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ABSTRACT

Given a large graph, the densest-subgraph problem asks to find a
subgraph with maximum average degree. When considering the
top-k version of this problem, a naive solution is to iteratively find
the densest subgraph and remove it in each iteration. However,
such a solution is impractical due to high processing cost. The
problem is further complicated when dealing with dynamic graphs,
since adding or removing an edge requires re-running the algo-
rithm. In this paper, we study the top-k densest-subgraph problem
in the sliding-window model and propose an efficient fully-dynamic
algorithm. The input of our algorithm consists of an edge stream,
and the goal is to find the node-disjoint subgraphs that maximize
the sum of their densities. In contrast to existing state-of-the-art
solutions that require iterating over the entire graph upon any
update, our algorithm profits from the observation that updates
only affect a limited region of the graph. Therefore, the top-k dens-
est subgraphs are maintained by only applying local updates. We
provide a theoretical analysis of the proposed algorithm and show
empirically that the algorithm often generates denser subgraphs
than state-of-the-art competitors. Experiments show an improve-
ment in efficiency of up to five orders of magnitude compared to
state-of-the-art solutions.

1 INTRODUCTION

Finding a subgraph with maximal density in a given graph is a fun-
damental graph-mining problem, known as the densest-subgraph
problem. Density is commonly defined as the ratio between number
of edges and vertices, while many other definitions of density have
been used in the literature [7, 28, 30, 31]. The densest-subgraph
problem has many applications, for example, in community de-
tetion [11, 14], event detection [2], link-spam detection [18], and
distance query indexing [1].

In applications, we are often interested not only in one dens-
est subgraph, but in the top-k. The top-k densest subgraphs can
be vertex-disjoint, edge-disjoint, or overlapping [6, 17]. Different
objective functions and constraints give rise to different problem
formulations [6, 17, 32]. In this work, we choose to maximize the
sum of the densities of the k subgraphs in the solution. In addition,
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Figure 1: For the graph in Figure 1a, we are interested in ex-
tracting the top-3 densest subgraphs. Consider the arrival
of an edge shown in red. Figure 1b shows the top-3 densest
subgraphs after the arrival. The objective is to design an al-
gorithm that can efficiently maintain the densest subgraphs
while keeping the number of updates very low, in this case
updating only the vertices in red.

we seek a solution with disjoint subgraphs. This version of the
problem is known to be NP-hard [6].

To complicate the matter, most real-world graphs are dynamic
and rapidly changing. For instance, Facebook users are continu-
ously creating new connections and removing old ones, thus chang-
ing the network structure. Twitter users produce posts at a high
rate, which makes old posts less relevant. Given the dynamic nature
of many graphs, here we focus on a sliding-window model which
gives more importance to recent events [4, 12, 13]. Finding the top-
k densest subgraphs in a sliding window is of interest to several
real-time applications, e.g., community tracking [33], event detec-
tion [26], story identification [2], fraud detection [8], and more. We
assume the input to the system arrives as an edge stream, and seek
to extract the k vertex-disjoint subgraphs that maximize the sum
of densities [6].

A naive solution involves executing a static algorithm for the
densest-subgraph problem k times, while removing the densest
subgraph in each iteration. However, such a solution is impractical
as it requires to execute the algorithm k times for each update. An
alternative solution to our problem is to use a dynamic densest
subgraph algorithm in a pipeline manner, where the output of an
algorithm instance serves as input to the following one. In this
case, the graph and the instances of the algorithm are replicated
independently across k instances of the algorithm, resulting in a
high memory and processing cost.

In this paper, we propose a fully-dynamic algorithm that finds
an approximate solution. The proposed algorithm follows a greedy
approach and updates the densities of the subgraphs connected to
vertices affected by edge operations (addition and removal). The



algorithm is efficiently designed based on key properties of dens-
est subgraphs, and it is competitive against other recent dynamic
algorithms [9, 15, 24].

First, our algorithm relies on the observation that only high-
degree vertices are relevant for the solution. As many natural
graphs have a heavy-tailed degree distribution, the number of high-
degree vertices in a graph is relatively smaller than the number of
low-degree ones. This simple observation enables pruning a major
portion of the input stream on-the-fly. Second, the vertices that are
part of a densest subgraph are connected strongly to each other
and weakly to other parts of the graph. This enables independently
maintaining and locally updating multiple subgraphs. Figure 1
provides an example which demonstrates this intuition.

The algorithm tracks multiple subgraphs on-the-fly with the help
of a newly defined data structure called snowball. These subgraphs
are stored in a bag, from which the k subgraphs with maximum
densities are extracted. The algorithm runs in-place, and does
not require multiple copies of the graph, thus making it memory-
efficient. The one-pass nature of the algorithm allows extracting
top-k densest subgraphs for larger values of k.

We provide a theoretical analysis of the proposed algorithm, and
show that the algorithm guarantees 2-approximation for the first
densest subgraph (k = 1) while providing a high-quality heuris-
tic for k > 1 compared to other solutions. Experimental evalua-
tion shows that our algorithm often generates denser subgraphs
compared to the state-of-the-art algorithms, due to the fact that
it maintains disconnected subgraphs separately. In addition, the
algorithm provides improvement in runtime up to three to five
orders of magnitude compared to the state-of-the-art. In summary,
we make the following contributions:

e We study the top-k densest vertex-disjoint subgraphs problem
in the sliding-window model.

e We provide a brief survey on adapting several algorithms for
densest subgraph problem for the top-k case.

e We propose a scalable fully-dynamic algorithm for the problem,
and provide a detailed analysis of it.

e The algorithm is open source and available online, together
with the implementations of all the baselines.!

e We report a comprehensive empirical evaluation of the algo-
rithm in which it significantly outperforms previous state-of-
the-art solutions by several orders of magnitude, while produc-
ing comparable or better quality solutions.

2 PRELIMINARIES

In this section, we present our notation, revisit basic definitions,
and formulate the top-k densest subgraphs problem.

