
A combinatorial approach to role discovery
Albert Arockiasamy Aristides Gionis Nikolaj Tatti

HIIT, Aalto University, Espoo, Finland, firstname.lastname@aalto.fi

Abstract—We provide a new formulation for the problem of
role discovery in graphs. Our definition is structural: two vertices
should be assigned to the same role if the roles of their neighbors,
when viewed as multi-sets, are similar enough. An attractive
characteristic of our approach is that it is based on optimizing
a well-defined objective function, and thus, contrary to previous
approaches, the role-discovery task can be studied with the tools
of combinatorial optimization.

We demonstrate that, when fixing the number of roles to
be used, the proposed role-discovery problem is NP-hard, while
another (seemingly easier) version of the problem is NP-hard to
approximate. On the positive side, despite the recursive nature
of our objective function, we can show that finding a perfect
(zero-cost) role assignment with the minimum number of roles
can be solved in polynomial time. We do this by connecting the
zero-cost role assignment with the notion of equitable partition.
For the more practical version of the problem with fixed number
of roles we present two natural heuristic methods, and discuss
how to make them scalable in large graphs.

I. INTRODUCTION

Modeling interconnected entities as graphs (or networks)
allows us study the global structure and function of a system,
instead of looking at single entities in isolation. The under-
standing of the structure of a network in a holistic way can
be further supported by our ability to understand the role of
a single vertex with respect to its local neighborhood, or with
respect to the whole network. Role discovery has emerged
as an important graph-mining task [1]–[7], together with
other standard graph-mining problems, such as community
detection, link prediction, etc.

Role discovery can be a valuable tool for exploratory graph
mining. For instance, identifying the role of person in a
social network may provide cues for understanding the social
behavior of the person in relation to her peers. Similarly,
identifying the role of a vertex in a technological network may
give useful information about the function of the vertex in the
network, or it may be used to detect anomalies [8]. Rossi
and Ahmed [4] provide an extensive and well-documented
list of graph-mining tasks that can be facilitated by role
discovery. The list includes applications such as classification,
active learning, graph visualization, transfer learning, graph
compression, entity resolution, and more.

Various approaches have been proposed for defining when
two vertices should be considered equivalent and, thus, should
be assigned to the same role. Some of the first methods rely on
identifying structural or automorphic equivalence classes [9],
[10], while newer methods represent vertices by feature vectors
and assign to the same role vertices with similar feature
vectors [3], [4], [7], [11].

0

1
4

35

9
12

1726

2
13

20

6

78

18

25

31
11

23

28

32

29

19

14

22

15

24

16
10

30

33

34

35

27

21
1 2 3

1
2
3

5

7
8
9

12

15

1

2

4

1

1

1
10

1

role

de
gr

ee

Centroids

:
:
:

0 0.93 0.54
3 3.5 0.75
7 3 0

Figure 1: Groom network of Rhesus Macaques [12], Three
roles are assigned by GREEDY initialized by DEG. The scatter
plot shows the degree of a vertex as a function of its role.

In this paper we present a new approach to role discovery,
inspired by the definition of equitable partition of vertices. As
the original definition is too strict to be of use in real-world
datasets, we introduce a relaxation that provides robustness
and can tolerate noise in the data. In particular, we define an
objective function that quantifies the degree to which a given
role assignment satisfies equitability. Given a target number of
roles k we ask to find the role assignment that minimizes our
objective function.

The proposed objective function is based on creating a pro-
file for each vertex, which represents the number of neighbor
vertices for each other role. Thus, vertices with the same role
should have similar profiles. This requirement is expressed as a
k-means-type squared-error function. The approach resembles
feature-based methods, however, the important difference is
the recursive nature of our definition: roles depend on profiles
and profiles depend on roles.

An example of the roles discovered in a grooming network
of monkeys, Rhesus Macaques, is shown in Figure 1. In this
example we search for k = 3 roles. The role assignment
is depicted with different colors, and the profile centroids
for each role are shown in the bottom-right subplot. We see
that the first role (purple) corresponds to relatively isolated
individuals, while the other two roles (green and orange)
correspond to more central ones. Observe that the green role
is indeed different than the orange role, as the individuals
of the orange role are connected to more individuals of the
purple role, and they are not connected to each other. In the
upper-right subplot we show a scatter-plot of role vs. degree.
We see that one of the two vertices with orange role has
smaller, not larger, degree than five of the vertices with green

role, indicating that the role assignment we discover cannot
be explained solely by degree.

