
Bump hunting in the dark: Local discrepancy
maximization on graphs

Aristides Gionis, Michael Mathioudakis, Antti Ukkonen
Helsinki Institute for Information Technology HIIT

Aalto University, Finland
firstname.lastname@aalto.fi

Abstract—We study the problem of discrepancy maximization
on graphs: given a set of nodes Q of an underlying graph G,
we aim to identify a connected subgraph of G that contains
many more nodes from Q than other nodes. This variant of
the discrepancy-maximization problem extends the well-known
notion of “bump hunting” in the Euclidean space.

We consider the problem under two access models. In the
unrestricted-access model, the whole graph G is given as input,
while in the local-access model we can only retrieve the neighbors
of a given node in G using a possibly slow and costly interface.

We prove that the basic problem of discrepancy maximization
on graphs is NP-hard, and empirically evaluate the performance
of four heuristics for solving it. For the local-access model we
consider three different algorithms that aim to recover a part
of G large enough to contain an optimal solution, while using
only a small number of calls to the neighbor-function interface.
We perform a thorough experimental evaluation in order to
understand the trade offs between the proposed methods and
their dependencies on characteristics of the input graph.

I. INTRODUCTION

Bump hunting is a common approach to extracting insights
from data [8]. It consists in looking for regions of a dataset
where a property of interest occurs frequently. In this paper, we
apply that approach on graphs. A subset of the nodes exhibit a
property of interest and are provided as input. We refer to them
as query nodes. The goal is to find a connected subgraph (the
“bump”) where query nodes appear more often compared to
non-query nodes. We find such a subgraph by maximizing the
linear discrepancy [6], i.e., the (possibly weighted) difference
between the number of query and non-query nodes in the
subgraph. Existing literature has addressed linear discrepancy
maximization in the Euclidean space, as well as its extensions
to non-linear discrepancy functions [1], [2], [6].

Moreover, we consider the problem under a local-access
model. Specifically, we assume that only query nodes are
provided as input, while all other nodes and edges can be dis-
covered only via calls to a costly get-neighbors function
from a previously discovered node. For example, accessing the
social graph of an online social network (e.g., Twitter) is based
on such a function.

We illustrate our setting in more detail with Figure 1. On
the left, the figure illustrates the graph, with eight query nodes
shown in orange. These query nodes are given as input and
are thus considered discovered. Nodes shown in transparent
blue are not given as input; they can be discovered via calls to

1

1112

13

14

18

2

20

22

332

4

5 6

7

8

9

10 34

15

33

16
19

31

21

2324

26

28

30

25

27

29

17 1

1112

13

14

18

2

20

22

332

4

5 6

7

8

9

10 34

15

33

16
19

31

21

2324

26

28

30

25

27

29

17

Figure 1. Left: The Karate club graph with 8 query nodes (orange color).
Right: The subtree formed by including one extra node (purple color) and
indicated by thick edges is the maximum discrepancy subgraph that we want
to locate given the query nodes.

the get-neighbors function from a previously discovered
neighbor. Additionally, none of the edges are discovered at
this point. On the right, the figure illustrates the same graph
after the execution of our algorithms, and highlights some
concepts of our setting: (i) discovered nodes are shown in
non-transparent color (orange, purple or blue); (ii) similarly,
discovered edges are shown as non-transparent (normal or
thick); (iii) the maximum-discrepancy connected component
is the subgraph formed by the thick edges; it contains a subset
of query nodes ({4, 5, 7, 8, 11}) and one discovered non-query
node ({1}) shown in purple; (iv) the rest of the query nodes
({16, 25, 31}) and other discovered nodes (all nodes shown in
blue) are not part of the output subgraph—indeed, including
any of these three query nodes in the connected subgraph
would result in a lower discrepancy, as too many connecting
non-query nodes would be needed to maintain connectivity;
(v) finally note that discovering the maximum-discrepancy
subgraph does not require discovering the whole graph.

To motivate the local-access model, we highlight two appli-
cation scenarios below.

Scenario 1: Twitter social network. When one submits a
text query to Twitter’s search engine, Twitter returns a list of
messages that match the query, along with the author of each
message. For example, when one submits “Ukraine,” Twitter
returns all recent messages that contain that keyword, together
with the users who posted them. We wish to perform the
following task: among all Twitter users who posted a relevant

Figure 2. The author-similarity graph contains one node for each author
and an edge between two authors if their similarity exceeds a user-defined
threshold. Some of the authors (nodes) are part of a query result set. Our goal
is to find a connected subgraph that contains many more nodes from the result
set than other nodes.

message, find a subset of them that form a local cluster on
Twitter’s social network. Our goal is to discover a community
of users who talk about that topic. Our input consists only of
those users who have recently published a relevant message.
Note that we do not have the entire social graph; we can only
retrieve the social connections of a user by submitting a query
to Twitter’s API. �
Scenario 2: Non-materialized similarity graph (Figure 2).
Consider an online library system that allows its users to
perform text search on top of a bibliographic database. Upon
receiving a query, the system returns a list of authors that
match the query. For example, when one submits the keyword
“discrepancy,” the system returns a list of authors who have
published about the topic. We wish to perform the following
task: among all authors in this particular result set, identify
a subset of similar authors.1 In this scenario, the underlying
graph models the similarity between authors. Nodes represent
authors, and edges indicate pairs of authors whose similarity
exceeds a user-defined threshold. As the similarity threshold
is user-defined, the graph cannot be pre-computed. Moreover,
an all-pairs similarity join to materialize the graph at query
time is impractical, or even infeasible, to perform. Given an
author a, however, it is relatively easy to obtain the set of
all other authors whose similarity to a exceeds the similarity
threshold. This corresponds to calling the get-neighbors
function. We can thus solve the problem without materializing
the entire similarity graph. �

To summarize the local-access model, a single call to the
get-neighbors function retrieves all neighbors of a given
node. The function only returns the neighbor nodes, not any
edges that possibly exist between the neighbors; to obtain
those, further function calls are needed. Our objective is to
devise algorithms that, given as input a set of query nodes,
find the maximum-discrepancy connected subgraph using as
few calls to the get-neighbors function as possible.

In addition, we also consider the discrepancy-maximization
problem under an unrestricted-access model. In that model,

1Similarity between authors can be defined in a variety of ways, for example
as set-of-documents similarity between the papers produced by two authors.

the algorithm can access nodes and edges of the graph in
an arbitrary manner. To the best of our knowledge, the
discrepancy-maximization problem has not been considered
in graphs even under the unrestricted-access model. We also
provide algorithms that aim to find the maximum-discrepancy
connected subgraph in the unrestricted-access model.

The solution for the local-access model that we propose is
based on a two-phase approach. In the first phase, we make
calls to the get-neighbors function to retrieve a subgraph.
We show that, in many cases, the optimal subgraph can be
found without retrieving the entire graph. In the second phase,
we can use any algorithm for the unrestricted-access model on
the retrieved subgraph.

The rest of the paper is structured as follows. In Section II,
we revisit previous work on bump hunting and discrepancy
maximization and we position our work relative to it. In Sec-
tion III, we provide a formal problem definition. Sections IV
and V detail our technical contributions:
• We prove that the problem of linear-discrepancy maxi-

mization on graphs is NP-hard in the general case (Sec-
tion IV-A). To the best of our knowledge, it is the first time
this problem is considered in the literature.

• We prove that the problem has a polynomial-time solution
when the graph is a tree, and exploit that observation to
define fast heuristic algorithms to produce solutions for the
general case (Section IV-A).

• We explain how to tailor the aforementioned algorithms to
the local-access model (Section IV-B).

• We compare the performance of the discussed algorithms
on real and synthetic data (Section V).

We conclude in section VI with a summary of our findings,
and discuss possible directions of future work.

II. RELATED WORK

Bump-hunting. Bump hunting as a general problem has been
studied under various names in the literature. Kulldorff [11]
phrases the problem as that of finding a single region in
a Euclidean space where occurrences of some observations
are significantly more frequent than explained by a baseline
process. A lot of research has focused on efficient methods
for two-dimensional (spatial) input. Dobkin et al. [6], Neill and
Moore [12], [13], as well as Agarwal et al. [1], [2] consider fast
algorithms for a two-dimensional grid. For high-dimensional
data the problem was considered by Friedman and Fisher [8],
and later by Neill et al. [14]. Moreover, Wang et al. [19]
consider a generalization of scan statistics to graphs, looking
for subgraphs with statistically large number of edges. This
line of work is also connected to data-mining literature about
subgroup discovery [20], contrast set mining [5], and emerging
pattern mining [7]. For a review of bump-hunting research we
refer the reader to the survey of Novak et al. [15].
Finding interesting subgraphs. The discrepancy maximiza-
tion problem for graphs is related to works that aim to find
interesting subgraphs for a given set of “seed nodes.” Along
those lines, Andersen and Lang [4] study algorithms that,
given a seed set, find a subgraph of small conductance, while

Sozio and Gionis [17] aim to find a subgraph with large
minimum degree. Center-piece subgraphs [18] consist of nodes
that connect a given (small) set of query nodes well. Somewhat
related is work by Akoglu et al. [3] that proposes to find a good
connection subgraph for a large set of input points. Perhaps
the work conceptually closest to ours is that by Seufert et
al. [16], that aims to find cardinality-constrained trees in node-
weighted graphs, with non-negative weights, that maximize the
sum of node weights. The problem they consider differs from
ours in that the cardinality (size) of the result subgraph is
not specified as input in our problem, and that we consider a
different weighting scheme for nodes (common positive value
for query nodes and common negative value for non-query
nodes, rather than individual positive-value weights).

III. SETTING & PROBLEM DEFINITION

The discrepancy function. We consider a graph G = (V,E)
with n nodes V and m edges E. Additionally, a set of query
nodes Q ⊆ V is provided as input. Regarding terminology,
for the purposes of presentation, we will be using the term
component to refer to any connected subgraph of G.2

Let C = (V
C
, E

C
) be any component (i.e., connected

subgraph) of G. Let Q
C

be the set of query nodes Q contained
in the component C, that is, Q

C
= Q∩V

C
, and define p

C
to be

the number of those query nodes, that is, p
C
= |Q

C
|. Similarly

define n
C

= |V
C
\ Q| the set of non-query nodes contained

in C.
Definition 1: Given a graph G = (V,E) and a component

C of G, and given some parameters α > 0 and β < 0, we
define the linear discrepancy g(C) of C as

g(C) = αp
C
+ βn

C
.