Consider an undirected graph G = (V, E) with n = |V| vertices
and m = |E| edges. The neighborhood of v € V is defined as N(v) =
{u| (v,u) € E}, and its degree as d(v) = [N(v)|. For a subset S € V
we define E(S) to be the set of edges whose both endpoints are in S,
and G(S) = (S, E(S)) the subgraph induced by S. The internal degree
of a vertex v with respect to S C V is defined by dg(v) = [N(v) N S|.

Lhttps://github.com/anisnasir/TopKDensestSubgraph

Finally, for a subset of vertices S C V we define its density ps by

_ 1EG)I

ps = T (0

Note that the density of any subgraph is equal to half of its average
internal degree.

Definition 2.1 (Densest subgraph). Given an undirected graph G =
(V,E), the densest subgraph S* is a set of vertices that maximizes
the density function, i.e.,

§* = argmax ps. )

We say that an algorithm A computes an a-approximation of
the densest subgraph if A computes a subset S € V such that
ps = éps*, where §* C V is the densest subgraph of G.

Next we introduce other concepts related to densest subgraph:
graph core, core decomposition, and induced core subgraph of a vertex.

Definition 2.2 (j-core). Given an undirected graph G = (V,E)
and an integer j, a j-core of G is a subset of vertices C C V so that
each vertex v € C has internal degree dc(v) > j, and C is maximal
with respect to this property.

Definition 2.3 (Core decomposition). A core decomposition of a
graph G = (V, E) is a nested sequence {Ci} of cores

V=C2C2...2C 20, (3)
where each C; is a j-core for some j.

Definition 2.4 (Core number). Given a core decomposition V =
Co2C12...2Cp 2 @ of agraph G = (V,E), the core number
k(v) of a vertex v is the largest j such that v € C and C is a j-core.
By overwriting notation, the core number x(C) of a core C is the
largest j for which C is a j-core.

Additionally, we use xs5(v) to denote the core number of a ver-
tex v in the subgraph induced by S. The largest core (or main core)
of a subgraph of G(S) = (S, E(S)) is denoted by C,(S), while the
main core of G is simply denoted by Cp.

Note that the density of a j-core is at least //2, as each vertex in the
core has degree at least j and each edge is counted twice. This obser-
vation implies that the main core of a graph is a 2-approximation
of its densest subgraph.

LEMMA 2.5. Consider the core decomposition of a graph G, i.e.,
C1 € Cy C ... C Cy. The maximum core Cy is 2-approximation of
the densest subgraph of G [21].

Proor. Let S* be the densest subgraph of G having density pg-.
Every vertex in G(S*) has degree at least pg+; otherwise a vertex
with degree smaller than pg+ can be removed to obtain an even
denser subgraph. Thus, S* is a pg«-core. Given the core decom-
position of G, we know that pc, > %K(Cg). We want to show
that pc, = %ps*. Assume otherwise, i.e., pc, < %ps*. Then
k(C¢) < ps+. It follows that S* is a higher-order core than Cy, a
contradiction. O

The concept of a core subgraph 7 (v) induced by a vertex v
[23, 27] is also pertinent to our analysis.
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Definition 2.6 (Induced core subgraph). Given a graph G = (V,E)
and a vertex v € V, the induced core subgraph of vertex v, denoted
by I (v), is a maximal connected subgraph containing the vertex v
s.t. the core number of all the vertices in 7 (v) is equal to k(v).

In other words, the induced subgraph contains all vertices that
are reachable from v and have the same core number x(v).

All previous definitions apply to static graphs. Let us now focus
on dynamic graphs. In particular, we consider processing a graph
in the sliding window edge-stream model [13]. According to this
model, the input to our problem is a stream of edges. The edge e; is
the i-th element of the stream. Equivalently, we say that edge e;
has timestamp i. A sliding window W; (x), defined at time t and of
size x, is the set of all edges that arrive between e;_x+1 and ey,

Wi(x) = {ej,i € [t —x + 1,¢]}. (4)

For each edge e; = (u,v), we consider that u and v appear at time
i, and we use V;(x) to denote the set of vertices that appear in a
length-x sliding window at time ¢. The graph in a length-x sliding
window at time t is then defined to be G;(x) = (V¢ (x), W (x)).
We are now ready to formally define the problem that we con-
sider in this paper, i.e., finding the top-k densest subgraphs in
sliding window. We first define the problem in a static setting.

Definition 2.7. Given an undirected graph G = (V,E) and an
integer k > 0, the top-k densest subgraphs of G is a set of k disjoint
maximal set of vertices S = {Sq, ..., St} that maximize the sum of
its densities:

k
Pr(S) = maxz ps,;, forallS; € S subject to

i=1
there isno S; 5 S; | ps; = ps;.
SinSj=a,

forall S;,S; €S (5)
foralli,je{1...k},i#]J. (6)

As already shown by Balalau et al. [6], the problem defined aboce
is NP-hard, for any k > 1. The problem we consider in this paper
is the following.

PrROBLEM 2.8. Given a graph stream {e;} and a sliding window

length x, maintain the top-k densest subgraphs py (S) of the graph G+ (x),

at any given time t.

3 BACKGROUND

In this section we present a brief review over several algorithms
for finding dense subgraphs. Additionally, we discuss how these
methods can be used for solving Problem 2.8.

Densest subgraph in static graphs. Finding the densest sub-
graph according to the density definition (1) can be solved in polyno-
mial time. An elegant solution involving reduction to the minimum-
cut problem was given by Goldberg [20]. As the fastest algorithm
to solve the minimum-cut problem runs in O (nm) time [25], Gold-
berg’s algorithm is not scalable to large graphs.

Asahiro et al. [3] and Charikar [10] propose a linear-time al-
gorithm that provides a factor-2 approximation. This algorithm
iteratively removes the vertex with the lowest degree in each itera-
tion, until left with an empty graph. Among all subgraphs consid-
ered during this vertex-removal process, the algorithm returns the
densest. The time complexity of this greedy algorithm is O(m + n).

