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Online social networks are often defined by considering interactions of entities at an aggregate level. For
example, a call graph is formed among individuals who have called each other at least once; or at least k
times. Similarly, in social-media platforms we consider implicit social networks among users who have in-
teracted in some way, e.g., have made a conversation, have commented to the content of each other, etc. Such
definitions have been used widely in the literature and they have offered significant insights regarding the
structure of social networks. However, it is obvious that they suffer from a severe limitation: they neglect
the precise time that interactions among the network entities occur.

In this paper we consider interaction networks, where the data description contains not only information
about the underlying topology of the social network, but also the exact time instances that network entities
interact. In an interaction network an edge is associated with a time stamp, and multiple edges may occur
for the same pair of entities. Consequently, interaction networks offer a more fine-grained representation,
which can be leveraged to reveal otherwise hidden dynamic phenomena.

In the setting of interaction networks we study the problem of discovering dynamic dense subgraphs
whose edges occur in short time intervals. We view such subgraphs as fingerprints of dynamic activity oc-
curring within network communities. Such communities represent groups of individuals who interact with
each other in specific time instances, for example, a group of employees who work on a project and whose
interaction intensifies before certain project milestones. We prove that the problem we define is NP-hard,
and we provide efficient algorithms by adapting techniques for finding dense subgraphs. We also show how
to speed-up the proposed methods by exploiting concavity properties of our objective function, and by the
means of fractional programming. We perform extensive evaluation of the proposed methods on synthetic
and real datasets, which demonstrates the validity of our approach and shows that our algorithms can be
used to obtain high-quality results.
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1. INTRODUCTION
Searching for communities is one of the most well-studied problems in social-network
analysis. A number of different methods has been proposed, employing a diverse set
of algorithmic tools, such as, agglomerative approaches, min-cut formulations, random
walks, spectral methods, and more.
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On the other hand, it has been observed that large networks do not exhibit clear com-
munity structure [Gleich and Seshadhri 2012; Leskovec et al. 2010]. The lack of well-
defined communities is typically contributed to the high degree of inter-connectivity,
and the existence of overlapping communities. The phenomenon is aggravated by the
fact that existing community-detection methods do not take into account the tempo-
ral dimension of the data, which may provide additional cues about the underlying
community structure.

Our work is motivated by the observation that, nowadays, there are sufficiently rich
datasets so as it is possible to analyze not only the underlying network topology but
also the exact time of interactions among the network entities. Our hypothesis is that
the temporal dimension of network interactions can be utilized to reveal information
about the network structure and dynamics, which otherwise may be hidden. To be
more concrete, consider the following examples.

Example 1: A group of researchers across many different institutions are collaborating
on a large project. The members of the group go along with their everyday activities,
often unrelated to the project. However, once every few weeks or months, before de-
liverable deadlines or project meetings, there is a lot of interaction among the group
members.

Example 2: A group of twitter users are interested in technology products, and they
are very active in blogging reviews and commenting the posts of each other. Their
interaction is sparse, but it sustains over a long time, and it intensifies significantly
after the release of a new product.

The main point in these two examples is that the communities of interest are not
isolated. Their members interact with each other, but they also interact with others
outside the community. If one ignores the temporal dynamics and considers only the
static network topology, the communities are hidden and it is impossible to discover
them. It is only when considering the exact interaction times that the communities
become detectable: in both of the above examples, many interactions occur among the
community members, but in a number of relatively short time intervals.

In this paper we formalize the idea exemplified above. We consider interaction net-
works for which we assume that the exact time of all interactions is known. Examples
of such networks include call graphs in telecommunications, email networks, mention
networks in social media, collaboration networks, and more. Thus, interaction networks
are abundant in many application domains.

In the setting of interaction networks we study the problem of discovering dynamic
dense subgraphs whose edges occur in short time intervals. or equivalently, are tempo-
rally compact. We view such subgraphs as fingerprints of dynamic activity occurring
within network communities. We show that this problem is NP-hard. This hardness
result should be contrasted with the fact that finding the densest subgraph in static
graphs is a polynomially-time solvable problem.

We then propose two different algorithms for discovering dynamic dense and
temporally-compact subgraphs. Our algorithms combine ideas from methods for find-
ing dense subgraphs and for solving covering problems. We also show how to exploit
the concavity property of our objective function, and how to apply fractional program-
ming, in order to speed up our algorithms considerably. In particular, for one of the
proposed algorithms we are able to achieve almost linear running time, making it the
algorithm of choice for large datasets.

To evaluate the proposed methods we conduct an extensive experimental evaluation
using synthetic and real-world datasets. Our experiments demonstrate the effective-
ness of the proposed algorithms, as well as the validity of our hypothesis. Namely, we
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show that it is possible to find subgraphs that satisfy the requirements we set: there
are dense interactions that occur within a number of short time intervals.

Finding dense subgraphs in static graphs is a well-studied graph-mining problem
and it has a wide range of applications, ranging from biology [Bader and Hogue 2003;
Sharan and Shamir 2000], to fraud and link-spam detection [Beutel et al. 2013; Gibson
et al. 2005], to social-media mining [Angel et al. 2012]. Our works extends the problem
of dense-subgraph finding in temporal networks, and consequently provides support
for applications of dense-subgraph finding in the temporal setting. For example, Angel
et al. [2012] show how finding dense subgraphs is used for real-time story identifi-
cation in twitter. Using our method in the same application domain would allow to
reveal news stories that may not be detected when ignoring the temporal dimension;
it also helps in providing additional information about the temporal extent of a news
story. As a second example, Beutel et al. [2013] show that dense bipartite subgraphs in
page–like data reveal attempts to inflate like counts in a fraudulent manner. As such
artificial page likes are typically set by bots, it is likely that those page likes have a
temporal footprint, making our method appropriate for detecting fraud in this setting.

The rest of the paper is organized as follows. In Section 2 we present our notation
and some preliminaries, which in Section 3 we formally define our problem and estab-
lish its complexity. In Section 4 we present our algorithms, which we evaluate using
synthetic and real-world datasets in Section 5. We discuss the related work in Section 6
and Section 7 is a short conclusion.

2. PRELIMINARIES AND NOTATION
An interaction network G = (V,E) consists of a set of n nodes V and a set of m time-
stamped interactions E between pairs of nodes

E = {(u, v, t)} , such that u, v ∈ V and t ∈ R.

We consider that interactions are undirected. More than one interaction may take
place between a pair of nodes, with different time stamps. Conversely, more than one
interaction may take place at the same time, between different pairs of nodes.

For an interaction network G = (V,E) we associate the set of edges π(E) to be the
pairs of nodes for which there is at least one interaction (one may think of π as “pro-
jecting” the edges of the interaction network along the time axis)

π(E) = {(u, v) ∈ V × V | (u, v, t) ∈ E for some t} .

Given an interaction network G = (V,E), the network π(G) = (V, π(E)) is a standard
graph with no time stamps on its edges. We refer to π(G) as the topology network of G
or as the underlying network of G. The cardinality of the set of edges π(E) is denoted
by r.

Given an interaction network G = (V,E) and a subset of nodes W ⊆ V , we define
the induced interaction network G(W ) = (W,E(W )), such that E(W ) consists of the
interactions whose both end-points belong in W , that is,

E(W ) = {(u, v, t) ∈ E | u, v ∈W} .

We assume that all interactions take place during a time interval [tm, tM ] of duration
∆ = tM − tm. We consider that the interval [tm, tM ] contains ` discrete time points with
granularity δ, that is ` ≤ ∆/δ. We also define the span of any time interval T = [s, e] ⊆
[tm, tM ] as span(T ) = e− s.
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We define a time-interval set T to be a collection of non-overlapping time intervals,
T = (T1, . . . , Tk). The span of T is the sum of the spans of its intervals,

span(T ) =

k∑
i=1

span(Ti) .

Given an interaction network G = (V,E) and a time interval T = [s, e] we define
the spliced interaction network G(T ) = (V,E(T )), where E(T ) are the interactions that
occur in T ,

E(T ) = E([s, e]) = {(u, v, t) ∈ E | s ≤ t ≤ e} .
The above notion can be extended in a straightforward manner so as to define the
spliced interaction network with respect to a set of time intervals T = (T1, . . . , Tk).
This is achieved by collecting edges from individual time intervals, that is, G(T ) =

(V,E(T )), where E(T ) =
⋃k
i=1E(Ti).

The concepts of induced interaction network and spliced interaction network provide
two different ways to select subsets of interaction networks; one is based on subsets
of nodes and the other is based on time intervals. The definition of dynamic dense
subgraphs, which is the central concept of this paper, relies on these two strategies for
selecting subsets of edges. In particular, for an interaction networkG = (V,E), a subset
of nodes W , and a set of time intervals T , we define a dynamic dense subgraph G(W, T )
as the subgraph that consists of the nodes in W and the set of interactions among the
nodes in W that occur within T . In more formal terms, G(W, T ) is defined to be the
spliced interaction network H(T ), where H is the induced interaction network G(W ).

To measure the quality of a dynamic dense subgraph we rely on the notion of density.
We first recall the definition of density as defined for static graphs and we also review
the densest-subgraph problem.