Without loss of generality, for the rest of the paper, we fix the
value of β to β = −1 and let the value of α > 0 vary. In other
words, we define linear discrepancy as

g(C) = αp
C
− n

C
.

Note that the only requirement we set for a component C is
to be connected. Also note that the discrepancy function g(C)
takes into account information only about the nodes in C (the
number of nodes in C that are query nodes vs. the number
of those that are not) and no information regarding the edges
in C. Thus, the discrepancy function g(C) is independent of
the edge structure of C, except the fact that C is connected.
Note also that between components with the same fraction
(density) of query nodes, the linear discrepancy will favor the
largest component.

In what follows, a component C of the graph G is defined
by its set of nodes V

C
. In a similar manner, we will be using

set notation to denote node-based operations on components.
Specifically, for two components C1 and C2, the expression
C1 ⊕C2, where ⊕ denotes any set operation ∪,∩, \, etc., has
the following meaning

C1 ⊕ C2 = G(V
C
, E

C
),

2Note that our usage of the term ‘component’ deviates from its usual
definition as maximal connected subgraph.

such that V
C

= V
C1
⊕ V

C2
and E

C
= {(u, v) | u, v ∈ V

C
}.

In other words, C1 ⊕ C2 is the subgraph induced from the
node set V

C1
⊕ V

C2
. Note that, according to our definitions,

the subgraph C1⊕C2 is not necessarily a component as it may
not be connected.

Having defined the discrepancy function, we are now ready
to state the generic problem that we consider in this paper.

Problem 1 (MAXDISCREPANCY): Given a graph G =
(V,E) and a set of query nodes Q ⊆ V , find a connected
component C of G that maximizes the discrepancy g(C).

We consider solving the MAXDISCREPANCY problem
in two different settings, the local-access model and the
unrestricted-access model. An access model here refers to how
we are accessing information about the graph G.
Local-access model. In the local-access model we assume that
initially only information about the query nodes Q is available.
Information about the rest of graph is revealed through calls
to a node-neighbor function N . In particular, we assume
that the graph G is stored in a database, which provides an
implementation to a function N : V → 2V that takes as input
a node u ∈ V , and returns as output the set of all neighbors
of u in G, i.e., N(u) = {v ∈ V | (u, v) ∈ E}.

In the local-access model we assume that a set of connected
components of G is known at any time. Initially, this set
of components consists of the query nodes Q as singleton
components. At any time instance, we can select one node u
from the “boundary” of a connected component and issue the
query N(u). A node u is considered to be in the boundary
of its connected component, if the query N(u) has not being
issued before for that node. Once the query N(u) is issued,
the neighborhood of u is discovered, and the node u does
not belong to the boundary of its component any more. Some
of the nodes returned by N(u) may be in the boundary of a
connected component, in which case it means that we have
discovered new edges and expanded our knowledge of the
graph structure. In particular, if a query N(u) returns a node
v that belongs in another connected component, we can merge
the connected components of u and v.

The cost of an algorithm that operates in the local-access
model is the number of times that the algorithm issues a query
to function N . For components that have been discovered,
we assume that we can apply any process of polynomial-time
complexity, and this complexity does not account in cost model
of the local-access algorithm. In practice of course, we may
want to restrict the complexity of the computation that we
can perform for discovered components, for instance, in linear,
n log n, or at most quadratic.
Unrestricted-access model. The unrestricted-access model is
the standard computational model, in which the graph G is
given as input, and the cost model accounts for all operations.
Note that the model allows that only a part of the whole un-
derlying graph is known. However, computation is performed
only on the known part of the graph, there is no exploration
phase to discover new parts of the graph.

IV. ALGORITHMS

In this section, we first establish the complexity of MAX-
DISCREPANCY and then present our algorithms. We start our

u1

u2

un

...
un+1

S1

Sm

Figure 3. Illustration of the transformation used in the proof of Proposition 1

discussion with the unrestricted-access model, since it is the
more standard and familiar setting.

A. Unrestricted-access model

Problem complexity. It can be shown that the MAX-
DISCREPANCY problem in the unrestricted-access model is
NP-hard.

Proposition 1: The MAXDISCREPANCY problem is NP-
hard in the unrestricted-access model.

Proof: We provide a transformation of the SETCOVER
problem to the MAXDISCREPANCY problem. Recall that an
instance of the SETCOVER problem is specified by a ground
set U = {u1, . . . , un} of n elements, a collection C =
{S1, . . . , Sm} of m subsets of U , and an integer k, and the
decision question is whether there are at most k sets in C
whose union contains all the elements in the ground set U .

Given an instance of SETCOVER, we create an instance
of the MAXDISCREPANCY problem, as follows. We create a
graph G with n +m + 1 nodes, in particular, we create one
node for each element ui, one node for each set Sj , and one
additional node un+1. We then create an edge (ui, Sj) if and
only if ui ∈ Sj , and m additional edges (Sj , un+1), for all
j = 1, . . . ,m. The set of queries nodes in G is defined to
be Q = {u1, . . . , un, un+1}. The construction is illustrated in
Figure 3.

We then set α = k and we ask whether there is a component
C of G that has discrepancy g(C) ≥ nk. We can show that
the answer to the latter question is affirmative if and only if
the given SETCOVER instance has a solution.

