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ABSTRACT
With the fast growth of smart devices and social networks,
a lot of computing systems collect data that record different
types of activities. An important computational challenge
is to analyze these data, extract patterns, and understand
activity trends. We consider the problem of mining activity
networks to identify interesting events, such as a big concert
or a demonstration in a city, or a trending keyword in a user
community in a social network.

We define an event to be a subset of nodes in the network
that are close to each other and have high activity levels.
We formalize the problem of event detection using two
graph-theoretic formulations. The first one captures the
compactness of an event using the sum of distances among
all pairs of the event nodes. We show that this formulation
can be mapped to the MaxCut problem, and thus, it can
be solved by applying standard semidefinite programming
techniques. The second formulation captures compactness
using a minimum-distance tree. This formulation leads to
the prize-collecting Steiner-tree problem, which we solve by
adapting existing approximation algorithms. For the two
problems we introduce, we also propose efficient and effective
greedy approaches and we prove performance guarantees for
one of them. We experiment with the proposed algorithms
on real datasets from a public bicycling system and a
geolocation-enabled social network dataset collected from
twitter. The results show that our methods are able to
detect meaningful events.

Categories and Subject Descriptors
H.3.4 [Database Management]: Database Applications—
Data mining

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Detecting events is a fundamental problem in data mining

and numerous methods have been applied to a variety of
scenarios, including time series and data streams [19], point
clouds and vector spaces [12], and networks [11]. The work
in this paper concentrates on the latter category: discovering
events in networks.

At a high level, our goal is to identify parts of the network
with unusual high activity confined in a small space or in a
dense part of the graph. We consider a network G = (V,E)
whose nodes monitor and record a certain activity. Such
a network can represent a sensor network, a social-media
site, activity levels from brain imaging, and so on. Given
a time instance t, each node v ∈ V in the network keeps a
value wt(v) with the measurement value for the monitored
activity. The objective of our approach is to detect an event
happening in the network at time instance t. The event
is defined with respect to activity values wt(·) as well as
network connectivity. In particular, we aim at finding a
subset of network nodes S, such that all nodes in S are close
to each other and they all have high levels of activity.

The activity values wt(v) may be absolute or normalized.
Normalization here can be used to capture the abnormality
level of a node at a certain time with respect to the routine
operation of the network. In general, arbitrarily complex
models can be used to define appropriately normalized
activity values wt(v). For instance, periodicity phenomena
can be taken into account; for example, when monitoring
the traffic activity in a city, the reference values for weekend
8am traffic are much lower than that of a week day. In this
paper, we assume that the activity values wt(v) are provided
as input to our problem. Devising models to obtain finely
tuned and appropriately normalized activity values wt(v)
depends on the application at hand and we consider it as an
orthogonal problem, outside the scope of this paper.

The problems we define can be applied to a variety
of scenarios, such as medical diagnosis, performance
monitoring, image or video surveillance, and fraud detection.
In this paper we experiment with two applications, event
detection in sensor networks and social networks.

Sensor networks. Consider a network of sensors deployed
in a certain region and recording a measurement of interest,



such as traffic, pollution, or water-quality level. In some
cases, the network nodes are geolocated so that a distance
measure is defined among all nodes, whereas in other cases
only a list of direct neighbors is known for each node. Events
are defined with respect to the activity value monitored:
we are interested in finding compact subareas where the
traffic measurements are abnormal, the pollution levels are
unusually high, and so on.

Social networks. Social networks model social interactions
between individuals. The values recorded at each node
correspond to a type of activity we are interested in
monitoring, for example, the number of messages posted by
an individual during the last few hours, an average sentiment
score of those messages, or the frequency of keywords
associated with a topic of interest. In this application, the
events discovered by our methods will correspond to dense
network subgraphs that exhibit high values with respect to
the activity monitored.

Motivated by the previous discussion, we formalize event
detection as a problem of finding a subgraph S ⊆ V in
a graph G = (V,E,w) with node weights w(v), for each
v ∈ V . The subgraph S needs to be compact in terms
of graph distances, and the sum of weights of the nodes
of S needs to be large. We express subgraph compactness
using two different definitions: sum of pairs of distances
and Steiner-tree cost. The first definition leads to a
graph-cut problem. We show that the optimization function
is submodular and we provide two simple greedy algorithms
with provable approximation guarantees. We also show how
we can transform the problem to a variant of the MaxCut
problem to obtain an algorithm that is less practical but has
better approximation guarantee than the greedy algorithms.

The second subgraph-compactness definition, which is
based on the cost of the minimum Steiner tree, leads to
a prize-collecting Steiner-tree problem. For that problem
we apply a well known 2-approximation algorithm, which
is based on the primal–dual paradigm. We also experiment
with a greedy heuristic, which in practice gives almost as
good solutions as the primal–dual algorithm.

We evaluate our problem formulation and the proposed
algorithms on three sensor-network datasets and two
social-network datasets. The former are real-world datasets
from public bicycling systems from three large cities,
Barcelona, Washington D.C., and Minneapolis, while the
latter are datasets collected from twitter on two cities, New
York City and Los Angeles. Using our methods allows to
successfully discover real events in the cities, as reflected on
the usage of shared bikes or twitter volume.

