. A smaller value means that our algorithm is
competitive with the baseline. We can see that our algo-
rithm performs quite well, even for large values of ε.

Cost vs. accuracy (ε): Table 2 shows the relative cost of
our algorithm (compared again to the sequential algorithm)
with respect to the accuracy. As expected, we get better
solutions for smaller values of ε, but the solution does not
get much worse even for large values of ε.

Running time vs. accuracy (ε): Figure 4 shows the time
taken by our algorithm as a function of ε. We see that, as
expected, our algorithm scales linearly with respect to the
size of the graph,3 and is faster for larger values of ε.

3A linear fit gives R2 values between 0.8 and 0.9.
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4.3 Scalability
Next, we examine the scalability of the different phases of

our algorithm. Recall that the three phases of our algorithm
are (i) ADS computation (pre-processing), (ii) facility-location
algorithm, and (iii) MIS computation (post-processing). Fig-
ure 5 presents the time taken, for different datasets, broken
down by phase. The total running time, for various graph
sizes, is also shown in Figure 6.

For the results shown in Figure 5, we used k = 20, ε = 0.1,
and 200 machines. Since the running time on a distributed
cluster depends on various factors, such as the current load
of the machines, we repeat all experiments three times and
report the median running time.

Next, we vary the size of the graph and the number of
machines, keeping the number of vertices per machine con-
stant and test the time taken by our algorithm. The results
are presented in Figure 7. We can clearly see that the time
taken almost remains constant, indicating the scalability of
our approach to large graphs.

4.4 Luby’s vs. parallel MIS
As discussed above, we implement two methods for finding

the maximal independent set (MIS): Luby’s [37], which was
also implemented recently by Salihoglu and Widom [45], and
a recent algorithm by Blelloch et al. [5]. We compare the
two methods in terms of total time taken and number of
supersteps needed to converge. Table 3 shows the results.
We see that our parallel MIS algorithm implementation is
at least 3 to 5 times faster than Luby’s algorithm.



Size of the graph (vertices)
10

4
10

6
10

8

T
im

e
 (

s
)

10
3

10
4

10
5

Forestfire
R-MAT
TUMBLR
USROAD
UK2005
FRND
ORKUT

Figure 6: Total time taken by the algorithm.

Num. Machines, Size of the graph

10
,1

M

20
,2

M

40
,4

M

80
,8

M

16
0,

16
M

T
im

e
 (

s
)

×10
4

0

2

4

6

Figure 7: Total time taken by our algorithm for different
number of machines for different sized graphs.

5. RELATED WORK
Facility location. Facility location is a classic optimiza-
tion problem. The traditional formulation (metric uncapac-
itated facility location) is NP-hard, and so are many of its
variants. Existing algorithms rely on techniques such as LP
rounding, local search, primal dual, and greedy. The greedy
heuristic obtains a solution with an approximation guaran-
tee of (1+ log |D|) [29], while constant-factor approximation
algorithms have also been introduced [1, 11]. The approxi-
mation algorithm with the best factor so far (1.488) is very
close to the approximability lower bound (1.463) [35].

Differently from most previous work, the input to our al-
gorithm is a sparse graph representing potential facilities
and clients and their distances, rather than the full bipar-
tite graph of distances between facilities and clients. Note
that building the full bipartite graph requires computing all-
pairs of distances and implies an Ω(n2) algorithm. Thorup
[48] considers a setting similar to ours, and provides a fast

sequential algorithm Õ(n+m).
Blelloch and Tangwongsan [4] propose a parallel approxi-

mation algorithm for facility location in the PRAM model.
In this work, we extend the former algorithm to work in a
more realistic shared-nothing Pregel-like model. Other par-
allel algorithms have also been proposed [25, 41, 42].

Applications. Facility location is a flexible model that
has been applied successfully in many domains, such as city
planning, telecommunications, electronics, and others. For
an overview of applications, please refer to the textbook of
Hamacher and Drezner [28].

Large-scale graph processing. MapReduce [19] is one
of the most popular paradigms used for mining massive
datasets. Many algorithms have been proposed for vari-
ous graph problems, such as counting triangles [47], match-
ing [18, 32, 40], building similarity graphs [3, 17], and finding

Table 3: Comparison of two implementations of MIS, in
terms of supersteps and time taken (median over three runs).

Graph Supersteps Time (s)

Luby’s MIS Luby’s MIS

FF10K 750 29 730 104
FF100K 3473 85 1869 296
FF1M 6119 325 6155 1205
FF10M 20 154 1613 11 744 3711

RMAT10K 645 17 616 87
RMAT100K 3200 73 1576 319
RMAT1M 5832 285 4109 1232
RMAT10M 17 557 1533 9492 3181

densest subgraphs [2].
However, given the iterative nature of most graph algo-

rithms, MapReduce is often not the most efficient solution.
Pregel [38] is large-scale graph processing platform that sup-
ports a vertex-centric programming paradigm and uses the
bulk synchronous parallel (BSP) model of computation. Gi-
raph [12] is an open-source clone of Pregel. It is the plat-
form that we use in this work. Other distributed systems
for graph processing have recently been proposed, for in-
stance, GraphLab [36], PowerGraph [26], GPS [44], and
GraphX [27]. Most of the APIs of these system follow the
gather-apply-scatter (GAS) paradigm, which can be readily
used to express our algorithm. However, the BSP model is
still used due to its simplicity and ease of use.

Algorithms. Our work takes advantage of a number of
successful algorithmic techniques. We use the all-distance-
sketches (ADS) and the historic inverse probability (HIP)
estimator by Cohen [15] to estimate the number of vertices
within certain distance from a given vertex. HIP is a cardi-
nality estimator similar to HyperLogLog counters [22] and
Flajolet-Martin counters [21]. HyperANF [6] is a related
algorithm that approximates the global neighborhood func-
tion of the graph by using HyperLogLog counters, but it is
not directly usable in our case as we need separate neigh-
borhood functions for each vertex.

6. CONCLUSIONS
We have shown how to tackle the facility-location prob-

lem at scale by using Pregel-like systems. In particular, we
addressed the graph setting of the problem, which allows to
represent the input in sparse format as a graph. We lever-
aged graph sparsity to tackle problem instances whose size
is much larger than previously possible.

Our algorithm is composed by three phases: (i) neigh-
borhood sketching, (ii) facility opening, and (iii) facility se-
lection. We implemented all three phases in Giraph, and
published the code as open-source software. For the first
phase, we showed how to use ADS with HIP, a recent graph-
sketching technique. We adapted an existing PRAM algo-
rithm with approximation guarantees for the second phase.
Finally, for the third phase we proposed a new Giraph algo-
rithm for the maximal independent set (MIS), which is much
faster than the previous state-of-the-art. Our approach was
able to scale to graphs with millions of vertices and billions
of edges, thus adding facility location to the tool set of al-
gorithms available for large-scale problems.

This work opens up several new research questions. From



the point of view of the practitioner, this algorithm enables
to solve large-scale facility-location problems, thus is a can-
didate for real-world applications in Web and social-network
analysis. A more general question is whether better algo-
rithms exist for the setting we consider. Also, it would be
interesting to know whether there are any primitives that
the system could offer to develop better algorithms.
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