To verify our claim observe the following facts.
1. Any connected subgraph C of G with at least two nodes

needs to contain at least one non-query node.
2. Any connected component C of G with g(C) ≥ nk needs

to contain all n + 1 query nodes. Indeed, the maximum
discrepancy of any connected component C ′ of G with n
or less query nodes will be g(C ′) ≤ nk − 1 < nk (the
‘−1’ follows from the fact that C ′ should contain at least
one non-query node).

3. Any connected component C of G with g(C) ≥ nk
needs to contain at most k non-query nodes. Indeed, the
discrepancy of any component C that contains all n + 1
query nodes and ` non-query nodes is g(C) = (n+1)k−`.
Requiring (n+ 1)k − ` ≥ nk gives ` ≤ k.

From the above three observations it follows that any con-
nected component C of G that has discrepancy g(C) ≥ nk
should contain all query nodes and at most k non-query nodes.
It is easy to see that such a component C corresponds to a
solution to the SETCOVER problem.

Conversely, it is easy to see that a solution to the SETCOVER
problem corresponds to a connected component C of G with
discrepancy g(C) = nk.

Connection to Steiner trees. Even though we obtained the
hardness proof via a transformation from the SETCOVER
problem, it turns out that MAXDISCREPANCY problem is also
related to the prize-collecting Steiner-tree problem (PCST).
This is an interesting connection, because it can guide the
algorithmic design for the MAXDISCREPANCY problem.

The PCST problem, in the general case, is defined as follows.
We are given a graph G = (V,E, d), where d : E → R is a
distance function on the edges of G. We are also given a set
of terminal nodes S ⊆ V and a weight function w : S → R
that assigns positive weights on the terminals. The goal is to
find a Steiner tree T in G, so as to minimize the objective

D(T) +
∑

u∈S\T

w(u), (1)

where D(T) is the sum of distances of all the edges in the
tree T . The term “prize collecting” conveys the intuition that
the weights on the nodes of the graph represent prizes to be
collected and the goal is to find a tree that minimizes the tree
cost and the total value of prizes not collected.

It is not difficult to see that the MAXDISCREPANCY problem
is a special instance of the PCST problem: Let C = (V

C
, E

C
)

be a component in the MAXDISCREPANCY problem, given an
input graph G and query nodes Q. The discrepancy on C is

g(C) = α|Q ∩ V
C
| − |V

C
\Q|

= (α+ 1)|Q ∩ V
C
| − (|Q ∩ V

C
|+ |V

C
\Q|)

= (α+ 1)|Q ∩ V
C
| − |V

C
|.

Maximizing the latter expression is equivalent to minimizing

(α+ 1)|Q| − 1− g(C) = (α+ 1)|Q \ V
C
|+ |V

C
| − 1;

since the term (α+ 1)|Q| − 1 is a constant.
The term (α + 1)|Q \ V

C
| can be interpreted as the total

weight of query nodes not covered by C, assuming that each
query node has weight (α + 1), while the term |V

C
| − 1 can

be interpreted as the sum of edges of any tree spanning C,
assuming that the all edges have distance 1.

Thus, the component C that maximizes discrepancy in G
with query nodes Q, is the optimal tree in a PCST instance
where the terminal nodes are the query nodes, all terminal
nodes have weight (α+ 1), and all edges have distance 1.

The PCST problem is also NP-hard, however, it can be
approximated within a constant-factor. In particular, Goemans
and Williamson have designed a (2 − 1

n−1)-approximation
algorithm where n is the number of nodes in the input
graph [9]. The algorithm of Goemans and Williamson relies
on the primal-dual schema.

Although an optimal solution for the MAXDISCREPANCY
problem corresponds to an optimal solution for the PCST
problem, since our mapping involves subtracting the objective
functions from a constant, it follows that the approximation
guarantee for the PCST problem does not carry over to
MAXDISCREPANCY. Nevertheless, the primal-dual algorithm
of Goemans and Williamson is an intuitive algorithm for
MAXDISCREPANCY, too, and we employ it as a heuristic for
this problem. Additionally, we can show that in the special
that the graph G is a tree, the MAXDISCREPANCY problem
can be solved optimally in linear time. This is discussed next.

Optimal algorithm for trees. When the graph G is a tree, we
can solve the MAXDISCREPANCY problem optimally, in linear
time O(|G|), using dynamic programming. The algorithm,
named TreeOptimal, is shown as Algorithm 1. Note that any
connected component of a tree is also a tree. TreeOptimal
exploits the following optimal substructure of the problem: let
r
G

be a node of G, arbitrarily selected as root, and T1, . . . , Th
be the sub-trees below r

G
, each rooted at a different node

r1, . . . , rh. For any tree T with root r, let opt(T) be the
discrepancy of an optimal solution of MAXDISCREPANCY
on T , and let con(r, T) be the maximum discrepancy of any
component of T that contains the root r. Then, for graph G
and its root r

G
we have

con(r, T) = g(r
G
) +

∑
con(ri,Ti)>0

con(ri, Ti), (2)

and

opt(T) = max

{
con(r, T), max

i=1,...,h
{opt(Ti)}

}
, (3)

where g(r
G
) = g(1, 0) = α if r

G
∈ Q and g(r

G
) = g(0, 1) =

−1 otherwise. Equation (2) expresses the fact that among
all the connected components of G that include its root r

G
,

the component that includes all the sub-trees of r
G

that have
positive discrepancy con(ri, Ti), is the one that maximizes the
discrepancy. Equation (3) expresses the fact that the optimal
solution of MAXDISCREPANCY either includes the root r

G

or is entirely included in one of the sub-trees T1, . . . , Th of
root r

G
. TreeOptimal returns both values con(r, T) and opt(T)

when applied on a tree T , and the optimal discrepancy for G is
opt(G), and the values are computed recursively, as specified
in Algorithm 1.