Given a static graph H = (V, F ), i.e., the edges F do not have time stamps, the
density d(H) of H is defined by

d(H) =
2 |F |
|V |

. (1)

The density d(H) can be interpreted as the average degree of the nodes in H.

PROBLEM 2.1 (DENSEST SUBGRAPH). Given a static graph H = (V, F ), find the set
of nodes W ⊆ V that maximizes the density d(H(W )).

Finding the densest subgraph is polynomially-time solvable [Goldberg 1984]. Fur-
thermore, there is a linear-time factor-2 approximation algorithm [Asahiro et al. 2000;
Charikar 2000]. The algorithm deletes iteratively a node with the lowest degree, ob-
taining a sequence of subgraphs. Among those subgraphs the algorithm returns the
one with the highest density. We should point that there exist alternative definitions
for density. A popular variant is the propotion of edges, |F |

|(V
2)| . Unlike with the d(H),

maximizing this density leads to the maximum clique problem, which is not only NP-
hard but is inapproximable to a factor of O

(
n1−ε

)
for any ε > 0 [Feige 2004]. Due to

these computational differences we prefer the average-degree density over the propor-
tion of edges.

3. PROBLEM FORMULATION
Our goal is to discover subgraphs that are dense and whose interactions occur in short
time intervals. Given an interaction network G = (V,E), we aim to find a set of nodes
W and a set of time intervals T , such that the subgraph G(W ) is relatively dense
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within T . To ensure that the subgraph G(W ) is temporally compact, we impose two
types of constraints on the time-interval set T :

(i) constraints on the number of intervals of T ; and

(ii) constraints on the total length of T .

We discuss these two constraints shortly. For the problem of finding dense dynamic
subgraphs, we also assume a quality score q(W, T ;G) that measures the density of the
subgraph G(W, T ) of the interaction network G.

PROBLEM 3.1. Consider an interaction network G = (V,E). Given a set of nodes
W ⊆ V and a set of time intervals T let q(W, T ;G) be a quality score that measures the
density of a dynamic subgraph G(W, T ). Assume also we are given a budget K on the
number of time intervals, and a budget B on the total time span. Our goal is to find the
set of nodes W and the set of time intervals T that maximize

q(W, T ;G) , such that |T | ≤ K and span(T ) ≤ B.

The first constraint states that we can have at most K intervals while the second con-
straint requires that the total duration is at most B. One may ask if both of these
constraints are necessary. As we will explain below both constraints are required, oth-
erwise Problem 3.1 has contrived solutions.

Let us first discuss why a budget constraint (B) on the total time span is needed. This
is a consequence of the natural assumption that the quality score q(W, T ;G) increases
with the span of T : indeed, increasing the total span allows to take more edges and
have a denser structure. Thus, without a budget constraint on the total span we can
just take T to be the whole time interval that covers all the edges. Such a solution,
however, does not capture the intuition of dynamic subgraphs that we aim to discover.
Instead we aim to find subgraphs whose interactions occur concentrated in short time
periods.

Next, we discuss why the constraint on the total number of time intervals (K) is
also necessary. To see this, note that if we allow to select an unlimited number of time
intervals, then we can select any subset of interactions E′ ⊆ E. Indeed, any interaction
(u, v, t) ∈ E′ can be selected by adding in T a time interval of the form (t− ε, t+ ε), with
ε → 0. Since any subset of interactions can be selected, any subgraph can be found
as a solution with no regard to the temporal aspect of the data. In other words, the
constraint on the number of intervals is necessary to impose time-continuity on the
solutions found.

Regarding the score function used to assess the quality of a subgraph, our proposed
measure is the density of the corresponding topology network, after restricting to node
set W and time-interval set T . Namely, we set

q(W, T ;G) = d(π(G(W, T ))) ,

where the density function d(·) is given by Equation (1). In other words, we count twice
the number of interactions that occur between nodes of W within time intervals in T ,
and normalize by |W |.

We proceed to establish the complexity of the problem of finding a dense dynamic
subgraph in interaction networks (Problem 3.1). The proof of Proposition 3.1 is pro-
vided in the Appendix.

PROPOSITION 3.1. Problem 3.1 is NP-hard.
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ALGORITHM 1: Iterative algorithm for finding a dense and temporally-compact subgraph
Input: Interaction network G
Output: Subgraph G(W, T )
T0 ← initial sets of time intervals;
i← 0;
while (convergence; i← i+ 1) do

Wi+1 ← solution to Problem 4.1 given Ti;
Ti+1 ← solution to Problem 4.2 given Wi+1;

end
return G(Wi, Ti);

4. ALGORITHMS FOR DISCOVERING DENSE AND TEMPORALLY-COMPACT SUBGRAPHS
To solve Problem 3.1 we propose an iterative method. Our algorithm considers the two
components of the solution, the node set W and the time interval set T , and optimizes
each one in an alternating fashion, while keeping the other fixed.

Both steps of our alternating optimization method give rise to interesting computa-
tional problems. One problem reduces to finding the densest subgraph, and the other
is related to coverage, and it is NP-hard. Next we formalize the two problems of our
alternating optimization method.

PROBLEM 4.1. Assume an interactive network G = (V,E) with a quality score q .
Given a set T of time intervals, find a set of nodes W that maximizes q(W, T ;G).

PROBLEM 4.2. Assume an interactive network G = (V,E), a budget K on the num-
ber of time intervals, a budget B on the total time span, and a quality score q . Assume
that a set of nodes W is provided as input. Find a set T of time intervals that maximizes

q(W, T ;G) , such that |T | ≤ K and span(T ) ≤ B.

The proposed algorithm starts from an initial time interval set T0, and obtains a so-
lution (W, T ) by iteratively solving the two problems defined above until convergence.
Pseudo-code of the method is given in Algorithm 1. As one may expect the iterative
algorithm does not provide a guarantee for the quality of the solution that it returns.
However, as it is stated by the following proposition, whose proof is given in the Ap-
pendix, it has the desirable property that both of the alternating optimization prob-
lems return the correct component of the solution if they obtain as input the other
component correctly.

PROPOSITION 4.1. Let (W ∗, T ∗) be an optimal solution to Problem 3.1 for an inter-
action network G. Then (i) W ∗ is an optimal solution to Problem 4.1 given G and T ∗,
and (ii) T ∗ is an optimal solution to Problem 4.2 given G and W ∗.

We should stress that we cannot solve Problem 4.2 exactly, and thus, there is no
automatic guarantee that the score increases during the while loop. However, we can
easily ensure termination by stopping the algorithm when the quality of the solution
does not increase. Notice that our objective function takes at mostO(nr) unique values,
where r = |E(π(G))|, and so the algorithm is guaranteed to stop after at most so many
steps. This, however, is a pessimistic upper bound; in our experiments the algorithm
terminates in a much smaller number of steps, usually less than 20.

In the next two sections, 4.1 and 4.2, we present in detail our solution for the two sub-
problems of Algorithm 1. In Section 4.5 we discuss the initialization of the algorithm.
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4.1. Finding an optimal set of nodes
We start with Problem 4.1 where the goal is to find an optimal set of nodes W given
a set T of time intervals. Assume that we are given a set T of time intervals, and let
H = π(G(T )) be the topology network for the interactions that occur within T , that is,
the topology network of the interaction network spliced by T . Note that

q(W, T ;G) = d(H(W )) .

Consequently, finding the optimal set of nodes is equivalent to the densest-subgraph
problem (Problem 2.1) on the (static) graph H. It follows that finding the optimal set
of nodes W , given time interval set T , can be done in polynomial time. In our imple-
mentation, we use the linear-time algorithm of Charikar [2000], which, as outlined in
Section 2, offers a factor-2 approximation guarantee.

4.2. Finding an optimal set of time intervals
We now present our solutions for the second subproblem of the iterative algorithm,
namely, finding an optimal set of time intervals for a given set of nodes. Unfortunately,
even this subproblem remains NP-hard. The proof of this claim is a simplified version
of the proof of Proposition 3.1.

We view the problem of finding optimal time intervals as an instance of a maximum-
coverage with multiple budgets (MCMB) problem.

PROBLEM 4.3 (MCMB). Given a ground set U = {u1, . . . , um}with weighted elements
w(ui), a collection of subsets S = {S1, . . . , Sk}, p cost functions ci mapping each subset
of S to a positive number, and p budget parameters Bi, find a subset P ⊆ S maximizing∑

u∈X
w(u), such that X =

⋃
S∈P

S,

and
∑
S∈P

ci(S) ≤ Bi, for all i = 1, . . . , p.

When p = 1, the problem is the standard budgeted maximum coverage. The problem
is NP-hard but there exists an approximation algorithm by Khuller et al. [1999] that
achieves (1− 1/e) approximation ratio. However, this algorithm requires to enumerate
all 3-subset collections, making it infeasible in practice.

The optimization problem can be also viewed as an instance of maximizing a sub-
modular function under multiple linear constraints. Kulik et al. [2009] presented a
polynomial algorithm that achieves (1−ε)(1−1/e) approximation ratio. Unfortunately,
this algorithm is not practical even for modest ε.