1.1 Related work
Statistical methods. A statistical approach for finding
anomalies is the spatial scan statistic [23]. The method
typically assumes that the data are distributed according
to some distribution on a Euclidean space. The goal is
then to detect whether there exists a subarea where the
data are distributed according to the same distribution
but with a higher density parameter. This approach is
related to our setting but it has important differences.
First, the statistical approach defines a null hypothesis,
therefore, it assumes an underlying distribution over the
data. Instead, our approach is formalized through an
optimization function, and no such assumptions are needed.
Second, the classical approaches are rather heuristic in

nature: the methods detecting the most diverse subareas are
usually based on Monte Carlo sampling, even though there
have been approaches to formulate them as optimization
problems and provide algorithmic solutions [1, 2]. Yet a
third difference is that usually these approaches assume that
the shape is predefined (e.g., a circle or an axis-parallel
rectangle), which allows for the design of algorithms that
can search the space of shapes. Statisticians have proposed
generalizations where the shape of the dense cluster is not
fixed a priori [7, 25, 27], however this forces the solution of
the detection problem to be heuristic (e.g., Monte Carlo
simulations). Finally, all these approaches assume that
there exists an underlying Euclidean geometry on the space.
For several of the applications we are interested, such as
social networks, such Euclidean geometry is not present,
thus requiring alternative approaches.

In summary, the approach of this paper is conceptually
different from all the related work on spatial scan statistics.
Here we provide a formal graph-theoretic definition of
the problem and algorithms that have theoretical quality
guarantees and are efficient in practice.

Event detection in social media. Event detection based
on geospatial information from social media and twitter is
a research area that has attracted significant attention in
the last years. Baldwin et al. [8] developed an interactive
system, in which a user can insert some queries and obtain
the volume of tweets containing these terms at different
granularities of space and time. Walther and Kaisser [30]
developed a system for detecting events that take place
from the twitter stream. It gathers tweets as they are
created and it clusters them online based on geolocation.
A machine-learning module evaluates whether a cluster of
tweets refer to an event. Also Watanabe et al. [31] develop
a similar system that identifies tweets that are created close
in time and space and by looking at co-occurring terms
it attempts to discover if they refer to the same event.
Olson et al. [24] designed a system that aims at detecting
very rapidly large rare events: events that happen with
very low frequency but with large consequences, such as
an earthquake or a tsunami. The difference of this line of
work with our approach is that we offer a graph-theoretic
formulation to the problem, which can be applied to any
graph, not just geography-induced graphs. Additionally,
our method does not uses text, but it assumes numerical
measurements on the graph nodes.

Anomaly and outlier detection. Our problem has also
resemblance with problems related to outlier and anomaly
detection in networks. The main objective of these works
is to identify patterns that are different than normal. For
instance, Heard et al. [20] apply statistical techniques to
discover a subset of the nodes that in a small period of time
change significantly their communication patterns. Bhuyan
et al. [9] apply clustering on network data for detecting
intrusion attacks. The tutorial of Akoglu and Faloutsos [3]
has an extensive reference list with related publications.

Dense subgraphs. Our problem is related to finding dense
subgraphs [6, 14, 16, 22, 29]. Here, the goal is to find small
parts of the network with a high number of edges. We are
interested in small subgraphs with high number of nodes,
thus obtaining different objective functions.

Finally, in a work related to the Steiner-tree problem
formulation presented in this paper, Seufert et al. [26]



consider the problem of finding a subtree with k nodes such
that the total node weight is maximized. Their approach
also relies on the prize-collecting Steiner-tree, but their
methods focus on identifying a heavy tree of exactly k nodes.

2. PROBLEM FORMULATION
We consider a graph G = (V,E,w,c), with V being a set

of n vertices and E being a set of m edges. The weight
function w : V → R assigns a nonnegative value w(v) to
each vertex v, whereas the distance function c : E → R
assigns a distance value c(u,v) to each edge (u,v). The edge
distance function c can be used to define a new distance
function over all pairs of vertices (u,v) ∈ V × V . This can
be done by considering the shortest-path distance closure
between vertices. Namely, for each u,v ∈ V we define d(u,v)
to be equal to the distance of a shortest path from u to
v using edges of G, or ∞ if no such path exists. Unless
specified otherwise, in the rest of the paper we assume
that the shortest-path distance d is used, and that a finite
distance value is defined for all pairs of vertices in the graph.

Our goal is to find a subset of vertices S ⊆ V that has
large total weight according to the weight function w, and it
is sufficiently compact, that is, the vertices in S are close to
each other according to the distance function d.

To capture our objective we need to define appropriate
weight and distance functions for subsets of vertices. Given
S ⊆ V we denote such weight and distance functions by
W (S) and D(S), respectively. As a set weight function we
consider simply the sum of all the weights in the set, that is,

W (S) =
∑
v∈S

w(v).

For measuring the total distance of a set S we consider
two options. The first option is to sum the distances of all
pairs of vertices in S, namely

DAP(S) =
1

2

∑
v∈S

∑
u∈S

d(u,v).