Heuristics for the general graph case. Next we discuss
the heuristics for the general case, when the graph G is
not necessarily a tree. As mentioned above, in this general
case, the MAXDISCREPANCY problem in the unrestricted-
access model is NP-hard. All heuristics aim at first finding a
subtree of the input graph, and then applying the TreeOptimal
algorithm described before. We study the following heuristics:
(i) BFS-trees from each query node, (ii) minimum weight
spanning tree where edge weights are assigned according
at random, (iii) minimum weight spanning tree where edge
weights are assigned according to a simple heuristic based on
their endpoints, and (iv) the Primal-Dual algorithm for PCST.
They are described in detail below.

Algorithm 1 TreeOptimal
Input: Tree T , root node r, query nodes Q
Output: Max-discrepancy of any component of T
Ccon ← ∅
Copt ← ∅
for children ri of r do
(con(ri, Ti), opt(Ti))← TreeOptimal(Ti, ri, Q)
Ccon ← Ccon ∪ {con(ri, Ti)}
Copt ← Copt ∪ {opt(Ti)}

if r ∈ Q then
con(r, T)← g(1, 0)

else
con(r, T)← g(0, 1)

con(r, T)← con(r, T) +
∑
{c ∈ Ccon : c > 0}

opt(T) = max{con(r, T),max(Copt)}
return (con(r, T), opt(T))

Breadth-first search trees (BFS-Tree): A very simple way
to obtain trees for a given graph and a set of query nodes
Q is to perform breadth-first search (BFS) from every node
u ∈ Q. The BFS-Tree heuristic follows exactly this strategy. It
computes all BFS trees, one for each query node, it computes
the maximum discrepancy solution for each tree, using the
TreeOptimal algorithm, and it returns the best solution.
Random spanning tree (Random-ST): Instead of computing
BFS from every query node, we can work with a random tree
that spans the query nodes. We sample such a random tree,
by assigning a random weight (uniformly from [0, 1]) to every
edge, and computing the minimum weight spanning tree. The
Random-ST heuristic works by computing a number of such
random spanning trees, computing the maximum discrepancy
solution for each tree, using the TreeOptimal algorithm, and
returning the best solution found.
Smart spanning tree (Smart-ST): The previous two heuristics
run TreeOptimal possibly hundreds of times. A more efficient
method is to first find a good tree, and run the TreeOptimal
algorithm once on this tree. Intuitively a tree is good if the
connectivity between the query nodes is maintained well. That
is, if the distance between two query nodes is low in the graph,
their distance in the tree should be low as well. A simple
heuristic to achieve this is to systematically assign weights to
the edges so that the minimum spanning tree avoids edges that
are not adjacent to at least one query node. More formally, we
assign every edge (u, v) the weight

w(u, v) = 2− I{u ∈ Q} − I{v ∈ Q}, (4)

where I{·} is the indicator function. The Smart-ST heuris-
tic works by first assigning the edge weights according to
Equation 4, finding the minimum weight spanning tree, and
finally computing the optimal solution from the tree using
TreeOptimal.
Prize-collecting Steiner-tree heuristic (PCST-Tree): As dis-
cussed above, the MAXDISCREPANCY problem can be viewed
as the prize-collecting Steiner-tree problem (PCST). We convert
an instance of MAXDISCREPANCY to a PCST instance by

letting w(u, v) = 1 for every edge (u, v), and setting the cost
of a query node node (w(u) in Equation 1) to α + 1, and
the cost of every other node to 0. An optimal Steiner tree for
this PCST instance will also have maximum discrepancy as
measured by the function g.

The PCST-Tree heuristic first does the above conversion,
then uses the Goemans-Williamson approximation algorithm
for PCST [9] to compute a forest of disjoint trees. Then, for
every tree in the resulting forest, the heuristic runs TreeOptimal,
and it returns the best solution that it finds.

Note that the factor-2 approximation guarantee for PCST
does not translate into a constant factor approximation for
MAXDISCREPANCY. However, since there is a direct corre-
spondence between the solutions of the two problems, we opt
to use this algorithm as a reasonable heuristic.

B. Local-access model
Having discussed the complexity of the problem and pre-

sented heuristic algorithms to solve it under the unrestricted-
access model, we now turn our focus to the local-access model.
Under the local-access model, our input consists only of the
query nodes Q, while the the rest of graph G = (V,E) is
accessible through a node-neighbor function N . The function
N takes as argument one node and returns the list of its
neighbors in the graph G. Unlike in the unrestricted-access
model, we can now access the edges of G only through the
node-neighbor function.

To solve the problem under the local-access model, a brute-
force approach would be to invoke the function N repeatedly,
until we retrieve the entire graph G, i.e., first invoke function
N to retrieve the neighbors of nodes in Q, then invoke N to
retrieve the neighbors of neighbors, and so on, until we retrieve
the entire G; and then apply on G the algorithms from the
unrestricted-access model.