To see how finding a set of time intervals is related to maximum coverage, consider
as ground set the set of edges π(E(T )), that is, interactions that occur in T without
the time stamps, and for each time interval T ∈ T create a subset ST containing
all edges whose corresponding interactions occur in T . Since all covered edges count
equally, we use a uniform weight function w(e) = 1, for all e ∈ π(E(T )). There are two
cost functions c1(T ) = 1 and c2(T ) = span(T ). The first budget constraint enforces the
number of allowed time intervals to stay below K, while the second budget enforces
the time-span constraint.

Thus, we need to solve the MCMB problem, defined above, with two budget con-
straints. The approximation algorithms of Khuller et al. [1999] and Kulik et al. [2009]
can be used for solving the MCMB problem, however, as we discussed, both of these
algorithms are highly impractical.

To address this scalability issue, we propose two alternative algorithms that are
very efficient and can be used in practice for finding communities in large interaction
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networks. Both algorithms are inspired by the standard greedy approach for maxi-
mum coverage. The difference between the two proposed approaches is on how they
try to satisfy the budget constraints. The first approach sets a parameter that controls
the amount of violation of one constraint, and optimizes this parameter with binary
search, while the second approach incorporates both budget constraints into a single
gain/cost ratio during the greedy step.

4.3. Binary search approach
Our first approach is based on incorporation of time constraint into the cost function.
Consider the following optimization problem.

PROBLEM 4.4. Given a graph G, a subset of nodes W , a budget K on the number
of time intervals, and a budget B on the total time span, find a set of intervals T to
maximize

Qα(T ) = q(W, T ;G)− α · span(T ) , (2)

such that |T | ≤ K.

Note that we do not enforce any time-budget constraint. If α = 0, the solution con-
sists of a single time interval that spans the entire dataset. On the other hand, if α is
set to be large, the best set T will consist of K intervals having ε span, with ε→ 0, and
each of these intervals encloses a single interaction. In fact, as it is shown in the fol-
lowing proposition, and proven in the Appendix, the time span of the optimal solution
decreases as α increases.

PROPOSITION 4.2. Consider parameters α1 and α2 with α1 < α2. Let T1 and T2 be
the solutions of Problem 4.4 for α1 and α2, respectively. Then span(T1) ≥ span(T2).

Ideally, if we can solve Problem 4.4 optimally, we can use binary search to find the
smallest α such that the time span of the solution does not exceed the budget. As we
do not have an exact solver for Problem 4.4, we apply a greedy approach where in each
step we find a single time interval that maximizes the objective function (2). In each
step of the greedy algorithm, all time intervals are candidates to be selected, but long
intervals are penalized by the objective function. We then apply binary search to find
α that produces a feasible solution, i.e., see Algorithm 2, named BA. The initial upper
bound αu must provide a solution that fits the budget, while the lower bound αl must
give a solution violates the budget. As initial lower bound we chose αl = 0, while the
upper bound αu is chosen according to the following Proposition.

PROPOSITION 4.3. Let αu = 2|E(π(G(W )))|(B|W |)−1 ≤ 2r/B. Let T be a set of
intervals such that Qαu

(T ) ≥ 0. Then the span of the set of intervals T satisfies the
budget constraint B, i.e., span(T ) ≤ B.

The set of intervals for Problem 4.4 are found greedily. Since any interval with zero
duration will have a non-negative impact, the solution given by the greedy will always
be non-negative. Consequently, as initial value for αu, we can use the value given in
Proposition 4.3

In order to monitor convergence we can use the following proposition and terminate
the iteration of Algorithm 2 when αu − αl becomes small enough.

PROPOSITION 4.4. Let α∗ be the smallest parameter value for which the correspond-
ing solution T ∗ satisfies span(T ∗) ≤ B. Define ε = 1/(δ∆2w), where δ is the granularity
of time stamps, ∆ is the duration of the whole time interval that the interaction network
spans, and w = |W |.
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ALGORITHM 2: BA: discovers a time interval set for a fixed set of nodes W .
Input: Set of nodes W ⊆ V , budget B, budget K, αl, αu

Output: Optimal feasible set T for Problem 4.4
Solve Problem 4.4 for αu and obtain T (αu);
αc ← (αl + αu)/2;
while not converged do

Solve Problem 4.4 for αc and obtain Tc;
Check if span(T (αc)) > B and update αl, αu, αc, T (αu);

end
return T (αu);

Consider αl and αu with αl < αu ≤ αl+ε. Let Tl and Tu be the solutions of Problem 4.4
for αl and αu, respectively. If span(Tu) ≤ B ≤ span(Tl), then q(Tu) = q(T ∗).

Proposition 4.4 states that the optimal set of time intervals Tu that corresponds to
the parameter value αu satisfies the time-budget constraint, and its quality score is no
worse than any other time-interval set that satisfies the time-budget constraint. Fur-
thermore, this optimality condition is satisfied as soon as the difference αu−αl becomes
smaller than ε. Consequently, the binary search requires O(log(αu/ε)) = O(log(nr∆δ))
steps. We should stress that since in practice we are using a greedy heuristic to solve
Problem 4.4, we do not have guarantees that we have converged to the correct value
of α. Nevertheless, we can still use the same stopping condition to guarantee the ter-
mination of the algorithm in a logarithmic number of steps.

For solving Problem 4.4 for a fixed α, we apply the greedy method outlined before.
Namely, we build the interval set T by adding one interval at a time, while selecting
the interval that maximizes the gain in the objective function Qα. A naı̈ve implemen-
tation of the method requires testing all possible intervals. This algorithm, denoted as
BASIC-BA, has quadratic running time with respect to the number of time stamps.

However, it is possible to speed-up considerably this basic greedy algorithm. The
speed-up relies on applying an effective pruning scheme, which is based on the fact
that the gain function in the greedy step is concave.

More specifically, consider a function f : U → R, where U is the set of all intervals,
U =

{
(a, b) ∈ R2 | a ≤ b

}
. We say that f is concave if it satisfies the concave Monge

condition

f(a, d)− f(b, d) ≤ f(a, c)− f(b, c),

for a ≤ b ≤ c ≤ d. This condition is referred to as concavity by some authors, such
as Wilber [1988] and Galil and Park [1992], while other authors refer to it as con-
vexity. The condition is also analogous to submodularity, but we do not use this term
here, as submodularity is typically used to characterize functions over sets of elements
rather than intervals. Note also that as f is a function over intervals, rather than real
variables, the term concavity here does not refer to the usual definition of concave
functions.

Recall that our goal is to greedily approximate Problem 4.4. More specifically, as-
sume that we have already discovered T and write δα(T ) = Qα(T ∪ T ). Our next inter-
val is the one that optimizes δα(T ). The next proposition is proven in the Appendix.

PROPOSITION 4.5. The gain function δα(T ) is concave.

Given a concave function f , define e(b) = arg maxj f(b, j), the end point of the optimal
interval that starts at b. Clearly, if we know e(b) for every starting point b we can find
the global optimum by a single scan and a linear number of calls to the function f .

Concave functions have the following key property:
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ALGORITHM 3: FIND-INT, Fast discovery of an optimal time interval using concavity-based
pruning.
Input: A concave function f over intervals, ordered sequence of all possible border points

P = (pi), a set of starting points B ⊆ P
Output: optimal end point e(b) for each b ∈ B
if |B| = 1 then

compute e(b), where b ∈ B;
else

J ← {b2i ∈ B};
e← FIND-INT(f, P, J);
foreach b = b2i+1 ∈ B do

e(b)← argmaxj {f(b, j) | e(b2i) ≤ j ≤ e(b2i+2)};
end

end
return e;

PROPOSITION 4.6. Consider a concave function f defined over intervals. Then
e(i) ≤ e(j), whenever i < j.

The proof of this proposition is provided by Aggarwal et al. [1987], and it is a corner-
stone of the SMAWK algorithm, a linear-time matrix-searching algorithm. We cannot
use directly the SMAWK algorithm since it assumes that we can evaluate the function
f in constant time, and this assumption does not hold in our case. However, we can
still use some key ideas from the SMAWK algorithm, which will give us a significant
speed-up over the naı̈ve case.

The algorithm is recursive, and it computes e(b) for each b ∈ B, where B is a set of
points and it is given as input to the recursive call. If B contains only one point, the
algorithms makes a full scan to find the optimal interval. Otherwise, it first computes
e(b), recursively, for every even starting point b ∈ B. Once e(b) is computed for all even
points b ∈ B, the algorithm proceeds by computing e(b) for every odd starting point
b ∈ B. Here the algorithm uses the fact that e(b2i) ≤ e(b2i+1) ≤ e(b2i+2) to limit the
search space and avoid unnecessary checks.

The scheme is used to find the next best interval T , given a set of intervals T found
so far. We call the algorithm FIND-INT, and it is outlined in Algorithm 3. We apply
FIND-INT with δα as the quality function and the set of all edge time-stamps as the
candidate set of borders. We then ran this algorithm K times to find an interval set T .
The resulting algorithm to solve Problem 4.4, enhanced with the fast scheme FIND-INT
to discover a single optimal time interval, is named FAST-BA.

Let us now analyze the computational complexity of FIND-INT. We claim that the
complexity isO(m logm log n). Since the number of starting points is halved with every
recursive call, there are at most O(logm) calls of FIND-INT.

