
Fully Dynamic Algorithm for Top-k Densest Subgraphs
Muhammad Anis Uddin Nasir

]1
, Aristides Gionis

‡2
, Gianmarco De Francisci Morales

�3

Sarunas Girdzijauskas
]4

]
Royal Institute of Technology, Sweden

‡
Aalto University, Finland

�
Qatar Computing Research Institute, Qatar

1
anisu@kth.se,

2
aristides.gionis@aalto.�,

3
gdfm@acm.org,

4
sarunasg@kth.se

ABSTRACT
Given a large graph, the densest-subgraph problem asks to �nd a

subgraph with maximum average degree. When considering the

top-k version of this problem, a naı̈ve solution is to iteratively �nd

the densest subgraph and remove it in each iteration. However,

such a solution is impractical due to high processing cost. �e

problem is further complicated when dealing with dynamic graphs,

since adding or removing an edge requires re-running the algo-

rithm. In this paper, we study the top-k densest-subgraph problem

in the sliding-window model and propose an e�cient fully-dynamic

algorithm. �e input of our algorithm consists of an edge stream,

and the goal is to �nd the node-disjoint subgraphs that maximize

the sum of their densities. In contrast to existing state-of-the-art

solutions that require iterating over the entire graph upon any

update, our algorithm pro�ts from the observation that updates

only a�ect a limited region of the graph. �erefore, the top-k dens-

est subgraphs are maintained by only applying local updates. We

provide a theoretical analysis of the proposed algorithm and show

empirically that the algorithm o�en generates denser subgraphs

than state-of-the-art competitors. Experiments show an improve-

ment in e�ciency of up to �ve orders of magnitude compared to

state-of-the-art solutions.

1 INTRODUCTION
Finding a subgraph with maximal density in a given graph is a fun-

damental graph-mining problem, known as the densest-subgraph
problem. Density is commonly de�ned as the ratio between number

of edges and vertices, while many other de�nitions of density have

been used in the literature [7, 28, 30, 31]. �e densest-subgraph

problem has many applications, for example, in community de-

tetion [11, 14], event detection [2], link-spam detection [18], and

distance query indexing [1].

In applications, we are o�en interested not only in one dens-

est subgraph, but in the top-k . �e top-k densest subgraphs can

be vertex-disjoint, edge-disjoint, or overlapping [6, 17]. Di�erent

objective functions and constraints give rise to di�erent problem

formulations [6, 17, 32]. In this work, we choose to maximize the

sum of the densities of the k subgraphs in the solution. In addition,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM’17, November 6–10, 2017, Singapore.
© 2017 ACM. ISBN 978-1-4503-4918-5/17/11. . . $15.00

DOI: h�p://dx.doi.org/10.1145/XXXXXX.XXXXXX

(a) (b)

Figure 1: For the graph in Figure 1a, we are interested in ex-
tracting the top-3 densest subgraphs. Consider the arrival
of an edge shown in red. Figure 1b shows the top-3 densest
subgraphs a�er the arrival. �e objective is to design an al-
gorithm that can e�ciently maintain the densest subgraphs
while keeping the number of updates very low, in this case
updating only the vertices in red.

we seek a solution with disjoint subgraphs. �is version of the

problem is known to be NP-hard [6].

To complicate the ma�er, most real-world graphs are dynamic

and rapidly changing. For instance, Facebook users are continu-

ously creating new connections and removing old ones, thus chang-

ing the network structure. Twi�er users produce posts at a high

rate, which makes old posts less relevant. Given the dynamic nature

of many graphs, here we focus on a sliding-window model which

gives more importance to recent events [4, 12, 13]. Finding the top-

k densest subgraphs in a sliding window is of interest to several

real-time applications, e.g., community tracking [33], event detec-

tion [26], story identi�cation [2], fraud detection [8], and more. We

assume the input to the system arrives as an edge stream, and seek

to extract the k vertex-disjoint subgraphs that maximize the sum

of densities [6].

A naı̈ve solution involves executing a static algorithm for the

densest-subgraph problem k times, while removing the densest

subgraph in each iteration. However, such a solution is impractical

as it requires to execute the algorithm k times for each update. An

alternative solution to our problem is to use a dynamic densest

subgraph algorithm in a pipeline manner, where the output of an

algorithm instance serves as input to the following one. In this

case, the graph and the instances of the algorithm are replicated

independently across k instances of the algorithm, resulting in a

high memory and processing cost.

In this paper, we propose a fully-dynamic algorithm that �nds

an approximate solution. �e proposed algorithm follows a greedy

approach and updates the densities of the subgraphs connected to

vertices a�ected by edge operations (addition and removal). �e

algorithm is e�ciently designed based on key properties of dens-

est subgraphs, and it is competitive against other recent dynamic

algorithms [9, 15, 24].

First, our algorithm relies on the observation that only high-

degree vertices are relevant for the solution. As many natural

graphs have a heavy-tailed degree distribution, the number of high-

degree vertices in a graph is relatively smaller than the number of

low-degree ones. �is simple observation enables pruning a major

portion of the input stream on-the-�y. Second, the vertices that are

part of a densest subgraph are connected strongly to each other

and weakly to other parts of the graph. �is enables independently

maintaining and locally updating multiple subgraphs. Figure 1

provides an example which demonstrates this intuition.

�e algorithm tracks multiple subgraphs on-the-�y with the help

of a newly de�ned data structure called snowball. �ese subgraphs

are stored in a bag, from which the k subgraphs with maximum

densities are extracted. �e algorithm runs in-place, and does

not require multiple copies of the graph, thus making it memory-

e�cient. �e one-pass nature of the algorithm allows extracting

top-k densest subgraphs for larger values of k .

We provide a theoretical analysis of the proposed algorithm, and

show that the algorithm guarantees 2-approximation for the �rst

densest subgraph (k = 1) while providing a high-quality heuris-

tic for k > 1 compared to other solutions. Experimental evalua-

tion shows that our algorithm o�en generates denser subgraphs

compared to the state-of-the-art algorithms, due to the fact that

it maintains disconnected subgraphs separately. In addition, the

algorithm provides improvement in runtime up to three to �ve

orders of magnitude compared to the state-of-the-art. In summary,

we make the following contributions:

• We study the top-k densest vertex-disjoint subgraphs problem

in the sliding-window model.

• We provide a brief survey on adapting several algorithms for

densest subgraph problem for the top-k case.

• We propose a scalable fully-dynamic algorithm for the problem,

and provide a detailed analysis of it.

• �e algorithm is open source and available online, together

with the implementations of all the baselines.
1

• We report a comprehensive empirical evaluation of the algo-

rithm in which it signi�cantly outperforms previous state-of-

the-art solutions by several orders of magnitude, while produc-

ing comparable or be�er quality solutions.

2 PRELIMINARIES
In this section, we present our notation, revisit basic de�nitions,

and formulate the top-k densest subgraphs problem.

Consider an undirected graph G = (V ,E) with n = |V | vertices

andm = |E | edges. �e neighborhood of v ∈ V is de�ned as N (v) =
{u | (v,u) ∈ E}, and its degree as d (v) = |N (v) |. For a subset S ⊆ V
we de�ne E (S) to be the set of edges whose both endpoints are in S ,

andG (S) = (S,E (S)) the subgraph induced by S . �e internal degree
of a vertexv with respect to S ⊆ V is de�ned by dS (v) = |N (v)∩S |.