In many settings however, as we discussed in our intro-
duction, invoking the function N can be slow and costly.
Moreover, having access to the entire graph is not necessary
as long as we have access to a subgraph that contains the
optimal solution. Ideally, we should be able to solve MAX-
DISCREPANCY even over an infinite graph G, as long as the set
of query nodes Q is finite. We are thus interested in limiting
the number of invocations of function N , retrieving only a
small part of graph G that contains the optimal solution, and
solving MAXDISCREPANCY on that, by employing one of the
algorithms from the unrestricted-access model.

Specifically, to solve MAXDISCREPANCY, we first invoke
function N a number of times to retrieve a subgraph G

X
of G,

and then, as a second step, we apply one of the aforementioned
heuristics for the unrestricted-access model. We refer to the
first step of our approach as the “expansion” step, since it
builds G

X
by expanding the neighborhood of nodes Q through

invocations of the function N . Obviously, for the algorithm that
implements the expansion step it is desirable that it returns a
subgraph G

X
that contains the optimal solution, and that it

invokes the function N only a small number of times.
We now discuss three algorithms that implement the expan-

sion step: FullExpansion, ObliviousExpansion, and Adaptive-
Expansion. All three algorithms build the graph G

X
iteratively:

at each iteration, they invoke the function N on some or all
nodes of G

X
on which N was not invoked before.

Full expansion. Our first expansion strategy, named Full-
Expansion and shown in Algorithm 2, is a conservative strategy
that is guaranteed to return a subgraph G

X
of G that contains

the optimal solution. It constructs one or more components,
the sum of the diameters of which is O(|Q|).3 The algorithm
builds the subgraph G

X
iteratively; it starts by retrieving the

neighbors of nodes Q, then the neighbors of neighbors and so
on, until the expansion has gone far enough from all query
nodes to be certain the optimal solution is contained within
one of the connected components of the expanded graph.

In more detail, among all nodes it has retrieved after each
iteration, FullExpansion distinguishes one subset of nodes as
the Frontier nodes, i.e., the nodes that should be expanded in
the next iteration. If c is one of the retrieved nodes that has
not been expanded yet at the end of one iteration, and Qc are
the query nodes reachable from c in G

X
, then c becomes a

Frontier node if the following condition holds:

min
q∈Qc

{d(c, q)} ≤ |Qc| · (α+ 1), (5)

where d(c, q) refers to the number of hops between c and q
in the graph G

X
. The algorithm terminates when the set of

Frontier nodes is empty, i.e., when the condition (5) does not
hold for any node that has been retrieved (i.e., a node of G

X
)

but has not been expanded yet.
According to Lemma 2, which we will formulate and prove

below, termination according to condition (5) is sufficient
to guarantee returning a graph G

X
that contains an optimal

solution. The proof for Lemma 2 uses the following auxiliary
result.

Lemma 1: Let OPT be a solution to MAXDISCREPANCY,
and denote by p

OPT
the number of query nodes in OPT, that

is, p
OPT

= |OPT ∩Q|. Then,

|OPT| ≤ (α+ 1) · pOPT − α.

Proof: We have that |OPT| − p
OPT

is the number of
non-query nodes in OPT. Moreover, it is easy to see that
the discrepancy of the optimal solution OPT has to be larger
or equal to the discrepancy of a component that consists only
of one query node. Therefore, by substituting these into the
linear discrepancy function, we get

α · p
OPT
− (|OPT| − p

OPT
) ≥ α · 1− 0,

from which we obtain |OPT| ≤ (α+ 1) · pOPT − α.

Lemma 2: Let G
X

be the graph returned by FullExpansion.
Then, one of the connected components of G

X
contains the

optimal solution to MAXDISCREPANCY as its subgraph.

Proof: For the sake of contradiction, let us assume that
FullExpansion returns a graph G

X
that consists of disjoint

connected components C1, . . . , Ck, for some k ≥ 1, none

3The diameter of a connected component is the maximum distance between
any two of its nodes.

Algorithm 2 FullExpansion
Input: Query nodes Q, node-neighbor function N
Output: Graph G

X

G
X
← (Q, ∅)

Expanded ← ∅
Frontier ← Q
while Frontier 6= ∅ do

for f ∈ Frontier do
for n in N(f) do

Add edge (f, n) to G
X

Expanded ← Expanded ∪ Frontier
Frontier ← {c ∈ {V

GX
\ Expanded} | c satisfies Eq. (5)}

return G
X

of which fully contains an optimal solution OPT; that is,
OPT 6⊆ Ci, i = 1, . . . , k.

We know, however, that at least one of the components
of G

X
overlaps with the optimal solution, since an optimal

solution has to contain at least one query node, and all query
nodes are contained in G

X
. That is, with p̂i = |Q∩Ci∩OPT|,

there should exist an i ∈ {1, 2, . . . , k} such that p̂i > 0.
We will reach a contradiction with Lemma 1 by showing

|OPT | ≥
∑

Ci:p̂i>0

|Ci ∩OPT| > (α+ 1) · pOPT − α. (6)

The first inequality of (6) follows immediately from basic set
properties. To show the second inequality, we first show that

|Ci ∩OPT | > d(c, q) > p̂i(α+ 1), (7)

where p̂i > 0 and d(c, q) is the distance between any
q ∈ Q ∩ Ci ∩ OPT and any node c ∈ Ci ∩ OPT that
remains unexpanded after the termination of Algorithm 2 (i.e.,
c ∈ Ci ∩ OPT is a node that was added to Ci but did not
satisfy condition (5) to be expanded). The first inequality of (7)
follows from the fact that both c and q are nodes of Ci∩OPT ;
therefore, if the distance between them is d(c, q), then the
node-size of the subgraph Ci ∩ OPT that contains them has
to be larger than d(c, q). The second inequality of (7) follows
from the stopping condition of FullExpansion: it terminates
when there is no node in G

X
that satisfies condition (5).