Our technical contributions are as follows: we formulate
the optimization problem and demonstrate that this problem
is NP-hard. Furthermore, we show that if we fix the profile
centroids, the problem still remains NP-hard, and cannot be
approximated. On the positive side, we show that discovering
a perfect role assignment, that is, a role assignment with 0
cost, with smallest number of roles k can be done efficiently
in polynomial time. We further propose two natural heuristic
algorithms for minimizing the cost function when k is fixed:
(i) the first method is a greedy hill-climbing algorithm, where
we optimize a role for a single vertex while keeping the
remaining vertex roles constant, (ii) in the second approach we
first fix the profiles, transforming the problem into a standard
clustering problem, that we solve using k-means algorithm,
and compute the new profiles from the obtained clustering.

II. RELATED WORK

Role-discovery methods can be broadly classified into three
categories [4]: (i) graph-based, (ii) feature-based, and (iii)
hybrid. Graph-based methods compute roles directly from the
graph representation. A number of different definitions have
been suggested for quantifying when two nodes are equivalent
and should be assigned to the same role.

In automorphic equivalence (see, for example, [13]), two
vertices u and v are equivalent if there is graph automorphism
mapping u to v. Furthermore, the vertices are structurally
equivalent [10], if the automorphism does not alter the re-
maining vertices. A more relaxed definition of equivalence is
regular equivalence [9], where vertices are equivalent if they
have equivalent neighbors, ignoring any multiplicities.

Blockmodelling can be viewed as a role assignment task.
Here the idea is to model the edge appearance between
two vertices u and v based on their roles. The roles are
viewed as latent variables, and are learned using standard
statistical optimization techniques [14]. For more details on
blockmodels, see the survey of Goldenberg et al. [15].

Feature-based role discovery is a more modern approach
that relies on representing each node in the graph by a feature
vector and assigning to the same role nodes with similar
feature vectors [1], [3], [4], [7], [11]. Features can be extracted
from graph-based properties of each node, such as, degree,
clustering coefficient, centrality, etc., or combined with other
information that may be available for the graph nodes, such
as dynamic behavior or node attributes. Once feature vectors
are constructed, the assignment problem can be viewed as a
traditional clustering problem, and thus can be approached
with classic clustering techniques. From technical point of
view, our setting differs fundamentally since our features,
namely the roles of neighbors, depend on the clustering.
Hybrid role discovery methods combine both methods. For
example, using learned blockmodels as features [4].

The typical key component in role discovery is how to
measure similarity between two vertices. The simplest way
to do this is by computing a distance between the neighbors,

such as, cosine similarity or Pearson coefficient of common
neighbors. As a more intricate example, we can also based
vertex similarity on features of neighboring vertices [6] or
spectral analysis [16].

We should stress that role discovery has a different goal
than community detection: in community detection, we are
interested in finding highly connected subsets, whereas in role
discovery we want to find vertices that serve similar purpose.
Interestingly, Ruan and Parthasarathy [5] proposed mining
roles and communities simultaneously.

Finally, a fruitful direction for role discovery is to adapt
existing methodology for dynamic settings, where the role may
change over time [17], [18]. We leave adapting our approach
for dynamic settings as future work.

III. PRELIMINARIES AND PROBLEM DEFINITION

We consider a graph G = (V,E) with |V | = n vertices
and |E| = m edges. Our goal is to assign roles to the vertices
of the graph G. We assume that the total number of roles
k is given. A role assignment r : V → [1, k] is a function
mapping each vertex v to an integer between 1 and k, which
is interpreted as a role id. Given a role assignment r, the profile
of a vertex v for that role assignment is a k-dimensional vector
p(v; r) = x, where xi, the i-th coordinate of p(v; r), is the
number of vertices with role i that are adjacent to v,

xi = |{(v, w) ∈ E | r(w) = i}|.

Our guiding principle for assigning roles to the graph vertices
is that vertices assigned to the same role should have more
similar profiles than vertices assigned to different roles.