This type of objective function is suitable for events that
are concentrated in a small area in a round-shaped area, for
instance a football game. But events might have different
shapes, such as a parade, a street concert, a firework show,
and so on; for such events, we need a distance function that
does not penalize long distances, as long as points in between
are also active. This leads to using the minimum Steiner tree
of the subgraph induced by the set of vertices S. We denote
this total-distance measure by DT(S). Thus, we have

DT(S) = min
T∈T (G[S])

∑
(u,v)∈T

d(u,v),

where G[S] denotes the subgraph of G induced by a subset
of vertices S ⊆ V , and T (H) denotes the set of all the trees
of a graph H.

Subsets of vertices S ⊆ V that correspond to meaningful
events need to have large weight value W (S) and small
total distance value D(S). To combine the two measures
in a way that allows to maximize simultaneously W (S)
and minimize D(S) there are many different options, for
example, optimizing the one measure while setting a budget
constraint on the other or taking a linear combination of
the two measures. The former approach induces difficulties
in devising approximation algorithms. To avoid them, we

consider a linear combination of the two measures into a
single objective with a normalization coefficient λ. The
coefficient λ provides an easy way to control the relative
importance of the two measures. In addition, as we will see
in the next section, such a linear combination leads to neat
mathematical forms, which can be viewed as a quadratic
integer program or as well studied tree-based problems.

Thus, we consider the following problem formulation.

Problem 1 (Event). Given a graph G = (V,E,w,c)
with vertex weights w and edge distance c, and a
normalization coefficient λ, find a subset of vertices S ⊆ V
that maximizes the objective function

Q(S) = λW (S)−D(S). (1)

Problem 1 is a generic problem. The exact structure
of the problem and solution methods depend on which
distance function D is used. We obtain two instantiations of
Problem 1 by considering the two set distance functions DAP

and DT that we discussed previously. Thus, we consider the
following two specific problems.

Problem 2 (EventAllPairs). Given a graph G =
(V, E,w,c) with vertex weights w and edge distance c, and a
normalization coefficient λ, find a subset of vertices S ⊆ V
that maximizes the objective function

QAP(S) = λW (S)−DAP(S). (2)

Problem 3 (EventTree). Given a graph G = (V,E,
w,c) with vertex weights w and edge distance c, and a
normalization coefficient λ, find a subset of vertices S ⊆ V
that maximizes the objective function

QT(S) = λW (S)−DT(S). (3)

One should note that in the above problem formulations,
the objective functions Q, QAP, and QT can take negative
values. Negative values do not create any problems as long
as one is after exact solutions. However, in the context of
approximation algorithms, objective functions with negative
values are problematic because it becomes more difficult
to apply the concept of multiplicative approximation
guarantee. To overcome this problem we modify the
objective functions to ensure that they take nonnegative
values. We do so by adding a constant term, and we thus
consider a shifted version of our objective functions.

First, for the problem EventAllPairs we consider the
shifted function Q+

AP(S) = QAP(S) + DAP(V ). It is easy
to see that the function Q+

AP is nonnegative for all S ⊆
V . This makes it easier to design approximation algorithms
with multiplicative approximation guarantees. A modified
version of the EventAllPairs problem, which we denote
by EventAllPairs+, is now defined as follows.

Problem 4 (EventAllPairs+). Given a graph G =
(V,E,w,c) with vertex weights w and edge distance c, and a
normalization coefficient λ, find a subset of vertices S ⊆ V
that maximizes the objective function

Q+
AP(S) = QAP(S) +DAP(V )

= λW (S)−DAP(S) +DAP(V ). (4)

For the EventTree problem we follow a different
approach: first we note that with respect to finding an
exact solution, maximizing the function QT is equivalent to



minimizing −QT. We choose to work with this minimization
problem, and we consider minimizing the shifted function
Q+

T(S) = −QT(S) + λW (V ), which is a nonnegative for all
S ⊆ V . For this shifted objected function it holds:

Q+
T(S) = λW (V )− λW (S) +DT(S)

= λW (V \ S) +DT(S).

The interpretation of the above objective function is to
find a set S so that the tree cost DT(S) and the (scaled
by λ) weight of the vertices not included in S is minimized.
This problem is known as the prize-collecting Steiner-tree
(PCST) problem [4, 21]. The term “prize collecting” comes
from thinking of the weights on the vertices of the graph
as prizes and the goal is to find a tree that minimizes the
tree cost and the total value of prizes not spanned by it.
The shifted version of the EventTree problem, denoted by
EventTree+, is now defined as follows.

Problem 5 (EventTree+). Given a graph G = (V,
E,w,c) with vertex weights w and edge distance c, and a
normalization coefficient λ, find a subset of vertices S ⊆ V
that minimizes the objective function

Q+
T(S) = λW (V \ S) +DT(S). (5)

For general graphs, the problem EventAllPairs+ is
NP-hard. The proof of the next lemma is obtained by
a reduction from the IndependentSet problem and is
omitted because of lack of space.

Lemma 1. The problem EventAllPairs+ is NP-hard
for graphs with general edge distance functions.

In the more restricted version in which the input graph is a
metric the complexity of the problem is open.

On the other hand, the problem EventTree+ is
NP-hard even for metric edge distances as it generalizes
the Steiner-tree problem:

Lemma 2. The problem EventTree+ is NP-hard.