If the input set B contains only one point, then FIND-INT needs O(m log n) time
for a full scan; the log n factor is needed for computing the number of unique edges
in a single interval. Otherwise, we need to make sure that the for-loop in the else-
branch takes only O(m log n) time. We can do this by maintaining a multiset of all
the interactions that are in a interval that is currently tested: whenever we increase
the ending point, we add an interaction, and whenever we increase the stating point,
we remove interactions. Since a single interaction can be added and/or removed only
once, at most, this gives O(m) updates with a single update needing O(log n) time.
Consequently, this gives us O(m logm log n) time. The total running time of FAST-BA
is O(Km logm log n log(δ∆nr)), or Õ(Km), using the notation Õ to supress logarithmic
factors.
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In practice, as we will see in our experimental evaluation, FAST-BA is several orders
of magnitude faster than BASIC-BA.

4.4. Greedy approach
Consider for a moment the classic set-cover problem. The standard greedy approach
for this problem is to select the set that covers the most elements per unit of cost.
Motivated by this idea, we suggest the following greedy approach: given a currently
selected set of time intervals T , we find the interval T , that satisfies the constraint
span(T ∪ {T}) ≤ B, while maximizing the ratio

q(W, T ∪ {T};G)− q(W, T ;G)

max(x, y)
,

where x =
1

K − |T |
and y =

span(T )

B − span(T )
.

The numerator in the ratio is the number of new edges covered with the interval T .
The denominator is the maximum of two quantities, x and y, representing the two
constraints of our problem, on the number of intervals and on the total time span. Both
x and y are normalized so that they are equal to 1 if adding T will cap the corresponding
constraint. By taking the maximum of the ratios we consider the constraint that is
closer to be capped and penalize the ratio accordingly. We refer to this greedy approach
as GA.

A brute-force interval search is limited to the intervals that do not violate the time
budget. We refer to this brute-force search as BASIC-GA.

To simplify our notation, given a set of time intervals T , we define B′ = B − span(T )
to be the remaining span budget, and K ′ = K − |T | the number of additional intervals
that can be added to T . We also rewrite the cost function as

Qg(T ) =
g(T, T ,W,G)

c(T,B′,K ′)
,

where g is defined as

g(T, T ,W,G) = q(W, T ∪ {T} ;G)− q(W, T ;G) ,

and c is defined as,

c(T,B′,K ′) =

{
1
K′ , if span(T ) ≤ B′

K′
span(T )
B′ , otherwise.

For further convenience of notation, we assume that G, W , and T are fixed, and we
write g(T ) for g(T, T ,W,G) and c(T ) for c(T,B′,K ′).

During each iteration of the greedy process we solve the following problem.

PROBLEM 4.5. Consider a graph G, a set of subset of nodes W , budgets K and B,
and a set T of already selected time intervals, such that |T | < K and span(T ) ≤ B. The
goal is to find an interval T , such that span(T ) ≤ B′ and Qg(T ) is maximized.

Unfortunately, the function Qg is not concave and we can not use techniques as in
Algorithm 3 to speed-up the search for an optimal interval. However, we can rewrite
the problem as a series of concave optimization problems using the fractional pro-
gramming technique [Dinkelbach 1967]. Next, we briefly outline this technique, and
we discuss how it can be applied in our setting. We start by restating Problem 4.5 in a
more abstract formulation.
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ALGORITHM 4: Fractional programming approach for solving Problem 4.5.
Input: Initial βu, set of nodes W , discovered intervals T , and remaining budgets B′ and K′
Output: Optimal next interval Tl

ε← guantity defined in Proposition 4.9;
Solve Problem 4.7 for βu and obtain Tu;
βl ← g(Tu)/c(Tu);
Solve Problem 4.7 for βl and obtain Tl;
while h(βl, Tl) > 0 and g(Tl) 6= g(Tu) and βu ≥ βl + ε do

βc ← (βl + βu)/2;
Solve Problem 4.7 for βc and obtain Tc;
if h(Tc, βc) < 0 then βu ← βc, Tu ← Tc ;
else βl ← βc, Tl ← Tc ;
βl ← max(g(Tc)/c(Tc), g(Tl)/c(Tl));
Solve Problem 4.7 for βl and obtain Tl;

end
return argmax(g(Tl)/c(Tl), g(Tu)/c(Tu));

PROBLEM 4.6. Let g, c : R2 → R be two continuous real-valued functions from
intervals, and let r be a number. We want to find an interval T , such that span(T ) ≤ r
and the ratio g(T )/c(T ) is maximized.

Fractional programming provides a solution to Problem 4.6 by considering the fol-
lowing associated maximization problem.

PROBLEM 4.7. Given a non-negative number β ∈ R, let h(T, β) = g(T ) − β · c(T ).
Find an interval T that maximizes h(T, β) such that span(T ) ≤ B′, where B′ is a span
budget.

Given a number β ∈ R let us denote by Tβ the solution to Problem 4.7. Problems 4.6
and 4.7 are intimately related through the following proposition.

PROPOSITION 4.7 ([DINKELBACH 1967]). 1 An interval T ∗ is a solution to Prob-
lem 4.6 if and only if T ∗ is a solution to Problem 4.7 that satisfies h(T ∗, β∗) = 0 with
β∗ = g(T∗)

c(T∗) .

Proposition 4.7 allows us to solve Problem 4.6 (and thus, its special case, Prob-
lem 4.5) by searching for an interval T that solves Problem 4.7 with h(T, β∗) = 0,
assuming that the value β∗ is known. Searching for such an interval T can be done
efficiently due to the following proposition — which we prove in the Appendix.

PROPOSITION 4.8. The gain function h(T, β) is concave with respect to T .

Thus we can use pruning techniques similar to the one discussed in the previous sec-
tion. However, the value β∗ is not known. To find β∗, we use the fact that h(Tβ , β) is
a monotonically decreasing function of β. This fact is proven by Dinkelbach [1967].
The monotonicity can be used to find β∗ by binary search. Starting with βl and βu
we perform binary search until we can guarantee the optimality condition. To get
slightly better theoretical guarantees, we can simultaneously use the iteration sug-
gested by Dinkelbach [1967]: we solve Tl for βl and set the new βl to be g(Tl)/c(Tl).

The approach outlined above and shown in Algorithm 4 is named FAST-GA. The prop-
erties of FAST-GA algorithm are stated in the following proposition, whose proof is given
in the Appendix.

1Dinkelbach [1967] assumes that q is continuous which is not the case here. However, the same proof holds
for any q and any arbitrary domain.
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PROPOSITION 4.9. Let W be the currently selected nodes, let w = |W | and set

p =

(
w

2

)
− |π(E(T ))|

to be the maximum number of uncovered edges. Let B′ andK ′ be the remaining budgets.
Let δ be the granularity of time points, and set ε = 1/(wK ′B′δ). Then Algorithm 4 with
the input of βu = p/wK ′ solves Problem 4.5 in O(min(p, logwK ′B′δ)) iterations.

We should point out that the last two statements in the while-loop of Algorithm 4
are not mandatory. Removing these two lines will speed-up the algorithm in practice
but the theoretical guarantee for computational complexity given in Proposition 4.9
will increase to O(logwK ′B′δ). A single iteration needs O(m logm log n) time, and this
yields a total running time for FAST-GA of O(m logm log nmin(r, log δnKB)). Ignoring
the logarithmic factors, the running time is Õ(m), i.e., linear with respect to the num-
ber of interactions.

4.5. Initialization
The quality of the solution depends on the set of time intervals T0 used as initial seed.
Consider an optimal solution (W, T ), with T = (T1, . . . , TK), which achieves density d∗.
It follows that there is one single time interval T ∈ T , for which the optimal set of
nodes W has density at least d∗/K on π(G(T )). This observation motivates us to limit
ourselves to consider only time interval sets of size 1. Assuming large computational
power, one could test every possible time interval as a seed, consequently run the iter-
ative algorithm, and return the best solution found. There are O(m2) such intervals,
which is polynomial.

If running the algorithmO(m2) times is expensive, we can select J random intervals,
run the iterative algorithm for each of those random intervals, and return the best
solution found. In our experiments we evaluate the effect of the number of random
seeds J to the quality of the solution found.

5. EXPERIMENTAL EVALUATION
To evaluate the proposed methods we use synthetic and real-world social communica-
tion networks. We examine the running time of the algorithms, analyze the structural
characteristics of the discovered subgraphs, and we present a case study. An imple-
mentation of the proposed methods and all the datasets used in our experimentation
are publicly available.2

5.1. Synthetic data
We construct a network with several planted subgraphs. The objective is to measure
how the algorithms behave with respect to the density of the planted subgraphs and
the topology network. We model the topology network G and the planted subgraphs G′i
as Erdős-Rényi random graphs and vary their expected degrees. The time interval of
the simulation is denoted by T . For every edge in G we choose uniformly at random a
time stamp, indicating the time that the edge is active. The interactions of the edges
of each G′i occur in some short time periods T ′ with |T ′i | � |T |. The planted subgraphs
G′i are generated to be non-overlapping in nodes and are planted into non-overlapping
time intervals.

We test the ability of our algorithms to discover planted subgraphs with two families
of artificial datasets, Synthetic1 and Synthetic2 . The family Synthetic1 is designed to
test the quality of the discovered subgraphs as a function of the density of the topology

2https://github.com/polinapolina/dynamic dense subgraph
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Table I. Characteristics of the synthetic datasets. |V |: number of nodes in the dataset; d(H): expected density of
the planted subgraph; d(G): expected density of the background network; |T |: length of the whole time interval (in
time units); B: time budget required to cover the subgraph activity (in time units); K: number of continuous time
intervals that contain subgraph activity; |C|: number of planted subgraphs.