1
h�ps://github.com/anisnasir/TopKDensestSubgraph

Finally, for a subset of vertices S ⊆ V we de�ne its density ρS by

ρS =
|E (S) |

|S |
. (1)

Note that the density of any subgraph is equal to half of its average
internal degree.

De�nition 2.1 (Densest subgraph). Given an undirected graphG =
(V ,E), the densest subgraph S∗ is a set of vertices that maximizes

the density function, i.e.,

S∗ = arg max

S ⊆V
ρS . (2)

We say that an algorithm A computes an α-approximation of

the densest subgraph if A computes a subset S ⊆ V such that

ρS ≥
1

α ρS∗ , where S∗ ⊆ V is the densest subgraph of G.

Next we introduce other concepts related to densest subgraph:

graph core, core decomposition, and induced core subgraph of a vertex.

De�nition 2.2 (j-core). Given an undirected graph G = (V ,E)
and an integer j, a j-core of G is a subset of vertices C ⊆ V so that

each vertex v ∈ C has internal degree dC (v) ≥ j, and C is maximal

with respect to this property.

De�nition 2.3 (Core decomposition). A core decomposition of a

graph G = (V ,E) is a nested sequence

{
Ci

}
of cores

V = C0 ⊇ C1 ⊇ . . . ⊇ C` ⊇ ∅, (3)

where each Ci is a j-core for some j.

De�nition 2.4 (Core number). Given a core decomposition V =
C0 ⊇ C1 ⊇ . . . ⊇ C` ⊇ ∅ of a graph G = (V ,E), the core number

κ (v) of a vertex v is the largest j such that v ∈ C and C is a j-core.

By overwriting notation, the core number κ (C) of a core C is the

largest j for which C is a j-core.

Additionally, we use κS (v) to denote the core number of a ver-

tex v in the subgraph induced by S . �e largest core (or main core)
of a subgraph of G (S) = (S,E (S)) is denoted by C` (S), while the

main core of G is simply denoted by C` .

Note that the density of a j-core is at least j/2, as each vertex in the

core has degree at least j and each edge is counted twice. �is obser-

vation implies that the main core of a graph is a 2-approximation

of its densest subgraph.

Lemma 2.5. Consider the core decomposition of a graph G, i.e.,
C1 ⊆ C2 ⊆ . . . ⊆ C` . �e maximum core C` is 2-approximation of
the densest subgraph of G [21].

Proof. Let S∗ be the densest subgraph of G having density ρS∗ .
Every vertex in G (S∗) has degree at least ρS∗ ; otherwise a vertex

with degree smaller than ρS∗ can be removed to obtain an even

denser subgraph. �us, S∗ is a ρS∗ -core. Given the core decom-

position of G, we know that ρC`
≥ 1

2
κ (C`). We want to show

that ρC`
≥ 1

2
ρS∗ . Assume otherwise, i.e., ρC`

< 1

2
ρS∗ . �en

κ (C`) < ρS∗ . It follows that S∗ is a higher-order core than C` , a

contradiction. �

�e concept of a core subgraph I (v) induced by a vertex v
[23, 27] is also pertinent to our analysis.

https://github.com/anisnasir/TopKDensestSubgraph

De�nition 2.6 (Induced core subgraph). Given a graph G = (V ,E)
and a vertex v ∈ V , the induced core subgraph of vertex v , denoted

by I (v), is a maximal connected subgraph containing the vertex v
s.t. the core number of all the vertices in I (v) is equal to κ (v).

In other words, the induced subgraph contains all vertices that

are reachable from v and have the same core number κ (v).
All previous de�nitions apply to static graphs. Let us now focus

on dynamic graphs. In particular, we consider processing a graph

in the sliding window edge-stream model [13]. According to this

model, the input to our problem is a stream of edges. �e edge ei is

the i-th element of the stream. Equivalently, we say that edge ei
has timestamp i . A sliding windowWt (x), de�ned at time t and of

size x , is the set of all edges that arrive between et−x+1 and et ,

Wt (x) = {ei , i ∈ [t − x + 1, t]}. (4)

For each edge ei = (u,v), we consider that u and v appear at time

i , and we use Vt (x) to denote the set of vertices that appear in a

length-x sliding window at time t . �e graph in a length-x sliding

window at time t is then de�ned to be Gt (x) = (Vt (x),Wt (x)).
We are now ready to formally de�ne the problem that we con-

sider in this paper, i.e., �nding the top-k densest subgraphs in

sliding window. We �rst de�ne the problem in a static se�ing.

De�nition 2.7. Given an undirected graph G = (V ,E) and an

integer k > 0, the top-k densest subgraphs ofG is a set of k disjoint

maximal set of vertices S = {S1, . . . , Sk } that maximize the sum of

its densities:

ρk (S) = max

k∑
i=1

ρSi , for all Si ∈ S subject to

there is no Sj ⊃ Si | ρSj ≥ ρSi , for all Si , Sj ⊆ S (5)

Si ∩ Sj = ∅, for all i, j ∈ {1 . . .k }, i , j . (6)

As already shown by Balalau et al. [6], the problem de�ned aboce

is NP-hard, for any k > 1. �e problem we consider in this paper

is the following.

Problem 2.8. Given a graph stream {ei } and a sliding window
lengthx , maintain the top-k densest subgraphs ρk (S) of the graphGt (x),
at any given time t .

3 BACKGROUND
In this section we present a brief review over several algorithms

for �nding dense subgraphs. Additionally, we discuss how these

methods can be used for solving Problem 2.8.

Densest subgraph in static graphs. Finding the densest sub-

graph according to the density de�nition (1) can be solved in polyno-

mial time. An elegant solution involving reduction to the minimum-

cut problem was given by Goldberg [20]. As the fastest algorithm

to solve the minimum-cut problem runs in O (nm) time [25], Gold-

berg’s algorithm is not scalable to large graphs.

Asahiro et al. [3] and Charikar [10] propose a linear-time al-

gorithm that provides a factor-2 approximation. �is algorithm

iteratively removes the vertex with the lowest degree in each itera-

tion, until le� with an empty graph. Among all subgraphs consid-

ered during this vertex-removal process, the algorithm returns the

densest. �e time complexity of this greedy algorithm is O (m + n).

Bahmani et al. [5] propose a MapReduce version of the greedy algo-

rithm, with approximation ratio 2(1+ϵ), while making O (log
1+ϵ n)

passes over the input graph.

Core decomposition in static graphs. �e core decomposition

of a graph G is the process of identifying all cores of G, as de�ned

in 2.3. Batagelj and Zaversnik [7] propose a linear-time algorithm

to obtain the core decomposition. �e algorithm �rst considers

the whole graph and then repeatedly removes the vertex with the

smallest degree. �e core number κ (v) of a vertex v is set equal to

the degree of v at the moment that v is removed from the graph.

Densest subgraph in evolving graphs. �ere is a growing body

of literature on �nding dense subgraphs in evolving graphs [9,

15, 19, 24]. We focus mainly on the deterministic algorithm for

densest subgraph in evolving graphs. For instance, Epasto et al. [15]

propose an e�cient algorithm for computing the densest subgraph

in the dynamic graph model [16]. �eir work assumes that edges

are inserted into the graph adversarially but deleted randomly.