Bahmani et al. [5] propose a MapReduce version of the greedy algo-
rithm, with approximation ratio 2(1+ ¢), while making O(log; .. n)
passes over the input graph.

Core decomposition in static graphs. The core decomposition
of a graph G is the process of identifying all cores of G, as defined
in 2.3. Batagelj and Zaversnik [7] propose a linear-time algorithm
to obtain the core decomposition. The algorithm first considers
the whole graph and then repeatedly removes the vertex with the
smallest degree. The core number k(v) of a vertex v is set equal to
the degree of v at the moment that v is removed from the graph.
Densest subgraph in evolving graphs. There is a growing body
of literature on finding dense subgraphs in evolving graphs [9,
15, 19, 24]. We focus mainly on the deterministic algorithm for
densest subgraph in evolving graphs. For instance, Epasto et al. [15]
propose an efficient algorithm for computing the densest subgraph
in the dynamic graph model [16]. Their work assumes that edges
are inserted into the graph adversarially but deleted randomly.
Even though the algorithm can, in practice, handle arbitrary edge
deletions, its approximation guarantees hold only under the random
edge-deletion assumption. The algorithm is similar to the one by
Bahmani et al. [5], and it provides a 2(1 + €)°-approximation of the
densest subgraph, while requiring polylogarithmic amortized cost
per update with high probability.

Core maintenance in evolving graphs. Sariyiice et al. [27] pro-
pose the traversal algorithm, for efficient core maintenance. This
algorithm identifies a small set of vertices that are affected by edge
updates and processes these vertices in linear time in order to
maintain a valid core decomposition. Li et al. [23] propose an
efficient three-stage algorithm for core maintenance in large dy-
namic graphs. The algorithm maintains a core decomposition of
an evolving graph by applying updates to very few vertices in the
graph. Once these few vertices have been identified, the algorithm
computes the correct core numbers via a quadratic operation.
Finding top-k densest subgraphs. The problem of finding top-k
densest subgraphs has been mainly studied for finding overlapping
subgraphs in static graphs [6, 17].

Next, we discuss how the algorithms presented above (Charikar
[10], Batagelj and Zaversnik [7], Bahmani et al. [5], Sariytice et al.
[27], Li et al. [23], and Epasto et al. [15]) can be used to produce
top-k densest subgraphs.

Our first observation is that a set of k dense subgraphs can
be obtained from any algorithm that finds the densest subgraph
by k repeated invocations. The time complexity of computing a
set of k dense subgraphs in this manner is simply the running-
time complexity of the densest-subgraph algorithm multiplied by k.
From a practical point of view, all the static algorithms mentioned
are not in-place algorithms, and thus require copying the whole
graph for processing. Furthermore, when a vertex or edge is added
or deleted from the graph, the whole k dense subgraph computation
has to be repeated.

The second observation is that, by using the algorithm of Epasto
et al. [15], we can obtain a set of k dense subgraphs by running k
instances of the fully-dynamic algorithm in a pipeline manner. The
idea is to run k instances of the algorithm in which the output of
each instance i € {0...k — 1} is fed into the next (i + 1) instance
as a removal operation. The pipeline version of the algorithm
requires keeping k copies of the input graph and an additional



O(kn) size space for bookkeeping. Note that the output of each
instance of the pipeline might cascade, which requires updating
the vertices in all the instances. In particular, vertices that cease
to be part of solution in upstream instances need to be added in
downstream instances. Likewise the vertices that become part of
densest subgraphs in upstream instances need to be removed from
a downstream instances. The modification of the algorithm, as
discussed above, is expensive in terms of memory, as it requires
replicating the graph and the algorithm’s structures k times. In
addition, running and maintaining k parallel instances makes the
algorithm compute-intensive.

Finally, to maintain top-k densest subgraphs in evolving graphs,
we can leverage algorithms for core decomposition maintenance [23,
27]. by leveraging Lemma 2.5, Thus, the idea is to find and maintain
top-k disjoint maximum cores. In order to maintain such cores
we run a single instance of the algorithm by Sariytice et al. [27]
or Li et al. [23] that maintains the core number of all the vertices
in the graph. We then extract the top-k densest subgraphs by: (i)
extracting the main core, (ii) removing the vertices in the main
core and updating the core number for rest of the vertices, and (iii)
repeating the steps until k subgraphs are extracted.

4 ALGORITHM

The main idea of our algorithm is to maintain and update multiple
dense subgraphs online. These subgraphs are candidates for the
top-k densest subgraphs. However, maintaining multiple subgraphs
for fully-dynamic streams requires answering two interesting ques-
tions: (i) how to reduce the search space of the solution, and (ii)
how to split the whole graph into subgraphs.

To answer the aforementioned questions, we make two observa-
tions. First, since dense subgraphs are formed by relatively high-
degree vertices, one can find dense subgraphs by keeping track
of these high-degree vertices only. Second, these subgraphs can
be updated locally upon edge updates, without affecting the other
parts of the graph.

Based on these observations, we develop an algorithm that re-
duces the solution space by considering only high-degree vertices,
and divides the whole graph into smaller subgraphs, each repre-
senting a dense subgraph. The top-k densest subgraphs among the
candidate subgraphs provide a solution for Problem 2.8.

We begin by designing an algorithm to find the densest subgraph
(top-1) and then we extend it to find the top-k densest subgraphs.
Our algorithm might not be the most efficient solution for the (top-1)
densest-subgraph problem per se, but it provides efficient outcomes
when extended to solve the top-k densest-subgraph problem.

We start by defining some properties of the densest subgraph
that we leverage in our algorithm.

LEMMA 4.1. Given an undirected graph G = (V,E), the densest
subgraph S* C V with density ps«, all the verticesv € S* have degree
ds=(v) = ps=.

