
Bump hunting in the dark:
Local discrepancy maximization on graphs

Aristides Gionis, Michael Mathioudakis, and Antti Ukkonen

Abstract—We study the problem of discrepancy maximization on graphs: given a set of nodes Q of an underlying graph G, we aim to
identify a connected subgraph of G that contains many more nodes from Q than other nodes. This variant of the
discrepancy-maximization problem extends the well-known notion of “bump hunting” in the Euclidean space [1]. We consider the
problem under two access models. In the unrestricted-access model, the whole graph G is given as input, while in the local-access
model we can only retrieve the neighbors of a given node in G using a possibly slow and costly interface. We prove that the basic
problem of discrepancy maximization on graphs is NP-hard, and empirically evaluate the performance of four heuristics for solving it.
For the local-access model we consider three different algorithms that aim to recover a part of G large enough to contain an optimal
solution, while using only a small number of calls to the neighbor-function interface. We perform a thorough experimental evaluation in
order to understand the trade offs between the proposed methods and their dependencies on characteristics of the input graph.

Index Terms—Graph mining, discrepancy maximization, graph access models

F

1 INTRODUCTION

Bump hunting is a common approach to extracting insights
from data [1]. The main idea is to search for regions of a
dataset where a certain property occurs more frequently
than what it would be expected to occur by chance. In this
paper, we apply the bump-hunting concept on graphs. We
consider a graph, and we assume that a subset of nodes
exhibit a property of interest. Those nodes, to which we
refer as query nodes, are provided as input. The goal is
to find a connected subgraph (the “bump”) where query
nodes appear more often than non-query nodes. We find
such a subgraph by maximizing the linear discrepancy [2],
i.e., the (possibly weighted) difference between the number
of query and non-query nodes in the subgraph. Existing
literature has addressed linear discrepancy maximization in
the Euclidean space, as well as its extensions to non-linear
discrepancy functions [2]–[4].

Most of the existing methods for finding high-
discrepancy regions on Euclidean datasets rely on geometric
methods (e.g., sweep-line techniques), have significant limi-
tations (e.g., restricting the regions of interest to axis-aligned
rectangles), and are applicable only to low-dimensional data
(such as, two-dimensional data, making them appropriate
essentially only for geo-spatial data analysis).

On the other hand, in recent years, graphs have emerged
as a ubiquitous abstraction for modeling a wide range
of real-world datasets, such as social networks, biologi-
cal networks, knowledge and information networks, and
technological networks. In the context of analyzing graph

• Aristides Gionis and Michael Mathioudakis are with the Department of
Computer Science and the Helsinki Intitute for Information Technology,
Aalto University, Finland.
E-mail: firstname.lastname@aalto.fi

• Antti Ukkonen is with the Finnish Institute of Occupational Health,
Finland.
E-mail: firstname.lastname@ttl.fi

datasets, whose nodes often include additional attributes
and exhibit properties of interest that may correlate with
the graph structure, the problem of bump-hunting in graphs
becomes highly relevant. The goal is to identify areas of the
graph in which a certain property is highly concentrated. As
we will exemplify shortly, the bump-hunting problem has
applications in local-trend detection and outlier detection in
graphs. In this paper we initiate the problem of searching
for high-discrepancy regions in graphs, as an extension to
bump-hunting problem in Euclidean spaces.

Moreover, we consider the problem under a local-access
model. Specifically, we assume that only query nodes are
provided as input, while all other nodes and edges can
be discovered only via calls to a costly get-neighbors
function from a previously discovered node. For example,
accessing the social graph of an online social network (e.g.,
Twitter) is based on such a function.

We illustrate our setting in more detail with Figure 1.
On the left, the figure illustrates the graph, with eight query
nodes shown in orange. These query nodes are given as
input and are thus considered discovered. Nodes shown
in transparent blue are not given as input; they can be
discovered via calls to the get-neighbors function from
a previously discovered neighbor. Additionally, none of
the edges are discovered at this point. On the right, the
figure illustrates the same graph after the execution of our
algorithms, and highlights some concepts of our setting:
(i) discovered nodes are shown in non-transparent color
(orange, purple or blue); (ii) similarly, discovered edges
are shown as non-transparent (normal or thick); (iii) the
maximum-discrepancy connected component is the sub-
graph formed by the thick edges; it contains a subset of
query nodes ({4, 5, 7, 8, 11}) and one discovered non-query
node ({1}) shown in purple; (iv) the rest of the query
nodes ({16, 25, 31}) and other discovered nodes (all nodes
shown in blue) are not part of the output subgraph—indeed,
including any of these three query nodes in the connected

1

1112

13

14

18

2

20

22

332

4

5 6

7

8

9

10 34

15

33

16
19

31

21

2324

26

28

30

25

27

29

17 1

1112

13

14

18

2

20

22

332

4

5 6

7

8

9

10 34

15

33

16
19

31

21

2324

26

28

30

25

27

29

17

Figure 1: Left: The Karate club graph with 8 query nodes
(orange color). Right: The subtree formed by including one
extra node (purple color) and indicated by thick edges is

the maximum discrepancy subgraph that we want to locate
given the query nodes.

subgraph would result in a lower discrepancy, as too many
connecting non-query nodes would be needed to maintain
connectivity; (v) finally note that discovering the maximum-
discrepancy subgraph does not require discovering the
whole graph.

To motivate the local-access model, we highlight two
application scenarios below and present an example from
a real use case.

Scenario 1: Twitter social network. When one submits a
text query to Twitter’s search engine, Twitter returns a list
of messages that match the query, along with the author of
each message. For example, when one submits “Ukraine” or
“iraq syria obama” Twitter returns all recent messages that
contain these keywords, together with the users who posted
them. We wish to perform the following task: among all
Twitter users who posted a relevant message, find a subset
of them that form a local cluster on Twitter’s social network.
Our goal is to discover a community of users who talk about
that topic. Our input consists only of those users who have
recently published a relevant message. Note that we do not
have the entire social graph; we can only retrieve the social
connections of a user by submitting a query to Twitter’s API.
�

Scenario 2: Non-materialized similarity graph (Figure 2).
Consider an online library system that allows its users to
perform text search on top of a bibliographic database.
Upon receiving a query, the system returns a list of authors
that match the query. For example, when one submits the
keyword “discrepancy,” the system returns a list of authors
who have published about the topic. We wish to perform the
following task: among all authors in this particular result
set, identify a subset of similar authors.1 In this scenario,
the underlying graph models the similarity between au-
thors. Nodes represent authors, and edges indicate pairs
of authors whose similarity exceeds a user-defined thresh-
old. As the similarity threshold is user-defined, the graph
cannot be pre-computed. Moreover, an all-pairs similarity

1. Similarity between authors can be defined in a variety of ways, for
example as set-of-documents similarity between the papers produced
by two authors.

Figure 2: The author-similarity graph contains one node for
each author and an edge between two authors if their

similarity exceeds a user-defined threshold. Some of the
authors (nodes) are part of a query result set. Our goal is to
find a connected subgraph that contains many more nodes

from the result set than other nodes.

join to materialize the graph at query time is impractical,
or even infeasible, to perform. Given an author a, however,
it is relatively easy to obtain the set of all other authors
whose similarity to a exceeds the similarity threshold. This
corresponds to calling the get-neighbors function. We
can thus solve the problem without materializing the entire
similarity graph. �

Use case: Twitter interaction graph. We demonstrate an
instance of bump hunting over an instance of a Twitter
interaction graph. The interaction graph is constructed from
a set of tweets (the dataset): the graph contains one node
for each user that has generated at least one tweet in the
dataset; the graph also contains the undirected edge (u, v)
if user u has mentioned user v in a tweet or vice versa. The
query nodes correspond to users who have generated one
tweet that satisfies a given query q.

Fot the use case we demonstrate, the dataset is a ran-
dom sample of 1 million tweets, extracted from an in-
house collection of tweets that cover several trending topics
from September 2014. Following the construction described
above, the dataset forms a (disconnected) interaction graph
of 53 k nodes and 43 k edges. To obtain the query nodes, we
submit the query q =‘iraq syria obama’, and retrieve
the users who have at least one tweet that contains the query
keywords.

Using methods developed in this paper,2 we find a
“bump” of query nodes in the interaction graph, as shown
in Figure 3. In the figure, nodes in grey are nodes re-
trieved in local-access fashion. Note that the number of
retrieved nodes are a mere 1.4 k out of the total 43 k of
the entire graph.3 Query nodes are denoted with color:
red for query nodes that are identified in the maximum-
discrepancy subgraph (the “bump”) and blue for nodes out-
side the maximum-discrepancy subgraph. The total number
of nodes inside the maximum-discrepancy subgraph is 69,
but only 9 of them (13%) are non-query nodes. In contrast,
among all retrieved nodes, 86% are non-query nodes. These

2. Specifically, we employ AdaptiveExpansion expansion, com-
bined with BFS-Tree optimization; see Section 4.

3. For the purposes of illustration, we do not depict nodes of degree 1
in Figure 3.

Figure 3: Use case: Twitter interaction graph. The graph in
the figure shows the portion of the graph extracted via
local-access calls. Colored nodes (red or blue) are query

nodes for the query ‘iraq syria obama’.

numbers corroborate the claim that the “bump” we identify
consists of closely placed nodes in the graph.

To summarize the local-access model, a single call to the
get-neighbors function retrieves all neighbors of a given
node. The function only returns the neighbor nodes, not any
edges that possibly exist between the neighbors; to obtain
those, further function calls are needed. Our objective is to
devise algorithms that, given as input a set of query nodes, find
the maximum-discrepancy connected subgraph using as few calls
to the get-neighbors function as possible.

In addition, we consider the discrepancy-maximization
problem under an unrestricted-access model. In that model,
the algorithm can access nodes and edges of the graph in
an arbitrary manner. To the best of our knowledge, the
discrepancy-maximization problem has not been considered
in graphs even under the unrestricted-access model. We also
provide algorithms that aim to find the maximum-discrepancy
connected subgraph in the unrestricted-access model.

The solution for the local-access model that we propose
is based on a two-phase approach. In the first phase, we
make calls to the get-neighbors function to retrieve a
subgraph. We show that, in many cases, the optimal sub-
graph can be found without retrieving the entire graph.
In the second phase, we can use any algorithm for the
unrestricted-access model on the retrieved subgraph.

The rest of the paper is structured as follows. In Sec-
tion 2, we revisit previous work on bump hunting and dis-
crepancy maximization and we position our work relative
to it. In Section 3, we provide a formal problem definition.
Sections 4 and 5 detail our technical contributions:

• We prove that the problem of linear-discrepancy max-
imization on graphs is NP-hard in the general case
(Section 4.1). To the best of our knowledge, it is the first
time this problem is considered in the literature.
• We prove that the problem has a polynomial-time so-

lution when the graph is a tree, and exploit that ob-
servation to define fast heuristic algorithms to produce
solutions for the general case (Section 4.1).

• We explain how to tailor the aforementioned algorithms
to the local-access model (Section 4.2).
• We compare the performance of the discussed algo-

rithms on real and synthetic data (Section 5).

We conclude in section 6 with a summary of our findings,
and discuss possible directions of future work.

2 RELATED WORK

Bump-hunting. Bump hunting as a general problem has
been studied under various names in the literature. For a
review of bump-hunting research we refer the reader to the
survey of Novak et al. [5]. Below we give a brief overview.

Kulldorff [6] phrases the problem as that of finding a
single region in a Euclidean space where occurrences of
some observations are significantly more frequent than ex-
plained by a baseline process. A lot of research has focused
on efficient methods for two-dimensional (spatial) input.
Dobkin et al. [2], Neill and Moore [7], [8], as well as Agarwal
et al. [3], [4] consider fast algorithms for a two-dimensional
grid. For high-dimensional data the problem was consid-
ered by Friedman and Fisher [1], and later by Neill et al. [9].
Moreover, Wang et al. [10] consider a generalization of scan
statistics to graphs, looking for subgraphs with statistically
large number of edges. This line of work is also similar
to data-mining literature about subgroup discovery [11],
contrast set mining [12], and emerging pattern mining [13].