Even though the algorithm can, in practice, handle arbitrary edge

deletions, its approximation guarantees hold only under the random

edge-deletion assumption. �e algorithm is similar to the one by

Bahmani et al. [5], and it provides a 2(1 + ϵ)6-approximation of the

densest subgraph, while requiring polylogarithmic amortized cost

per update with high probability.

Core maintenance in evolving graphs. Sarı́yüce et al. [27] pro-

pose the traversal algorithm, for e�cient core maintenance. �is

algorithm identi�es a small set of vertices that are a�ected by edge

updates and processes these vertices in linear time in order to

maintain a valid core decomposition. Li et al. [23] propose an

e�cient three-stage algorithm for core maintenance in large dy-

namic graphs. �e algorithm maintains a core decomposition of

an evolving graph by applying updates to very few vertices in the

graph. Once these few vertices have been identi�ed, the algorithm

computes the correct core numbers via a quadratic operation.

Finding top-k densest subgraphs. �e problem of �nding top-k
densest subgraphs has been mainly studied for �nding overlapping
subgraphs in static graphs [6, 17].

Next, we discuss how the algorithms presented above (Charikar

[10], Batagelj and Zaversnik [7], Bahmani et al. [5], Sarı́yüce et al.

[27], Li et al. [23], and Epasto et al. [15]) can be used to produce

top-k densest subgraphs.

Our �rst observation is that a set of k dense subgraphs can

be obtained from any algorithm that �nds the densest subgraph

by k repeated invocations. �e time complexity of computing a

set of k dense subgraphs in this manner is simply the running-

time complexity of the densest-subgraph algorithm multiplied by k .

From a practical point of view, all the static algorithms mentioned

are not in-place algorithms, and thus require copying the whole

graph for processing. Furthermore, when a vertex or edge is added

or deleted from the graph, the whole k dense subgraph computation

has to be repeated.

�e second observation is that, by using the algorithm of Epasto

et al. [15], we can obtain a set of k dense subgraphs by running k
instances of the fully-dynamic algorithm in a pipeline manner. �e

idea is to run k instances of the algorithm in which the output of

each instance i ∈ {0 . . .k − 1} is fed into the next (i + 1) instance

as a removal operation. �e pipeline version of the algorithm

requires keeping k copies of the input graph and an additional

O (kn) size space for bookkeeping. Note that the output of each

instance of the pipeline might cascade, which requires updating

the vertices in all the instances. In particular, vertices that cease

to be part of solution in upstream instances need to be added in

downstream instances. Likewise the vertices that become part of

densest subgraphs in upstream instances need to be removed from

a downstream instances. �e modi�cation of the algorithm, as

discussed above, is expensive in terms of memory, as it requires

replicating the graph and the algorithm’s structures k times. In

addition, running and maintaining k parallel instances makes the

algorithm compute-intensive.

Finally, to maintain top-k densest subgraphs in evolving graphs,

we can leverage algorithms for core decomposition maintenance [23,

27]. by leveraging Lemma 2.5, �us, the idea is to �nd and maintain

top-k disjoint maximum cores. In order to maintain such cores

we run a single instance of the algorithm by Sarı́yüce et al. [27]

or Li et al. [23] that maintains the core number of all the vertices

in the graph. We then extract the top-k densest subgraphs by: (i)
extracting the main core, (ii) removing the vertices in the main

core and updating the core number for rest of the vertices, and (iii)
repeating the steps until k subgraphs are extracted.

4 ALGORITHM
�e main idea of our algorithm is to maintain and update multiple

dense subgraphs online. �ese subgraphs are candidates for the

top-k densest subgraphs. However, maintaining multiple subgraphs

for fully-dynamic streams requires answering two interesting ques-

tions: (i) how to reduce the search space of the solution, and (ii)
how to split the whole graph into subgraphs.

To answer the aforementioned questions, we make two observa-

tions. First, since dense subgraphs are formed by relatively high-

degree vertices, one can �nd dense subgraphs by keeping track

of these high-degree vertices only. Second, these subgraphs can

be updated locally upon edge updates, without a�ecting the other

parts of the graph.

Based on these observations, we develop an algorithm that re-

duces the solution space by considering only high-degree vertices,

and divides the whole graph into smaller subgraphs, each repre-

senting a dense subgraph. �e top-k densest subgraphs among the

candidate subgraphs provide a solution for Problem 2.8.

We begin by designing an algorithm to �nd the densest subgraph

(top-1) and then we extend it to �nd the top-k densest subgraphs.

Our algorithm might not be the most e�cient solution for the (top-1)

densest-subgraph problem per se, but it provides e�cient outcomes

when extended to solve the top-k densest-subgraph problem.

We start by de�ning some properties of the densest subgraph

that we leverage in our algorithm.

Lemma 4.1. Given an undirected graph G = (V ,E), the densest
subgraph S∗ ⊆ V with density ρS∗ , all the verticesv ∈ S∗ have degree
dS∗ (v) ≥ ρS∗ .

Proof. �is lemma holds according to the de�nition of opti-

mal density. In an optimal solution, each vertex has degree larger

than or equal to ρS∗ . Otherwise, removing the vertex from the

subgraph will increase the average degree, and thus the density, of

the subgraph. �

Given Lemma 4.1, at any time t , the densest subgraph S∗t of graph

Gt contains only vertices v that have degree d (v) ≥ dS∗t (v) ≥ ρS
∗
t
.

�en, given Gt and ρS∗t , we want to compute the densest subgraph

a�er the addition of a new vertex u < Vt at time t + 1.

Let d (u) be the degree of vertexu ∈ Vt+1 and S∗t+1
be the densest

subgraph at time t + 1. For simplicity, assume that the graph Gt+1

is connected. According to Lemma 4.1, for any vertex u to be the

part of the densest subgraph, its internal degree satis�es dS∗t+1

(u) ≥

ρS∗t+1

. As vertex u is added to the graph the new density is always

greater, i.e., ρS∗t+1

≥ ρS∗t . �erefore, for vertex u to be the part of

densest subgraph, the degree of vertex u should satisfy d (u) ≥ ρS∗t .

�erefore, if the degree of vertex u is lower than the ρS∗t , it cannot

be part of the densest subgraph ρS∗t+1

and can be ignored.

Now, considering the case when d (u) ≥ ρS∗t . Adding the vertex

u to densest subgraph will update the density:

ρS∗t+1

←
|E (S∗t) |+ dS∗t (u)

|S∗t |+1
. (7)

We also know that ρS∗t+1

≥ ρS∗t , which means that

|E (S∗t) |+ dS∗t (u)
|S∗t |+1

≥
|E (S∗t) |
|S∗t |

. (8)

From this inequality it follows dS∗t (u) ≥ ρS
∗
t
. Using these proper-

ties, we ignore the vertices of the new edge that have degree lower

than the current estimate of the density.

Further, we are interested in �nding the main core in the re-

maining subgraph of high-degree vertices, as it represents a 2-

approximation of the densest subgraph according to Lemma 2.5. To

this end, we propose a new data structure that relies on Lemma 4.1,

the snowball.