Proor. This lemma holds according to the definition of opti-
mal density. In an optimal solution, each vertex has degree larger
than or equal to pg:. Otherwise, removing the vertex from the
subgraph will increase the average degree, and thus the density, of
the subgraph. O

Given Lemma 4.1, at any time ¢, the densest subgraph Sy of graph
G; contains only vertices v that have degree d(v) > ds: (v) > pg:.
Then, given G; and pg;, we want to compute the densest subgraph
after the addition of a new vertex u ¢ V; at time ¢ + 1.

Let d(u) be the degree of vertex u € V;11 and S} | be the densest
subgraph at time ¢ + 1. For simplicity, assume that the graph G;4+1
is connected. According to Lemma 4.1, for any vertex u to be the
part of the densest subgraph, its internal degree satisfies d s: (u) =
ps:, - As vertex u is added to the graph the new density is always
greater, i.e, pg: > pg:. Therefore, for vertex u to be the part of
densest subgraph, the degree of vertex u should satisfy d(u) > ps:.
Therefore, if the degree of vertex u is lower than the pg:, it cannot
be part of the densest subgraph ps:,, and can be ignored.

Now, considering the case when d(u) > pg:. Adding the vertex
u to densest subgraph will update the density:

E(SH |+ dor (u
ps;,, < e t|g‘;|+f[( 3 )

t+1

We also know that ps:,, 2 Psps which means that

[E(S)1+ dsx(u) _ |E(sY)]
S 2 s (8)

From this inequality it follows dg: (1) > pg:. Using these proper-
ties, we ignore the vertices of the new edge that have degree lower
than the current estimate of the density.

Further, we are interested in finding the main core in the re-
maining subgraph of high-degree vertices, as it represents a 2-
approximation of the densest subgraph according to Lemma 2.5. To
this end, we propose a new data structure that relies on Lemma 4.1,
the snowball.

4.1 Snowball

A snowball D is an incremental data structure that stores a strongly
connected subgraph, which maintains the following invariants:
e The core number kp(v) of each vertex v € D inside a snowball
is equal to the main core (C¢(D)) of the snowball.
o All the vertices in the snowball are connected.

These invariants ensure that all the vertices in the snowball have
the same core number, which is the main core of the snowball by
definition. A snowball maintains these invariants while handling
the following graph update operations: a) adding/removing a vertex,
and b) adding/removing an edge.

4.2 Bag of snowballs

The high-degree vertices in the graph are assigned to a snowball.
As these vertices are not strongly connected, they might end up in
different snowballs. We store each of these disconnected snowballs
in a data structure called the bag, denoted by B.

The bag ensures that each snowball is vertex disjoint. Further,
the bag provides an additional operation: extracting the densest
snowball among the set of snowballs. The density of the extracted
snowball is the maximal density, which is the threshold separating
the high-degree vertices from the low-degree ones. We denote this
estimate of the maximal density pg«.

The bag is a supergraph which contains a set of snowballs and
all the edges between the snowballs. We maintain all the core
numbers of the nodes in the bag by leveraging a core decomposition



Figure 2: Example showing that the bag requires maintain-
ing the core number of the vertices. Initially, the bag con-
tains two snowballs with core number 2, i.e., D; and D,. Con-
sider the arrival of the edges shown in red. The greedy as-
signment of the edges might skip creating a new snowball
with core number 3, using the four nodes in the middle.

algorithm (see Section 3). The core number of each node in the bag
is used to ensure that each node has the maximum possible core
number. Figure 2 provides an example explaining one of the issues
that may arise. In the example, the bag contains two snowballs,
however, it is possible to produce a new snowball with a larger
core number. Next, we define the algorithms to update this data
structure upon graph updates.

4.3 Addition operations

Vertex addition: As discussed in Section 2, the updates appear in
the form of an edge stream. Here, we define the vertex addition
algorithm that acts as a helper for edge addition. The algorithm
is triggered when at least one of the endpoints of a new edge is a
high-degree vertex. In particular, there are two cases to consider:
1) the bag already contains the high-degree vertex, and 2) the bag
does not contain the high-degree vertex. In both cases, the goal is
to add the new vertex to one of the snowballs (if needed).

Algorithm 1 defines the algorithm for vertex addition. For the
first case, the algorithm scans the bag to find the snowball that
contains the vertex and returns it. For the second case, the algorithm
first identifies the candidate snowballs, then it assigns the vertex to
one of the candidate snowballs. The candidate snowballs are the
ones having the main core number smaller than or equal to the
internal degree of the new vertex (ky, (D) > C¢(D)). Among the
candidate snowballs, the new node is assigned to the snowball with
maximum internal degree dy, (D), breaking ties randomly.

Once a vertex is added to a snowball, the core number of the
snowball may increase. This change requires removing the vertices
with core number lower than the main core of the snowball. This
procedure can be implemented efficiently in linear time by sorting
the vertices based on their degree similar to bin sort.?
Verification. Due to the greedy assignment of vertex to the snow-
ball, it is possible that the vertex ends up not having the highest
possible core number. For example, Figure 3 shows an example
where the greedy assignment does not result in optimal solution.

Therefore, after addition, the algorithm ensures that the core
number of the snowball, where the new vertex is added, equals
the core number of the new vertex in the graph. The algorithm
verifies that the core number of the added vertex by comparing
it with the core number of the vertex in the bag. Note that the
bag represents the supergraph containing all the snowballs and
edges between the snowballs. If the core number within the bag is
larger than the one in the snowball, the algorithm merges all the

2The MAINTAININVARIANT method at line 12 of Algorithm 1.

Figure 3: Example showing that arrival of a new edge allows
the vertex that is part of snowball D, to become part of snow-
ball Dy, which has greater core number (3).