As vertex profiles are k-dimensional vectors, we quantify
the similarity between them using the Euclidean distance
d(x,y) = ||x − y||2 = (

∑k
i=1 |xi − yi|2)1/2, where x and

y are vertex profiles.
Furthermore, each role i ∈ [1, k] is represented by a k-

dimensional vector ci, which is selected as a representative
of the profile vectors of all vertices assigned to role i. We
use the Euclidean distance to define the distance between a
vertex profile p(v; r) and a role representative vector c. For
simplicity of notation we write

d(v, c; r) = d(p(v; r) , c) = ‖p(v; r)− c‖2 .

We can now formulate our our role-mining problem.

Problem 1. (ROLES) Given a graph G = (V,E) and an
integer k, find a role assignment r : V → [1, k] and k
representative role vectors c1, . . . , ck that minimize the cost

c(r, c1, . . . , ck) =
∑
v∈V

d
(
v, cr(v); r

)2
.

We can show that the ROLES problem is NP-hard by a
reduction from the 3D-MATCHING problem. The proof is
given in the full version of the paper.

Proposition 2. ROLES is NP-hard.

Intuitively, problem ROLES resembles the k-means cluster-
ing problem. However, a careful reader should immediately

realize that we are dealing with a much harder problem than
k-means clustering. To see this, notice that in the k-means
problem we aim to cluster vectors whose coordinates are
fixed. In the ROLES problem, however, we aim to cluster
vertex profiles, which are vectors whose coordinates depend
on the role assignment. Thus, we are working with a clustering
problem in which the data recursively depend on the output
of the clustering problem itself.

To emphasize the difference between ROLES and k-means
clustering, consider the standard property of k-means algo-
rithm: for a fixed cluster membership it is easy to compute
optimal representative vectors (centroids), and for fixed cen-
troids it is easy to compute optimal cluster membership.

We can show that for the ROLES problem only the first part
of the corresponding property holds. Indeed, for a fixed role
assignment r the profiles of all vertices are also fixed. The
representative vector of a role r can then be easily computed
as the centroid of the profiles of all vertices having the role r.

On the other hand, when the role centroids c1, . . . , ck are
fixed it is not easy to compute the optimal role assignment r.
We refer to this problem as ROLES-FIXEDCENTROIDS.

Problem 3. (ROLES-FIXEDCENTROIDS) Assume a graph
G = (V,E) and k centroids c1, . . . , ck. Find a role assignment
r : V → [1, k] that minimizes the cost function

c(r) =
∑
v∈V

d
(
v, cr(v); r

)2
.

Proposition 4. Deciding whether ROLES-FIXEDCENTROIDS
has a zero-cost solution is an NP-complete problem.

Not only does Proposition 4 imply that ROLES-FIXED-
CENTROIDS is an NP-hard problem, but it also establishes
that ROLES-FIXEDCENTROIDS cannot be approximated to
any multiplicative factor, no matter how large.

Corollary 5. Unless P = NP, there is no polynomial algo-
rithm that provides an approximation guarantee to the ROLES-
FIXEDCENTROIDS problem.

Note that even though intuitively ROLES is a more difficult
problem than ROLES-FIXEDCENTROIDS, the hardness result
obtained for ROLES-FIXEDCENTROIDS is much stronger than
the one obtained for ROLES. This could be just an artifact of
our proof techniques and it may be the case that ROLES is
also a hard problem to approximate.

IV. SOLVING PERFECT ROLE ASSIGNMENT EXACTLY

Before presenting our proposed algorithms for the ROLES
problem, we first present a polynomial algorithm for finding a
perfect role assignment—a solution with cost zero. We will do
this by arguing that the perfect role assignment is equivalent
to equitable partition [19], which can be solved exactly.

Given a graph G = (V,E), a partition of vertices V1, . . . , Vk
is said to be equitable if the edges respect the partition, that is,
(u1, v1) ∈ E if and only (u2, v2) ∈ E for any u1, u2 ∈ Vi and
v1, v2 ∈ Vj , i, j = 1, . . . k. Note that for such a partition, the
cost will always be 0, and vice versa. Naturally, there are many

Algorithm 1: PERFECT(G), computes a perfect assign-
ment with smallest number of roles.