Therefore, for any q′ ∈ Q ∩ Ci and any node c′ that belongs
to Ci but was not expanded by FullExpansion, we have

d(c′, q′) > |Q ∩ Ci| · (α+ 1) ≥ |Q ∩ Ci ∩OPT | · (α+ 1)

and consequently, since p̂i = |Q ∩ Ci ∩OPT |,

d(c′, q′) > p̂i · (α+ 1). (8)

Therefore, since q ∈ Q ∩ Ci ∩ OPT ⊆ Q ∩ Ci and c ∈
Ci ∩OPT ⊆ Ci, inequality (8) holds for q and c as well:

d(c, q) > p̂i · (α+ 1). (9)

Having proved (7), we take the sum over all Ci’s with p̂i > 0,
to get∑
Ci:p̂i>0

|Ci ∩OPT| >
∑

Ci:p̂i>0

p̂i(α+ 1) = (α+ 1)
∑

Ci:p̂i>0

p̂i

> 2(1+α) > 2(1+α) > 2(1+α)

query node

non-query
node

retrieved by FullExpansion
retrieved by ObliviousExpansion

C2

b

a

C1

l > 2(1+α)

Figure 4. The example shows two problem instances with α = 1. In
case (a), FullExpansion and ObliviousExpansion behave identically, as they
retrieve the same set of nodes before they terminate. In case (b), FullExpansion
expands more nodes than ObliviousExpansion and uncovers a solution of higher
discrepancy.

Algorithm 3 ObliviousExpansion
Input: Query nodes Q
G

X
:= (Q, ∅)

for i = 1 to (1 + α) do
Expand all unexpanded nodes in G

X

Add their neighbors and edges to G
X

return G
X

= (α+ 1) · p
OPT

> (α+ 1) · p
OPT
− α.

We have now proved the second inequality of (6), thus com-
pleting the proof of the lemma.

While FullExpansion guarantees to return a graph G
X

that
contains the optimal solution, we found that in practice it is
extremely inefficient. This is because the sum of the diameters
of all the connected components of graph G

X
can grow up to

O(|Q|), which means that, even for moderately dense graphs
and query sets Q of moderate size, FullExpansion eventually
retrieves the entire graph G.

To alleviate this problem, we propose two improved expan-
sion strategies, ObliviousExpansion and AdaptiveExpansion.

Oblivious expansion. This expansion strategy simply per-
forms (1+α) expansion iterations from query nodes Q before
it terminates. ObliviousExpansion is outlined as Algorithm 3.
To compare its behavior with FullExpansion, let us consider
two different cases for graph G, as depicted in Figure 4.

In Figure 4(a), the graph G is a linear graph, where nodes Q
fall far from each other (the distance between two consecutive
query nodes is larger than 2(1+α)). In that case, FullExpansion
and ObliviousExpansion behave identically: they expand by
(1+α) from each query node and stop, with a retrieved graph
G

X
that consists of |Q| distinct connected components, one

for each query node.
In Figure 4(b), on the other hand, the graph G is a linear

graph again, however query nodes C2 ⊆ Q are clustered in
tightly in two areas of the graph. They are separated by l non-

Algorithm 4 AdaptiveExpansion
Input: Query nodes Q
G

X
← (Q, ∅)

Expanded ← ∅
Frontier ← Q
while Frontier 6= ∅ and # components of G

X
> 1 do

NewFrontier ← ∅
for connected component C of G

X
do

f = random node from Frontier(C)
for n in N(f) do

Add edge (f, n) to G
X

If n 6∈ Expanded Then add n to NewFrontier
Expanded ← Expanded ∪ Frontier
Frontier ← NewFrontier

if Time to update solution quality estimate then
Calculate g

LB
and g

UB

if g
LB
/g

UB
≥ 1 then

return G
X

return G
X

query nodes, where

2(1 + α) < l = |C1| · α+ |C2| · α.

In that case, ObliviousExpansion will only expand (1+α) nodes
from each query node (thick-ringed nodes in Figure 4(b)),
while FullExpansion will expand far enough to retrieve a
connected component that includes all query nodes (gray-filled
nodes in Figure 4(b)) and has higher discrepancy than C1 or
C2 alone, as it is easy to check.