4.1 Snowball
A snowball D is an incremental data structure that stores a strongly

connected subgraph, which maintains the following invariants:

• �e core number κD (v) of each vertex v ∈ D inside a snowball

is equal to the main core (C` (D)) of the snowball.

• All the vertices in the snowball are connected.

�ese invariants ensure that all the vertices in the snowball have

the same core number, which is the main core of the snowball by

de�nition. A snowball maintains these invariants while handling

the following graph update operations: a) adding/removing a vertex,

and b) adding/removing an edge.

4.2 Bag of snowballs
�e high-degree vertices in the graph are assigned to a snowball.

As these vertices are not strongly connected, they might end up in

di�erent snowballs. We store each of these disconnected snowballs

in a data structure called the bag, denoted by B.

�e bag ensures that each snowball is vertex disjoint. Further,

the bag provides an additional operation: extracting the densest

snowball among the set of snowballs. �e density of the extracted

snowball is the maximal density, which is the threshold separating

the high-degree vertices from the low-degree ones. We denote this

estimate of the maximal density ρ̃S∗ .
�e bag is a supergraph which contains a set of snowballs and

all the edges between the snowballs. We maintain all the core

numbers of the nodes in the bag by leveraging a core decomposition

D1 D2

Bag

Figure 2: Example showing that the bag requires maintain-
ing the core number of the vertices. Initially, the bag con-
tains two snowballs with core number 2, i.e.,D1 andD2. Con-
sider the arrival of the edges shown in red. �e greedy as-
signment of the edges might skip creating a new snowball
with core number 3, using the four nodes in the middle.

algorithm (see Section 3). �e core number of each node in the bag

is used to ensure that each node has the maximum possible core

number. Figure 2 provides an example explaining one of the issues

that may arise. In the example, the bag contains two snowballs,

however, it is possible to produce a new snowball with a larger

core number. Next, we de�ne the algorithms to update this data

structure upon graph updates.

4.3 Addition operations
Vertex addition: As discussed in Section 2, the updates appear in

the form of an edge stream. Here, we de�ne the vertex addition

algorithm that acts as a helper for edge addition. �e algorithm

is triggered when at least one of the endpoints of a new edge is a

high-degree vertex. In particular, there are two cases to consider:

1) the bag already contains the high-degree vertex, and 2) the bag

does not contain the high-degree vertex. In both cases, the goal is

to add the new vertex to one of the snowballs (if needed).

Algorithm 1 de�nes the algorithm for vertex addition. For the

�rst case, the algorithm scans the bag to �nd the snowball that

contains the vertex and returns it. For the second case, the algorithm

�rst identi�es the candidate snowballs, then it assigns the vertex to

one of the candidate snowballs. �e candidate snowballs are the

ones having the main core number smaller than or equal to the

internal degree of the new vertex (κu (D) ≥ C` (D)). Among the

candidate snowballs, the new node is assigned to the snowball with

maximum internal degree du (D), breaking ties randomly.

Once a vertex is added to a snowball, the core number of the

snowball may increase. �is change requires removing the vertices

with core number lower than the main core of the snowball. �is

procedure can be implemented e�ciently in linear time by sorting

the vertices based on their degree similar to bin sort.
2

Veri�cation. Due to the greedy assignment of vertex to the snow-

ball, it is possible that the vertex ends up not having the highest

possible core number. For example, Figure 3 shows an example

where the greedy assignment does not result in optimal solution.

�erefore, a�er addition, the algorithm ensures that the core

number of the snowball, where the new vertex is added, equals

the core number of the new vertex in the graph. �e algorithm

veri�es that the core number of the added vertex by comparing

it with the core number of the vertex in the bag. Note that the

bag represents the supergraph containing all the snowballs and

edges between the snowballs. If the core number within the bag is

larger than the one in the snowball, the algorithm merges all the

2
�e MaintainInvariant method at line 12 of Algorithm 1.

D1 D2

Bag

Figure 3: Example showing that arrival of a new edge allows
the vertex that is part of snowballD2 to become part of snow-
ball D1, which has greater core number (3).
Algorithm 1 Vertex Addition in the Bag of Snowballs

1: procedure addtoBag(u)

2: S∗ ← ∅
3: for Di ∈ B do
4: if u ∈ Di then
5: return Di . First Case

6: if (dDi (u) ≥ C` (Di) and ρS∗ < ρDi) then
7: S∗ ← Di
8: if S∗ = ∅ then
9: S∗ ← {u }

10: else
11: S∗ ← S∗ ∪ {u }
12: MaintainInvariant(S∗)
13: return S∗ . Second Case

Algorithm 2 Maintain Invariant

1: procedureMaintainInvariant(Di)
2: do
3: r epeat ← f alse
4: for u ∈ Di do
5: if ((κDi (u) < C` (Di)) then
6: Di ← Di \{u }
7: if (d (u) ≥ ρ̃S∗) then
8: addtoBag(u)

9: r epeat ← true
10: while r epeat

snowballs in the induced subgraph of newly added vertex. As all

the vertices in the induced subgraph have the same core number,

merging them ensures creating a larger snowball.
3

We leverage

the core decomposition algorithm by Sarı́yüce et al. [27] for the

implementation.

Algorithm 3 Fix Main Core

1: procedure fixMainCore

2: for Di ∈ B do
3: if (Di ∩ I (u) > 0) then
4: Du ← Du ∪ Di
5: MaintainInvariant(Du)

Theorem 4.2. Given the bag B, the algorithm ensures that B con-
tains the main core of the graph within one of the snowballs a�er the
vertex addition.

Proof. Let us assume that at time t the bag contains the main

core of the graph. Now, we need to show that at time t + 1, a�er

the node addition, the bag still contains the main core of the graph.

In general, vertex addition method is called whenever there is an

edge addition. �e only way for the new vertex to a�ect the main

core of the graph is that the new vertex is the part of the main core.

3
�e FixMainCore method at line 15 of Algorithm 4.

Algorithm 4 Edge Addition

1: procedure addEdge((u,v))

2: if ((d (u) < ρ̃S∗)) and (d (v) < ρ̃S∗)) then
3: return
4: else if ((d (u) ≥ ρ̃S∗) and (d (v) < ρ̃S∗)) then
5: Du ← addtoBag(u)

6: else if ((d (u) < ρ̃S∗) and (d (v) ≥ ρ̃S∗) then
7: Dv ← addtoBag(v)

8: else
9: Du ← addtoBag(u)

10: Dv ← addtoBag(v)

11: if (Du = Dv) then
12: Du ← Du ∪ (u, v)
13: MaintainInvariant(Du)

14: else if (v ∈ I (u)) then
15: fixMainCore(u)

A�er the addition of the vertex in the bag, the algorithm veri�es

the core number by comparing the core number of the vertex in the

bag and the snowball. If the core number of the vertex in the bag is

greater, the algorithm merges the snowballs containing the vertices

in the induced graph of the new node in the bag. �is creates a new

snowball with a greater core number. �

Edge addition: In this case, the state of the bag is only a�ected if

at least one of the vertices in the new edge is a high-degree vertex.