Algorithm 1 Vertex Addition in the Bag of Snowballs

1: procedure ADDTOBAG(u)

2: S* <0

3 for D; € Bdo

4: if u € D; then

5: ‘ return D; > First Case
6 \ if (dp,;(u) > C¢(D;) and pg+ < pp;) then

7 \ S* « D;

8: if S* = 0 then

9: ‘ S* «— {u}

10: else

11: S* « S* U {u}

12: MAINTAININVARIANT(S™)

13: return S* > Second Case

Algorithm 2 Maintain Invariant

if (d(u) > ps+) then

D; « Di\{u}
\ ADDTOBAG(u)

1: procedure MAINTAININVARIANT(D;)

2: do

3 repeat « false

4: for u € D; do

5: ‘ if ((xp;(u) < C¢(D;)) then
6

7

8

9

: | | | repeat « true
10: while repeat

snowballs in the induced subgraph of newly added vertex. As all
the vertices in the induced subgraph have the same core number,
merging them ensures creating a larger snowball.> We leverage
the core decomposition algorithm by Sariytice et al. [27] for the
implementation.

Algorithm 3 Fix Main Core

: procedure FIXMAINCORE

for D; € Bdo

if (D; N I (u) > 0) then
| Dy, « D, UD;

\ MAINTAININVARIANT(D,,)

1
2
3:
4:
5

THEOREM 4.2. Given the bag B, the algorithm ensures that B con-
tains the main core of the graph within one of the snowballs after the
vertex addition.

Proor. Let us assume that at time ¢ the bag contains the main
core of the graph. Now, we need to show that at time ¢ + 1, after
the node addition, the bag still contains the main core of the graph.
In general, vertex addition method is called whenever there is an
edge addition. The only way for the new vertex to affect the main
core of the graph is that the new vertex is the part of the main core.

3The FixMAINCORE method at line 15 of Algorithm 4.



Algorithm 4 Edge Addition

Algorithm 5 Edge Deletion

1: procedure ADDEDGE((u,v))

2 if (d(u) < ps+)) and (d(v) < ps+)) then

3 return

4 else if (d(u) > ps+) and (d(v) < ps*)) then
5: D,, < appToBaG(u)

6: else if ((d(u) < ps*) and (d(v) > ps+) then
7 D, < ADDTOBAG(v)

8: else

9: D,, < appTOoBAG(u)
10: D,, < ADDTOBAG(v)
11: if (D, = D,) then
12: D, « D, U (u, v)
13: MAINTAININVARIANT(D,, )
14: else if (v € 7 (u)) then
15: ‘ FIXMAINCORE(u)

After the addition of the vertex in the bag, the algorithm verifies
the core number by comparing the core number of the vertex in the
bag and the snowball. If the core number of the vertex in the bag is
greater, the algorithm merges the snowballs containing the vertices
in the induced graph of the new node in the bag. This creates a new
snowball with a greater core number. O

Edge addition: In this case, the state of the bag is only affected if
at least one of the vertices in the new edge is a high-degree vertex.
In particular, there are two cases to consider: a) only one of the
vertices is a high-degree vertex and b) both the vertices are high-
degree vertices. For the first case, the algorithm leverages the vertex
addition method to add the vertex to the bag of snowballs. For the
second case, when both vertices are added to the bag of snowballs,
the algorithm verifies that the main core exists in the bag. When
both vertices are added to the same snowball, the algorithm adds
the new edge to the same snowball and ensures that the invariant
holds. Conversely, when the two vertices are added to two different
snowballs, the algorithm verifies if the vertices exist in each others’
induced subgraphs and fixes the main core for both the vertices.
Algorithm 4 describes the algorithm for edge addition.

THEOREM 4.3. Algorithm 4 maintains the main core of the graph
in one of the snowballs inside the bag.

Proor. The proof for all the cases, other than the case when
both the vertices of the new edge are assigned to two different
snowballs, is similar to the vertex addition algorithm. Therefore,
we consider the case when both end vertices of the added edge
are added to two different snowballs. For this case, we rely on the
graph in the bag. We check if both vertices are in the same core
graph in the bag, and fix the core number of the vertices if they
belong to the same induced subgraph. This ensures creating the
graph with the highest core number. O

4.4 Removal operations

Vertex removal: Similarly to the addition operations, we first de-
fine the procedure for removing a vertex from the bag of snowballs.
The vertex removal method is used as a subroutine for the edge
removal process. A vertex is only removed from the bag when its
degree becomes lower than the maximal density. Therefore, accord-
ing to Lemma 2.5, the removed vertex cannot be part of the main
core. The algorithm removes the vertex from the snowball within a
bag without doing any other operation.

1: procedure REMOVEEDGE((u,v))

2: if (d(u) < ps*)and (d(v) < pg+)) then

3 return

4: if (d(u) < ps+)and (d(u) + 1 > ps+)) then
5: REMOVEVERTEX(u)

6 return

7 if (d(v) < pg+)and (d(v) +1 > pg+)) then
8 REMOVEVERTEX(V)

9: return
10: for D; € Bdo
11: if (D; N (u, v) # 0) then
12: D; « D;\(u, v)
13: for x € D; do
14: \ if (kp(x) > kp,;(x)) then
15: ‘ ‘ ‘ ‘ FIXMAINCORE(x)
16: | | MamramInvariant(D;)

Edge removal: Now we turn our attention to edge deletion, which
follows the same pattern as edge addition. Again, we leverage the
bag to ensure that there exist a snowball with a core number equal
to the main core of the graph. Algorithm 5 shows the algorithm for
edge deletion. The bag does not require any update when either one
of the vertices is low-degree or if both the vertices belong to two
different snowballs. Therefore, we consider the case when one of
the vertices lie at the boundary of high-degree vertices. That is, the
edge deletion moves the vertex from the high-degree to low-degree.
In this case, the algorithm only requires removing the vertex from
the bag, without performing any other operations.

The interesting case is where both vertices of the deleted edge
are high-degree and belong to the same snowball. In this case, the
algorithm removes the edge from the snowball. Further, it verifies
and updates (if needed) the core number of the vertices affected by
the update in the snowball. Lastly, edge deletion might reduce the
maximal density, and thus require adding to the bag new vertices
whose degree is now greater than the new maximal density.