3. ALGORITHMS FOR THE
EventAllPairs+ PROBLEM

In this section we present our algorihtms for the
EventAllPairs+ problem, starting with efficient greedy
approaches and continuing with a slower but more effective
approach based on the MaxCut problem.

3.1 Greedy algorithms
We start our discussion on the EventAllPairs+

problem by considering the properties of the underlying
objective function Q+

AP. In particular, we can show that the
function Q+

AP is submodular. Submodularity is a desirable
property because a number of approximation algorithms
rely on it. The approximability of a submodular function
depends on other properties as well, in particular whether
the function is monotone and/or symmetric. We recall
that if V is a ground set, a set function f : 2V → R is
submodular if for all S,T ⊆ V we have that f(S) + f(T ) ≥
f(S ∩ T ) + f(S ∪ T ). The function f is monotone if for all
S ⊆ T ⊆ V it holds that f(S) ≤ f(T ). It is symmetric if for
all S ⊆ V we have that f(S) = f(V \ S).

Lemma 3. The function Q+
AP is submodular.

Algorithm 1: BFNS: Greedy algorithm for
EventAllPairs+ using the approach of Buchbinder et
al. [13]

X0 ← ∅, Y0 ← V
for i = 1 to n do

ai ← Q+
AP(Xi−1 ∪ {ui})−Q+

AP(Xi−1)

bi ← Q+
AP(Yi−1 \ {ui})−Q+

AP(Yi−1)
a′i ← max{ai,0}, b′i ← max{bi,0}
with probability a′i/(a

′
i + b′i) do

Xi ← Xi−1 ∪ {ui}, Yi ← Yi−1

else with compliment probability b′i/(a
′
i + b′i) do

Yi ← Yi−1 \ {ui}, Xi ← Xi−1

return Xn (or equally Yn)

Proof. (Sketch) We set I(S) , λW (S) and D(S) ,
DAP(V ) − DAP(S). It is Q+

AP(S) = I(S) + D(S). It is
easy to see that both functions I and D are positive and
submodular. The lemma follows from the fact that the sum
of two positive submodular functions is submodular.

Thus we want to approximate a submodular function
without any constraints. A recent paper by Buchbinder et
al. [13] provides a linear-time 1

2
-approximation algorithm for

this problem, which we explain below.
The algorithm of Buchbinder et al. is based on a

randomized double-greedy approach. The technique utilizes
the fact that for a submodular function f , the function
f̄(S) = f(V \ S) is also submodular. Furthermore, if a set
S∗ is optimal for f then V \S∗ is also optimal for f̄ and the
optimal values of the two functions are equal.

The suggested approach is a randomized algorithm, which
performs two types of greedy steps, searching for the optimal
solution for f and f̄ . The search strategy can be viewed
as running two greedy algorithms simultaneously. We start
with an arbitrary order of the elements in V , say u1, . . . ,un.
The two greedy processes traverse the sequences of sets
{X0,X1, . . .} and {Y0,Y1, . . .}, respectively. The one greedy
process starts from the empty set X0 = ∅ and grows it
to optimize f , while the other greedy process starts from
the ground set Y0 = V and shrinks it to optimize f̄ . The
algorithm guarantees that the growing set Xi is always
included into the shrinking set Yi. Which of the two steps
(grow Xi or reduce Yi) is a random choice, which depends
on the marginal improvement obtained from each move.
The algorithm stops when the sets are equal. A formal
description of the algorithm, which we call BFNS, is shown
in Algorithm 1. We have the following.

Theorem 1 (Buchbinder et al. [13]). The BFNS
algorithm provides a 1

2
-factor approximation for the

EventAllPairs+ problem.

For the EventAllPairs+ problem the BFNS algorithm
has the following interpretation: It examines each graph
vertex v one by one and decides whether to keep v in the
solution or remove it. The decision is randomized and the
probabilities depend on the marginal gains incurred in the
Q+

AP function with respect to the current lower and upper
set solutions, Xi and Yi.

Our objective has additional structure, which leads to a
trivial 1

2
-approximation algorithm. Recall the definitions

of the functions I and D in the proof of Lemma 3. Both
functions are positive and I(S) is increasing in S, whereas



D(S) is decreasing in S. Therefore, for the optimal value S∗

we have that

Q+
AP(S∗) = I(S∗) +D(S∗)

≤ (I(V ) +D(V )) + (I(∅) +D(∅))
= Q+

AP(V ) +Q+
AP(∅)

≤ 2 max{Q+
AP(∅),Q+

AP(V )}.

This means that simply taking the best of the empty set or
the entire node set V also provides a 1

2
approximation. We

call this algorithm Trivial.
We finally propose the standard greedy algorithm, which

starts from the empty set, adds one vertex at a time, and
stops when the solution cannot be improved. We refer to
this simple greedy as GreedyAP.

For general unconstrained submodular functions, the
greedy algorithm does not provide any guarantee. Here we
are able to exploit the specific structure of the objective, and
we prove that also GreedyAP provides a 1

2
approximation.

The result follows from the following lemma.

Lemma 4. Consider a submodular function F and let S
be the solution given by the greedy algorithm optimizing F .
Then, F (S) ≥ F (V ).