1 r(v)← 1 for every v ∈ V ;
2 while number of roles increases do
3 compute profiles p(v; r);
4 group vertices with the same profiles;
5 assign a role to each group;

possible partitions but there is only partition with the smallest
k, and this partition can be discovered with the algorithm that
we will present for the sake of completeness. The proof for
this algorithm is given in [19].

The polynomial algorithm, named PERFECT, works by first
setting k = 1 and assigning all vertices to the same role. Then,
it iteratively computes the profile of each vertex, and groups
together all vertices with the same profile. For each new group
it then assigns a new role (and increases k), and the iterative
process continues as long as new roles are created. Pseudocode
for PERFECT is given in Algorithm 1.

Finally, we analyze the running time of PERFECT.

Proposition 6. PERFECT runs in O(mn log n) time.

V. HILL-CLIMBING ALGORITHM

The algorithm discussed in the previous section returns a
perfect (zero-cost) role assignment but it does not put any
constraint on the number of roles to be used. In fact, as we
will see in the experimental section, in most cases, PERFECT
is forced to use a large number of roles.

In this section, we return to the ROLES problem (defined in
Problem 1) and ask to find a minimum-cost role assignment
for a given number of roles k. As the ROLES problem is NP-
hard (Proposition 2) and as a simple variant of the problem
is NP-hard to approximate (Proposition 4), we present a hill-
climbing algorithm that iteratively improves the cost of the
role-assignment problem, until convergence. The algorithm is
presented and analyzed below.

Assume a role assignment r with optimal centroids c. Let
v be a vertex, and let j be an integer. Define a new role
assignment r′ obtained from r by setting r′(v) = j. Let c′

be the optimal centroids with respect to r′.
We define the gain to be the difference of the value of the

objective function for the two role assignments

gain(v, j; r) =
∑
v∈V

d
(
v, cr(v); r

)
−
∑
v∈V

d
(
v, c′r′(v); r

′
)
.

A positive gain means that r′ produces a smaller cost, making
it a better role assignment.

The proposed hill-climbing algorithm, named GREEDY, is
illustrated as Algorithm 2. The algorithm starts with an initial
role assignment r0. Then it sequentially tries to improve the
score by changing the role of each vertex in the graph. For
each vertex v, it changes its assignment to the role j that
maximizes the gain gain(v, j). If there is no role that yields
a positive gain, the role of v remains unchanged.

Algorithm 2: GREEDY(G, k, r0), hill-climbing algorithm.

1 initialize role assignment, r ← r0;
2 while changes do
3 foreach v ∈ V do
4 j∗ ← argmaxj gain(v, j);
5 if gain(v, j∗) > 0 then reassign ;

For selecting the initial role assignment r0 we have experi-
mented with a number of different strategies. More details are
given in the experimental section.

Proposition 7. The inner loop of GREEDY (foreach loop in
Algorithm 2) requires time O

(
k2n+ km

)
.

VI. ITERATIVE ALGORITHM

Proposition 4 states that if we fix centroids, then the problem
remains intractable, even worse it cannot be approximated.
This is a blowback to the standard iterative heuristic, where
we fix one set of parameters while optimizing the other set.

However, if we were to fix the profiles, then the optimization
task transforms into a traditional clustering problem. Once,
we have discovered a role assignment, we can recompute the
profiles, and repeat until we converge into a local minimum.
This is exactly what we do in Algorithm 3.

Algorithm 3: ITERATIVE(G, k), computes roles in itera-
tive fashion. CLUSTER is a standard clustering method.

1 r0 ← CLUSTER(deg(·) , k) ; i← 0;
2 while cost decreases do
3 ri+1 ← CLUSTER(p(·, ri) , k) ; i← i+ 1;

We still have the task to solve the clustering problem. Here,
we resort to a standard k-means clustering algorithm. We will
denote the resulting algorithm by ITERATIVE.

Note that computing profiles from the role assignment can
be done efficiently in O(max{kn,m}) time, where n is the
number of vertices and m is the number of edges. The O(kn)
time is needed to initialize n vectors of length k. If the
clustering algorithm allows to have sparse representation of the
profiles, the processing time can be further reduced to O(m)
time. Thus, the computational bottleneck is the clustering
algorithm, as well as how many iterations we typically need.