THEOREM 4.4. Given the bag containing a snowball with the same
core number as the main core of the bag, after the edge deletion,
Algorithm 5 maintains the main core of the graph in one of the
snowballs inside the bag.

PrROOF. An edge removal affects the bag of snowballs only when
both the vertices corresponding to the removed edge belong to the
same snowball. In this case, edge removal might reduce the core
number of all the vertices in the snowball. The algorithm ensures
that the vertices in the snowball have their maximum possible core
number by comparing their core number in the snowball with the
core number in the bag. Therefore, by verifying and fixing the core
numbers, the algorithm maintains the main core of the graph in
one of the snowballs inside the bag. O

4.5 Fully-dynamic top-k densest subgraphs

Now that we have a fully dynamic algorithm for finding the densest
subgraph in sliding windows, we move our attention to the top-k
densest-subgraph problem.

Let ps+ > p1 = ... = pz—1 represent the densities of the z sub-
graphs in the bag, where pg+ is the density of the densest subgraph.
The bag contains the vertices that have a degree greater than the
density ps+. To ensure that the bag contains at least k subgraphs,
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Figure 4: Example showing top-k version of the algorithm.
The densities of top-3 subgraphs, before the arrival of the
new edge in the bag are 1.8, 1.5 and 1.25. The algorithm stores
all the vertices in the bag with degree greater than equal to
1.25, as shown in Figure 4b. After the arrival of the new edge,
the update only affects one of the subgraphs in the bag.

(a)

we modify the algorithm to keep all the vertices with degree greater
than pg_;. The only modification required is to replace pg+ by pi_1
in Algorithm 2, Algorithm 4 and Algorithm 5. Further, we leverage
the priority queue to extract pg_; from the bag of snowballs. This
simple modification ensures that the bag contains at least k sub-
graphs and enables accessing the top-k densest subgraphs in the
sliding window model. Note that the new definition of high-degree
vertices is related to the density of the k-th top densest subgraph.

The modified algorithm guarantees that the bag contains the
vertices with a degree greater than the py_; after any graph update.
These graph updates include both edge additions and removals.
It is necessary for the algorithm to consider edge additions, as
they might affect the value of pj_; by merging multiple subgraphs.
Similarly, edge deletions have to be considered, as they might affect
the value of py._; by reducing the density of any of the top-k densest
subgraphs, merging multiple subgraphs, or splitting a subgraph.

As the algorithm ensures keeping the main core in the bag, it
guarantees 2-approximation for the first densest subgraph (k = 1)
while providing a high-quality heuristic for k > 1 compared to
other solutions. We provide an example in Figure 4 for the top-k
densest subgraph algorithm by expanding on the Figure 1a. We
conclude this section with the theorem that provides a bound for
our proposed algorithm. These bounds can be generalized for any
algorithm that adapts to a solution for densest subgraph problem
for the top-k case (see section 3 for examples).

THEOREM 4.5. Given an integer k, the bag contains a set of sub-
graphs that provides 2k-approximation of the top-k densest-subgraph
problem.

Proor. We know that the graph does not contain any subgraph
with density greater than the optimal density (ps+). Therefore, we
know that the sum of densities for the top-k densest-subgraph
problem is upper bounded by k X pg=.

Further, the bag contains gs+, which provides a 2-approximation
of the densest subgraph. This implies that the sum of densities
of top-k densest subgraph in the bag > % ps+. Putting above two
observations together, we can clearly see that the bag provides a
solution that is a 2k-approximation for the problem. O

4.6 Data structure

The proposed algorithm requires accessing the neighborhood infor-
mation of every node. Specifically, we are interested in performing
three queries on a given vertex: a) extract its degree, b) extract all
its neighbors, and c) given density pg+, extract all the vertices with
degrees greater than the density pg«.

Vertex map: To answer the first two queries, we need to store the
neighborhood information for all vertices. We store the information
in a hashmap with keys being the vertex identifiers and values being
the neighbors of each vertex. Vertex map allows performing search
and update operations in amortized constant time.

Degree table: For the third query, we need to order the vertices by
their degrees. We use bin sort to order the vertices by their degrees,
which enables extracting the vertices with degrees greater than the
density ps+ in constant time.

5 DISCUSSION

Most of the solutions that leverage a static algorithms [5, 7, 10]
require iterating over the entire graph k times upon any update.
Comparatively, our algorithm mostly touches a limited region in
the graph for any updates, which makes our algorithm perform
significantly faster.

The top-k densest subgraph algorithm that adapts to Epasto et al.
[15] requires replicating the graph across the k instances. In addi-
tion, updates across k instances might cascade and require running
the algorithm k times, similarly to the static top-k solutions. Our
algorithm outperforms the pipeline version of the top-k algorithm
both in terms of memory and computation.

Finally, incremental algorithms for k-core maintenance requires
removing top-k densest subgraph upon every update in the graph.
Each removal of a densest subgraph requires updating the core
number of the remaining vertices. Our algorithm efficiently avoids
this removal step by maintaining the subgraphs during execution.
Performance. The proposed algorithm leverages the skew in real-
world graphs and ignores a major portion of the input stream on the
fly. In addition, high-degree vertices are stored as small subgraphs
so that each update is often applied locally on these subgraphs. This
design allows our algorithm to operate on just small portions of the
graph for each update, rather than iterating on the whole graph.
Finally, we use the k-core algorithm [23, 27], which allows each
high-degree node to update their core number with a complexity
independent of the graph size. These improvements enable our
algorithm to perform significantly better than the other state-of-
the-art streaming algorithms.

Memory. Our algorithm requires only O(n’polylogn) memory,
compared to O(kn?polylogn) for the top-k version of [15] and
O(n?polylogn) for the other algorithms discussed in Section 3.