In particular, there are two cases to consider: a) only one of the

vertices is a high-degree vertex and b) both the vertices are high-

degree vertices. For the �rst case, the algorithm leverages the vertex

addition method to add the vertex to the bag of snowballs. For the

second case, when both vertices are added to the bag of snowballs,

the algorithm veri�es that the main core exists in the bag. When

both vertices are added to the same snowball, the algorithm adds

the new edge to the same snowball and ensures that the invariant

holds. Conversely, when the two vertices are added to two di�erent

snowballs, the algorithm veri�es if the vertices exist in each others’

induced subgraphs and �xes the main core for both the vertices.

Algorithm 4 describes the algorithm for edge addition.

Theorem 4.3. Algorithm 4 maintains the main core of the graph
in one of the snowballs inside the bag.

Proof. �e proof for all the cases, other than the case when

both the vertices of the new edge are assigned to two di�erent

snowballs, is similar to the vertex addition algorithm. �erefore,

we consider the case when both end vertices of the added edge

are added to two di�erent snowballs. For this case, we rely on the

graph in the bag. We check if both vertices are in the same core

graph in the bag, and �x the core number of the vertices if they

belong to the same induced subgraph. �is ensures creating the

graph with the highest core number. �

4.4 Removal operations
Vertex removal: Similarly to the addition operations, we �rst de-

�ne the procedure for removing a vertex from the bag of snowballs.

�e vertex removal method is used as a subroutine for the edge

removal process. A vertex is only removed from the bag when its

degree becomes lower than the maximal density. �erefore, accord-

ing to Lemma 2.5, the removed vertex cannot be part of the main

core. �e algorithm removes the vertex from the snowball within a

bag without doing any other operation.

Algorithm 5 Edge Deletion

1: procedure removeEdge((u,v))

2: if ((d (u) < ρ̃S∗) and (d (v) < ρ̃S∗)) then
3: return
4: if ((d (u) < ρ̃S∗) and (d (u) + 1 ≥ ρ̃S∗)) then
5: removeVertex(u)

6: return
7: if ((d (v) < ρ̃S∗) and (d (v) + 1 ≥ ρ̃S∗)) then
8: removeVertex(v)

9: return
10: for Di ∈ B do
11: if (Di ∩ (u, v) , ∅) then
12: Di ← Di \(u, v)
13: for x ∈ Di do
14: if (κB (x) > κDi (x)) then
15: fixMainCore(x)

16: MaintainInvariant(Di)

Edge removal: Now we turn our a�ention to edge deletion, which

follows the same pa�ern as edge addition. Again, we leverage the

bag to ensure that there exist a snowball with a core number equal

to the main core of the graph. Algorithm 5 shows the algorithm for

edge deletion. �e bag does not require any update when either one

of the vertices is low-degree or if both the vertices belong to two

di�erent snowballs. �erefore, we consider the case when one of

the vertices lie at the boundary of high-degree vertices. �at is, the

edge deletion moves the vertex from the high-degree to low-degree.

In this case, the algorithm only requires removing the vertex from

the bag, without performing any other operations.

�e interesting case is where both vertices of the deleted edge

are high-degree and belong to the same snowball. In this case, the

algorithm removes the edge from the snowball. Further, it veri�es

and updates (if needed) the core number of the vertices a�ected by

the update in the snowball. Lastly, edge deletion might reduce the

maximal density, and thus require adding to the bag new vertices

whose degree is now greater than the new maximal density.

Theorem 4.4. Given the bag containing a snowball with the same
core number as the main core of the bag, a�er the edge deletion,
Algorithm 5 maintains the main core of the graph in one of the
snowballs inside the bag.

Proof. An edge removal a�ects the bag of snowballs only when

both the vertices corresponding to the removed edge belong to the

same snowball. In this case, edge removal might reduce the core

number of all the vertices in the snowball. �e algorithm ensures

that the vertices in the snowball have their maximum possible core

number by comparing their core number in the snowball with the

core number in the bag. �erefore, by verifying and �xing the core

numbers, the algorithm maintains the main core of the graph in

one of the snowballs inside the bag. �

4.5 Fully-dynamic top-k densest subgraphs
Now that we have a fully dynamic algorithm for �nding the densest

subgraph in sliding windows, we move our a�ention to the top-k
densest-subgraph problem.

Let ρ̃S∗ ≥ ρ1 ≥ . . . ≥ ρz−1 represent the densities of the z sub-

graphs in the bag, where ρS∗ is the density of the densest subgraph.

�e bag contains the vertices that have a degree greater than the

density ρ̃S∗ . To ensure that the bag contains at least k subgraphs,

(a) (b)

Figure 4: Example showing top-k version of the algorithm.
�e densities of top-3 subgraphs, before the arrival of the
new edge in the bag are 1.8, 1.5 and 1.25. �e algorithm stores
all the vertices in the bag with degree greater than equal to
1.25, as shown in Figure 4b. A�er the arrival of the new edge,
the update only a�ects one of the subgraphs in the bag.

we modify the algorithm to keep all the vertices with degree greater

than ρk−1
. �e only modi�cation required is to replace ρS∗ by ρk−1

in Algorithm 2, Algorithm 4 and Algorithm 5. Further, we leverage

the priority queue to extract ρk−1
from the bag of snowballs. �is

simple modi�cation ensures that the bag contains at least k sub-

graphs and enables accessing the top-k densest subgraphs in the

sliding window model. Note that the new de�nition of high-degree

vertices is related to the density of the k-th top densest subgraph.

�e modi�ed algorithm guarantees that the bag contains the

vertices with a degree greater than the ρk−1
a�er any graph update.

�ese graph updates include both edge additions and removals.

It is necessary for the algorithm to consider edge additions, as

they might a�ect the value of ρk−1
by merging multiple subgraphs.

Similarly, edge deletions have to be considered, as they might a�ect

the value of ρk−1
by reducing the density of any of the top-k densest

subgraphs, merging multiple subgraphs, or spli�ing a subgraph.

As the algorithm ensures keeping the main core in the bag, it

guarantees 2-approximation for the �rst densest subgraph (k = 1)

while providing a high-quality heuristic for k > 1 compared to

other solutions. We provide an example in Figure 4 for the top-k

densest subgraph algorithm by expanding on the Figure 1a. We

conclude this section with the theorem that provides a bound for

our proposed algorithm. �ese bounds can be generalized for any

algorithm that adapts to a solution for densest subgraph problem

for the top-k case (see section 3 for examples).

Theorem 4.5. Given an integer k , the bag contains a set of sub-
graphs that provides 2k-approximation of the top-k densest-subgraph
problem.

Proof. We know that the graph does not contain any subgraph

with density greater than the optimal density (ρS∗). �erefore, we

know that the sum of densities for the top-k densest-subgraph

problem is upper bounded by k × ρS∗ .
Further, the bag contains ρ̃S∗ , which provides a 2-approximation

of the densest subgraph. �is implies that the sum of densities

of top-k densest subgraph in the bag ≥ 1

2
ρS∗ . Pu�ing above two

observations together, we can clearly see that the bag provides a

solution that is a 2k-approximation for the problem. �

4.6 Data structure
�e proposed algorithm requires accessing the neighborhood infor-

mation of every node. Speci�cally, we are interested in performing

three queries on a given vertex: a) extract its degree, b) extract all

its neighbors, and c) given density ρ̃S∗ , extract all the vertices with

degrees greater than the density ρ̃S∗ .
Vertex map: To answer the �rst two queries, we need to store the

neighborhood information for all vertices. We store the information

in a hashmap with keys being the vertex identi�ers and values being

the neighbors of each vertex. Vertex map allows performing search

and update operations in amortized constant time.