In general, most of the work on bump hunting is con-
cerned with the task of identifying subsets in the data that
are somehow different from the entire data. The various
approaches to this general problem are mainly set apart by
1) the precise way this difference is quantified, 2) how the
subset is identified (or described), and 3) by the algorithmic
approaches taken to find the bump. For instance, Neill and
Moore [7], [8] focus on two-dimensional data, identify the
subset with a bounding rectangle, use density to quantify
the difference, and search using a recursive, top-down par-
titioning scheme. Or, subgroup discovery [11] approaches
in general measure difference using some variant of clas-
sification accuracy, describe the bump via a conjunction of
multiple conditions, and employ heuristic search over all
possible descriptions. In this paper we quantify the bump
using linear discrepancy, require the bump to be a connected
subgraph, and propose a number of different algorithms for
finding the bump.

Finding interesting subgraphs. The discrepancy maximiza-
tion problem for graphs is related to works that aim to find
interesting subgraphs for a given set of “seed nodes.” We
point out that this problem is different than that of com-
munity detection [14], that is mainly concerned with finding
interesting subgraphs (often in terms of density) - even
though there are community detection algorithms that fol-
low a seed set expansion approach (e.g., [15]). Along those
lines, Andersen and Lang [16] study algorithms that, given a
seed set, find a subgraph of small conductance, while Sozio
and Gionis [17] aim to find a subgraph with large minimum
degree. Center-piece subgraphs [18] consist of nodes that
connect a given (small) set of query nodes well. Somewhat
related is work by Akoglu et al. [19] that proposes to find a
good connection subgraph for a large set of input points.

Perhaps the work conceptually closest to ours is that by
Seufert et al. [20], that aims to find cardinality-constrained
trees in node-weighted graphs that maximize the sum of
node weights. The problem they consider differs from ours
in that the cardinality (size) of the result subgraph is not
specified as input in our problem, and that we consider
a different weighting scheme for nodes (common positive
value for query nodes and common negative value for non-
query nodes, rather than individual positive-value weights).
Local access. Finally, the local access setting has been con-
sidered in computational problems that arise in the context
of web graphs – e.g., web crawling, graph streaming, or
graph computations (e.g., pagerank). For instance, Riedy
et al. [21] rely on local graph expansions to determine
whether an edge deletion cleaves a connected component
of graph, while Gleich et al. [22] use local graph expansions
to approximate personalized Pagerank scores.

3 SETTING & PROBLEM DEFINITION

The discrepancy function. We consider a graph G = (V,E)
with n nodes V and m edges E. Additionally, a set of query
nodes Q ⊆ V is provided as input. Regarding terminology,
for the purposes of presentation, we will be using the term
component to refer to any connected subgraph of G.4

Let C = (V
C
, E

C
) be any component (i.e., connected

subgraph) of G. Let Q
C

be the set of query nodes Q
contained in the component C , that is, Q

C
= Q ∩ V

C
, and

define p
C

to be the number of those query nodes, that is,
p

C
= |Q

C
|. Similarly define n

C
= |V

C
\ Q| the set of non-

query nodes contained in C .
Definition 1. Given a graph G = (V,E) and a component C

of G, and given some parameters α > 0 and β < 0, we
define the linear discrepancy g(C) of C as

g(C) = g(p
C
, n

C
) = αp

C
+ βn

C
.

Without loss of generality, for the rest of the paper, we fix
the value of β to β = −1 and let the value of α > 0 vary. In
other words, we define linear discrepancy as

g(C) = g(p
C
, n

C
) = αp

C
− n

C
.

Note that the only requirement we set for a componentC
is to be connected. Also note that the discrepancy function
g(C) takes into account information only about the nodes
in C (the number of nodes in C that are query nodes
vs. the number of those that are not) and no information
regarding the edges in C . Thus, the discrepancy function
g(C) is independent of the edge structure of C , except the
fact that C is connected. Note also that between components
with the same fraction (density) of query nodes, the linear
discrepancy will favor the largest component.

In what follows, a component C of the graph G is
defined by its set of nodes V

C
. In a similar manner, we will

be using set notation to denote node-based operations on
components. Specifically, for two components C1 and C2,
the expression C1 ⊕ C2, where ⊕ denotes any set operation
∪,∩, \, etc., has the following meaning

C1 ⊕ C2 = G(V
C
, E

C
),

4. Note that our usage of the term ‘component’ deviates from its
usual definition as maximal connected subgraph.

such that V
C
= V

C1
⊕ V

C2
and E

C
= {(u, v) | u, v ∈ V

C
}. In

other words, C1 ⊕ C2 is the subgraph induced from the node
set V

C1
⊕ V

C2
. Note that, according to our definitions, the

subgraph C1 ⊕ C2 is not necessarily a component as it may
not be connected.

Having defined the discrepancy function, we can now
state the generic problem that we consider in this paper.
Problem 1 (MAXDISCREPANCY). Given a graph G = (V,E)

and a set of query nodes Q ⊆ V , find a connected
component C of G that maximizes the discrepancy g(C).

We consider solving the MAXDISCREPANCY problem
in two different settings, the local-access model and the
unrestricted-access model. An access model here refers to how
we are accessing information about the graph G.
Local-access model. In the local-access model we assume
that initially only information about the query nodes Q is
available. Information about the rest of graph is revealed
through calls to a node-neighbor function N . In particular,
we assume that the graph G is stored in a database, which
provides an implementation to a function N : V → 2V that
takes as input a node u ∈ V , and returns as output the set
of all neighbors of u in G, i.e., N(u) = {v ∈ V | (u, v) ∈ E}.

In the local-access model we assume that a set of con-
nected components of G is known at any time. Initially,
this set of components consists of the query nodes Q as
singleton components. At any time instance, we can select
one node u from the “boundary” of a connected component
and issue the query N(u). A node u is considered to be
in the boundary of its connected component, if the query
N(u) has not being issued before for that node. Once the
query N(u) is issued, the neighborhood of u is discovered,
and the node u does not belong to the boundary of its
component any more. Some of the nodes returned by N(u)
may be in the boundary of a connected component, in
which case it means that we have discovered new edges
and expanded our knowledge of the graph structure. In
particular, if a query N(u) returns a node v that belongs in
another connected component, we can merge the connected
components of u and v.

The cost of an algorithm that operates in the local-
access model is the number of times that the algorithm
issues a query to function N . For components that have
been discovered, we assume that we can apply any process
of polynomial-time complexity, and this complexity does
not account in cost model of the local-access algorithm. In
practice of course, we may want to restrict the complexity of
the computation that we can perform for discovered com-
ponents, for instance, in linear, n log n, or at most quadratic.
Unrestricted-access model. The unrestricted-access model
is the standard computational model, in which the graph G
is given as input, and the cost model accounts for all oper-
ations. Note that the model allows that only a part of the
whole underlying graph is known. However, computation
is performed only on the known part of the graph, there is
no exploration phase to discover new parts of the graph.

4 ALGORITHMS

In this section, we first establish the complexity of MAX-
DISCREPANCY and then present our algorithms. We start

our discussion with the unrestricted-access model, since it
is the more standard and familiar setting.

4.1 Unrestricted-access model

Problem complexity. It can be shown that the MAX-
DISCREPANCY problem in the unrestricted-access model is
NP-hard. The proof is given in the Appendix.

Proposition 1. The MAXDISCREPANCY problem is NP-hard
in the unrestricted-access model.

Connection to Steiner trees. Even though we obtained the
hardness proof via a transformation from the SETCOVER
problem, it turns out that MAXDISCREPANCY problem is
also related to the prize-collecting Steiner-tree problem (PCST).
This is an interesting connection, because it can guide the
algorithmic design for the MAXDISCREPANCY problem.

The PCST problem, in the general case, is defined as fol-
lows. We are given a graph G = (V,E, d), where d : E → R
is a distance function on the edges of G. We are also given
a set of terminal nodes S ⊆ V and a weight function
w : S → R that assigns positive weights on the terminals.
The goal is to find a Steiner tree T in G, so as to minimize
the objective

D(T) +
∑

u∈S\T

w(u), (1)

where D(T) is the sum of distances of all the edges in the
tree T . The term “prize collecting” conveys the intuition that
the weights on the nodes of the graph represent prizes to be
collected and the goal is to find a tree that minimizes the
tree cost and the total value of prizes not collected.

It is not difficult to see that the MAXDISCREPANCY
problem is a special instance of the PCST problem: Let
C = (V

C
, E

C
) be a component in the MAXDISCREPANCY

problem, given an input graph G and query nodes Q. The
discrepancy on C is

g(C) = α|Q ∩ V
C
| − |V

C
\Q|

= (α+ 1)|Q ∩ V
C
| − (|Q ∩ V

C
|+ |V

C
\Q|)

= (α+ 1)|Q ∩ V
C
| − |V

C
|.

Maximizing g(C) is thus equivalent to minimizing

(α+ 1)|Q| − 1− g(C) = (α+ 1)|Q \ V
C
|+ |V

C
| − 1,

since the term (α+ 1)|Q| − 1 is a constant.
The term (α + 1)|Q \ V

C
| can be interpreted as the total

weight of query nodes not covered byC , assuming that each
query node has weight (α+ 1), while the term |V

C
| − 1 can

be interpreted as the sum of edges of any tree spanning C ,
assuming that the all edges have distance 1.

Thus, the component C that maximizes discrepancy in
G with query nodes Q, is the optimal tree in a PCST instance
where the terminal nodes are the query nodes, all terminal
nodes have weight (α+ 1), and all edges have distance 1.

The PCST problem is also NP-hard, however, it can be
approximated within a constant factor. In particular, Goe-
mans and Williamson [23] provide a primal-dual algorithm
with approximation guarantee (2 − 1

n−1), where n is the
number of nodes in the input graph. More recently, Archer

et al. [24] show that the approximation ratio can be bounded
by a constant (independent of n) that is less than 1.96.

Although an optimal solution for the MAXDISCREPANCY
problem corresponds to an optimal solution for the PCST
problem, since our mapping involves subtracting the objec-
tive functions from a constant, it follows that approximation
guarantees for the PCST problem do not carry over to MAX-
DISCREPANCY. Nevertheless, the primal-dual algorithm of
Goemans and Williamson is an intuitive algorithm for MAX-
DISCREPANCY, too, and we employ it as a heuristic for this
problem. Additionally, we can show that in the special that
the graph G is a tree, the MAXDISCREPANCY problem can
be solved optimally in linear time. This is discussed next.

Optimal algorithm for trees. When the graph G is a tree,
we can solve the MAXDISCREPANCY problem optimally,
in linear time O(|G|), using dynamic programming. The
algorithm, named TreeOptimal, is shown as Algorithm 1.
Note that any connected component of a tree is also a tree.
TreeOptimal exploits the following optimal substructure of
the problem: let r

G
be a node of G, arbitrarily selected as

root, and T1, . . . , Th be the sub-trees below r
G

, each rooted
at a different node r1, . . . , rh. For any tree T with root r,
let opt(T) be the discrepancy of an optimal solution of
MAXDISCREPANCY on T , and let con(r, T) be the maximum
discrepancy of any component of T that contains the root r.
Then, for graph G and its root r

G
we have

con(r, T) = g(r
G
) +

∑
con(ri,Ti)>0

con(ri, Ti), (2)

and

opt(T) = max

{
con(r, T), max

i=1,...,h
{opt(Ti)}

}
, (3)

where g(r
G
) = g(1, 0) = α if r

G
∈ Q and g(r

G
) =

g(0, 1) = −1 otherwise. Equation (2) expresses the fact that
among all the connected components of G that include its
root r

G
, the component that includes all the sub-trees of

r
G

that have positive discrepancy con(ri, Ti), is the one
that maximizes the discrepancy. Equation (3) expresses the
fact that the optimal solution of MAXDISCREPANCY either
includes the root r

G
or is entirely included in one of the sub-

trees T1, . . . , Th of root r
G

. TreeOptimal returns both values
con(r, T) and opt(T) when applied on a tree T , and the
optimal discrepancy for G is opt(G), and the values are
computed recursively, as specified in Algorithm 1.