Tight Bounds. We show via an example that any algorithm for
densest subgraph problem can only produce a k-approximation for
top-k densest subgraph problem. Consider a graph G that contains
n-m vertices, for any n > k. The n nodes connect to form a circle. In
the circle, there is one edge connecting two non-adjacent vertices.
Additionally, each of the n nodes connects to exactly m neighbors.
The inner circle of the graph G is the densest subgraph. Removing
the densest subgraph leaves the rest of the vertices completely
disconnected. Hence, the sum of density will be equal to one. Now,



Table 1: Datasets used in the experiments.

Dataset Symbol n m d(v)
Amazon [22] AM 334863 925872 5.52
DBLP 1 [22] DB, 317080 1049 866 6.62
Youtube [22] YT 1134890 2987 624 5.26
DBLP 24 DB, 1314050 18986618  28.88
Live Journal®  LJ 5204176 49174620 18.90
Orkut [22] oT 3072441 117185083  76.28
Friendster [22] FR 65608366 1806067135 55.04

consider the case when the densest subgraph is not removed first.
In this case, each node in the circle along with its m neighbors
create a subgraph of density almost equal to one, for higher values
of m. Therefore, one can return k such subgraphs with the sum of
densities equal to k, which is k times better than the previous case.

6 EVALUATION

We conduct an extensive empirical evaluation of the proposed
algorithm, and provide comparisons with the existing solutions. In
particular, we answer the following questions:

Q1: What is the impact on the quality of subgraphs?

Q2: What are the gains in performance?

Q3: How does the algorithm perform in terms of different input
parameters?

6.1 Experimental setup

Datasets. Table 1 shows the datasets used in the experiments. The
datasets are selected due to their public availability. We evaluate all
the algorithms in the sliding window model. The number of edges
in the sliding window is an input parameter.
Metrics. We evaluate the quality and efficiency of the algorithms.
We assess the quality by the objective function, i.e., the sum of
densities of the subgraphs produced by an algorithm. We evaluate
the efficiency of an algorithm by reporting the average update time
and the memory usage. The average update time is the average
time it takes to move the sliding window. This includes adding
the new edge, removing the oldest edge, and updating the top-k
densest subgraphs. We report the memory usage as the average
percentage of occupied memory.
Algorithms. Table 2 shows the notations used for different al-
gorithms. The algorithms by Bahmani et al. [5] and Epasto et al.
[15] require an additional epsilon parameter for execution, which
provides a trade-off between quality and execution time. Here we
use the defaults proposed by the authors.
Stream ordering. We consider two commonly used stream order-
ing schemes [29]:

o BFS: The ordering is a result of a breadth-first search starting

from a random vertex.
o DFS: The ordering is a result of a depth-first search starting
from a random vertex.

Experimental environment. We conduct our experiments on
a machine with 2 Intel Xeon Processors E5-2698 and 128GiB of

“http://konect.uni-koblenz.de/networks/dblp_coauthor
Shttp://konect.uni-koblenz.de/networks/livejournal-links

Table 2: Notation for the top-k algorithms.

Symbol  Reference Algorithm Top-1 Approx. In-place

Guarantees
CH Charikar [10] 2 No
VB Batagelj and Zaversnik [7] 2 No
BB Bahmani et al. [5] 2(1+¢€) No
RL Li et al. [23] 2 Yes
TR Sariytice et al. [27] 2 Yes
AE¢ Epasto et al. [15] 2(1+¢€)° No
GR this paper 2 Yes

memory. All the algorithms are implemented in Java and executed
on JRE 7 running on Linux. The source code is available online.

6.2 Experimental results

Q1: In this experiment, we compare the quality of the results pro-
duced by the different algorithm as measured by the objective
function. In order to be able to run most of the algorithms, we use
the smaller datasets, i.e., AM, DB1, YT, and DBy. As RL and TR
produce same results in terms of quality, we only report the results
for one of them. Due to space constraints, we show the results only
with the DFS ordering. However, we achieve similar results also
with the BFS one. We set the size of the sliding window x = 100k.
For the static algorithms, we execute them in micro-batches
in which the top-k densest subgraph is recomputed after 1k edge
updates, which gives them a substantial advantage. For BB, and
AE¢, we use € = 0.01. We set the maximum execution time to 7
days, due to which the AE. is not able to finish on DBy and YT.
Finally, RL and TR contain an update phase due to the iterative
extraction of the top-k densest subgraph. This phase is expensive,
as the main core consists of high-degree vertices. To alleviate this
issue, we execute the extraction phase every 10k update operations.
Figure 5 shows the quality results. Our algorithm GR achieves
competitive quality, often generating denser subgraphs compared
to all the other algorithms. For example, for the AM dataset, GR
produces subgraphs that are 1.5 times better than the best algorithm
among the state-of-the-art solutions. All the other algorithms pro-
duce consistent results across all the datasets. For instance, VB, RL,
and TR produce top-k dense subgraphs of lowest quality compared
to the other algorithms. This result is caused by the removal of the
main core (backbone) of the graph in each of the k iterations. In
addition, it shows how the problem considered in this paper, while
related, is different from a simple k-core decomposition. The results
also validate that BB, and AE, provide weaker guarantees on the
quality compared to CH.
Q2: In this experiment, we turn our attention to evaluate the ef-
ficiency of the proposed algorithm, as measured by the average
update time and memory usage. We again select several datasets,
i.e, AM, DBy, YT, DBy, and L], and execute CH, VB, BB, RL, TR, AE,
and GR. We exclude the largest datasets as only a few algorithms
are able to handle them. The algorithms are executed with both
BFS and DFS ordering of the edge stream. The sliding window size
is set to x = 100k edges, and k = 10 unless otherwise specified.

®https://github.com/anisnasir/TopKDensestSubgraph
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Figure 5: Sum of densities for top-10 densest subgraphs on the DB;, AM, DB, and YT datasets, sliding window size 100k.