Proof. We prove a more general statement. We prove
that any hill-climbing algorithm, that is, any algorithm that
starts with the empty set and increasingly adds elements for
as long as the marginal gain is positive, if it returns solution
S we have that F (S) ≥ F (V ).

Assume that V \ S = {x1,x2, . . . ,xr}. Then we have

F (S)− F (V ) =

r∑
i=1

(F (S ∪ {x1, . . . ,xi−1)− F (S ∪ {x1, . . . ,xi))

≥
r∑

i=1

(F (S)− F (S ∪ {xi})) ≥ 0,

where the first inequality follows from the submodularity of
F and the second from the fact that the algorithm returned
S without adding any element xi, so each term in the sum
is positive.

Corollary 1. The GreedyAP algorithm provides a
1
2

-factor approximation for the EventAllPairs+ problem.
This bound is tight.

Proof. By the discussion just before Lemma 4, it suffices
to show that F (S) ≥ F (∅) and F (S) ≥ F (V ). The
former is trivially true, otherwise the algorithm would have
returned S = ∅ and the latter follows from Lemma 4. The
counterexample that shows that the greedy cannot, in the
worst case, achieve approximation better than 1/2, will
appear in the full version of this work.

Although all three algorithms, BFNS, Trivial, and
GreedyAP, have the same theoretical performance, our
experiments show that GreedyAP produces solutions
of higher quality, even slightly better or equal to
MaxCut-based algorithm, which is theoretically superior
and which we discuss next.

3.2 MaxCut formulation
In this section we reduce the EventAllPairs+ problem

to a variant of the MaxCut problem. This allows us to use

a well known algorithm by Goemans and Williamson [18],
which has a 0.868-approximation guarantee. For the
reduction we need the following variant of MaxCut.

Problem 6 ((s,t)-MaxCut). Given a graph G and
two vertices s and t, partition the vertices of G into two sets
A and B such that s ∈ A and t ∈ B and the total weight
of cross edges is maximized. We denote the cost of such a
solution A, B by Q(A,B).

The only difference between (s,t)-MaxCut and the
traditional MaxCut is that there are two vertices s and
t, for which it is forbidden to be in the same cut. This
technicality does not have any complexity consequences.

To reduce EventAllPairs+ to the (s,t)-MaxCut
problem, assume that we are given a graph G = (V,E)
equipped with the distance function c. Assume also that
we are given a parameter λ. We then construct a new graph
H by adding two special vertices s and t into G. We connect
s to each v ∈ V with a weight c(s, v) =

∑
u∈V d(v, u). We

connect t to each v ∈ V with a weight c(t, v) = 2λw(v).
Consider an A,B cut of H such that s ∈ A and t ∈ B.

Let S = A \ {s} and let T = B \ {t}. We argue that the
cost of the cut is twice the cost of EventAllPairs+, that
is, Q(A,B) = 2Q+

AP(S). To see this, notice that each vertex
v ∈ S will contribute 2λw(v) to the cost, and each vertex
v ∈ T will contribute c(s, v) =

∑
u∈V d(v, u) to the cost.

Additional costs will come from edges (u, v), where v ∈ S
and u ∈ T . Combining these costs gives us

Q(A,B) =
∑
v∈S

2λw(v) +
∑
v∈T

∑
u∈V

d(v, u) +
∑
v∈T

∑
u∈S

d(v, u)

= 2λW (S) +
∑
v∈T

∑
u∈T

d(v, u)

+
∑
v∈T

∑
u∈S

d(v, u) +
∑
v∈T

∑
u∈S

d(v, u)

= 2λW (S) +
∑
v∈V

∑
u∈V

d(v, u)−
∑
v∈S

∑
u∈S

d(v, u)

= 2λW (S) + 2DAP(V )− 2DAP(S)

= 2Q+
AP(S).

Thus, solving (s,t)-MaxCut also solves EventAllPairs+.
Moreover, since the costs of both problems are the same,
up to a scaling factor, any approximation guarantee for
(s,t)-MaxCut yields the same approximation guarantee for
EventAllPairs+.

Our final step is to solve (s,t)-MaxCut. Following the
seminal algorithm of Goemans and Williamson [18], the
problem can be formulated as the following integer program:

max
∑

u,v∈V (H)

c(u,v)
1− xuxv

2

such that xu ∈ {−1,+ 1}, for all u ∈ V (H),

xsxt = −1 .

The only difference with the original MaxCut formulation
is the additional constraint xsxt = −1. This constraint
ensures that the vertices s and t are in different partitions
and the resulting cut is a feasible solution for (s,t)-MaxCut.

The algorithm of Goemans and Williamson proceeds by
making a semidefinite relaxation, and then rounds the
solution based on a random projection. Fortunately, the
additional constraint xsxt = −1 can be easily added to



the semidefinite program, and the constraint has no effect
on the rounding step. Consequently, we can use the
same semidefinite-programming algorithm to approximate
the (s,t)-MaxCut problem, which leads to the following.

Theorem 2. The (s,t)-MaxCut problem can be solved
by the Goemans-Williamson algorithm [18] with an
approximation guarantee β > 0.868. This also provides a
β-factor approximation to the EventAllPairs+ problem.

The proof for the approximation guarantee for the
(s,t)-MaxCut problem is virtually the same as the proof for
the MaxCut problem [18], and because of space limitations
we omit it from this version.