Heuristics for the general graph case. Next we discuss
the heuristics for the general case, when the graph G is
not necessarily a tree. As mentioned above, in this general
case, the MAXDISCREPANCY problem in the unrestricted-
access model is NP-hard. All heuristics aim at first finding
a subtree of the input graph, and then applying the Tree-
Optimal algorithm described before. We study the following
heuristics: (i) BFS-trees from each query node, (ii) minimum
weight spanning tree where edge weights are assigned
according at random, (iii) minimum weight spanning tree
where edge weights are assigned according to a simple
heuristic based on their endpoints, and (iv) the Primal-Dual
algorithm for PCST. They are described in detail below.
Breadth-first search trees (BFS-Tree): A very simple way
to obtain trees for a given graph and a set of query nodes

Algorithm 1 TreeOptimal

Input: Tree T , root node r, query nodes Q
Output: Max-discrepancy of any component of T
Ccon ← ∅
Copt ← ∅
for children ri of r do
(con(ri, Ti), opt(Ti))← TreeOptimal(Ti, ri, Q)
Ccon ← Ccon ∪ {con(ri, Ti)}
Copt ← Copt ∪ {opt(Ti)}

if r ∈ Q then
con(r, T)← g(1, 0)

else
con(r, T)← g(0, 1)

con(r, T)← con(r, T) +
∑
{c ∈ Ccon : c > 0}

opt(T) = max{con(r, T),max(Copt)}
return (con(r, T), opt(T)) // pair of values

Q is to perform breadth-first search (BFS) from every node
u ∈ Q. The BFS-Tree heuristic follows exactly this strategy. It
computes all BFS trees, one for each query node, it computes
the maximum discrepancy solution for each tree, using the
TreeOptimal algorithm, and it returns the best solution.

Random spanning tree (Random-ST): Instead of computing
BFS from every query node, we can work with a random
tree that spans the query nodes. We sample such a random
tree, by assigning a random weight (uniformly from [0, 1])
to every edge, and computing the minimum weight span-
ning tree. The Random-ST heuristic works by computing
a number of such random spanning trees, computing the
maximum discrepancy solution for each tree, using the Tree-
Optimal algorithm, and returning the best solution found.

Smart spanning tree (Smart-ST): The previous two heuris-
tics run TreeOptimal possibly hundreds of times. A more
efficient method is to first find a good tree, and run the Tree-
Optimal algorithm once on this tree. Intuitively a tree is good
if the connectivity between the query nodes is maintained
well. That is, if the distance between two query nodes is
low in the graph, their distance in the tree should be low as
well. A simple heuristic to achieve this is to systematically
assign weights to the edges so that the minimum spanning
tree avoids edges that are not adjacent to at least one query
node. More formally, we assign every edge (u, v) the weight

w(u, v) = 2− I{u ∈ Q} − I{v ∈ Q}, (4)

where I{·} is the indicator function. The Smart-ST heuristic
works by first assigning the edge weights according to
Equation 4, finding the minimum weight spanning tree, and
finally computing the optimal solution from the tree using
TreeOptimal.

Prize-collecting Steiner-tree heuristic (PCST-Tree): As dis-
cussed above, the MAXDISCREPANCY problem can be
viewed as the prize-collecting Steiner-tree problem (PCST).
We convert an instance of MAXDISCREPANCY to a PCST
instance by letting w(u, v) = 1 for every edge (u, v), and
setting the cost of a query node node (w(u) in Equation 1)
to α + 1, and the cost of every other node to 0. An optimal
Steiner tree for this PCST instance will also have maximum
discrepancy as measured by the function g.

The PCST-Tree heuristic first does the above conversion,
then uses the Goemans-Williamson approximation algo-
rithm for PCST [23] to compute a forest of disjoint trees.
Then, for every tree in the resulting forest, the heuristic runs
TreeOptimal, and it returns the best solution that it finds.

Note that the factor-2 approximation guarantee for PCST
does not translate into a constant factor approximation for
MAXDISCREPANCY. However, since there is a direct corre-
spondence between the solutions of the two problems, we
opt to use this algorithm as a reasonable heuristic.

4.2 Local-access model
Having discussed the complexity of the problem and
presented heuristic algorithms to solve it under the
unrestricted-access model, we now turn our focus to the
local-access model. Under the local-access model, our input
consists only of the query nodes Q, while the the rest of
graph G = (V,E) is accessible through a node-neighbor
functionN . The functionN takes as argument one node and
returns the list of its neighbors in the graph G. Unlike in the
unrestricted-access model, we can now access the edges of
G only through the node-neighbor function.

To solve the problem under the local-access model, a
brute-force approach would be to invoke the function N
repeatedly, until we retrieve the entire graph G, i.e., first
invoke function N to retrieve the neighbors of nodes in Q,
then invoke N to retrieve the neighbors of neighbors, and
so on, until we retrieve the entire G; and then apply on G
the algorithms from the unrestricted-access model.

In many settings however, as we discussed in our intro-
duction, invoking the function N can be slow and costly.
Moreover, having access to the entire graph is not necessary
as long as we have access to a subgraph that contains the
optimal solution. Ideally, we should be able to solve MAX-
DISCREPANCY even over an infinite graph G, as long as the
set of query nodesQ is finite. We are thus interested in limit-
ing the number of invocations of function N , retrieving only
a small part of graph G that contains the optimal solution,
and solving MAXDISCREPANCY on that, by employing one
of the algorithms from the unrestricted-access model.

Specifically, to solve MAXDISCREPANCY, we first invoke
function N a number of times to retrieve a subgraph G

X

of G, and then, as a second step, we apply one of the
aforementioned heuristics for the unrestricted-access model.
We refer to the first step of our approach as the “expansion”
step, since it builds G

X
by expanding the neighborhood of

nodes Q through invocations of the function N . Obviously,
for the algorithm that implements the expansion step it is
desirable that it returns a subgraph G

X
that contains the

optimal solution, and that it invokes the function N only a small
number of times.

We discuss three algorithms that implement the expan-
sion step: FullExpansion, ObliviousExpansion, and Adaptive-
Expansion. All three algorithms build the graph G

X
itera-

tively: at each iteration, they invoke the function N on some
or all nodes of G

X
on which N was not invoked before.

Full expansion. Our first expansion strategy, named Full-
Expansion and shown in Algorithm 2, is a conservative
strategy that is guaranteed to return a subgraph G

X
of

G that contains the optimal solution. It constructs one or

Algorithm 2 FullExpansion

Input: Query nodes Q, node-neighbor function N
Output: Graph G

X

G
X
← (Q, ∅)

Expanded← ∅
Frontier← Q
while Frontier 6= ∅ do

for f ∈ Frontier do
for n in N(f) do

Add edge (f, n) to G
X

Expanded← Expanded ∪ Frontier
Frontier← {c ∈ {V

GX
\Expanded} | c satisfies Eq. (5)}

return G
X

more components, the sum of the diameters of which is
O(|Q|).5 The algorithm builds the subgraph G

X
iteratively;

it starts by retrieving the neighbors of nodes Q, then the
neighbors of neighbors and so on, until the expansion has
gone far enough from all query nodes guarantee that the
optimal solution is contained within one of the connected
components of the expanded graph.

In more detail, among all nodes it has retrieved after each
iteration, FullExpansion distinguishes one subset of nodes as
the Frontier nodes, i.e., the nodes that should be expanded in
the next iteration. If c is one of the retrieved nodes that has
not been expanded yet at the end of one iteration, and Qc
are the query nodes reachable from c in G

X
, then c becomes

a Frontier node if the following condition holds:

min
q∈Qc

{d(c, q)} ≤ |Qc| · (α+ 1), (5)

where d(c, q) refers to the number of hops between c and
q in the graph G

X
. The algorithm terminates when the set

of Frontier nodes is empty, i.e., when the condition (5) does
not hold for any node that has been retrieved (i.e., a node of
G

X
) but has not been expanded yet.
According to Lemma 2, which we will formulate and

prove below, termination according to condition (5) is suf-
ficient to guarantee returning a graph G

X
that contains an

optimal solution. The proof for Lemma 2 uses the following
auxiliary result.

Lemma 1. Let OPT be a solution to MAXDISCREPANCY, and
denote by p

OPT
the number of query nodes in OPT, that

is, p
OPT

= |OPT ∩Q|. Then,

|OPT| ≤ (α+ 1) · p
OPT
− α.

Proof: We have that |OPT| − p
OPT

is the number of
non-query nodes in OPT. Moreover, it is easy to see that the
discrepancy of the optimal solution OPT has to be larger or
equal to the discrepancy of a component that consists only
of one query node. Therefore, by substituting these into the
linear discrepancy function, we get

α · p
OPT
− (|OPT| − p

OPT
) ≥ α · 1− 0,

from which we obtain |OPT| ≤ (α+ 1) · p
OPT
− α.

5. The diameter of a connected component is the maximum distance
between any two of its nodes.

Lemma 2. Let G
X

be the graph returned by FullExpansion.
Then, one of the connected components of G

X
contains

the optimal solution to MAXDISCREPANCY as its sub-
graph.

Proof: For the sake of contradiction, let us assume that
FullExpansion returns a graph G

X
that consists of disjoint

connected components C1, . . . , Ck, for some k ≥ 1, none
of which fully contains an optimal solution OPT; that is,
OPT 6⊆ Ci, i = 1, . . . , k.

We know, however, that at least one of the components
of G

X
overlaps with the optimal solution, since an optimal

solution has to contain at least one query node, and all query
nodes are contained inG

X
. That is, with p̂i = |Q∩Ci∩OPT|,

there should exist an i ∈ {1, 2, . . . , k} such that p̂i > 0.
We will reach a contradiction with Lemma 1 by showing

|OPT | ≥
∑

Ci:p̂i>0

|Ci ∩OPT| > (α+ 1) · pOPT − α. (6)

The first inequality of (6) follows immediately from basic
set properties. To show the second inequality, we first show
that

|Ci ∩OPT | > d(c, q) > p̂i(α+ 1), (7)

where p̂i > 0 and d(c, q) is the distance between any
q ∈ Q ∩ Ci ∩ OPT and any node c ∈ Ci ∩ OPT that
remains unexpanded after the termination of Algorithm 2
(i.e., c ∈ Ci ∩ OPT is a node that was added to Ci but did
not satisfy condition (5) to be expanded). The first inequality
of (7) follows from the fact that both c and q are nodes of
Ci ∩OPT ; therefore, if the distance between them is d(c, q),
then the node-size of the subgraph Ci ∩ OPT that contains
them has to be larger than d(c, q). The second inequality
of (7) follows from the stopping condition of FullExpansion:
it terminates when there is no node in G

X
that satisfies

condition (5). Therefore, for any q′ ∈ Q∩Ci and any node c′

that belongs to Ci but was not expanded by FullExpansion,
we have

d(c′, q′) > |Q ∩ Ci| · (α+ 1) ≥ |Q ∩ Ci ∩OPT | · (α+ 1)

and consequently, since p̂i = |Q ∩ Ci ∩OPT |,

d(c′, q′) > p̂i · (α+ 1). (8)

Therefore, since q ∈ Q ∩ Ci ∩ OPT ⊆ Q ∩ Ci and c ∈
Ci ∩OPT ⊆ Ci, inequality (8) holds for q and c as well:

d(c, q) > p̂i · (α+ 1). (9)

Having proved (7), we take the sum over all Ci’s with p̂i >
0, to get∑
Ci:p̂i>0

|Ci ∩OPT| >
∑

Ci:p̂i>0

p̂i(α+ 1) = (α+ 1)
∑

Ci:p̂i>0

p̂i

= (α+ 1) · p
OPT

> (α+ 1) · p
OPT
− α.