VII. EXPERIMENTAL EVALUATION

In this section we present our experimental evaluation. Our
emphasis is to compare the performance of GREEDY and
ITERATIVE, as well as to compare the results with ROLX [3].1

All datasets and software used in the experimental evaluation
are publicly available.2

1We use an implementation by Circulo project, https://github.com/lab41/
circulo.

2http://research.ics.aalto.fi/dmg/

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

noise level

ad
ju

st
ed

R
an

d
in

de
x

DEG

I+G

ITR

ONE

RND

Figure 2: Adjusted Rand index between different methods and
the ground truth as a function of noise for the synthetic dataset.
Larger numbers indicate stronger agreement.

Experimental setup: We use 10 graphs of different sizes and
densities. The first three datasets, karate , dolphins , and lesmis
are obtained from UCIrvine Network Data Repository.3 We
create a synthetic dataset, synth , with 3 groups of vertices, say
V1, V2, V3, with |V1| = 40 and |V2| = |V3| = 30. We connect
V1 and V3 to V2 and fully connect V3. After this we apply noise
by adding or removing an edge with a probability p. We vary p
from 0 to 0.5. We also consider a collaboration network within
a research institute;4 we add an edge between the researchers
if they have a joint paper in DBLP. The remaining datasets
are obtained from Standford SNAP Repository.5

For each dataset, except for synth and collab , we apply
PERFECT, GREEDY, and ITERATIVE. For the 3 smallest
graphs, we mine k = 4 roles. For the remaining graphs, we set
k = 10 roles. When applying GREEDY, we need to provide a
role assignment as a seed. We consider 4 different variants: (i)
ONE, every vertex is assigned the same role, (ii) DEG, vertices
are sorted based on degree, and split into equal-size clusters,
(iii) RND, roles are assigned randomly, (iv) I+G, where we
use the assignment given by ITERATIVE.

To speed-up the computation of GREEDY, we implement
the following heuristic: if the role of a vertex has not changed
during the 3 last iterations, we no longer test the vertex.
However, when we have converged, we start all over by testing
every vertex again. We stop, when no gain is possible, even
if we consider every vertex.

Synthetic data: Our first step is to study how well we can
discover the underlying structure in synth , the synthetic data.
In Figure 2, we plot the adjusted Rand index for each method
as a function of noise level. The shown numbers are averages
over 100 repetitions. As expected the Rand index generally
decreases as the noise level increases: at p = 0.5, the graph is
completely random and there is no structure left to discover.
DEG, I+G, and ITR clearly outperfoms ONE and RND, this
implies that a good starting point is required for GREEDY.
Interestingly, ITR performs worse with small levels of noise but
outperforms GREEDY variants once the noise level increase.

Perfect assignments: Next, we consider the assignments given
by PERFECT, given in Table I.

3http://networkdata.ics.uci.edu/index.php
4Helsinki Institute of Information Technology
5http://snap.stanford.edu/data

Table I: Role assignments discovered by PERFECT. k stands
for the number of discovered roles while #deg stands for the
number of distinct degrees.

Name k iter. time k/|V | k/#deg

karate 27 2 1ms 0.79 2.45
dolphins 60 3 2ms 0.96 5
lesmis 56 5 4ms 0.73 3.11
facebook 3 872 5 0.9s 0.96 17.06
enron 20 618 23 11s 0.56 61.73
EUall 20 138 4 9s 0.08 64.76
dblp 233 466 6 1m4s 0.74 1173.2
youtube 684 010 7 3m47s 0.61 699.39

We see that the number of roles needed to obtain a perfect
solution is typically large: with the exception of EUall , we
need at least half of the number of vertices. The number of
roles is higher than the number of unique degrees, and the
ratio increases for large graphs; these graphs have more ways
of forcing vertices to have unique roles. The algorithm is prac-
tical even for large graphs as the computational complexity
O(nm log n) given by Proposition 6 is fairly pessimistic: only
few iterations are needed for convergence, and each iteration
requires only O(m log n) time.