Even though the aforementioned approach uses the
function d, which is a metric function (i.e., it satisfies the
triangle inequality), note that the approach is general and
holds even if the underlying edge cost is not a metric.
Specifically, the approach can be applied to arbitrary
distance functions and provides the same approximation
guarantee. In the case where d is a metric function, as in our
case, we can obtain a stronger approximation guarantee.

Theorem 3. Assuming that d is a metric, then there
exists a polynomial-time approximation scheme (ptas) for
solving EventAllPairs+. In other words, for each ε >
0, there is a polynomial algorithm with an approximation
guarantee of 1− ε.

The proof of the theorem, which relies on the work of
Arora et al. [5] for dense MaxCut instances, is omitted from
this version. Whereas this theorem provides a more tight
approximation bound, the involved algorithm is impractical
even for large values of ε. Consequently, this result serves
mostly as a theoretical contribution.

4. ALGORITHMS FOR THE
EventTree+ PROBLEM

Next we discuss the EventTree+ problem. Recall that
in this case we want to minimize the objective function

Q+
T(S) = λW (V \ S) +DT(S).

This is known as the prize-collection Steiner-tree problem
(PCST) [17]: we are given a weighted graph with distances
between the nodes and prizes for the nodes. The objective
is to select a subset of the nodes such that the cost of the
tree to connect them plus the prizes of the nodes not in the
tree is minimized.

PCST was first considered by Bienstock et al. [10], who
provided a 3-approximation. Goemans and Williamson [17]
designed a (2 − 1

n−1
)-approximation algorithm using a

primal–dual schema. In this paper we use a modified
version of the algorithm by Johnson et al. [21], which
gives 2-approximation, and we call it PD. We choose
this algorithm because it is quite fast (runs in time
O(n2 logn), whereas Goemans and Williamson’s algorithm
takes O(n3 logn) in time) and it is straightforward to
implement. The currently best algorithm [4] improves the
approximation ratio to (2 − ε), which is more important
rather from a theoretical perspective.

Algorithm PD has two phases. In the first phase it
grows a tree by maintaining and joining components. Each
component has a surplus and each edge has a deficit.

Initially every node v is a single component with surplus
equal to its weight, and each edge is initialized with a
deficit equal to the corresponding distance. The idea is
that the surpluses of the components pay for the deficit in
the edges inside. The algorithm starts lowering surpluses
and deficits until (1) the deficit of an edge becomes zero,
in which case the two endpoints are merged into a single
component (if the edge is not part of the same component)
with the new surplus being the sum of the surpluses of the
two components, or (2) the surplus of a component becomes
zero, in which case the component is not considered any
more to form part of the Steiner tree.

The second phase involves some pruning of the tree
constructed in the first phase. Starting from the leaves, we
move towards the root of the tree, removing a subtree T
if the weight of the nodes in T is higher than the cost to
connect T to the rest of the tree. The entire algorithm is
explained in detail in [21].

We also experiment with a greedy heuristic, similar to
GreedyAP, which we call GreedyT. It works as follows: it
maintains a set of nodes S, initialized to the empty set. In
each iteration it adds to S the node in V \S that provides the
maximum decrease to the objective Q+

T(S). The algorithm
terminates when S = V , or when every node in V \ S leads
to an increase of Q+

T(S).

5. EXPERIMENTAL EVALUATION
We evaluate our methods on synthetic and real datasets.

The real-world datasets are extracted from city sensors
(public-bike sharing) and social media (geolocated tweets).
We start by describing our datasets.

5.1 Datasets
Synthetic data. We use three synthetic datasets, which we
generate as follows. We place the network nodes uniformly
at random into the unit square and set the distance between
two nodes to their Euclidean distance. The objective with
these synthetic datasets is to study whether our methods
can detect the planted ground-truth events.

We plant events to the datasets by setting to 1 the values
of nodes that occur within the event and to 0 the volues of
nodes outside the planted event. Nodes that are close to the
border of the events receive a smaller weight. In Plant1 we
plant one spherical event, in Plant2 we plant two spherical
events, and in Curve we plant a snake-like event.

To test the robustness of the algorithms, we choose a
fraction of the network nodes at random, and assign them
an arbitrary weight from a uniform distribution [0, 1]. We
refer to the size of the fraction as a level of noise.

In addition, we create semi-synthetic datasets by using
the coordinates from real-world datasets (see more detailed
description below), and by generating synthetic weights as
described above. We plant a cross pattern to the Barcelona
data (PlantB), and two clusters to the NY data (PlantNY ).

We show the synthetic datasets with 20% noise level at
the top row of Figure 1, where the generated event clusters
are colored black.

City-sensor data. We use public-bike sharing data from
three systems: Barcelona Bicing,1 Minneapolis Nice Ride,2

1http://www.bicing.cat
2http://www.niceridemn.org
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Figure 1: Experiments for synthetic and planted datasets. Each column represents a single dataset. First row contains
the datasets and the planted events, contaminated by noise of 20%. Row 2 and 3 row contain events discovered by
algorithms for EventAllPairs+ and EventTree+ respectively that achieve the best accuracy on the particular dataset
(with corresponding lambdas). Rows 4–5 contain accuracy as a function of noise level (λ = 100 for Q+

AP and λ = 0.1 for Q+
T).