We have now proved the second inequality of (6), thus
completing the proof of the lemma.

So far, we’ve proven that FullExpansion uncovers a sub-
graph of G that contains the optimal solution and does so
by evaluating in polynomial time, at each expansion step,
the truth value of condition (5). Ideally, however, it would
also be desirable to prove that FullExpansion is tight, i.e. that

Algorithm 3 ObliviousExpansion

Input: Query nodes Q
G

X
:= (Q, ∅)

for i = 1 to (1 + α) do
Expand all unexpanded nodes in G

X

Add their neighbors and edges to G
X

return G
X

it does not retrieve a bigger part of G than necessary (under
the condition that it need run in polynomial time, that is).
Let us consider an expansion algorithm Aµ that is identical
to FullExpansion, except possibly for the expansion criterion

min
q∈Qc

{d(c, q)} ≤ |Qc| · µ(α), (10)

where µ = µ(α) is a function of α only, thus considered
fixed for a given instance of Problem 1. We have the follow-
ing lemma.

Lemma 3. If µ(α) < 1
2α, then there exist instances of

Problem 1 where the graph G
X

returned by Aµ does
not contain an optimal solution.

Proof: Let µ = µ(α) = α
2 − δ, δ > 0. We construct a

‘star’ graph with n + 1 query nodes, Q = {u0, u1, . . . , un}
and node u0 at its centre, as shown in Figure 4. Query node
u0 is connected to each of the other query nodes via single
paths over an even numberm = 2κ of non-query nodes. For
the problem instance we supply α = m+2ε, with 0 < ε < δ.
Then, it is easy to see that, according to formula 10, the
expansion by algorithm Aµ reaches a distance d from each
query node, with

d = d1×µe = dα
2
−δe = dm/2+ ε−δe = dκ+(ε−δ)e ≤ κ,

thus failing to retrieve the entire graph G. It is easy to see
that the best solution contained in retrieved subgraph G

X

consists of a single query node and has discrepancy equal
to g

X
= α. On the other hand, the entire graph G has a

discrepancy score of

g = α · (n+ 1)−m · n = (α−m) · n+ α = 2ε+ α > g
X
.

We conclude that the retrieved graph G
X

does not contain
an optimal solution.

Lemma 3 does not allow us to claim that FullExpansion is the
tightest expansion algorithm with a polynomial expansion
condition, but it does allow us to claim that its expansion
condition is not significantly looser than the optimal one.

While FullExpansion guarantees to return a graph G
X

that contains the optimal solution, we found that in practice
it is extremely inefficient. This is because the sum of the
diameters of all the connected components of graph G

X

can grow up to O(|Q|), which means that, even for mod-
erately dense graphs and query sets Q of moderate size,
FullExpansion eventually retrieves the entire graph G.

To alleviate this problem, we propose two improved
strategies, ObliviousExpansion and AdaptiveExpansion.

Oblivious expansion. This expansion strategy simply per-
forms (1 + α) expansion iterations from query nodes Q.
ObliviousExpansion is outlined as Algorithm 3. To compare

u1

u2

u3

un

u0

m

Figure 4: Constructed graph used in proof of lemma 3. The
dashed lines indicate the limit of expansion for algorithm

Aµ.

> 2(1+α) > 2(1+α) > 2(1+α)

query node

non-query
node

retrieved by FullExpansion
retrieved by ObliviousExpansion

C2

b

a

C1

l > 2(1+α)

Figure 5: The example shows two problem instances with
α = 1. In case (a), FullExpansion and ObliviousExpansion behave
identically, as they retrieve the same set of nodes before

they terminate. In case (b), FullExpansion expands more nodes
than ObliviousExpansion and uncovers a solution of higher

discrepancy.

its behavior with FullExpansion, let us consider two different
cases for graph G, as depicted in Figure 5.

In Figure 5(a), the graph G is a linear graph, where
nodes Q fall far from each other (the distance between two
consecutive query nodes is larger than 2(1 + α)). In that
case, FullExpansion and ObliviousExpansion behave identi-
cally: they expand by (1 + α) from each query node and
stop, with a retrieved graph G

X
that consists of |Q| distinct

connected components, one for each query node.
In Figure 5(b), on the other hand, the graph G is a linear

graph again, however query nodes C2 ⊆ Q are clustered in
tightly in two areas of the graph. They are separated by l
non-query nodes, where

2(1 + α) < l = |C1| · α+ |C2| · α.

In that case, ObliviousExpansion will only expand (1 + α)
nodes from each query node (thick-ringed nodes in Fig-
ure 5(b)), while FullExpansion will expand far enough to
retrieve a connected component that includes all query
nodes (gray-filled nodes in Figure 5(b)) and has higher
discrepancy than C1 or C2 alone, as it is easy to check.

Adaptive expansion, shown as Algorithm 4, takes a differ-
ent approach than the previous two expansion algorithms.

Algorithm 4 AdaptiveExpansion

Input: Query nodes Q
G

X
← (Q, ∅)

Expanded← ∅
Frontier← Q
while Frontier 6= ∅ and # components of G

X
> 1 do

NewFrontier← ∅
for connected component C of G

X
do

f = random node from Frontier(C)
for n in N(f) do

Add edge (f, n) to G
X

If n 6∈ Expanded Then add n to NewFrontier
Expanded← Expanded ∪ Frontier
Frontier← NewFrontier

if Time to update solution quality estimate then
Calculate gLB and gUB

if gLB ≥ gUB then
return G

X

return G
X

The main differences are the following:

• in each iteration, AdaptiveExpansion randomly selects
a small number O(|Q|) of not-yet-expanded nodes to
expand; and
• the termination condition of AdaptiveExpansion depends

on a heuristic estimate of its approximation ratio (i.e.,
how close is the current optimal solution on G

X
with

respect to the optimal solution on G).

Unlike the previous two algorithms that might invoke
the node-neighbor function N on all not-yet-expanded
nodes at each iteration, AdaptiveExpansion is more frugal in
invoking the function N . The rationale for this approach is
that for densely connected graphs, as real networks usually
are, a small number of edges is enough to preserve the con-
nectivity of a connected graph. In such settings, therefore, it
is possible for AdaptiveExpansion to uncover the nodes of a
large and densely connected component of G that contains
many of the query nodes Q. The advantage of this approach
is that Algorithm 4 can quickly uncover a graph G

X
that

provides a solution that is close to optimal.
At the core of the AdaptiveExpansion algorithm is a

stopping condition that allows it to avoid unnecessary ex-
pansions. To decide whether expansion should be termi-
nated, AdaptiveExpansion periodically computes an upper
bound g

UB
to the optimal discrepancy g(OPT), as well

as a lower bound g
LB

of the discrepancy of the optimal
MAXDISCREPANCY solution on G

X
. Computing these es-

timates can be computationally demanding, therefore the
algorithm does not update them after every expansion, but
at predefined intervals.

Specifically, at the end of such an interval, Adaptive-
Expansion selects randomly k not-yet-expanded nodes
r1, . . . , rk from each component of G

X
, for some small k

specified as a parameter of the algorithm.6 Subsequently, it
computes k BFS trees with each ri as its root, and computes
the discrepancy of these trees using the TreeOptimal algo-

6. In all our experiments, we used k = 5, as we observed well
behaving estimates for that value of k.

unexpanded node on the periphery of component

rtree of
positive

discrepancy

tree of
negative

discrepancy

Figure 6: To calculate g
LB

and g
UB

, AdaptiveExpansion builds
BFS trees for each connected component of G

X
. The

maximum discrepancy on any of those trees is used as g
LB

.
To calculate g

UB
, it sums the positive discrepancies of BFS

trees that include at least one node on the periphery of the
connected components.

Table 1: Dataset statistics (numbers are rounded).

Dataset |V | |E|
Geo 1 · 106 4 · 106
BA 1 · 106 10 · 106
Grid 4 · 106 8 · 106
Livejournal 4.3 · 106 69 · 106
Patents 2 · 106 16.5 · 106
Pokec 1.4 · 106 30.6 · 106

rithm. The lower bound g
LB

is the maximum discrepancy
found in these BFS trees.

Regarding g
UB

, it is computed as follows: for the un-
expanded nodes ri and the corresponding BFS trees that
provided the best discrepancy for each component of G

X
,

AdaptiveExpansion maintains the discrepancy dr of the best
solutions that include r. For the components that have
dr > 0, the algorithm computes the sum s =

∑
dr and

estimates g
UB

as g
UB

= max{g
LB
, s}.

The rationale is that, as nodes r have not been expanded
yet, it is possible they are connected on G. If some of
them are connected, then it is possible to have a solution
of discrepancy s =

∑
dr; dr > 0, as described above. The

approach is illustrated in figure 6.
The algorithm terminates when g

UB
≤ g

LB
.

5 EXPERIMENTS

In this section, we present the results from an experimental
evaluation on both synthetic and real-world graphs. The
purpose of our experiments is to study and compare the
performance of the different expansion strategies, as well as
the algorithms that solve the MAXDISCREPANCY problem
under the unrestricted-access model. The code and data
used for our experiments are publicly available.7

5.1 Datasets
We use three synthetic graphs (Grid, Geo, and BA) and three
real-world graphs (Livejournal, Pokec, Patents). All
graphs used in the experiments are undirected and their
sizes are reported in Table 1.

Grid is a simple 2M × 2M grid, in which most nodes
(all other than the ones on the periphery of the grid) have

7. http://research.ics.aalto.fi/dmg/software.shtml

degree equal to four (4). Geo is a geographical near-neighbor
network: It is generated by selecting 1M random points in
the unit square in R2, and then connecting as neighbors
all pairs of points whose distance is at most 0.0016 from
each other, yielding an average degree of ≈ 8. BA is a
random graph generated by the Barabási-Albert model,
with parameters n =1M, and m = 10.

Livejournal, Pokec, and Patents are all real-world
graphs obtained from the Stanford Large Network Dataset
Collection.8 Livejournal and Pokec are extracted from
the corresponding online social networks, while Patents
is a citation network.

5.2 Evaluation methodology
We now describe our evaluation framework. One experi-
ment in our evaluation framework is defined by (1) a graph
G, given as input to the problem, (2) a set of query nodes Q,
given as input to the problem, (3) an expansion algorithm,
to invoke API function N and expand Q to G

X
, and (4) a

MAXDISCREPANCY algorithm, to solve the problem on G
X

in the unrestricted-access model.
Specifically, the graph is always one of the datasets

described in Section 5.1. The expansion algorithm is either
ObliviousExpansion or AdaptiveExpansion, both described in
Section 4.2. Results from FullExpansion are not reported here,
as it proved impractical for larger datasets. The algorithm
to solve MAXDISCREPANCY is one of BFS-Tree, Random-
ST, PCST-Tree, and Smart-ST, described in Section 4.1. And
lastly, query nodes Q are selected randomly, with the pro-
cess described next.

Query nodes Q are generated as follows. As a first step,
we select one node c from graphG, uniformly at random. As
a second step, we select a sphere S(c, ρ) of predetermined
radius ρ, with c as a center. As a third step, from sphere
S(c, ρ) we select a set of query nodes Q

S
of predetermined

size s. Selection is done uniformly at random. Finally, we
select a predetermined number of z random query nodes
from outside all spheres. To generate Q, we set varying
values to:
• the number k of spheres S(c, ρ),
• the radius ρ of spheres,
• the number of query nodes s = |Q

S
| in each sphere

S(c, ρ),
• the number of query nodes z outside all spheres.