Table 3: Memory consumption as a percentage of total mem-
ory for algorithms with DB, and L] dataset, sliding window
size 100k.

CH VB BB RL TR AE. GR

DB, 210 210 210 21 28 5 2.7
Lj 1.80 180 1.80 1.8 2.1 5.5 2.4

Figure 6 shows the efficiency results (note the logarithmic scale).
The proposed algorithm, GR, outperforms all other ones in terms of
update time for all the datasets and both ordering schemes. RL and
TR are the slowest algorithms. In particular, for DFS, our algorithm
achieves a performance gain of five orders of magnitude. This result
is noteworthy as even though our algorithm is dependent on core
decomposition, it is still able to beat a naive application of those
algorithms by a wide margin. This difference is due to the fact that
both algorithms require maintaining the core number for all the
vertices. Additionally, the extraction of top-k densest subgraph
further hampers their efficiency.

Algorithms CH, VB, and BBy o1 perform unfavorably due to their
static nature. In this case, our algorithm is able to achieve more
than three orders of magnitude improvement in efficiency.

Algorithm AEj o1 is best performing among the baselines, and
even outperforms GR in one dataset for one specific ordering (AM
with BFS). However, GR still outperforms AEj o1 by nearly three
orders of magnitude in most other cases.

Finally, we observe the overall memory consumption of all the

algorithms (reported in Table 3). The memory requirement of our
algorithm lies between the static and the dynamic algorithms, i.e.,
AEy .01 requires the largest amount of memory, while the static
algorithms require the least. These results are in line with our
expectations from the discussion in Section 3.
Q3: In this experiment, we evaluate the scalability of our algorithm.
First, we execute GR with different values of k. Alongside, we report
the average update time for BB, algorithm. We choose BB, rather
than AE, as it can execute in mirco-batches, i.e., top-k densest
subgraph every 100 edges. We set the sliding window size x = 1M,
and use the YT and DB, dataset with DFS ordering. Figure 7 reports
the average update time for both algorithms. The average update
time of GR remains consistent even for higher values of k, whereas
the execution time of BBy 1 increases with the parameter.

Second, we execute GR with different sizes of sliding window,
ie, x = 10k, 100k, 1M, and 10M. We set k = 10 for this experi-
ment. Again, we use the YT and DB, datasets with DFS ordering.
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Figure 6: Update time for the algorithms on the DB, AM,
DB;, YT, and LJ datasets, when using both DFS and BFS or-
dering and k = 10.
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Figure 7: Update time for GR and BBy ; on the YT and DB,
datasets as a function of k. Note that BBy o; is executed in
micro-batches of size 100.

Table 4: Average update time for the GR algorithm with slid-
ing windows of different sizes x.

x =10k x=100k x=1M x=10M
YT 0.80ms 91.14ms  90.33ms  95.49ms
DB, 4.97ms 7.58ms 8.45ms 32.21ms

Table 4 reports the average update time for different configura-
tions. Increasing the size of the sliding window does not affect the
average update time significantly. This result validates our claim
that most of the updates are local to the subgraphs, and do not re-
quire iterating through the whole graph to extract the top-k densest
subgraphs.

Finally, we study the performance of our algorithm in on the
largest datasets. We select the OT and FR datasets with DFS order-
ing, and execute the algorithm with a sliding window of x = 100k,
with k = 10. Figure 8 shows the result of the experiment. The plot
is generated by taking the moving average of the update time and
the sum of densities. The average update time of the algorithm
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Figure 8: Quality and efficiency for GR on the OT and FR
datasets over the stream.
mostly remains constant throughout the execution, and our algo-
rithm provides steady efficiency over the stream. This behavior
remains consistent even when the densities are fluctuating, as in
the case for the OT dataset.

7 RELATED WORK

Valari et al. [32] were the first one to study the top-k densest sub-
graph problem for a stream consisting of a dynamic collection
of graphs. They proposed both an exact and an approximation
algorithm for top-k densest subgraph discovery. Similar to our
algorithm, the proposed algorithm relies on the core decomposi-
tion to provide the approximation guarantees. The top-k densest
subgraphs produced by the algorithm are edge-disjoint. Balalau
et al. [6] studied the problem of finding the top-k densest subgraph
with limited overlap. They defined the top-k densest subgraphs as
a set of k subgraphs that maximizes the sum of densities, while
satisfying an upper bound on the pairwise Jaccard coefficient be-
tween the set of vertices of the subgraphs. The problem of finding
the top-k densest subgraph as sum of densities was shown to be
NP-hard [6] and efficient heuristic was proposed to solve the prob-
lem. Further, Galbrun et al. [17] studied the problem of finding the
top-k overlapping densest subgraphs and provided constant-factor
approximation guarantees.

8 CONCLUSION

We studied the top-k densest subgraphs problem for graph streams,
and proposed an efficient one-pass fully-dynamic algorithm. In
contrast to the existing state-of-the-art solutions that require iter-
ating over the entire graph upon update, our algorithm maintains
the solution in one-pass. Additionally, the memory requirement
of the algorithm is independent of k. The algorithm is designed by
leveraging the observation that graph updates only affect a limited
region. Therefore, the top-k densest subgraphs are maintained by
simply applying local updates to small subgraphs, rather than the
complete graph. We provided a theoretical analysis of the proposed
algorithm and showed empirically that the algorithm often gener-
ates denser subgraphs than the state-of-the-art solutions. Further,
we observed an improvement in performance of up to five orders
of magnitude when compared to the baselines.

This work gives rise to further interesting research questions: Is
it necessary to leverage k-core decomposition algorithm as a back-
bone? Is it possible to achieve stronger bounds on the threshold
for high-degree vertices? Can we design an algorithm with a space

bound on the size of the bag? Is it possible to achieve stronger
approximation guarantees for the problem? We believe that solv-

ing these questions will further enhance the proposed algorithm,
making it a useful tool for numerous practical applications.
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