Rows 6–7 contain accuracy as a function of λ (20% noise level).
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Figure 2: Performance of different algorithms for the
EventAllPairs+ problem on Barcelona and NY datasets.
The top row shows Q+

AP as a function of the weight
multiplier λ. The bottom row shows a scatter plot of weight
W (S) and the distance DAP(V ) − DAP(S), parameterized
by λ; in both dimensions, larger values are better.

and Washington D.C. Capital bikeshare.3 In each case, a
network node corresponds to a bike station. The activity
level of a bike station is the fraction of bikes in the station
with respect to the full capacity of the station. To improve
the quality of the events discovered by our algorithms we set
the weight of a node to be |x −m|, where x is the current
activity level of a station and m is the typical activity level
of the station. As typical activity level we chose the average
activity of the station at the same time of the week, over
the observation period. The number of stations in the three
cities we consider is 420, 145, and 248, respectively, and the
data are collected over an observation period of 227, 217,
and 273 days, respectively.

Social-media data. We obtain a dataset of geolocated
twitter messages for 100 cities. The dataset has been made
public by Cheng et al. [15]. For our experiments we focus
on the cities of New York and Los Angeles. We start with
302 121 and 254 852 tweets for NY and LA, respectively,
which span a period of 329 days. For each city we collapse
the locations of the input tweets to centroids, based on
proximity, and we use those centroids as network nodes.
The activity level of each centroid is the number of tweets
during a day. As with the bike-sharing data, we adjust the
activity level by considering the difference with respect to
the average level at each centroid. The number of centroids
is 490 and 487, for NY and LA, respectively. The reason
that we collapse tweet locations to centroids is for having
enough data at each location to make inferences. The spatial
distribution of tweets is highly uneven. To ensure that all
the centroids have about the same number of points and,
thus, can represent activity of the particular neighborhood
correctly, we construct them with the k-means algorithm.
The granularity of the result centroids is sufficient to capture
accurately the map of activity: in the areas with dense

3http://www.capitalbikeshare.com
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Figure 3: Performance of different algorithms for the
EventTree+ problem on Barcelona and New York
datasets. The top row contains Q+

T as a function of the
weight multiplier λ. The bottom row contains a scatter plot
of weight W (V \ S) and the distance DT(S), parameterized
by λ; in both dimensions, smaller values are better.

activity, such as city centers, each city block is covered by
2-3 centroids, while in the suburbs one centroid represents
several blocks.

5.2 Experimental results
Comparison of different algorithms. We have
implemented all the algorithms described in the previous
sections. For the EventAllPairs+ problem we use the
Trivial algorithm as a baseline. For the SDP approach,
we solve the corresponding semidefinite program using the
SDPT3 solver [28], and we round the solution as described
in Section 3.2.

We first compare different algorithms in terms of the
objective function. The results are shown in Figures 2
and 3 for the Barcelona and NY datasets, respectively. For
the EventAllPairs+ problem we see that all algorithms,
except Trivial, achieve similar results. In particular,
GreedyAP and SDP show almost the same performance
and outperform BFNS. For the EventTree+ problem we
see that the PD algorithm is far superior to the GreedyT
algorithm. Similar trends are observed in all other datasets,
and are omitted for paucity of space.

Accuracy on planted events. We test the ability of our
algorithms to detect planted events. These events are given
at the top row in Figure 1. Because the ground-truth events
are known we measure the accuracy of our algorithms, as
the fraction of points classified correctly as event points.

Our results, shown in rows 4–5 of Figure 1, provide
evidence that our algorithms are capable of discovering
the ground-truth events with high accuracy. As expected,
accuracy decreases with the noise level, but it remains high,
always around 70% even for noise levels of 50%.

With respect to comparing the different algorithms,
for the EventAllPairs+ problem, as in the previous
experiments, all tested algorithms achieve similar accuracy.



On the other hand, for the EventTree+ problem, the PD
algorithm performs better for smaller levels of noise, whereas
the GreedyT seems to be more robust for higher noise levels.

We also contrast the solutions found by the two
different problem formulations (rows 2–3 of Figure 1),
EventAllPairs+ and EventTree+. It is expected that
algorithms for the EventAllPairs+ problem will be better
suited for round-shaped events, whereas algorithms for the
EventTree+ problem will be better in recovering events
of arbitrary shape. Our experiments confirm this intuition
and show that the algorithms for the tree-based model are
more versatile and in general achieve higher accuracy.

Effect of weight multiplier, λ. As we can see from rows
6–7 of Figure 1, the accuracy of the methods depends on
the value of the weight multiplier λ. Different values of λ
force the algorithms to weight differently the distances with
respect to vertex weights, and discover events of different
sizes. One way of selecting the parameter is to execute the
algorithms with different values of λ, plot the Pareto curve
for those values and choose a value that yields the desired
trade-off between spanned weight and distance.

Case study. Our next step is to highlight some of the
events discovered by our method. For all the events shown
as case studies we use the SDP algorithm. To help with
selecting λ, we normalize the weights of the vertices so that
the maximum weight of each day is equal 1 and the edge
distances represent actual kilometric distances. We then use
the same value of λ for all the experiments (λ = 20).