Note that, while generating Q, we make sure that the
randomly selected sphere S(c, ρ) is large enough to accom-
modate s query nodes; if this is not the case, then we repeat
the random selection until we obtain a sphere with more
than s nodes.

We create experiments with all possible combinations
of graphs, expansion algorithms, and MAXDISCREPANCY
algorithms, and for each combination we create 20 different
instances, each with a different random set of query nodes.
For each experiment, we measure the following quantities:
(1) number of API calls (i.e., invocations of function N) to
expand G into G

X
, (2) size of G

X
as number of edges, (3)

discrepancy of solution, (4) accuracy of solution, (5) running
time of MAXDISCREPANCY algorithm.

8. http://snap.stanford.edu/

The number of API calls, as well as the size of G
X

are used to compare expansion algorithms: the first mea-
sure is of obvious interest under the local-access model,
while the second one influences the running time of MAX-
DISCREPANCY algorithms. The rest of the measures are used
to compare the performance of MAXDISCREPANCY algo-
rithms. Discrepancy and running time measure the quality
of the solution and the efficiency of algorithms. Accuracy is
defined as the Jaccard coefficient between query nodes in
the returned solution, and the best matching sphere S(c, ρ)
in the planted query nodes Q.

All quantities are measured as averages over all experi-
ment instances with the same parameters.

We also note that for all the experiments reported in
this section, the value of parameter α of the discrepancy
function g is set to α = 1. As per Section 3, α can be set to
any positive value, and thus account for different weighting
between query and non-query nodes. Results for other α
values are reported in the Appendix and confirm the main
insights we obtain from the results with α = 1, as reported
in the following two subsections, 5.3 and 5.4.

Implementation. All algorithms are implemented in Python
2.7 and each individual experiment was run on a dedicated
Intel Xeon 2.83 GHz processor, on a 32 GB machine. Each
graph G is stored in a separate MongoDB collection.9 Each
document in the collection stores the adjacency list of one
node in the form

(node id, [neighbor id, . . .])

with node id indexed as a key of the collection. One invoca-
tion of the API function N then, corresponds to the selection
of one document with a specified node id and the projec-
tion of the associated adjacency list [neighbor id, . . .].

To make the experiments run in a reasonable amount of
time, we gave the MAXDISCREPANCY algorithms 5 minutes
to terminate their run in a single experiment. If they failed
to produce a solution in 5 minutes, the process was killed
and the evaluation moved on to the next experiment.

5.3 Results: expansion algorithms

To compare ObliviousExpansion and AdaptiveExpansion, we
ran a large number of experiments with different parameters
to generate Q, and in interest of presentation, here we report
what we consider to be representative results.

Table 2 shows the cost (number of API calls) as well
as the size (number of edges) of the retrieved graph G

X
.

Our main observation from this is that for Grid, Geo, and
Patents, ObliviousExpansion results in fewer API calls than
AdaptiveExpansion, while for BA, Pokec, and Livejournal
the situation is reversed. This agrees with the intuition
discussed in section 4.2 that, for densely connected graphs,
AdaptiveExpansion should be able to uncover the nodes of a
large and densely connected component of G that contains
many of the query nodes Q. Indeed, graphs BA, Pokec, and
Livejournal are more densely connected than Grid, Geo,
and Patents, and it appears that AdaptiveExpansion is able
to terminate significantly earlier than the (α+ 1) expansion
iterations of ObliviousExpansion.

9. http://www.mongodb.org

Table 2: Expansion table (averages of 20 runs)
k: number of spheres S(c, ρ), s: number of query nodes in

each sphere, cost: number of invocations of function N ,
size: number of edges in expanded graph

ObliviousExpansion AdaptiveExpansion
dataset s k cost size cost size
Grid 20 2 302 888 2783 7950
Grid 60 1 261 784 534 1604
Geo 20 2 452 2578 4833 30883
Geo 60 1 418 2452 578 3991
BA 20 2 3943 243227 114 6032
BA 60 1 4477 271870 135 7407
Patents 20 2 605 3076 13436 25544
Patents 60 1 620 3126 5907 13009
Pokec 20 2 3884 217592 161 7249
Pokec 60 1 4343 240544 116 5146
Livejournal 20 2 3703 348933 234 13540
Livejournal 60 1 4667 394023 129 7087

Running time (in sec)

1e+01 1e+03 1e+05

1e-02

1e-01

1e+00

1e+01

1e+02

expansion size (#edges)

BFS-Tree
Random-ST
PCST-Tree
Smart-ST

Figure 7: Running times of the different algorithms as a
function of expansion size (number of edges). We can see

that in comparison to PCST-Tree Smart-ST scales to inputs that
are up to two orders of magnitude larger.

Notice that, as expected, the number of edges in G
X

is
proportional to the number of API calls. The number of
edges is of interest as it affects directly the running time
of MAXDISCREPANCY algorithms, as shown in Figure 7.
Figure 7 contains one point for each experiment we ran,
with different algorithms indicated with different color.

Figure 8 shows a comparison of the expansion algo-
rithms in terms of how they affect the MAXDISCREPANCY
algorithms. Every point in the figures corresponds to the
same input (graph and set of query nodes), while the x and
y axes show the discrepancy obtained when the expansion
is done using AdaptiveExpansion and ObliviousExpansion,
respectively. As discrepancy takes a discrete set of values,
jitter has been added to the plots of Figure 8 to improve
readability. If the expansion algorithms had no effect, all
points would fall on the diagonal. However, we observe
that in particular with Random-ST using ObliviousExpansion

often leads to substantially worse accuracy than when using
AdaptiveExpansion. For BFS-Tree and Smart-ST the effect is
not as strong, with ObliviousExpansion leading to slightly
better performance (points are more likely to reside above
the diagonal).

5.4 Results: discrepancy maximization
Continuing our discussion on Figure 7, we observe that
Random-ST, BFS-Tree and Smart-ST scale to up to two
orders of magnitude larger inputs than PCST-Tree. This
behavior is well-aligned with the theoretical complex-
ity of the algorithms. Indeed, the running time of BFS-
Tree is O(|Q||E|), the running time of Random-ST is
O(I |E| log |E|), where I is the number of random trees
sampled, and the running time of Smart-ST isO(|E| log |E|).
On the other hand, the best implementation for PCST-Tree
is O(|V |2 log |V |) [25], while our non-optimized implemen-
tation has complexity O(|V ||E|). Thus, theory and practice
suggest that, from the perspective of efficiency, PCST-Tree is
the least attractive algorithm.

To compare the MAXDISCREPANCY algorithms in terms
of the quality of results, we measure and report the accuracy
and discrepancy of the returned solutions. The results are
shown in Tables 3 and 4.

Tables 3 shows the accuracy of the algorithms for differ-
ent graphs, query sets, and the two expansion algorithms.
Next to each reported value, we cite in parenthesis the
number of times the algorithm failed to finish in 5 minutes.

Our main observation is that there are no major differ-
ences across the different algorithms in terms of the accu-
racy of the solution found. The only exception to that rule
appears to be the case of ObliviousExpansion on the graphs
of Pokec and Livejournal, where BFS-Tree outperforms
the others. However, observe that if the solution must be
computed very fast, Smart-ST can be a feasible choice, as it
always finished within the 5 minute time limit.

Furthermore, we observe that for the synthetic networks
Grid and Geo the expansion algorithm used (Oblivious-
Expansion and AdaptiveExpansion) does not affect the accu-
racy of the solutions we obtain. (For BA, most experiments
exceeded the imposed time limit and therefore we do not
compare accuracy in its case). However, the measurements
in Table 3 show that ObliviousExpansion leads to solutions
of higher accuracy on real graphs. We believe this is again
explained by the larger expansions that are produced by
ObliviousExpansion for denser graphs.

Finally, Table 4 reports the discrepancy of returned solu-
tions. These measurements paint a picture similar to that
of Table 3: ObliviousExpansion can lead to better perfor-
mance at the cost of more API calls and for large, dense
graphs (BA, Pokec, Livejournal) PCST-Tree fails to pro-
duce results within the set time limit. Additionally, we
observe that Random-ST is consistently outperformed by the
other algorithms, and the difference in performance is most
pronounced in the case of real-world networks (Patents,
Pokec, Livejournal) and ObliviousExpansion.

5.5 Discussion on state-of-the-art methods
To the best of our knowledge, this is the first work to
study the discrepancy-maximization problem on graphs,

Table 3: Accuracy, averages of 20 runs

ObliviousExpansion AdaptiveExpansion
dataset s k BFS-Tree Random-ST PCST-Tree Smart-ST BFS-Tree Random-ST PCST-Tree Smart-ST
Grid 20 2 0.88 (0) 0.81 (0) 0.93 (0) 0.93 (0) 0.88 (0) 0.85 (0) 0.93 (0) 0.93 (0)
Grid 60 1 1.00 (0) 0.94 (0) 1.00 (0) 1.00 (0) 0.99 (0) 0.98 (0) 1.00 (0) 1.00 (0)
Geo 20 2 1.00 (0) 0.95 (0) 1.00 (0) 1.00 (0) 1.00 (0) 0.98 (0) 1.00 (0) 1.00 (0)
Geo 60 1 1.00 (0) 0.96 (0) 1.00 (0) 1.00 (0) 0.99 (0) 0.98 (0) 0.99 (0) 0.99 (0)
BA 20 2 0.47 (12) 0.18 (12) — (20) 0.46 (0) 0.46 (0) 0.44 (0) 0.46 (0) 0.45 (0)
BA 60 1 — (20) — (20) — (20) 0.77 (0) 0.76 (0) 0.76 (0) 0.77 (3) 0.76 (0)
Patents 20 2 0.92 (0) 0.86 (0) 0.91 (0) 0.90 (0) 0.72 (0) 0.74 (0) 0.77 (3) 0.74 (0)
Patents 60 1 0.89 (0) 0.76 (0) 0.89 (0) 0.89 (0) 0.74 (0) 0.73 (0) 0.74 (0) 0.74 (0)
Pokec 20 2 0.53 (2) 0.13 (3) — (20) 0.46 (0) 0.43 (0) 0.41 (0) 0.42 (2) 0.40 (0)
Pokec 60 1 0.74 (6) 0.09 (6) — (20) 0.61 (0) 0.48 (0) 0.46 (0) 0.45 (1) 0.45 (0)
Livejournal 20 2 0.62 (5) 0.19 (5) — (20) 0.54 (0) 0.56 (0) 0.53 (0) 0.58 (5) 0.56 (0)
Livejournal 60 1 0.88 (12) 0.26 (9) — (20) 0.68 (0) 0.65 (0) 0.62 (0) 0.62 (1) 0.62 (0)

Table 4: Discrepancy, averages of 20 runs

ObliviousExpansion AdaptiveExpansion
dataset s k BFS-Tree Random-ST PCST-Tree Smart-ST BFS-Tree Random-ST PCST-Tree Smart-ST
Grid 20 2 14.5 (0) 11.8 (0) 16.8 (0) 16.7 (0) 14.8 (0) 13.8 (0) 16.4 (0) 16.3 (0)
Grid 60 1 41.0 (0) 36.9 (0) 41.0 (0) 41.0 (0) 40.5 (0) 38.9 (0) 40.9 (0) 40.9 (0)
Geo 20 2 19.9 (0) 18.4 (0) 20.0 (0) 20.0 (0) 19.9 (0) 19.2 (0) 20.0 (0) 20.0 (0)
Geo 60 1 22.0 (0) 20.6 (0) 22.0 (0) 22.0 (0) 21.8 (0) 21.6 (0) 21.8 (0) 21.8 (0)
BA 20 2 15.0 (12) 2.8 (12) — (20) 15.2 (0) 15.6 (0) 14.4 (0) 14.4 (0) 15.0 (0)
BA 60 1 — (20) — (20) — (20) 36.1 (0) 37.4 (0) 35.3 (0) 35.9 (3) 35.5 (0)
Patents 20 2 17.4 (0) 15.8 (0) 17.7 (0) 17.6 (0) 14.9 (0) 13.8 (0) 15.8 (3) 14.8 (0)
Patents 60 1 40.0 (0) 31.1 (0) 40.8 (0) 40.6 (0) 33.0 (0) 32.2 (0) 33.2 (0) 33.3 (0)
Pokec 20 2 11.6 (2) 2.6 (3) — (20) 11.8 (0) 8.6 (0) 8.0 (0) 8.2 (2) 8.0 (0)
Pokec 60 1 36.6 (6) 4.7 (6) — (20) 28.6 (0) 20.9 (0) 17.4 (0) 18.3 (1) 18.5 (0)
Livejournal 20 2 14.3 (5) 3.5 (5) — (20) 13.8 (0) 11.8 (0) 9.8 (0) 10.8 (5) 10.2 (0)
Livejournal 60 1 45.6 (12) 12.0 (9) — (20) 31.1 (0) 29.8 (0) 25.6 (0) 26.8 (1) 27.4 (0)

under the local-access model, so there is lack of a natural
competitor to compare the performance of our expansion
algorithms.