Name |V | d(H) d(G) |T | B K |C|

Synthetic1 100 4 1–6 1000 100 3 3
Synthetic2 100 2–7 4 1000 100 3 3

Table II. Characteristics of real-world datasets. |V |: number of nodes; |π(E)|: number of edges of the topology
network; |E|: number of interactions; |T |: time span of the dataset (in days); d(π(G)): density of the topology
network; d(H): density of the densest subgraph of the topology network.

Name |V | |π(E)| |E| |T | d(π(G)) d(H)

Facebook 4117 5143 10000 104 2.49 5.29
Twitter 4605 6006 11868 93 2.60 10.11
Tumblr 1980 2454 7645 89 2.47 7.0
Students 889 2267 9837 120 5.10 11.29
Enron 1143 2019 6245 8080 3.53 14.38

FacebookL 45813 183412 10000000 104000 8.01 27.36
TwitterL 162207 324531 10000000 78362 4.00 21.24

network. On the other hand, the family Synthetic2 consists of a topology network with
fixed density, while the density of the planted subgraphs varies.

Both datasets span an interval T with |T | = 1000 time units and contain 3 non-
overlapping planted subgraphs G′1, G′2 and G′3. Each planted subgraph G′i is covered
by K = 3 time intervals with total length of |T ′i | = 100 time units. The expected density
of the underlying network in Synthetic1 varies from 1 to 6, while subgraphs are fixed
to be 5-cliques. The expected density of the underlying network in Synthetic2 is fixed
to 4, while the density of the planted 8-node subgraphs varies from 2 to 7. A summary
of the characteristics of the datasets is given in Table I.

5.2. Real-world data
We use seven real-world datasets. Five datasets are communication networks, where
dynamic subgraphs are expected to be present. The other two datasets are larger in
size, and we use them to test the scalability of our algorithms. The characteristics of
these datasets are summarized in Table II.
Facebook [Viswanath et al. 2009]: This dataset is a 3-month subset of Facebook activity
in a New Orleans regional community. The dataset contains anonymized list of wall
posts (interactions). The subset covers time period from 9.05.06 to 20.08.06.
Twitter: The dataset tracks activity of Twitter users in Helsinki during 08.2010–
10.2010. As interactions we consider tweets that contain mentions of other users.
Tumblr: A subset of the Memetracker dataset,3 which contains quoting between Tum-
blr users. The subset covers three months: 02.2009–04.2009.
Students:4 The activity log of a student online community at the University of Califor-
nia, Irvine. Nodes represent students and edges represent messages, where the mes-
sage direction is suppressed. We use a subset of the dataset that covers four months of
communication from 27.06.2004 to 26.10.2004.

3http://snap.stanford.edu/data/memetracker9.html
4http://toreopsahl.com/datasets/#online social network
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Fig. 1. Running time of the proposed algorithms (naı̈ve implementation and pruned versions). x-axis: num-
ber of time units in input network; y-axis: running time in seconds.
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Fig. 2. Running time of one interval search iteration of basic and faster versions of the proposed algorithms.

Enron:5 This is a well-known dataset that contains email communication of the senior
management in a large company. It spans over 20 years from 1980.

FacebookL : This dataset is constructed by sequential concatenation of the Facebook
dataset; it contains 10 million records.

TwitterL : Similar to FacebookL , this dataset is a concatenation of the Twitter dataset
and contains 10 million records. The last two datasets are mainly used for scalability
experiments.

5.3. Running time
We conduct our experiments on a machine with an 8-core Intel Xeon CPU 3.30 GHz
and 15.6 GB of memory. We run one iteration of Algorithm 1 with K = 1 and B = 1
day on FacebookL and TwitterL . We vary the number of input time units from 100 K
to 10 million. The total running time of the algorithm until convergence is shown in
Figure 1. We observe that the algorithm scales very well with the input size.

The running time grows slowly with the size of the input data. However, the total
running time depends heavily on the number of time units induced by the densest
subgraph, as discovered in the first iteration of the algorithm. In Figure 2 we show
the running time of the algorithm as a function of this number. We clearly see that
our concave-based pruning techniques yield large speed-up. For BA the speed-up is
quite dramatic. For GA, which is significantly faster than BA, even in its basic form,
concave-based pruning improves the running time around an order of magnitude.

5http://www.cs.cmu.edu/∼./enron/
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5.4. Discovering hidden structure
The next step is to evaluate the ability of our methods to discover dynamic dense sub-
graphs. We start from the synthetic datasets, where the ground-truth subgraphs are
known, and we proceed to real-world data. We examine the sensitivity to initializa-
tion, the effects of the budget parameters, and the characteristics of the discovered
subgraphs.

Planted subgraphs. We test how well our algorithms detect the planted subgraphs
for different levels of background noise and subgraph density. We quantify the quality
of our algorithms by measuring precision and recall, with respect to the ground-truth
subgraphs. We also report the F -measure, the harmonic mean of precision and recall.
Reported results are averages over 1 000 independent runs.

Aiming to retrieve all three planted subgraphs we run the algorithms three times,
removing the edges of the discovered subgraph after each iteration. The results of this
experiment, for the two families of synthetic datasets, and for algorithms GA and BA,
are shown in Figure 3. Precision, recall, and F -measure are computed after matching
the three discovered subgraphs with the three ground-truth subgraphs.

Recall that Synthetic1 contains three subgraphs based on a 5-clique. Both algo-
rithms are able to discover these subgraphs correctly when the average degree of the
underlying graph is smaller than the average degree of the planted subgraphs. Even
when the subgraph density is equal to the background network density (around 4),
the algorithms achieve high accuracy. Precision and recall degrade at the same rate,
indicating that with the increase of the background network density the algorithms re-
trieve less nodes from the planted subgraphs as well as nodes outside the subgraphs.
Nevertheless, the measures do not drop too much, implying that the 5-clique spanning
3 short time intervals is distinguishable even within a dense background network.

The results on the Synthetic2 dataset are similar: both algorithms perform well
when the density of the background network is smaller than the density of the planted
subgraph.

Effect of random seeds. Both of our algorithms are instances of Algorithm 1, and
they require a time interval set as an initial seed. In the previous experiments we
initialize the interval seed T0 with the whole time interval T spanned by the dataset.
Starting from T0 = {T} ensures that the subgraph we discover belongs to some dense
structure in the topology network. However, if such a dense structure occurs in a scat-
tered manner, the initialization T0 = {T} may mislead. To overcome this problem and
avoid dense structures that cannot be covered in the given time budget, we initialize
Algorithm 1 with many random time intervals, and return the best solution found.

The effect of random initializations is shown in Figure 4. The experiments are shown
for Tumblr and Students. The figures show the best density discovered by our algo-
rithms, with 1 000 independent random restarts. As expected, random initializations
improve the performance of the algorithms. The most significant improvement is ob-
tained for the Students dataset. We also experiment with a baseline that finds the
densest subgraph over all possible intervals that satisfy the time budget B (no itera-
tive process is followed). We see that our algorithms perform significantly better than
this baseline.

Discovered subgraphs. Table III reports the densities of the subgraphs discovered
by our algorithms in real-world datasets. We use 200 random initializations. Here and
in later experiments we compare our algorithms with the baseline that finds the dens-
est subgraph over all intervals that satisfy the time budget B.

Overall, we observe that GA and BA perform equally well, while in some settings BA
yields denser subgraphs than GA.
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Fig. 3. Precision, recall, and F -measure on Synthetic1 and Synthetic2 . Each row corresponds to dataset
family. For Synthetic1 the planted subgraph is a 5-clique, and the x-axis represents the background network
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is spread over 3 intervals.
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Fig. 4. Effect of random initializations on the real-world datasets. Time budget B is set to 7 days.

For a fixed value of the time budget B, the density of the discovered subgraph in-
creases with K. For small values of K (1 to 3), the density of the subgraphs discovered
by our algorithm is equal or close to the density of the subgraphs discovered by the
baseline. This behavior is expected, as the baseline examines all possible intervals,
while our algorithms use only some random intervals for initialization. However, as
the value of K increases, the algorithms take advantage of the provided flexibility to
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Table III. Densities of discovered subgraphs. B denotes time budget in days.