Performance of greedy and iterative algorithms: Our next
step is to compare the performance of GREEDY and ITER-
ATIVE. In Table II we present the costs obtained by each
algorithm, normalized by the cost of a trivial role assignment,
where each vertex is assigned the same role.

Table II: Columns 3–7 show costs of role assignments, normal-
ized by c(r′), where r′(v) = 0 for every v. Lower values are
better. Columns 8–12 show Kendall-τ statistics between role
assignments and vertex degree. The parameter k stands for the
number of roles. ITR depicts ITERATIVE, while the remaining
columns depicts GREEDY with different initializations.

Costs of role assignments Kentall-τ vs. vertex degree

Name k ITR DEG ONE RND I+G ITR DEG ONE RND I+G

karate 4 .103 .097 .141 .125 .089 .449 .794 .501 .636 .636
dolphins 4 .306 .253 .219 .255 .213 .123 .661 .672 .598 .744
lesmis 4 .142 .124 .121 .133 .118 .228 .711 .729 .679 .734
facebook 10 .056 .043 .043 .043 .039 .052 .707 .714 .741 .739
enron 10 .064 .021 .019 .019 .019 .007 .467 .474 .459 .467
EUall 10 .097 .029 .024 .035 .028 .003 .327 .203 .275 .352
dblp 10 .178 .059 .065 .059 .054 .008 .596 .559 .564 .536
youtube 10 .202 .029 .029 .029 .029 .004 .467 .454 .404 .465

We see that the best scores are obtained by I+G, that
is, GREEDY initialized by ITERATIVE. Curiously enough,
ITERATIVE alone performs the worst. These results hint that
the search space is highly non-trivial, containing a plethora of
local minima. This is further supported by Table III, where
we report adjusted Rand index.6 The index implies that while
the obtained results all correlate positively they do differ. This
puts extra emphasis on a good initialization of GREEDY.

6Value 1 corresponds to a complete agreement, while 0 implies that the
assignments are independent.

Table III: Adjusted Rand indices between different initializa-
tions of GREEDY.

Name DEG/ONE DEG/RND DEG/I+G ONE/RND ONE/I+G RND/I+G

karate 0.104 0.116 0.485 0.107 0.105 0.222
dolphins 0.419 0.134 0.441 0.181 0.374 0.163
lesmis 0.437 0.449 0.453 0.192 0.603 0.283
facebook 0.389 0.385 0.356 0.591 0.521 0.535
enron 0.224 0.135 0.301 0.157 0.232 0.135
EUall 0.421 0.272 0.282 0.305 0.365 0.218
dblp 0.291 0.411 0.427 0.226 0.219 0.307

Let us now study how well the role assignment correlates
with vertex degree. Since the roles are symbolic, we sort the
roles based on average degree, and compared the roles and
degrees using Kendall-τ .7 We see from the results given in
Table II that there is significant correlation between the degrees
and the role assignment. Naturally, this is partly due to how
we sort the roles. However, there are some subtle differences.
The coefficients depend on the dataset, for example, EUall
obtains one of the lowest values. There is a clear difference
between ITERATIVE and GREEDY: the former producing ranks
with weak or almost no correlation with the degree. This
advances further the notion that ITERATIVE gets stuck in local
minimum, and should not be used alone.
Running time: Let us now consider the computational com-
plexity of the algorithms. We present the number of iterations
needed for convergence and the running times in Table IV.
The number of required iterations is modest, especially when
compared to the size of the input graph. The running times
are manageable: we should point out that we implemented
GREEDY using Python, an implementation with a more effi-
cient programming platform should make the algorithm more
user-friendly, especially for large graphs.

Table IV: Total number of iterations required for convergence,
and evaluation time. ITR depicts ITERATIVE, while the remain-
ing columns depicts GREEDY with different initializations.