With respect to solving the MAXDISCREPANCY prob-
lem in the unrestricted-access model, the most similar ap-
proaches are the discovery of center-piece subgraphs [18],
the “cocktail-party” approach [17], and the DOT2DOT fam-
ily of algorithms [19]. However, all of those algorithms are
distinct enough so that direct comparison is problematic.
Firstly, they all optimize functions that are very different
than the discrepancy. Secondly, they all return solutions
that are required to contain all query nodes, while our
problem formulation allows solutions with subsets of the
query nodes.

We also note that once a subgraph has been discovered in
the expansion phase, any of the above-mentioned algorithm
can be applied on the resulting subgraph, and in this sense
these methods can be considered complementary to our
approach. The caveat here, however, is that the expansion
algorithms have been designed having in mind that in the
second phase we aim to maximize the discrepancy function.

Finally, we want to point out that the primal-dual algo-
rithm for the prize-collecting Steiner-tree problem [23] could
be used as an expansion algorithm as well. This is because
the algorithm is rather similar to the AdaptiveExpansion
method (Alg. 4). To be more precise, the primal-dual algo-
rithm maintains a collection of vertex sets. At every iteration
either two vertex sets merge, or a new vertex is added to an
existing set, and a new vertex set is created. The algorithm
must update parameters associated with every edge that is
at the “boundary” of the new vertex set. In practice this

process adds edges in a sequence that is similar to the
one implemented by the AdaptiveExpansion method. The
differences are in the way the next edge is chosen, as well as
the stopping condition. However, since our input graphs are
assumed to be unweighted, the edge selection crietria used
by the primal-dual algorithm will often have to break ties
at random. This results in a more or less random selection
of the next edge from the “boundary” edges, which is in
practice equivalent with the random selection of a frontier
node as implemented in the AdaptiveExpansion algorithm.

6 CONCLUSION

We introduce the problem of discrepancy maximization in
graphs, which we formulate as a generalization of discrep-
ancy maximization in Euclidean spaces, a family of prob-
lems often referred to as “scan statistics.” We are particularly
interested in settings where only a set of initial “query
nodes” is available, while the rest of the graph is hidden
and it needs to be discovered via an expansion phase. This
setting, which we call local-access model, is motivated by
real-world application scenarios, where accessing the graph
is expensive or the graph is not materialized. The challenge
in the local-access model is to decide when to stop the
expensive expansion phase, while ensuring that the discov-
ered subgraph contains a maximum-discrepancy solution.
Conceptually, the model allows to work with graphs that
are potentially infinite.

We then study how to find a maximum-discrepancy
solution, once a graph has been discovered and it can be
stored in the main memory. We refer to this setting as

unrestricted-access model. The problem is NP-hard in the
general case, but we show that if the graph is a tree the
problem can be solved optimally in linear time, via dynamic
programming. Based on this observation, we propose four
different algorithms for the general case of the discrepancy-
maximization problem, three of which scale extremely well
as they are almost linear.

Our empirical evaluation shows that the best choice
for the expansion strategy depends on the structure of the
graph. For sparse graphs an oblivious strategy works best,
while for dense graphs, an adaptive strategy is preferable.
Our results also indicate that the four algorithms we con-
sidered for the unrestricted-access model yield comparable
performance. In this respect, the BFS-Tree algorithm is a
reasonable choice, as it is both efficient and the quality of its
solutions compares favorably to other heuristics.

Our work opens many opportunities for future research.
As an immediate next step, one could study alternative
expansion strategies based on different rules for selecting
which nodes to expand next, and different stopping criteria.
On the theoretical side, improving the bound of Lemma 3
remains a relevant open question. Additionally, node infor-
mation (attributes, text, tags, etc.) could be used to refine the
expansion strategy. Another very interesting direction is to
consider other families of discrepancy functions, e.g., when
the discrepancy function depends also on the edges of the
component, and not only on its nodes.

REFERENCES

[1] J. H. Friedman and N. I. Fisher, “Bump hunting in high-
dimensional data,” Statistics and Computing, vol. 9, no. 2, pp. 123–
143, 1999.

[2] D. P. Dobkin, D. Gunopulos, and W. Maass, “Computing the
maximum bichromatic discrepancy, with applications to computer
graphics and machine learning,” Journal of Computer and System
Sciences, vol. 52, no. 3, pp. 453–470, 1996.

[3] D. Agarwal, A. McGregor, J. M. Phillips, S. Venkatasubramanian,
and Z. Zhu, “Spatial scan statistics: approximations and perfor-
mance study,” in KDD, 2006.

[4] D. Agarwal, J. M. Phillips, and S. Venkatasubramanian, “The
hunting of the bump: on maximizing statistical discrepancy,” in
SODA, 2006.

[5] P. K. Novak, N. Lavrač, and G. I. Webb, “Supervised descriptive
rule discovery: A unifying survey of contrast set, emerging pattern
and subgroup mining,” The Journal of Machine Learning Research,
vol. 10, pp. 377–403, 2009.

[6] M. Kulldorff, “A spatial scan statistic,” Communications in
Statistics-Theory and methods, vol. 26, no. 6, pp. 1481–1496, 1997.

[7] D. B. Neill and A. W. Moore, “A fast multi-resolution method for
detection of significant spatial disease clusters,” in NIPS, 2003.

[8] ——, “Rapid detection of significant spatial clusters,” in KDD,
2004.

[9] D. B. Neill, A. W. Moore, F. Pereira, and T. M. Mitchell, “Detecting
significant multidimensional spatial clusters,” in NIPS, 2004.

[10] B. Wang, J. M. Phillips, R. Schreiber, D. M. Wilkinson, N. Mishra,
and R. Tarjan, “Spatial scan statistics for graph clustering.” in
SDM. SIAM, 2008, pp. 727–738.

[11] S. Wrobel, “An algorithm for multi-relational discovery of sub-
groups,” in PKDD, 1997.

[12] S. D. Bay and M. J. Pazzani, “Detecting group differences: Mining
contrast sets,” Data Min. Knowl. Discov., vol. 5, no. 3, pp. 213–246,
2001.

[13] G. Dong and J. Li, “Efficient mining of emerging patterns: Discov-
ering trends and differences,” in KDD, 1999.

[14] S. Fortunato, “Community detection in graphs,” Physics Reports,
vol. 486, no. 3, pp. 75–174, 2010.

[15] A. Zakrzewska and D. A. Bader, “A dynamic algorithm for local
community detection in graphs,” in ASONAM, 2015.

[16] R. Andersen and K. J. Lang, “Communities from seed sets,” in
WWW, 2006.

[17] M. Sozio and A. Gionis, “The community-search problem and how
to plan a successful cocktail party,” in KDD, 2010.

[18] H. Tong and C. Faloutsos, “Center-piece subgraphs: problem
definition and fast solutions,” in KDD, 2006.

[19] L. Akoglu, D. H. Chau, C. Faloutsos, N. Tatti, H. Tong, and
J. Vreeken, “Mining connection pathways for marked nodes in
large graphs,” in SDM, 2013.

[20] S. Seufert, S. Bedathur, J. Mestre, and G. Weikum, “Bonsai: Grow-
ing interesting small trees,” 2013 IEEE 13th International Conference
on Data Mining, vol. 0, pp. 1013–1018, 2010.

[21] J. Riedy, H. Meyerhenke, D. A. Bader, D. Ediger, and T. G. Mattson,
“Analysis of streaming social networks and graphs on multicore
architectures,” in ICASSP, 2012.

[22] D. Gleich and M. Polito, “Approximating personalized pagerank
with minimal use of web graph data,” Internet Mathematics, vol. 3,
no. 3, pp. 257–294, 2006.

[23] M. X. Goemans and D. P. Williamson, “A general approximation
technique for constrained forest problems,” SIAM Journal of Com-
puting, vol. 24, no. 2, pp. 296–317, 1995.

[24] A. Archer, M. Bateni, M. Hajiaghayi, and H. Karloff, “Improved
approximation algorithms for prize-collecting steiner tree and
tsp,” SIAM Journal on Computing, vol. 40, no. 2, pp. 309–332, 2011.

[25] D. S. Johnson, M. Minkoff, and S. Phillips, “The prize collecting
Steiner tree problem: Theory and practice,” in SODA, 2000.

Aristides Gionis is an associate professor in
Aalto University. Previously he has been a se-
nior research scientist in Yahoo! Research. He
received his PhD from the Computer Science
department of Stanford University in 2003. He is
currently serving as an associate editor in TKDE,
TKDD, and Internet Mathematics. His research
interests include data mining, web mining, and
social-network analysis.

Michael Mathioudakis is a postdoctoral re-
searcher at the Helsinki Institute for Information
Technology HIIT. He received his PhD from the
Department of Computer Science at the Univer-
sity of Toronto in 2013. His research interests
focus mostly on the analysis of user-generated
content on the Web.

Antti Ukkonen is a specialized researcher at
the Finnish Institute of Occupational Health. Pre-
viously he had post doctoral positions at Ya-
hoo! Research and Helsinki Institute for Infor-
mation Technology. He received his PhD from
Helsinki University of Technology (Aalto Univer-
sity) in 2008. He works mainly on combinatorial
and probabilistic methods for data mining, ma-
chine learning and crowdsourcing/human com-
putation.

LIVEJOURNAL, discrepancy

0 10 20 30 40 50

0

10

20

30

40

50

60

Adaptive

O
bl
iv
io
us

BFS-Tree
Random-ST
PCST-Tree
Smart-ST

BA, discrepancy

0 10 20 30 40 50

0

10

20

30

40

50

Adaptive

O
bl
iv
io
us

BFS-Tree
Random-ST
PCST-Tree
Smart-ST

PATENTS, discrepancy

0 10 20 30 40 50

0

10

20

30

40

50

60

Adaptive

O
bl
iv
io
us

BFS-Tree
Random-ST
PCST-Tree
Smart-ST

GEO, discrepancy

0 10 20 30

0

10

20

30

Adaptive

O
bl
iv
io
us

BFS-Tree
Random-ST
PCST-Tree
Smart-ST

POKEC, discrepancy

0 10 20 30 40

0

10

20

30

40

50

60

Adaptive

O
bl
iv
io
us

BFS-Tree
Random-ST
PCST-Tree
Smart-ST

GRID, discrepancy

0 10 20 30 40

0

10

20

30

40

Adaptive

O
bl
iv
io
us

BFS-Tree
Random-ST
PCST-Tree
Smart-ST

Figure 8: Discrepancy achieved by different algorithms when using either ObliviousExpansion or AdaptiveExpansion on the
same set of query nodes (jitter has been added to the plots to improve readability).