Community density Community size

Dataset B K GA BA BASE GA BA BASE

Facebook 1 1 2.4 2.4 2.4 5 5 5
5 3.66 3.66 2.4 6 6 5
10 3.75 3.75 2.4 8 8 5

7 1 3 3 3 6 6 6
5 3.87 4 3 16 9 6
10 4.28 4.47 3 14 17 6

Twitter 1 1 4 4 4 6 6 6
5 5.11 5.33 4 9 9 6
10 6.4 6.4 4 10 10 6

7 1 4.66 4.66 4.66 9 9 9
5 6 6.22 4.66 14 9 9
10 6.92 7.2 4.66 13 15 9

Tumblr 1 1 3.86 3.86 3.86 30 30 30
5 5.11 5.25 3.86 9 8 30
10 5.81 6.18 3.86 11 11 30

7 1 4.5 4.5 4.5 8 8 8
5 5.88 6 4.5 18 11 8
10 6.71 6.8 4.5 14 15 8

Students 1 1 3.41 3.33 3.42 17 15 21
5 4.66 4.62 3.42 9 16 21
10 5.5 5.62 3.42 16 16 21

7 1 4.75 4.69 4.75 45 43 45
5 5.82 6 4.75 46 25 45
10 6.76 7.12 4.75 34 41 45

Enron 1 1 6.18 6.18 6.18 11 11 11
5 10 10.37 6.18 17 16 11
10 12.2 12.38 6.18 20 21 11

7 1 6.36 6.36 6.36 11 11 11
5 11.26 11.23 6.36 19 26 11
10 13.07 13.07 6.36 28 28 11

use many intervals effectively; for K > 3 both algorithms always outperform the base-
line.

Furthermore, as we can see by contrasting Tables II and III, the discovered sub-
graphs are almost as dense as the densest subgraphs on the whole topology network,
even though the time budget is significantly smaller than the time span of the dataset.
For example, the densest subgraph of the over 20-year-long Enron dataset has average
degree 14.38, while we were able to discover a subgraph with average degree 13.07 in a
budget of 7 days, spanning 10 time intervals.

A typical retrieved dense subgraph has a size of about 10 to 20 nodes, which is
reasonably small for a dense social community, such as friends or colleagues. Moreover,
this value is independent from the choice of parameters, and is similar for all the
datasets. In other words, for the datasets we experiment with, the retrieved subgraphs
represent tightly-connected and small subgraphs, while, the subgraphs found as the
densest subgraphs of the underlying network (Table II) have large size (up to 200
nodes) and large variance.

Retrieved intervals. In this section we present our results with respect to the time
intervals that cover the discovered subgraphs. All the results in that section were
obtained without use of random initialization.
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Table IV. Total time span of the discovered subgraphs. B: time budget (days); actual B: time budget actually used
(days); span: length (in days) of the minimal time interval needed to cover the retrieved subgraph in one time
interval.

GA BA

Dataset B K actual B span actual B span

Facebook 1 3 0.39 9.09 0.79 18.1
7 0.72 20.2 0.72 29.5

7 3 4.44 20.2 3.57 20.2
7 5.61 73 4.9 90.1

Twitter 1 3 0.41 32.3 0.46 51.7
7 0.69 32.7 0.92 72.4

7 3 6.99 32.7 5.84 79.3
7 6.49 79.5 5.09 79.3

Tumblr 1 3 0.87 33.4 0.77 56.8
7 0.82 49.4 0.9 49.4

7 3 6.76 44.9 5.92 37.3
7 6.99 82.1 5.92 60.4

Students 1 3 0.75 8.51 0.54 8.61
7 0.99 29.5 0.92 55.3

7 3 6.91 25.3 6.66 32.2
7 6.56 76.1 6.96 73.4

Enron 1 3 0.83 69.4 0.83 69.4
7 0.98 320 0.88 158

7 3 4.32 69.4 6.45 158
7 6.64 320 5.35 320

As shown in Table III, GA and BA find a significantly dense subgraph, comparable to
the densest subgraph of the underlying network. Table IV illustrates that the discov-
ered subgraphs must exploit the budget of several intervals K to fit the time budget B.
Column B reports the total length of the retrieved time intervals. Column span in-
dicates the minimal length of a single time interval that covers all the edges of the
retrieved subgraph. According to Table IV, the coverage of a retrieved dense subgraph
by one time interval requires a large time budget (up to several months), which is com-
parable to the whole time span of the dataset. Moreover, span is typically much larger
than the time budget we spent constructing the K intervals.

Both GA and BA use the time budget extensively, while GA tends to use B more
tightly.

Table V demonstrates how the density of the resulting subgraph is distributed
among the intervals. On average, each time interval covers a subgraph of a small den-
sity, while the union of the intervals results in a denser structure. The density of the
densest subgraph is significantly lower than the density of the subgraph in the union
of all K intervals.

An example of a discovered subgraph in the Facebook dataset, along with its cor-
responding time intervals, is illustrated in Figure 5. Each subplot corresponds to one
time interval with duration shown in the figure caption, while the last subplot shows
all the interactions in the union of all time intervals. The active edges of the time in-
terval are marked in red. The example illustrates the case discussed above: a dense
subgraph is composed by small components scattered among the time intervals of var-
ious time lengths, with none of these small components being dense enough.

5.5. Discovering multiple subgraphs
We discussed previously how to adapt the proposed algorithms in order to discover
multiple subgraphs on the synthetic datasets (Figure 3). We use the same strategy for
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Table V. Density of the induced subgraphs of the retrieved intervals. Time budgetB is fixed to 3 days;K: number of
intervals; d(T ): density of the discovered subgraph in the union of K intervals; avg d(Ti) and max d(Ti): average
and maximal density of the subgraph, covered by one of K time intervals.

d(T ) avg d(Ti) max d(Ti)

Dataset K GA BA GA BA GA BA

Facebook 3 3.33 3.66 1.53 1.74 2 2.4
5 3.75 3.75 1.45 1.52 2 2.33
10 4 4.15 1.27 1.29 1.5 1.71

Twitter 3 4.66 4.57 2.66 2.16 4 4
5 5.8 5.77 2.11 1.92 3.71 4
10 6.4 6.4 1.61 1.6 3.71 3.71

Tumblr 3 5.27 5.23 2.41 2.52 3.2 3.33
5 5.63 5.71 2.05 2.06 3 3.38
10 6.18 6.57 1.85 1.83 2.88 3.33

Students 3 4.43 4.72 2.52 2.14 3.04 3.4
5 5 5.4 1.6 1.7 2 2.66
10 6.08 6.13 1.7 1.63 2 2.42

Enron 3 9.6 9.6 4.14 4.14 5.09 5.09
5 10.8 10.8 3.44 3.47 4.6 5.09
10 12.7 12.7 2.62 2.9 4.54 5.16

time: 4h 8min time: 2d 2h 32min time: 13h 53min time: 5h 30min

time: 17h 56min time: 21h 39min time: 21h 4min density: 4.24

Fig. 5. Example of subgraph found by GA. Facebook dataset, K = 7 and B = 7 days.

the real-world datasets: we run the subgraph-finding algorithms n = 20 times to obtain
n subgraphs; after each iteration we delete the edges of the discovered subgraph.

Let D = {D1, . . . , Dn} be the set of n dynamic subgraphs discovered by this iterative
strategy. We can apply the same strategy to discover a set of n dense subgraphs on the
underlying topology network. Let C = {C1, . . . , Cn} be the set of those dense subgraphs.
We compare the two sets of subgraphs, D and C. The results are shown in Figure 6.

We that the baseline collection C contains some subgraphs that are very dense, how-
ever, the density decreases rapidly. One explanation for this behavior is that the first
subgraphs discovered in C are large in size, containing hundreds or thousands of nodes,
and their removal decreases the density of the network rapidly. On the other hand, the
proposed algorithms, GA and BA, produce a more balanced set of subgraphs, both in
size and in density. Furthermore, the activity of the subgraphs in C is scattered in
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Fig. 6. Comparison of multiple discovered subgraphs with multiple search for dense subgraph of topology
network. Each row represents a dataset. The first and second columns show the density and the size of
multiple discovered subgraphs. The third column shows the time span of multiple subgraphs discovered on
the underlying network. The fourth column shows the relations between multiple output subgraphs and
the densest subgraphs of the topology network. All runs of the dynamic subgraph-finding method were
performed with K = 7 and B = 3 days.

time, and the time span of a single interval needed to cover those subgraphs is large
(third row in Figure 6).

We test whether the dynamic subgraphs D, discovered by GA and BA, are subsets of
the static subgraphs C. To test this hypothesis, we compare every discovered subgraph
Di to every densest subgraph Cj , 1 ≤ i, j ≤ n, and find the best match. The best match
for subgraph Di is defined as M(Di) ∈ C, such that

M(Di) = arg max
Cj

P (Di, Cj),
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Table VI. Characteristics of the subgraphs discovered by GA and the densest-subgraph algorithm on the Twitter
dataset. The hashtags are annotated by their frequency and ones that occur in both subgraphs are marked by
bold font.

Method Size Density Hashtags

GA 9 4.9 aaltoes: 52, startup: 12, vc: 11, summerofstartups: 11, en-
trepreneur: 7, startups: 4, web : 3, slush10 : 2, skype: 2, funrank : 2,
africa: 2, mobile: 2, demoday: 2, design: 2, linkedin: 2, aalto: 2

Densest 67 10.1 aaltoes: 80, summerofstartups: 28, startup: 18, vc: 13, ff : 11, fb : 8,
elonmerkki : 7, entrepreneur: 7, slush10 : 6, newtwitter: 5, 2010mvv: 4,
garage48 : 4, facebook : 4, web : 4, startups: 4, smss2010 : 4, mvv2010 : 3,
angrybirds: 3, fail : 3, spotonloc: 3, fif2010 : 3, baltic: 3, africa: 3, mo-
bile: 3, demoday: 3, helsinki : 3, gov20 : 3, e20 : 3, failcon: 2, bacon: 2,
mindtrek : 2, skype: 2, funrank : 2, nxcfi : 2, blog: 2, yc: 2, hankenes: 2,
design: 2, education: 2, linkedin: 2, nokia: 2, n8 : 2, aalto: 2

where P measures precision with Cj as ground truth. Using the best matching sub-
graph M(Di) we calculate precision IP (Di) = P (Di,M(Di)) and recall IR(Di) =
R(Di,M(Di)) for each discovered subgraph. The resulting plots are shown in the last
row of Figure 6. In these plots we refer to IP and IR as precision and recall correspond-
ingly. High precision IP and low recall IR indicate that the subgraphs C1, . . . , Cn are
supersets of the subgraphs, obtained by GA and BA. We conclude that the proposed
algorithms are able to uncover subgraphs hidden in the dense subgraphs of the under-
lying network.