Number of iterations Evaluation time

Name ITR DEG ONE RND I+G ITR DEG ONE RND I+G

karate 2 2 5 15 5 2ms 5ms 14ms 19ms 14ms
dolphins 2 3 5 12 5 4ms 14ms 22ms 32ms 29ms
lesmis 2 14 16 13 5 5ms 46ms 48ms 29ms 36ms
facebook 2 85 92 131 73 0.4s 39s 41s 53s 39s
enron 3 180 220 215 124 1.9s 7m6s 9m4s 9m5s 7m40s
EUall 3 719 404 2921 122 21s 49m3s 21m4s 1h45m 10m22s
dblp 3 17 41 56 53 21s 1h21m 22m3s 41m6s 29m57s
youtube 4 462 413 471 552 87s 12h10m 7h30m 16h10m 14h52m

Case study of the collaboration network: Next we consider
collaboration network collab . Here we apply DEG with k = 3.
The obtained centroids are c1 = (0.65, 0.76, 0.58), c2 =
(2.06, 1.7, 1.55), c3 = (5.2, 5.1, 1.8), that is, the researchers
with the 3rd role have many co-authors while the researchers
with the 1st role have with limited number of co-authors. The
researchers with the middle role are somewhere between the

7We use the b-variant to accommodate the ties.

two classes. To assess the obtained results, we compared the
roles discovered by our algorithm with a partitioning obtained
by the job title of the researchers. We use three classes:
professors, senior researchers and staff, and PhD students and
junior postdocs. The adjusted Rand index between the two
partitionings is 0.387. We should point that the seniority of a
researcher is not always reflected in the collaboration graph:
there are many senior reseachers with few collaborators.
Comparison to ROLX: As a final step, we compare the
obtained roles with ROLX. In Table V, we present normalized
costs of ROLX and R+G: GREEDY initialized with ROLX. We
also present adjusted Rand indices of ROLX versus the greedy
variants. The implementation we use for ROLX is not able to
process youtube dataset due to memory consumption.

Table V: Comparison of ROLX and GREEDY. Columns 2–3
depict obtained costs, normalized by c(r′), where r′(v) = 0
for every v. Columns 5–8 depict adjusted Rand index of ROLX
versus GREEDY with different initializations. The remaining
columns show classification accuracy used roles as features.

c(r) /c(r′) Rand vs. ROLX Classification accuracy

Name ROLX R+G DEG ONE RND I+G ROLX ITR DEG ONE RND I+G

karate .217 .124 .292 .068 .129 .259 .735 .912 .647 .676 .412 .823
dolphins .457 .302 .187 .207 .236 .273 .613 .903 .662 .661 .565 .662
lesmis .305 .161 .298 .358 .135 .336 .714 .948 .779 .741 .831 .741
facebook .285 .056 .079 .108 .111 .073 .887 .884 .656 .691 .673 .675
enron .467 .019 .058 .055 .053 .054 .847 .876 .589 .584 .579 .567
EUall .438 .029 .251 .259 .237 .281 .896 .875 .669 .833 .689 .791
dblp .509 .061 .655 .258 .349 .359 .881 .812 .906 .623 .667 .658

We first observe that role assignments returned by ROLX
have a high cost. This is a natural result, since ROLX does
not optimize our objective. However, when we use ROLX as a
seed for GREEDY, the obtained rankings have a low score for
large graphs. Positive Rand indices imply that the assignments
of ROLX and GREEDY do correlate, but also differ.

As a sanity check, we construct a classifier predicting the
role of a vertex based on its features. For ITERATIVE and
GREEDY we use the profiles as features, and for ROLX we
use the feature vectors. We use decision tree classifier with
10-fold cross-validation, and the accuracy results are given in
Table V. We see that all methods perform well, note that 10
classes for large datasets and 4 classes for small datasets. We
observe that the accuracy is generally higher for ITERATIVE
and ROLX than for GREEDY.

VIII. CONCLUDING REMARKS

In this paper we propose a new type of role discovery
optimization problem: the vertices should have the same role
if their profiles, role counts of neighbors, are similar.

From technical point, our method is different than feature-
based techniques because our features are in fact roles of
neighbors. This dependency makes the optimization problem
difficult: we show that the problem is NP-hard, and cannot be
even approximated if we fix the centroids for the roles.

On the positive side we show that we can discover the
perfect, zero-cost, solution with minimal number of roles

efficiently in polynomial time. When the number of roles
is fixed, we propose two simple natural heuristics: iterative
optimization and a hill-climbing algorithm.