Degree table: For the third query, we need to order the vertices by

their degrees. We use bin sort to order the vertices by their degrees,

which enables extracting the vertices with degrees greater than the

density ρ̃S∗ in constant time.

5 DISCUSSION
Most of the solutions that leverage a static algorithms [5, 7, 10]

require iterating over the entire graph k times upon any update.

Comparatively, our algorithm mostly touches a limited region in

the graph for any updates, which makes our algorithm perform

signi�cantly faster.

�e top-k densest subgraph algorithm that adapts to Epasto et al.

[15] requires replicating the graph across the k instances. In addi-

tion, updates across k instances might cascade and require running

the algorithm k times, similarly to the static top-k solutions. Our

algorithm outperforms the pipeline version of the top-k algorithm

both in terms of memory and computation.

Finally, incremental algorithms for k-core maintenance requires

removing top-k densest subgraph upon every update in the graph.

Each removal of a densest subgraph requires updating the core

number of the remaining vertices. Our algorithm e�ciently avoids

this removal step by maintaining the subgraphs during execution.

Performance. �e proposed algorithm leverages the skew in real-

world graphs and ignores a major portion of the input stream on the

�y. In addition, high-degree vertices are stored as small subgraphs

so that each update is o�en applied locally on these subgraphs. �is

design allows our algorithm to operate on just small portions of the

graph for each update, rather than iterating on the whole graph.

Finally, we use the k-core algorithm [23, 27], which allows each

high-degree node to update their core number with a complexity

independent of the graph size. �ese improvements enable our

algorithm to perform signi�cantly be�er than the other state-of-

the-art streaming algorithms.

Memory. Our algorithm requires only O (n2
polylogn) memory,

compared to O (kn2
polylogn) for the top-k version of [15] and

O (n2
polylogn) for the other algorithms discussed in Section 3.

Tight Bounds. We show via an example that any algorithm for

densest subgraph problem can only produce a k-approximation for

top-k densest subgraph problem. Consider a graph G that contains

n ·m vertices, for any n ≥ k . �e n nodes connect to form a circle. In

the circle, there is one edge connecting two non-adjacent vertices.

Additionally, each of the n nodes connects to exactly m neighbors.

�e inner circle of the graph G is the densest subgraph. Removing

the densest subgraph leaves the rest of the vertices completely

disconnected. Hence, the sum of density will be equal to one. Now,

Table 1: Datasets used in the experiments.

Dataset Symbol n m d (v)

Amazon [22] AM 334 863 925 872 5.52

DBLP 1 [22] DB1 317 080 1 049 866 6.62

Youtube [22] YT 1 134 890 2 987 624 5.26

DBLP 2
4

DB2 1 314 050 18 986 618 28.88

Live Journal
5

LJ 5 204 176 49 174 620 18.90

Orkut [22] OT 3 072 441 117 185 083 76.28

Friendster [22] FR 65 608 366 1 806 067 135 55.04

consider the case when the densest subgraph is not removed �rst.

In this case, each node in the circle along with its m neighbors

create a subgraph of density almost equal to one, for higher values

ofm. �erefore, one can return k such subgraphs with the sum of

densities equal to k , which is k times be�er than the previous case.

6 EVALUATION
We conduct an extensive empirical evaluation of the proposed

algorithm, and provide comparisons with the existing solutions. In

particular, we answer the following questions:

Q1: What is the impact on the quality of subgraphs?

Q2: What are the gains in performance?

Q3: How does the algorithm perform in terms of di�erent input

parameters?

6.1 Experimental setup
Datasets. Table 1 shows the datasets used in the experiments. �e

datasets are selected due to their public availability. We evaluate all

the algorithms in the sliding window model. �e number of edges

in the sliding window is an input parameter.

Metrics. We evaluate the quality and e�ciency of the algorithms.

We assess the quality by the objective function, i.e., the sum of

densities of the subgraphs produced by an algorithm. We evaluate

the e�ciency of an algorithm by reporting the average update time

and the memory usage. �e average update time is the average

time it takes to move the sliding window. �is includes adding

the new edge, removing the oldest edge, and updating the top-k
densest subgraphs. We report the memory usage as the average

percentage of occupied memory.

Algorithms. Table 2 shows the notations used for di�erent al-

gorithms. �e algorithms by Bahmani et al. [5] and Epasto et al.

[15] require an additional epsilon parameter for execution, which

provides a trade-o� between quality and execution time. Here we

use the defaults proposed by the authors.

Stream ordering. We consider two commonly used stream order-

ing schemes [29]:

• BFS: �e ordering is a result of a breadth-�rst search starting

from a random vertex.

• DFS: �e ordering is a result of a depth-�rst search starting

from a random vertex.

Experimental environment. We conduct our experiments on

a machine with 2 Intel Xeon Processors E5-2698 and 128GiB of

4
h�p://konect.uni-koblenz.de/networks/dblp coauthor

5
h�p://konect.uni-koblenz.de/networks/livejournal-links

Table 2: Notation for the top-k algorithms.
Symbol Reference Algorithm Top-1 Approx. In-place

Guarantees

CH Charikar [10] 2 No

V B Batagelj and Zaversnik [7] 2 No

BBϵ Bahmani et al. [5] 2(1 + ϵ) No

RL Li et al. [23] 2 Yes

TR Sarı́yüce et al. [27] 2 Yes

AEϵ Epasto et al. [15] 2(1 + ϵ)6 No

GR this paper 2 Yes

memory. All the algorithms are implemented in Java and executed

on JRE 7 running on Linux. �e source code is available online.
6

6.2 Experimental results
Q1: In this experiment, we compare the quality of the results pro-

duced by the di�erent algorithm as measured by the objective

function. In order to be able to run most of the algorithms, we use

the smaller datasets, i.e., AM, DB1, YT, and DB2. As RL and TR
produce same results in terms of quality, we only report the results

for one of them. Due to space constraints, we show the results only

with the DFS ordering. However, we achieve similar results also

with the BFS one. We set the size of the sliding window x = 100k.

For the static algorithms, we execute them in micro-batches

in which the top-k densest subgraph is recomputed a�er 1k edge

updates, which gives them a substantial advantage. For BBϵ and

AEϵ , we use ϵ = 0.01. We set the maximum execution time to 7

days, due to which the AEϵ is not able to �nish on DB2 and YT.

Finally, RL and TR contain an update phase due to the iterative

extraction of the top-k densest subgraph. �is phase is expensive,

as the main core consists of high-degree vertices. To alleviate this

issue, we execute the extraction phase every 10k update operations.

Figure 5 shows the quality results. Our algorithm GR achieves

competitive quality, o�en generating denser subgraphs compared

to all the other algorithms. For example, for the AM dataset, GR
produces subgraphs that are 1.5 times be�er than the best algorithm

among the state-of-the-art solutions. All the other algorithms pro-

duce consistent results across all the datasets. For instance, VB, RL,

and TR produce top-k dense subgraphs of lowest quality compared

to the other algorithms. �is result is caused by the removal of the

main core (backbone) of the graph in each of the k iterations. In

addition, it shows how the problem considered in this paper, while

related, is di�erent from a simple k-core decomposition. �e results

also validate that BBϵ and AEϵ provide weaker guarantees on the

quality compared to CH .