5.6. Twitter case study
We conduct a case study with the Twitter dataset, which in addition to interactions
between users it also contains the tweet texts. To evaluate the coherence of the dis-
covered subgraphs we inspect the set of hashtags that appear in the communication
among the members of the retrieved subgraph. For each subgraph we select the most
frequent hashtags.

As an example, the GA algorithm with K = 7 intervals and budget B = 3 days
discovers a subgraph C1 of 9 Twitter users, which include organizations, such as Aalto
Entrepreneurship Society (@aaltoes) and Aalto Venture Garage (@AaltoGarage). The
density of C1 is 4.9, and the most popular hashtags appearing in C1 are shown in
Table VI.

For comparison, the densest subgraph of the underlying network is a subgraph C2,
consisting of 67 nodes, and it is a superset of C1. The density of C2 is 10.1, and the
minimal time interval that covers this subgraph is 89 days; much longer than the 3
days that C1 spans. The number of hashtags used in C2 is 112, and as can be seen in
Table VI it is a less focused set. Furthermore, the hashtags of C1 contain some of the
most frequent hashtags in C2. Overall, C1 is a dense subgraph of C2, which contains
some of the most frequent hashtags, and whose members are interacting in a short
time.

6. RELATED WORK
Community detection is one of the most studied problems in social-network analysis. A
lot of research has been devoted to the case of static graphs, and the typical setting is to
partitioning a graph into disjoint communities [Girvan and Newman 2002; Flake et al.
2000; Pons and Latapy 2006; van Dongen 2000]; a thorough survey on such methods
has been compiled by Fortunato [2010].

Typically the term “dynamic graphs” refers to the model where edges are added or
deleted. In this setting, once an edge is inserted in the graph it stays “alive” until the
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current time or until it is deleted. For example, this setting is used to model the pro-
cess in which individuals establish friendship connections in a social network. On the
contrary, our model intends to capture the continuous interaction between individuals.
In the dynamic-graph setting, researchers have studied models that capture arrival of
new nodes and edges in the network [Kumar et al. 2006; Leskovec et al. 2008; Zhou
et al. 2014; Myers and Leskovec 2014] and the process of how groups and communities
are formed [Backstrom et al. 2006]. Additionally, in the context of dynamic graphs,
different algorithms have been proposed for maintaining records of graph characteris-
tics [Li et al. 2014] and for mining rules for graph evolution [Berlingerio et al. 2009].

With respect to community detection in time-evolving graphs, the prominent line of
work is to consider different graph snapshots, find communities in each snapshot sep-
arately (or by incorporating information from previous snapshots), and then establish
correspondences among the communities in consecutive snapshots, so that it is pos-
sible to study how communities appear, disappear, split, merge, or evolve. A number
of research papers follows this framework [Asur et al. 2009; Greene et al. 2010; Lin
et al. 2008; Palla et al. 2007; Sun et al. 2007]. Similar recent works apply concepts
of Laplacian dynamics [Mucha et al. 2010] and frequent pattern mining [Berlingerio
et al. 2013] to ensure coherence and sufficiency of communities found in sequence of
graph snapshots.

We should point out that our approach is not directly comparable to methods for
community detection, in the classic sense. Instead our approach should be viewed as a
method for finding dense subgraphs in dynamic networks. For example, a common way
to formulate the community-detection problem is to seek to maximize the modularity
measure [Newman 2006]. Classic modularity is defined over a partitioning of the graph
nodes, while we focus on finding a single dense community in the temporal network
(although we also experiment with finding top-k overlapping densest subgraphs). We
should also note that adapting and optimizing modularity-based measures with time
constraints is a highly non-trivial task; for example, increasing the size of an interval
may actually decrease modularity. Overall, contrasted with modularity-based meth-
ods, our approach uses a different objective function, it satisfies different constraints,
and even has different output.

Many dynamic-graph studies are dedicated to the event-detection problem. The com-
prehensive tutorial by Akoglu et al. [2014] covers recent research on this topic. The
majority of the work focuses on how to compare different graph snapshots, and it aims
to detect those snapshots that the graph structure changes significantly. The research
tools developed in this area include novel metrics for graph similarity [Papadimitriou
et al. 2010] and graph distance—see the survey of Gao et al. [2010] and the recent
paper by Sricharan and Das [2014]—as well as extending scan-statistics methods for
graphs [Priebe et al. 2005], while a number of papers relies on matrix-decomposition
methods [Akoglu and Faloutsos 2010; Ide and Kashima 2004]. The main challenge ad-
dressed in this paper, in contrast to other event-detection problems, is that we aim
to discover simultaneously the subgraph of the event and the relevant time intervals.
Should the subgraph be known, a wide range of anomaly-detection methods could be
used [Chandola et al. 2009].

Similarly to dynamic-graph event detection, constructing a static graph (or a se-
quence of static graphs) with incorporated temporal information is a common ap-
proach for dynamic-graph problems, best reviewed in an extensive survey by Holme
and Saramäki [2012]. An interesting example of embedding temporal data into a static
graph is a dynamic clustering approach from Rosvall et al. [2014]. They use historical
temporal data to learn probabilities of 2-hop-paths to produce clustering. However, the
discovered clustering is global in time, there are no associated burst time intervals
detected, and no constraints on time. Another example is a spatio-temporal event de-
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tection method by Rozenshtein et al. [2014]. The goal of the paper is to find a subset of
nodes that are close to each other and have high activity levels. The activity score of a
node is inferred from temporal records and depends on a given time interval. However,
the data is viewed as sequence of network snapshots, which are precessed indepen-
dently.

To our knowledge, the approach that is best aligned with our problem setting, is
presented by Bogdanov et al. [2011], for the problem of mining heavy subgraphs in
time-evolving networks. Yet, there are important differences. First, the approach of
Bogdanov et al. is still based on network snapshots, and thus sensitive to boundary-
quantization effects. Second, their concept of heavy subgraphs is based on edge
weights, and their discovery problem maps to prize collecting Steiner tree, as opposed
to a density-based objective.

Hu et al. [2005] propose a framework for mining frequent coherent dense subgraphs
across a sequence of biological networks. Their core concept is to construct a second-
order graph, which represents co-activity of edges in the initial graph. As with the
previous papers, Hu et al. work with network snapshots, which is quite a different
model than the one we consider in this paper.

The goal of this work is to discover dense subgraphs that occur in a short period of
time. If the actual nodes of the subgraph are already known, and we are interested in
finding the intervals in which the graph is the densest, then the problem can be viewed
as a burst detection problem. Modeling and discovering bursts is a well-studied topic. A
well-known approach by Kleinberg [2003] models the delays between the events with
an exponential model, and uses a dynamic program to discover hierarchical bursts. An
alternative approach is to count events in a window of predetermined length: for ex-
ample, Ihler et al. [2006] models event counts with Poisson process, while Fung et al.
[2005] uses Binomial distribution. Alternative discovery techniques include wavelet
analysis [Zhu and Shasha 2003], Fourier analysis [Vlachos et al. 2004], and notions
inspired by Mechanics [He and Parker 2010]. The obvious difference between these
techniques and our approach is that not only we need to find the intervals but also
the subgraph as well. Moreover, note that the aforementioned methods have their own
objective functions, and so cannot be used to optimize the problem defined here. Never-
theless, an interesting direction is to see whether the modeling of intervals techniques
can be combined in a meaningful way with discovering dense subgraphs.

In summary, in contrast to the existing work, we introduce a new point-of-view in the
area of dynamic graphs, namely, we incorporate in our analysis point-wise interactions
between the network nodes.

7. CONCLUDING REMARKS
In this work we considered the problem of analyzing interaction networks and finding
dynamic dense subgraphs. We formulated this structure-discovery problem by asking
to find a dense subgraph whose edges occur in short time intervals. We proved that
the problem is NP-hard, and provided efficient algorithms. We demonstrated how to
speed up the proposed algorithms by taking advantage of the concavity property of the
objective function and by using fractional-programming techniques.

Our work is a step towards a more refined analysis of social networks, in which
interaction information is taken into account, and it is used to provide a more accurate
description of communities and their dynamics in the network.

This work opens many possibilities for future research. In particular, it will be inter-
esting to enhance the definition of dynamic dense structure by incorporating additional
information, either text and attributes of the network nodes, or information regarding
the frequency and the statistical properties of the network interactions.
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A. PROOFS
PROOF OF PROPOSITION 3.1. We will show that the decision version of Problem 3.1

is NP-complete.
We are given an interaction network G, budgets K, B, and a threshold σ, and we

need to answer whether there is a node set W and a time-interval set T , which satisfy
the two budget constraints, and for which q(W, T ;G) ≥ σ.