APPENDIX A
PROOF OF PROPOSITION 1

Proof: We provide a transformation of the SETCOVER
problem to the MAXDISCREPANCY problem. Recall that
an instance of the SETCOVER problem is specified by a
ground set U = {u1, . . . , un} of n elements, a collection
C = {S1, . . . , Sm} of m subsets of U , and an integer k, and
the decision question is whether there are at most k sets in C
whose union contains all the elements in the ground set U .

Given an instance of SETCOVER, we create an instance
of the MAXDISCREPANCY problem, as follows. We create a
graph G with n+m+ 1 nodes, in particular, we create one
node for each element ui, one node for each set Sj , and one
additional node un+1. We then create an edge (ui, Sj) if and
only if ui ∈ Sj , and m additional edges (Sj , un+1), for all
j = 1, . . . ,m. The set of queries nodes in G is defined to be
Q = {u1, . . . , un, un+1}. The construction is illustrated in
Figure 9.

We then set α = k and we ask whether there is a
component C of G that has discrepancy g(C) ≥ nk. We can
show that the answer to the latter question is affirmative if
and only if the given SETCOVER instance has a solution.

To verify our claim observe the following facts.

1. Any connected subgraph C of G with at least two nodes
needs to contain at least one non-query node.

2. Any connected componentC ofGwith g(C) ≥ nk needs
to contain all n + 1 query nodes. Indeed, the maximum
discrepancy of any connected component C ′ of G with
n or less query nodes will be g(C ′) ≤ nk − 1 < nk (the
‘−1’ follows from the fact that C ′ should contain at least
one non-query node).

3. Any connected component C of G with g(C) ≥ nk
needs to contain at most k non-query nodes. Indeed,
the discrepancy of any component C that contains all
n + 1 query nodes and ` non-query nodes is g(C) =
(n+ 1)k − `. Requiring (n+ 1)k − ` ≥ nk gives ` ≤ k.

From the above three observations it follows that any con-
nected component C of G that has discrepancy g(C) ≥ nk
should contain all query nodes and at most k non-query
nodes. It is easy to see that such a component C corresponds
to a solution to the SETCOVER problem.

Conversely, it is easy to see that a solution to the SET-
COVER problem corresponds to a connected component C
of G with discrepancy g(C) = nk.

APPENDIX B
RESULTS FOR DISCREPANCY MAXIMIZATION ACCU-
RACY

In Figure 8 of Section 5.3, we investigated how the choice of
expansion strategy affects the discrepancy of the solution re-
turned by MAXDISCREPANCY algorithms. Figure 11 reports
accuracy values for the same set of experiments, for all the
datasets included in our study. At this point, we remind that
accuracy has been defined as the Jaccard coefficient between
the sets of query nodes in the solution and those in the
planted sphere that has the highest overlap. The fact that the
sizes of the ground-truth sets and output sets are relatively
small leads to discretized values of Jaccard coefficient. In

u1

u2

un

...
un+1

S1

Sm

Figure 9: Illustration of the transformation used in the
proof of Proposition 1

order to improve readability, jitter has been added in the
plots of Figure 11.

One observation is that accuracy often takes low values.
That’s because the optimal solution – and possibly the
solution returned by our algorithms – does not always
coincide with a planted sphere, but can have partial overlap
with it. A second observation, however, is that the effect
of ‘spread-out’ accuracy values is a lot more pronounced
in the cases of the denser graphs, Livejournal, BA and
Pokec, than the cases of sparser graphs Geo, Grid and
Patents, where accuracy values are typically closer to 1.
Our interpretation is that in latter cases the planted spheres
typically do have a high overlap with the optimal solution
and that solution is easier to discover due to the simpler
structure of the graphs. Finally, similarly to Figure 8, we
observe that Random-ST often leads to substantially worse
accuracy when paired with ObliviousExpansion than with
AdaptiveExpansion, while for the other MAXDISCREPANCY
algorithms, ObliviousExpansion leads to slightly better per-
formance.

APPENDIX C
RESULTS FOR OTHER VALUES OF α

All results presented earlier in the paper involved settings
with α = 1. In this section, we present results for other
values values of α as well. The evaluation methodology is
the same as that described in Section 5.2.

Expansion algorithms Tables 5-7 show the expansion size of
ObliviousExpansion and AdaptiveExpansion for α = 1, α = 2,
and α = 3, respectively. The parameters for the two settings
for which we present results are the same as those for Table 2
– one with s = 20, k = 2, another with s = 60, k = 1, in
both cases with z = 40 random ‘noisy’ query nodes.

In our problem setting, higher α values place higher
weight to the number of query nodes in a solution and
prompt the expansion algorithms to expand further in or-
der to discover solutions with more query nodes. This is
reflected in the results of Tables 5, 6 and 7, where both
ObliviousExpansion and AdaptiveExpansion end up perform-
ing more API calls and retrieving larger part of G for higher
values of α.

It is worth pointing out that for the denser datasets (BA,
Pokec, Livejournal), ObliviousExpansion often ends up
retrieving the entire graph for the larger values of α, which
in some cases turns out to be too large for the discrep-
ancy maximization algorithms to run within the specified
time limits (denoted with ‘—’ in the tables). On the other

Figure 10: Use case: Twitter interaction graph. The graph in
the figure shows the portion of the graph extracted via

local-access calls. Colored nodes (red or blue) correspond to
users who tweeted in Russian about ‘ukraine’.

hand, AdaptiveExpansion appears to scale admirably better
in those cases. Moreover, similarly to what we observed in
Section 5 for α = 1, the situation is reversed for the sparser
graphs (Grid, Geo, Patents), where ObliviousExpansion re-
trieves smaller part of G than AdaptiveExpansion. However,
AdaptiveExpansion still scales reasonably well. The situation
is also depicted in Figure 12. The plots show the cost of
expansion (number of API calls) of ObliviousExpansion and
AdaptiveExpansion for one dense (BA) and one sparse (Geo)
graph, for the setting of s = 20, k = 2.
Discrepancy maximization Tables 8-10 and 11-13 report
discrepancy and accuracy values across values of α. One
observation here is that larger values of α often lead to
improved performance. This is expected, as the expansion
algorithms uncover larger part of the graph. In fact we
observe that for the case of sparser graphs and particularly
Grid and Geo the algorithms identify the planted bumps
almost perfectly when α = 2 and α = 3 (see Tables 12, 13).

APPENDIX D
ANOTHER USE CASE INSTANCE

In Figure 3 of Section 1, we showed an instance of a use case
for the Twitter interaction graph. For the same setting (i.e.,
same dataset, interaction graph, and employed algorithms),
Figure 10 shows another instance of a bump for a different
query. For this instance, query nodes correspond to users
who have at least one tweet that (i) is in Russian, according
to Twitter’s language tagger (this information is included
with the tweets), and (ii) mentions the keyword ‘ukraine’.
Nodes that appear with red color in the figure are ones that

belong to the identified maximum discrepancy component.
Note that the total number of nodes inside the maximum-
discrepancy subgraph is 12, but only 4 of them (33%) are
non-query nodes. In contrast, among all retrieved nodes
(372 in total), 316 of them (84%) were non-query nodes.
As in the previous instance of the use case, these numbers
corroborate the claim that the “bump” we identify consists
of closely placed nodes in the graph.

Table 5: Expansion Size, α = 1

ObliviousExpansion AdaptiveExpansion
dataset s k cost size cost size
Grid 20 2 302 888 2783 7950
Grid 60 1 261 784 534 1604
Geo 20 2 452 2578 4833 30883
Geo 60 1 418 2452 578 3991
BA 20 2 3943 243227 114 6032
BA 60 1 4477 271870 135 7407
Patents 20 2 605 3076 13436 25544
Patents 60 1 620 3126 5907 13009
Pokec 20 2 3884 217592 161 7249
Pokec 60 1 4343 240544 116 5146
Livejournal 20 2 3703 348933 234 13540
Livejournal 60 1 4667 394023 129 7087

Table 6: Expansion Size, α = 2

ObliviousExpansion AdaptiveExpansion
dataset s k cost size cost size
Grid 20 2 674 1796 6779 19110
Grid 60 1 605 1635 1840 5294
Geo 20 2 1048 5451 10054 63338
Geo 60 1 964 4993 1729 11479
BA 20 2 171671 4738540 171 8327
BA 60 1 234706 5727049 178 8966
Patents 20 2 2473 10241 23017 43542
Patents 60 1 2195 9291 18223 33465
Pokec 20 2 116526 4763755 308 14467
Pokec 60 1 135095 5368109 277 12949
Livejournal 20 2 — — 512 44202
Livejournal 60 1 — — 512 37679

Table 7: Expansion Size, α = 3

ObliviousExpansion AdaptiveExpansion
dataset s k cost size cost size
Grid 20 2 1211 3039 15590 43540
Grid 60 1 1112 2814 3093 8798
Geo 20 2 1915 9354 19677 122312
Geo 60 1 1792 8731 3499 22661
BA 20 2 985100 9998156 164 8961
BA 60 1 995007 9999690 174 9182
Patents 20 2 7573 28238 25184 47692
Patents 60 1 7412 25746 34582 63969
Pokec 20 2 — — 216 9950
Pokec 60 1 834829 18553109 330 14344
Livejournal 20 2 — — 845 68903
Livejournal 60 1 — — 512 46617

Table 8: α = 1 – Discrepancy, averages of 20 runs

ObliviousExpansion AdaptiveExpansion
dataset s k BFS-Tree Random-ST PCST-Tree Smart-ST BFS-Tree Random-ST PCST-Tree Smart-ST
Grid 20 2 14.5 (0) 11.8 (0) 16.8 (0) 16.7 (0) 14.8 (0) 13.8 (0) 16.4 (0) 16.3 (0)
Grid 60 1 41.0 (0) 36.9 (0) 41.0 (0) 41.0 (0) 40.5 (0) 38.9 (0) 40.9 (0) 40.9 (0)
Geo 20 2 19.9 (0) 18.4 (0) 20.0 (0) 20.0 (0) 19.9 (0) 19.2 (0) 20.0 (0) 20.0 (0)
Geo 60 1 22.0 (0) 20.6 (0) 22.0 (0) 22.0 (0) 21.8 (0) 21.6 (0) 21.8 (0) 21.8 (0)
BA 20 2 15.0 (12) 2.8 (12) — (20) 15.2 (0) 15.6 (0) 14.4 (0) 14.4 (0) 15.0 (0)
BA 60 1 — (20) — (20) — (20) 36.1 (0) 37.4 (0) 35.3 (0) 35.9 (3) 35.5 (0)
Patents 20 2 17.4 (0) 15.8 (0) 17.7 (0) 17.6 (0) 14.9 (0) 13.8 (0) 15.8 (3) 14.8 (0)
Patents 60 1 40.0 (0) 31.1 (0) 40.8 (0) 40.6 (0) 33.0 (0) 32.2 (0) 33.2 (0) 33.3 (0)
Pokec 20 2 11.6 (2) 2.6 (3) — (20) 11.8 (0) 8.6 (0) 8.0 (0) 8.2 (2) 8.0 (0)
Pokec 60 1 36.6 (6) 4.7 (6) — (20) 28.6 (0) 20.9 (0) 17.4 (0) 18.3 (1) 18.5 (0)
Livejournal 20 2 14.3 (5) 3.5 (5) — (20) 13.8 (0) 11.8 (0) 9.8 (0) 10.8 (5) 10.2 (0)
Livejournal 60 1 45.6 (12) 12.0 (9) — (20) 31.1 (0) 29.8 (0) 25.6 (0) 26.8 (1) 27.4 (0)