Q2: In this experiment, we turn our a�ention to evaluate the ef-

�ciency of the proposed algorithm, as measured by the average

update time and memory usage. We again select several datasets,

i.e., AM, DB1, YT, DB2, and LJ, and executeCH ,VB, BB, RL,TR,AE,
and GR. We exclude the largest datasets as only a few algorithms

are able to handle them. �e algorithms are executed with both

BFS and DFS ordering of the edge stream. �e sliding window size

is set to x = 100k edges, and k = 10 unless otherwise speci�ed.

6
h�ps://github.com/anisnasir/TopKDensestSubgraph

http://konect.uni-koblenz.de/networks/dblp_coauthor
http://konect.uni-koblenz.de/networks/livejournal-links
https://github.com/anisnasir/TopKDensestSubgraph

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20

DB1

S
u
m

 o
f
d
e
n
s
it
ie

s
â�
�

Edge stream (DFS)â��

CH
VB
GR

BB0.1
AE0.1

TR

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 2 4 6 8 10 12 14 16 18

AM

Edge stream (DFS)â��

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14

DB2

Edge stream (DFS)â��

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

YT

Edge stream (DFS)â��

Figure 5: Sum of densities for top-10 densest subgraphs on the DB1, AM, DB2 and YT datasets, sliding window size 100k.

Table 3: Memory consumption as a percentage of total mem-
ory for algorithms with DB2 and LJ dataset, sliding window
size 100k.

CH V B BBϵ RL TR AEϵ GR

DB2 2.10 2.10 2.10 2.1 2.8 5 2.7

LJ 1.80 1.80 1.80 1.8 2.1 5.5 2.4

Figure 6 shows the e�ciency results (note the logarithmic scale).

�e proposed algorithm,GR, outperforms all other ones in terms of

update time for all the datasets and both ordering schemes. RL and

TR are the slowest algorithms. In particular, for DFS, our algorithm

achieves a performance gain of �ve orders of magnitude. �is result

is noteworthy as even though our algorithm is dependent on core

decomposition, it is still able to beat a naı̈ve application of those

algorithms by a wide margin. �is di�erence is due to the fact that

both algorithms require maintaining the core number for all the

vertices. Additionally, the extraction of top-k densest subgraph

further hampers their e�ciency.

AlgorithmsCH ,VB, and BB0.01 perform unfavorably due to their

static nature. In this case, our algorithm is able to achieve more

than three orders of magnitude improvement in e�ciency.

Algorithm AE0.01 is best performing among the baselines, and

even outperforms GR in one dataset for one speci�c ordering (AM

with BFS). However, GR still outperforms AE0.01 by nearly three

orders of magnitude in most other cases.

Finally, we observe the overall memory consumption of all the

algorithms (reported in Table 3). �e memory requirement of our

algorithm lies between the static and the dynamic algorithms, i.e.,

AE0.01 requires the largest amount of memory, while the static

algorithms require the least. �ese results are in line with our

expectations from the discussion in Section 3.

Q3: In this experiment, we evaluate the scalability of our algorithm.

First, we executeGR with di�erent values ofk . Alongside, we report

the average update time for BBϵ algorithm. We choose BBϵ , rather

than AEϵ , as it can execute in mirco-batches, i.e., top-k densest

subgraph every 100 edges. We set the sliding window size x = 1M,

and use the YT and DB2 dataset with DFS ordering. Figure 7 reports

the average update time for both algorithms. �e average update

time of GR remains consistent even for higher values of k , whereas

the execution time of BB0.01 increases with the parameter.

Second, we execute GR with di�erent sizes of sliding window,

i.e., x = 10k, 100k, 1M, and 10M. We set k = 10 for this experi-

ment. Again, we use the YT and DB2 datasets with DFS ordering.

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

VB CH BB0.1 AL TR EP0.1 GR

DFS

A
v
e
ra

g
e
 u

p
d
a
te

 t
im

e
 (

s
)

Algorithm

DB1
AM

DB2
YT
LJ

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

VB CH BB0.1 AL TR EP0.1 GR

BFS

Algorithm

Figure 6: Update time for the algorithms on the DB1, AM,
DB2, YT, and LJ datasets, when using both DFS and BFS or-
dering and k = 10.

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

YT

A
v
e
ra

g
e
 U

p
d
a
te

 T
im

e
 (

s
)

k

GR
BB0.1

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
3

DB2

k

Figure 7: Update time for GR and BB0.01 on the YT and DB2

datasets as a function of k . Note that BB0.01 is executed in
micro-batches of size 100.

Table 4: Average update time for theGR algorithmwith slid-
ing windows of di�erent sizes x .

x = 10k x = 100k x = 1M x = 10M

YT 0.80ms 91.14ms 90.33ms 95.49ms

DB2 4.97ms 7.58ms 8.45ms 32.21ms

Table 4 reports the average update time for di�erent con�gura-

tions. Increasing the size of the sliding window does not a�ect the

average update time signi�cantly. �is result validates our claim

that most of the updates are local to the subgraphs, and do not re-

quire iterating through the whole graph to extract the top-k densest

subgraphs.

Finally, we study the performance of our algorithm in on the

largest datasets. We select the OT and FR datasets with DFS order-

ing, and execute the algorithm with a sliding window of x = 100k,

with k = 10. Figure 8 shows the result of the experiment. �e plot

is generated by taking the moving average of the update time and

the sum of densities. �e average update time of the algorithm

10
-4

10
-3

10
-2

10
-1

10
0

 0 30 60 90 120 150

 10

 20

 30

 40

 50

 60

 70
OT

A
v
e
ra

g
e
 u

p
d
a
te

 t
im

e
 (

s
)

Edge stream (DFS)â��

average update time
sum of densities

10
-4

10
-3

10
-2

10
-1

10
0

 0 40 80 120 160 200

 10

 20

 30

 40

 50

 60

 70
FR

S
u
m

 o
f
d
e
n
s
it
ie

s
â�
�

Edge stream (DFS)â��

average update time
sum of densities

Figure 8: �ality and e�ciency for GR on the OT and FR
datasets over the stream.
mostly remains constant throughout the execution, and our algo-

rithm provides steady e�ciency over the stream. �is behavior

remains consistent even when the densities are �uctuating, as in

the case for the OT dataset.

7 RELATEDWORK
Valari et al. [32] were the �rst one to study the top-k densest sub-

graph problem for a stream consisting of a dynamic collection

of graphs. �ey proposed both an exact and an approximation

algorithm for top-k densest subgraph discovery. Similar to our

algorithm, the proposed algorithm relies on the core decomposi-

tion to provide the approximation guarantees. �e top-k densest

subgraphs produced by the algorithm are edge-disjoint. Balalau

et al. [6] studied the problem of �nding the top-k densest subgraph

with limited overlap. �ey de�ned the top-k densest subgraphs as

a set of k subgraphs that maximizes the sum of densities, while

satisfying an upper bound on the pairwise Jaccard coe�cient be-

tween the set of vertices of the subgraphs. �e problem of �nding

the top-k densest subgraph as sum of densities was shown to be

NP-hard [6] and e�cient heuristic was proposed to solve the prob-

lem. Further, Galbrun et al. [17] studied the problem of �nding the

top-k overlapping densest subgraphs and provided constant-factor

approximation guarantees.