The problem is clearly in NP. To prove the hardness, we obtain a reduction from
VERTEXCOVER. An instance of VERTEXCOVER specifies a graph H and budget `, and
asks whether there is a set V ′ ⊆ V , such that |V ′| ≤ ` and each edge of the graph is
adjacent to at least one of the nodes of V ′.

Consider graph H = (U,F ) with n nodes and m edges, and budget `. Let us define
an interaction network G = (V,E). The node set V consists of U and n + 1 additional
auxiliary nodes, and the set of edges E is defined as follows: First we consider n + 1
distinct time points t0, . . . , tn. At t0 we add interactions between all the auxiliary nodes,
and between auxiliary nodes and each v ∈ U . We arbitrarily order the nodes in U and
let vi be the i-th node. At time ti we connect vi with all its neighbors in H.
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Assume a solution W and T , for Problem 3.1, with budgets K = ` + 1 and B = 0.
We claim that W will contain all nodes and T will contain t0 and the time points
corresponding to the vertex cover of H.

Let us first prove that W = V and (t0, t0) ∈ T . Assume first that (t0, t0) /∈ T . Then,
since the remaining time intervals have only edges between U , there must be at most
n(n− 1)/2 edges, yielding density at most n− 1. Let us replace one of the selected time
intervals with t0 and reset W to be auxiliary nodes. This solution gives us a density of
n, which is a contradiction.

Now we have established that t0 is a part of T . A straightforward calculation shows
that it is always beneficial to add auxiliary nodes toW , if they are not part of a solution.
Once this is shown, we can show further that adding any missing nodes from U also
improves the density. Consequently, W = V .

Set σ = 2(n(n+ 1)/2 + n(n+ 1) +m)/(2n+ 1). The first two terms in the numerator
correspond to the edges at t0. The remaining m edges must come from the remain-
ing time intervals. This is only possible if and only if the time intervals contain all
edges from H, that is, the corresponding nodes cover every edge, which completes the
reduction.

PROOF OF PROPOSITION 4.1. (i) The proof is rather straightforward as Prob-
lems 3.1 and 4.2 have the same objective functions (up to fixed component W ) and
sets of constraints.

Let (W, T ) be an optimal solution to Problem 3.1 for a given interaction network G.
Suppose T is not an optimal solution to Problem 4.2 given G and W . That means that
there exits T ∗, such that q(W, T ∗;G) > q(W, T ;G) with |T ∗| ≤ K and span(T ∗) ≤ B.
That contradicts to our assumption that (W, T ) is an optimal solution to Problem 3.1.
Consequently, T is an optimal solution for Problem 4.2 given W and G.

(ii) Analogous to (i).

PROOF OF PROPOSITION 4.2. The proposition follows immediately from
Lemma A.1

PROOF OF PROPOSITION 4.3. Let x = |W | and y = |E(π(G(W, T )))|. Since 2y/x ≤
B · α, we must have

0 ≤ Qα(T ) = 2
y

x
− α · span(T ) ≤ B · α− α · span(T ) ,

which proves that span(T ) ≤ B.

In order to prove several of the next propositions we need the following technical
lemma.

LEMMA A.1. Consider two functions q : X → R and c : X → R. Define

f(α) = arg max
x∈X

q(x)− αc(x) .

Then q(f(α)) and c(f(α)) decrease as α increases. Moreover, q(f(α1)) = q(f(α2)) if and
only if c(f(α1)) = c(f(α2)).
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Assume that there are s and t such that q(x)s and c(x)t are integers. Let d = max c(x)−
min c(x). Then for each β, there is

α1 ≤ β ≤ α2 with α2 − α1 ≥
1

std2

such that q(f(α)) = q(f(β)) and q(f(α)) = c(f(β)) whenever α1 ≤ α ≤ α2.

PROOF. Let us write q(α) = q(f(α)) and c(α) = c(f(α)). Define g(α) = q(α)− αc(α).
Dinkelbach [1967] shows that f(α) and c(α) both decrease, proving the first part of

the lemma. Moreover, the fact that q(f(α1)) = q(f(α2)) if and only if c(f(α1)) = c(f(α2))
follows immediately from the maximality of f .

Let [α1, α2] be the maximal interval inside which f(α) and c(α) are constant.
Let x = f(β). As shown by Dinkelbach [1967], g is continuous function. Since α2 is

maximal, there must be y ∈ X such that f(y) < f(x) and

f(x)− α2g(x) = f(y)− α2g(y).

Similarly, there is z ∈ X with f(z) > f(x) and

f(x)− α1g(x) = f(z)− α1g(z).

Let us write u1 = f(y) − f(x) and u2 = f(x) − f(z), and similarly v1 = g(y) − g(x) and
v2 = g(x)− g(z). Then rewriting previous equalities leads to

α2 =
f(y)− f(x)

g(y)− g(x)
=
u1
v1

and α1 =
f(x)− f(z)

g(x)− g(z)
=
u2
v2
.

Combining the equalities leads to

α2 − α1 =
u1v2 − v1u2

v1v2

=
1

st

stu1v2 − stv1u2
v1v2

≥ 1

st

1

v1v2

≥ 1

std2

which proves the lemma.

PROOF OF PROPOSITION 4.4. Lemma A.1 immediately guarantees that there is an
interval I of length ε around α∗, such that for any α ∈ I, the corresponding solution
yields the same quality as T ∗. Since span(Tl) > B, we must have αu ∈ I.

In order to prove Propositions 4.5 and 4.8 we need the following technical lemmas.

LEMMA A.2. Assume a universe Ω and that we are given a sequence of pairs X =
(ωi, ti), . . . , (ωk, tk), where ωi ∈ Ω and ti ∈ R. The function f defined as

f(a, b) = |{ωi | a ≤ ti ≤ b}|

is concave.
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PROOF. Consider a ≤ b ≤ c ≤ d, and define X = {ωi | a ≤ ti ≤ c} and Y =
{ωi | b ≤ ti ≤ d}. It is easy to check that

f(a, c) = |X|,
f(b, d) = |Y |,
f(a, d) = |X ∪ Y |, and
f(b, c) ≤ |X ∩ Y |.

It follows that

f(a, d) + f(b, c) ≤ |X ∪ Y |+ |X ∩ Y |
= |X|+ |Y |
= f(a, c) + f(b, d),

which proves the lemma.

LEMMA A.3. Assume function f having the form f(a, b) = g(b − a), where g is con-
cave function. Then f is concave.

PROOF. Assume a ≤ b ≤ c ≤ d, and write z = b − a, x = c − b, and y = d − b. Then
f(a, d)− f(b, d) = g(z+ y)− g(y) and f(a, c)− f(b, c) = g(z+x)− g(x). The concavity of g
and the fact that x ≤ y now implies that g(z + y)− g(y) ≤ g(z + x)− g(x), which proves
the lemma.

PROOF OF PROPOSITION 4.5. Note that the gain is equal to
δα(T ) = q(W, T ∪ T,G)− α · span(T ∪ T )

= q(W, T ∪ T,G)− α · span(T )− α · span(T ) .

The first term is concave due to Lemma A.2. The second term is constant. The third
term is concave due to Lemma A.3. The sum of concave functions is concave, proving
the proposition.

PROOF OF PROPOSITION 4.8. Recall that h(T, β) = g(T )− β · c(T ). The first term is
concave due to Lemma A.2. The second term is concave due to Lemma A.3. The sum of
concave functions is concave, proving the proposition.

PROOF OF PROPOSITION 4.9. Let us first prove the correctness. Let T ∗ be the opti-
mal time interval and let β∗ = g(T ∗)/c(T ∗).

Initial βu is selected such that h(Tu, βu) ≤ 0. Moreover, initial βl satisfies h(Tl, βl) ≥
h(Tu, βl) = 0. It is easy to see that this invariant holds during the while-loop.

The while-loop can stop due to three different conditions. Case h(Tl, βl) = 0. Here
Tl is the optimal solution and will be returned by the algorithm. Case g(Tl) = g(Tu).
Lemma A.1 states that g(Tl) ≥ g(T ∗) ≥ g(Tu), which immediately implies g(Tl) =
g(T ∗). Lemma A.1 guarantees that also c(Tl) = c(T ∗) which proves the correctness.
Case βu < βl + ε. Note that g(T )w is an integer and c(T )K ′B′δ is an integer for any
T . Lemma A.1 implies that there is an interval I around β∗ of length ε such that
solving h(T, β) for β ∈ I will yield optimal result. We must have βu ∈ I or βl ∈ I. This
guarantees the correctness.

Let us now prove the time complexity. Since the difference βu − βl is halved every
iteration, this gives us first bound of O(logwK ′B′δ).

To prove the other bound, first note that if h(Tl, βl) > 0, then g(Tl)/c(Tl) > βl. Since
new βl is always larger or equal than g(Tl)/c(Tl), then βl and g(Tl)/c(Tl) increase dur-
ing each iteration. Lemma A.1 implies that g(Tl) decreases every iteration. There are
at most p possible values for g. Consequently, the while-loop requires at most O(p)
iterations.
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