We select top events that correspond to major holidays,
shown in Figure 4. The discovered events correspond to
places where people would gather in such days, for example,
in the city center in Barcelona, and in the National Mall
in Washington D.C. In New York City the discovered event
is located in the Central Park and the nearby Metropolitan
Museum and American Museum of Natural History.

To demonstrate that different days may produce diverse
events, we focused on the Barcelona dataset. We aim at
reporting k days that have high event score and whose
event clusters are spatially non-overlapping (do not have
any shared nodes). First we find event clusters and
corresponding scores for each day in the dataset and then
we sort the days by score in descend order. We select the
first day from the list and we keep it in a running set of top
days. Then we go through the list and greedily search for a
day with an event cluster that does not overlap with any of
the clusters of the already obtained top days. If such a day
is found, we add it to the top set and we continue traversing
the list until the size of the selected top days becomes k. We
show the top-3 events in Figure 5. The first event indicates a
concert by the Cure music band and the event is around the
concert hall, the second event corresponds to the festival of
the Poblenou neighborhood, and the third event points out
to Halloween activities in el Raval, a famous nightlife spot.

Scalability. The proposed greedy algorithms are efficient
and can scale to large networks. We report the scalability
behavior of the GreedyAP algorithm. We use the twitter
dataset, with tweets from the whole US, to create larger
activity networks and we apply the GreedyAP algorithm.
Our implementation, executed on an Intel Core i7 machine,
with 8 GB RAM and processor running at 2.30GHz, is able
to find a solution under 10 seconds when we applied to a
fully connected network with 10,000 nodes.

6. CONCLUSION
We formalize the problem of detecting events in activity

networks, as a problem of finding compact subgraphs in
graphs with vertex weights. Depending on the notion
of compactness used—sum of all pairs of distances or
Steiner-tree distance—we obtain two different optimization
problems. By a reduction to a variant of the MaxCut
problem, which we solve with semidefinite programming,
and by the use of the primal–dual scheme, we provide
approximation algorithms for the two problems considered.
In addition, we provide simpler and faster greedy algorithms,
for one of which we are able to show approximation
guarantees, which rely on the submodularity property of the
objective function. Our experiments show that the greedy
approaches are more lightweight and perform as well as the
more sophisticated approximation algorithms.

The event-detection setting that we consider has many
applications. Here we experimented with real-world datasets
from city sensors and social media, and we showed that our
methods were able to discover successfully real events.

Our work opens many interesting directions for future
research. One such direction is to incorporate the temporal
dimension of the activity network in the graph-theoretic
framework and discover events of varying temporal support.
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[11] B. Boden, S. Günnemann, H. Hoffmann, and T. Seidl.
Mining coherent subgraphs in multi-layer graphs with
edge labels. KDD, 2012.

[12] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and
J. Sander. LOF: identifying density-based local
outliers. SIGMOD, 2000.

[13] N. Buchbinder, M. Feldman, J. S. Naor, and
R. Schwartz. A tight linear time (1/2)-approximation
for unconstrained submodular maximization. FOCS,
2012.

[14] M. Charikar. Greedy approximation algorithms for
finding dense components in a graph. APPROX, 2000.

[15] Z. Cheng, J. Caverlee, K. Lee, and D. Z. Sui.
Exploring millions of footprints in location sharing
services. ICWSM, 2011.

[16] U. Feige, G. Kortsarz, and D. Peleg. The dense
k-subgraph problem. Algorithmica, 29(3), 2001.

[17] M. X. Goemans and D. P. Williamson. A general
approximation technique for constrained forest
problems. SIAM Journal on Computing, 24(2), 1995.

[18] M. X. Goemans and D. P. Williamson. Improved
approximation algorithms for maximum cut and
satisfiability problems using semidefinite
programming. JACM, 42(6), 1995.

[19] V. Guralnik and J. Srivastava. Event detection from
time series data. KDD, 1999.

[20] N. A. Heard, D. J. Weston, K. Platanioti, and D. J.
Hand. Bayesian anomaly detection methods for social
networks. Ann. Appl. Stat., 4(2), 2010.

[21] D. S. Johnson, M. Minkoff, and S. Phillips. The
prize-collecting Steiner tree problem: theory and
practice. SODA, 2000.

[22] S. Khuller and B. Saha. On finding dense subgraphs.
ICALP, 2009.

[23] M. Kulldorff. A spatial scan statistic. Communications
in Statistics-Theory and Methods, 26(6), 1997.

[24] M. Olson, A. Liu, M. Faulkner, and K. M. Chandy.
Rapid detection of rare geospatial events: earthquake
warning applications. DEBS, 2011.

[25] G. P. Patil and C. Taillie. Upper level set scan
statistic for detecting arbitrarily shaped hotspots.
Environmental and Ecological Statistics, 11, 2004.

[26] S. Seufert, S. J. Bedathur, J. Mestre, and G. Weikum.
Bonsai: Growing interesting small trees. In ICDM,
pages 1013–1018, 2010.

[27] T. Tango and K. Takahashi. A flexibly shaped spatial
scan statistic for detecting clusters. International
Journal of Health Geographics, 4-11, 2005.

[28] K.-C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3
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