8 CONCLUSION
We studied the top-k densest subgraphs problem for graph streams,

and proposed an e�cient one-pass fully-dynamic algorithm. In

contrast to the existing state-of-the-art solutions that require iter-

ating over the entire graph upon update, our algorithm maintains

the solution in one-pass. Additionally, the memory requirement

of the algorithm is independent of k . �e algorithm is designed by

leveraging the observation that graph updates only a�ect a limited

region. �erefore, the top-k densest subgraphs are maintained by

simply applying local updates to small subgraphs, rather than the

complete graph. We provided a theoretical analysis of the proposed

algorithm and showed empirically that the algorithm o�en gener-

ates denser subgraphs than the state-of-the-art solutions. Further,

we observed an improvement in performance of up to �ve orders

of magnitude when compared to the baselines.

�is work gives rise to further interesting research questions: Is

it necessary to leverage k-core decomposition algorithm as a back-

bone? Is it possible to achieve stronger bounds on the threshold

for high-degree vertices? Can we design an algorithm with a space

bound on the size of the bag? Is it possible to achieve stronger

approximation guarantees for the problem? We believe that solv-

ing these questions will further enhance the proposed algorithm,

making it a useful tool for numerous practical applications.

REFERENCES
[1] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast exact shortest-path

distance queries on large networks by pruned landmark labeling. In SIGMOD.

ACM, 349–360.

[2] Albert Angel, Nikos Sarkas, Nick Koudas, and Divesh Srivastava. 2012. Dense

subgraph maintenance under streaming edge weight updates for real-time story

identi�cation. VLDB 5, 6 (2012), 574–585.

[3] Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. 1996.

Greedily �nding a dense subgraph. In SWAT. 136–148.

[4] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer

Widom. 2002. Models and issues in data stream systems. In PODS. ACM, 1–16.

[5] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. 2012. Densest subgraph

in streaming and mapreduce. VLDB 5, 5 (2012), 454–465.

[6] Oana Denisa Balalau, Francesco Bonchi, TH Chan, Francesco Gullo, and Mauro

Sozio. 2015. Finding subgraphs with maximum total density and limited overlap.

In WSDM. ACM, 379–388.

[7] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O (m) algorithm for cores

decomposition of networks. arXiv preprint cs/0310049 (2003).

[8] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and

Christos Faloutsos. 2013. Copycatch: stopping group a�acks by spo�ing lockstep

behavior in social networks. In WWW. 119–130.

[9] Sayan Bha�acharya, Monika Henzinger, Danupon Nanongkai, and Charalampos

Tsourakakis. 2015. Space-and time-e�cient algorithm for maintaining dense

subgraphs on one-pass dynamic streams. In STOC. ACM, 173–182.

[10] Moses Charikar. 2000. Greedy approximation algorithms for �nding dense

components in a graph. In Approx. Algo. for Comb. Opt. 84–95.

[11] Jie Chen and Yousef Saad. 2012. Dense subgraph extraction with application to

community detection. TKDE 24, 7 (2012), 1216–1230.

[12] Michael S Crouch, Andrew McGregor, and Daniel Stubbs. 2013. Dynamic graphs

in the sliding-window model. In ESA. Springer, 337–348.

[13] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 2002. Main-

taining stream statistics over sliding windows. SIAM J. Comput. 31, 6 (2002),

1794–1813.

[14] Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. 2007. Extraction and

classi�cation of dense communities in the web. In WWW. ACM, 461–470.

[15] Alessandro Epasto, Silvio La�anzi, and Mauro Sozio. 2015. E�cient Densest

Subgraph Computation in Evolving Graphs. In WWW. 300–310.

[16] David Eppstein, Zvi Galil, and Giuseppe F Italiano. 1998. Dynamic graph algo-
rithms. Springer.

[17] Esther Galbrun, Aristides Gionis, and Nikolaj Ta�i. 2016. Top-k overlapping

densest subgraphs. Data Mining and Knowledge Discovery (2016), 1–32.

[18] David Gibson, Ravi Kumar, and Andrew Tomkins. 2005. Discovering large dense

subgraphs in massive graphs. In VLDB. VLDB Endowment, 721–732.

[19] Aristides Gionis and Charalampos E Tsourakakis. 2015. Dense subgraph discov-

ery: Kdd 2015 tutorial. In SIGKDD. ACM, 2313–2314.

[20] Andrew V Goldberg. 1984. Finding a maximum density subgraph. University of

California Berkeley, CA.

[21] Guy Kortsarz and David Peleg. 1994. Generating sparse 2-spanners. Journal of
Algorithms 17, 2 (1994), 222–236.

[22] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. h�p://snap.stanford.edu/data. (June 2014).

[23] Rong-Hua Li, Je�rey Xu Yu, and Rui Mao. 2014. E�cient core maintenance in

large dynamic graphs. TKDE 26, 10 (2014), 2453–2465.

[24] Andrew McGregor, David Tench, Sofya Vorotnikova, and Hoa T Vu. 2015. Densest

Subgraph in Dynamic Graph Streams. In MFCS. Springer, 472–482.

[25] James Orlin. 2013. Max �ows in O (nm) time, or be�er. In STOC. 765–774.

[26] Polina Rozenshtein, Aris Anagnostopoulos, Aristides Gionis, and Nikolaj Ta�i.

2014. Event detection in activity networks. In SIGKDD. 1176–1185.

[27] Ahmet Erdem Sarı́yüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and

Ümit V Çatalyürek. 2013. Streaming algorithms for k-core decomposition. VLDB
6, 6 (2013), 433–444.

[28] Mauro Sozio and Aristides Gionis. 2010. �e community-search problem and

how to plan a successful cocktail party. In KDD. ACM, 939–948.

[29] Isabelle Stanton and Gabriel Kliot. 2012. Streaming graph partitioning for large

distributed graphs. In KDD. ACM, 1222–1230.

[30] Nikolaj Ta�i and Aristides Gionis. 2015. Density-friendly graph decomposition.

In WWW. ACM, 1089–1099.

[31] Charalampos Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo,

and Maria Tsiarli. 2013. Denser than the densest subgraph: extracting optimal

quasi-cliques with quality guarantees. In KDD. ACM, 104–112.

[32] Elena Valari, Maria Kontaki, and Apostolos N Papadopoulos. 2012. Discovery of

top-k dense subgraphs in dynamic graph collections. In SSDBM. 213–230.

[33] Jaewon Yang and Jure Leskovec. 2015. De�ning and evaluating network commu-

nities based on ground-truth. ICML 42, 1 (2015), 181–213.

http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 Preliminaries
	3 Background
	4 Algorithm
	4.1 Snowball
	4.2 Bag of snowballs
	4.3 Addition operations
	4.4 Removal operations
	4.5 Fully-dynamic top-k densest subgraphs
	4.6 Data structure

	5 Discussion
	6 Evaluation
	6.1 Experimental setup
	6.2 Experimental results

	7 Related work
	8 Conclusion
	References