Interestingly enough, we do not directly use any network-
based feature when comparing vertices. Instead, we are only
interested in role counts. Our logic is that fundamentally
different ego-networks for vertices, say, u and v, should result
in different role counts which should imply that u and v are
different. Nevertheless, combining our approach with other
feature-based role discovery methods provides a potentially
fruitful direction for future work.

REFERENCES

[1] S. Gilpin, T. Eliassi-Rad, and I. Davidson, “Guided learning for role
discovery (GLRD): framework, algorithms, and applications,” in KDD.
ACM, 2013, pp. 113–121.

[2] M. Danilevsky, C. Wang, N. Desai, and J. Han, “Entity role discovery
in hierarchical topical communities,” in ACM SIGKDD International
Workshop on Mining Data Semantics and Heterogeneous Information
Networks, 2013, pp. 1–8.

[3] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu,
L. Akoglu, D. Koutra, C. Faloutsos, and L. Li, “RolX: structural role
extraction & mining in large graphs,” in KDD, 2012, pp. 1231–1239.

[4] R. A. Rossi and N. K. Ahmed, “Role discovery in networks,” TKDE,
vol. 27, no. 4, pp. 1112–1131, 2015.

[5] Y. Ruan and S. Parthasarathy, “Simultaneous detection of communities
and roles from large networks,” in COSN, 2014, pp. 203–214.

[6] Y. Yang and J. Pei, “In-network neighborhood-based node similarity
measure: A unified parametric model,” arXiv preprint arXiv:1510.03814,
2015.

[7] Y. Zhao, G. Wang, P. S. Yu, S. Liu, and S. Zhang, “Inferring social roles
and statuses in social networks,” in KDD. ACM, 2013, pp. 695–703.

[8] R. Rossi, S. Fahmy, and N. Talukder, “A multi-level approach for eval-
uating internet topology generators,” in IFIP Networking Conference,
2013. IEEE, 2013, pp. 1–9.

[9] M. G. Everett and S. P. Borgatti, “Regular equivalence: General theory,”
Journal of Mathematical Sociology, vol. 19, no. 1, pp. 29–52, 1994.

[10] F. Lorrain and H. C. White, “Structural equivalence of individuals in
social networks,” The Journal of Mathematical Sociology, vol. 1, no. 1,
pp. 49–80, 1971.

[11] R. A. Rossi, B. Gallagher, J. Neville, and K. Henderson, “Modeling
dynamic behavior in large evolving graphs,” in WSDM, 2013, pp. 667–
676.

[12] B. A. Beisner, M. E. Jackson, A. N. Cameron, and B. McCowan,
“Detecting instability in animal social networks: Genetic fragmentation
is associated with social instability in rhesus macaques,” PLoS ONE,
vol. 6, no. 1, p. e16365, 2011.

[13] R. A. Hanneman and M. Riddle, Introduction to social network methods.
University of California, 2005, http://www.faculty.ucr.edu/∼hanneman/.

[14] A. T. Snijders and K. Nowicki, “Estimation and prediction for stochastic
blockmodels for graphs with latent block structure,” Journal of Classi-
fication, vol. 14, no. 1, pp. 75–100, 1997.

[15] A. Goldenberg, A. X. Zheng, S. E. Fienberg, and E. M. Airoldi, “A
survey of statistical network models,” Found. Trends Mach. Learn.,
vol. 2, no. 2, pp. 129–233, 2010.

[16] C. E. Tsourakakis, “Toward quantifying vertex similarity in networks,”
Internet Mathematics, vol. 10, no. 3-4, pp. 263–286, 2014.

[17] A. Abnar, M. Takaffoli, R. Rabbany, and O. R. Zaı̈ane, “SSRM: struc-
tural social role mining for dynamic social networks,” Social Network
Analysis and Mining, vol. 5, no. 1, pp. 1–18, 2015.

[18] K. Li, S. Guo, N. Du, J. Gao, and A. Zhang, “Learning, analyzing and
predicting object roles on dynamic networks,” in ICDM, 2013, pp. 428–
437.

[19] B. D. McKay, “Computing automorphisms and canonical labellings of
graphs,” in Combinatorial Mathematics: Proceedings of the Interna-

tional Conference on Combinatorial Theory, 1978, pp. 223–232.