Table 9: α = 2 – Discrepancy, averages of 20 runs

ObliviousExpansion AdaptiveExpansion
dataset s k BFS-Tree Random-ST PCST-Tree Smart-ST BFS-Tree Random-ST PCST-Tree Smart-ST
Grid 20 2 33.4 (0) 28.1 (0) 36.0 (0) 36.1 (0) 34.0 (0) 31.8 (0) 35.5 (0) 35.6 (0)
Grid 60 1 82.0 (0) 76.3 (0) 82.0 (0) 82.0 (0) 81.9 (0) 78.7 (0) 82.0 (0) 82.0 (0)
Geo 20 2 39.8 (0) 37.5 (0) 40.0 (0) 40.0 (0) 41.0 (0) 39.6 (0) 41.1 (0) 41.0 (0)
Geo 60 1 45.2 (0) 43.9 (0) 45.2 (0) 45.2 (0) 45.2 (0) 44.5 (0) 45.2 (0) 45.2 (0)
BA 20 2 — (20) — (20) — (20) 79.8 (0) 59.5 (0) 56.4 (0) 58.0 (1) 59.1 (0)
BA 60 1 — (20) — (20) — (20) 121.3 (0) 104.5 (0) 101.0 (0) 101.2 (2) 103.2 (0)
Patents 20 2 41.0 (0) 37.2 (0) 40.4 (1) 41.0 (0) 36.2 (0) 33.1 (0) 37.7 (10) 34.5 (0)
Patents 60 1 71.5 (0) 62.0 (0) 69.5 (1) 71.8 (0) 68.0 (0) 64.5 (0) 76.6 (4) 68.2 (0)
Pokec 20 2 — (20) — (20) — (20) 55.5 (0) 39.1 (0) 32.3 (0) 39.7 (7) 35.5 (0)
Pokec 60 1 — (20) — (20) — (20) 91.0 (0) 76.0 (0) 67.9 (0) 73.4 (6) 73.5 (0)
Livejournal 20 2 — (20) — (20) — (20) — (20) 36.0 (0) 29.0 (0) — (20) 32.0 (0)
Livejournal 60 1 — (20) — (20) — (20) — (20) 108.0 (0) 102.0 (0) — (20) 109.0 (0)

Table 10: α = 3 – Discrepancy, averages of 20 runs

ObliviousExpansion AdaptiveExpansion
dataset s k BFS-Tree Random-ST PCST-Tree Smart-ST BFS-Tree Random-ST PCST-Tree Smart-ST
Grid 20 2 52.4 (0) 46.7 (0) 55.6 (0) 55.6 (0) 53.6 (0) 50.8 (0) 55.2 (0) 55.0 (0)
Grid 60 1 123.0 (0) 114.5 (0) 123.0 (0) 123.0 (0) 122.9 (0) 119.7 (0) 123.0 (0) 123.0 (0)
Geo 20 2 59.8 (0) 56.3 (0) 60.0 (0) 60.0 (0) 59.9 (0) 58.0 (0) 60.0 (0) 60.0 (0)
Geo 60 1 70.2 (0) 67.6 (0) 70.2 (0) 70.2 (0) 69.9 (0) 68.8 (0) 69.9 (0) 69.8 (0)
BA 20 2 — (20) — (20) — (20) 160.1 (0) 128.3 (0) 125.9 (0) 127.0 (0) 128.8 (0)
BA 60 1 — (20) — (20) — (20) 222.8 (0) 197.3 (0) 192.5 (0) 193.0 (0) 194.8 (0)
Patents 20 2 64.0 (0) 51.2 (0) 59.3 (17) 61.7 (0) 56.3 (0) 47.9 (0) 58.0 (9) 50.7 (0)
Patents 60 1 112.6 (0) 88.6 (0) 119.8 (16) 112.8 (0) 101.0 (0) 88.5 (0) 123.0 (13) 100.0 (0)
Pokec 20 2 — (20) — (20) — (20) — (20) 98.0 (0) 93.0 (0) 101.0 (0) 91.0 (0)
Pokec 60 1 — (20) — (20) — (20) 178.7 (0) 147.7 (0) 126.2 (0) 151.7 (6) 138.6 (0)
Livejournal 20 2 — (20) — (20) — (20) — (20) 108.0 (0) 73.0 (0) — (1) 94.0 (0)
Livejournal 60 1 — (20) — (20) — (20) — (20) 160.0 (0) 120.0 (0) — (1) 154.0 (0)

LIVEJOURNAL, accuracy

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Adaptive

O
bl
iv
io
us

BFS-Tree
Random-ST
PCST-Tree
Smart-ST

BA, accuracy

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Adaptive

O
bl
iv
io
us

BFS-Tree
Random-ST
PCST-Tree
Smart-ST

PATENTS, accuracy

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Adaptive

O
bl
iv
io
us

BFS-Tree
Random-ST
PCST-Tree
Smart-ST

GEO, accuracy

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Adaptive

O
bl
iv
io
us

BFS-Tree
Random-ST
PCST-Tree
Smart-ST

POKEC, accuracy

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Adaptive

O
bl
iv
io
us

BFS-Tree
Random-ST
PCST-Tree
Smart-ST

GRID, accuracy

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Adaptive

O
bl
iv
io
us

BFS-Tree
Random-ST
PCST-Tree
Smart-ST

Figure 11: Accuracy of algorithms when using either ObliviousExpansion or AdaptiveExpansion on the same set of query
nodes (jitter has been added to the plots to improve readability).

1.E+00	
1.E+01	
1.E+02	
1.E+03	
1.E+04	
1.E+05	
1.E+06	
1.E+07	

1	 2	 3	

Co
st
	

α	

BA	

Oblivious	
Adap9ve	

1.E+00	

1.E+01	

1.E+02	

1.E+03	

1.E+04	

1.E+05	

1	 2	 3	

Co
st
	

α	

Geo	

Oblivious	
Adap7ve	

Figure 12: Expansion cost across different values of α.

Table 11: α = 1 – Accuracy, averages of 20 runs

ObliviousExpansion AdaptiveExpansion
dataset s k BFS-Tree Random-ST PCST-Tree Smart-ST BFS-Tree Random-ST PCST-Tree Smart-ST
Grid 20 2 0.88 (0) 0.81 (0) 0.93 (0) 0.93 (0) 0.88 (0) 0.85 (0) 0.93 (0) 0.93 (0)
Grid 60 1 1.00 (0) 0.94 (0) 1.00 (0) 1.00 (0) 0.99 (0) 0.98 (0) 1.00 (0) 1.00 (0)
Geo 20 2 1.00 (0) 0.95 (0) 1.00 (0) 1.00 (0) 1.00 (0) 0.98 (0) 1.00 (0) 1.00 (0)
Geo 60 1 1.00 (0) 0.96 (0) 1.00 (0) 1.00 (0) 0.99 (0) 0.98 (0) 0.99 (0) 0.99 (0)
BA 20 2 0.47 (12) 0.18 (12) — (20) 0.46 (0) 0.46 (0) 0.44 (0) 0.46 (0) 0.45 (0)
BA 60 1 — (20) — (20) — (20) 0.77 (0) 0.76 (0) 0.76 (0) 0.77 (3) 0.76 (0)
Patents 20 2 0.92 (0) 0.86 (0) 0.91 (0) 0.90 (0) 0.72 (0) 0.74 (0) 0.77 (3) 0.74 (0)
Patents 60 1 0.89 (0) 0.76 (0) 0.89 (0) 0.89 (0) 0.74 (0) 0.73 (0) 0.74 (0) 0.74 (0)
Pokec 20 2 0.53 (2) 0.13 (3) — (20) 0.46 (0) 0.43 (0) 0.41 (0) 0.42 (2) 0.40 (0)
Pokec 60 1 0.74 (6) 0.09 (6) — (20) 0.61 (0) 0.48 (0) 0.46 (0) 0.45 (1) 0.45 (0)
Livejournal 20 2 0.62 (5) 0.19 (5) — (20) 0.54 (0) 0.56 (0) 0.53 (0) 0.58 (5) 0.56 (0)
Livejournal 60 1 0.88 (12) 0.26 (9) — (20) 0.68 (0) 0.65 (0) 0.62 (0) 0.62 (1) 0.62 (0)

Table 12: α = 2 – Accuracy, averages of 20 runs

ObliviousExpansion AdaptiveExpansion
dataset s k BFS-Tree Random-ST PCST-Tree Smart-ST BFS-Tree Random-ST PCST-Tree Smart-ST
Grid 20 2 0.98 (0) 0.92 (0) 1.00 (0) 1.00 (0) 0.99 (0) 0.98 (0) 0.99 (0) 0.99 (0)
Grid 60 1 1.00 (0) 0.97 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0)
Geo 20 2 1.00 (0) 0.98 (0) 1.00 (0) 1.00 (0) 0.97 (0) 0.97 (0) 0.97 (0) 0.97 (0)
Geo 60 1 1.00 (0) 0.99 (0) 1.00 (0) 1.00 (0) 1.00 (0) 0.99 (0) 1.00 (0) 1.00 (0)
BA 20 2 — (20) — (20) — (20) 0.28 (0) 0.36 (0) 0.36 (0) 0.37 (1) 0.36 (0)
BA 60 1 — (20) — (20) — (20) 0.65 (0) 0.74 (0) 0.73 (0) 0.74 (2) 0.74 (0)
Patents 20 2 0.90 (0) 0.89 (0) 0.91 (1) 0.90 (0) 0.77 (0) 0.79 (0) 0.88 (10) 0.80 (0)
Patents 60 1 0.96 (0) 0.91 (0) 0.96 (1) 0.96 (0) 0.92 (0) 0.91 (0) 0.90 (4) 0.92 (0)
Pokec 20 2 — (20) — (20) — (20) 0.39 (0) 0.41 (0) 0.44 (0) 0.44 (7) 0.42 (0)
Pokec 60 1 — (20) — (20) — (20) 0.81 (0) 0.78 (0) 0.76 (0) 0.79 (6) 0.77 (0)
Livejournal 20 2 — (20) — (20) — (20) — (20) 0.41 (0) 0.35 (0) — (20) 0.40 (0)
Livejournal 60 1 — (20) — (20) — (20) — (20) 0.95 (0) 0.92 (0) — (20) 0.95 (0)

Table 13: α = 3 – Accuracy, averages of 20 runs

ObliviousExpansion AdaptiveExpansion
dataset s k BFS-Tree Random-ST PCST-Tree Smart-ST BFS-Tree Random-ST PCST-Tree Smart-ST
Grid 20 2 1.00 (0) 0.94 (0) 1.00 (0) 1.00 (0) 1.00 (0) 0.99 (0) 1.00 (0) 0.99 (0)
Grid 60 1 1.00 (0) 0.98 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0)
Geo 20 2 1.00 (0) 0.99 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0)
Geo 60 1 1.00 (0) 0.99 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0) 1.00 (0)
BA 20 2 — (20) — (20) — (20) 0.25 (0) 0.29 (0) 0.29 (0) 0.29 (0) 0.29 (0)
BA 60 1 — (20) — (20) — (20) 0.60 (0) 0.65 (0) 0.65 (0) 0.66 (0) 0.65 (0)
Patents 20 2 0.83 (0) 0.92 (0) 0.97 (17) 0.86 (0) 0.79 (0) 0.77 (0) 0.92 (9) 0.81 (0)
Patents 60 1 0.93 (0) 0.87 (0) 0.94 (16) 0.94 (0) 0.86 (0) 0.84 (0) 0.86 (13) 0.86 (0)
Pokec 20 2 — (20) — (20) — (20) 0.68 (0) 0.33 (0) 0.31 (0) 0.31 (0) 0.35 (0)
Pokec 60 1 — (20) — (20) — (20) — (20) 0.70 (0) 0.71 (0) 0.71 (6) 0.71 (0)
Livejournal 20 2 — (20) — (20) — (20) — (20) 0.40 (0) 0.49 (0) — (20) 0.42 (0)
Livejournal 60 1 — (20) — (20) — (20) — (20) 0.80 (0) 0.81 (0) — (20) 0.79 (0)