Adaptive expansion, shown as Algorithm 4, takes a different
approach than the previous two expansion algorithms. The
main differences are the following:
• in each iteration, AdaptiveExpansion randomly selects a

small number O(|Q|) of not-yet-expanded nodes to ex-
pand; and
• the termination condition of AdaptiveExpansion depends

on a heuristic estimate of its approximation ratio (i.e., how
close is the current optimal solution on G

X
with respect

to the optimal solution on G).
Unlike the previous two expansion algorithms that might

invoke the node-neighbor function N on all not-yet-expanded
nodes at each iteration, AdaptiveExpansion is more frugal in
invoking the function N . The rationale for this approach is that
for densely connected graphs, as real networks usually are, a
small number of edges is enough to preserve the connectivity
of a connected graph. In such settings, therefore, it is possible
for AdaptiveExpansion to uncover the nodes of a large and
densely connected component of G that contains many of
the query nodes Q. The advantage of this approach is that
Algorithm 4 can quickly uncover a graph G

X
that provides a

solution that is close to optimal.
At the core of the AdaptiveExpansion algorithm is a stopping

condition that allows it to avoid unnecessary expansions. To
decide whether expansion should be terminated, Adaptive-
Expansion periodically computes an upper bound gUB to the

unexpanded node on the periphery of component

rtree of
positive

discrepancy

tree of
negative

discrepancy

Figure 5. To calculate gLB and gUB , AdaptiveExpansion builds BFS trees
for each connected component of GX . The maximum discrepancy on any of
those trees is used as gLB . To calculate gUB , it sums the positive discrepancies
of BFS trees that include at least one node on the periphery of the connected
components.

optimal discrepancy g(OPT), as well as a lower bound gLB of
the discrepancy of the optimal MAXDISCREPANCY solution
on G

X
. Computing these estimates can be computationally

involved, therefore the algorithm does not update them after
every expansion, but at predefined intervals.

Specifically, at the end of such an interval, Adaptive-
Expansion selects randomly k not-yet-expanded nodes
r1, . . . , rk from each component of G

X
, for some small k

specified as a parameter of the algorithm.4 Subsequently, it
computes k BFS trees with each ri as its root, and computes
the discrepancy of these trees using the TreeOptimal algorithm.
The lower bound gLB is the maximum discrepancy found in
these BFS trees.

Regarding g
UB

, it is computed as follows: for the un-
expanded nodes ri and the corresponding BFS trees that
provided the best discrepancy for each component of G

X
,

AdaptiveExpansion maintains the discrepancy dr of the best
solutions that include r. For the components that have dr > 0,
the algorithm computes the sum s =

∑
dr and estimates g

UB

as g
UB

= max{g
LB
, s}.

The rationale is that, as nodes r have not been expanded yet,
it is possible they are connected on G. If some of them are
connected, then it is possible to have a solution of discrepancy
s =

∑
dr; dr > 0, as described above. The approach is

illustrated in figure 5.
The algorithm terminates when g

UB
≤ g

LB
.

V. EXPERIMENTS

In this section, we present the results from an experimen-
tal evaluation on both synthetic and real-world graphs. The
purpose of our experiments is to study and compare the
performance of the different expansion strategies, as well as the
algorithms that solve the MAXDISCREPANCY problem under
the unrestricted-access model. The code and data used for our
experiments are publicly available.5

4In all our experiments, we used k = 5, as we observed well behaving
estimates for that value of k.

5http://research.ics.aalto.fi/dmg/software.shtml

Table I. DATASET STATISTICS (NUMBERS ARE ROUNDED).

Dataset |V | |E|
Geo 1 · 106 4 · 106
BA 1 · 106 10 · 106
Grid 4 · 106 8 · 106

Livejournal 4.3 · 106 69 · 106
Patents 2 · 106 16.5 · 106
Pokec 1.4 · 106 30.6 · 106

A. Datasets
We use three synthetic graphs (Grid, Geo, and BA) and

three real-world graphs (Livejournal, Pokec, Patents).
All graphs used in the experiments are undirected and their
sizes are reported in Table I.
Grid is a simple 2M × 2M grid, in which most nodes

(all other than the ones on the periphery of the grid) have
degree equal to four (4). Geo is a geographical near-neighbor
network: It is generated by selecting 1M random points in
the unit square in R2, and then connecting as neighbors all
pairs of points whose distance is at most 0.0016 from each
other, yielding an average degree of ≈ 8. BA is a random
graph generated by the Barabási-Albert model, with parameters
n =1M, and m = 10.
Livejournal, Pokec, and Patents are all real-world

graphs obtained from the Stanford Large Network Dataset
Collection.6 Livejournal and Pokec are extracted from
the corresponding online social networks, while Patents is
a citation network.

B. Evaluation methodology
We now describe our evaluation framework. One experiment

in our evaluation framework is defined by (1) a graph G,
given as input to the problem, (2) a set of query nodes Q,
given as input to the problem, (3) an expansion algorithm,
to invoke API function N and expand Q to G

X
, and (4) a

MAXDISCREPANCY algorithm, to solve the problem on G
X

in the unrestricted-access model.
Specifically, the graph is always one of the datasets de-

scribed in Section V-A. The expansion algorithm is either
ObliviousExpansion or AdaptiveExpansion, both described in
Section IV-B. Results from FullExpansion are not reported
here, as it proved impractical for larger datasets. The algorithm
to solve MAXDISCREPANCY is one of BFS-Tree, Random-
ST, PCST-Tree, and Smart-ST, described in Section IV-A. And
lastly, query nodes Q are selected randomly, with the process
described next.

Query nodes Q are generated as follows. As a first step,
we select one node c from graph G, uniformly at random.
As a second step, we select a sphere S(c, ρ) of predetermined
radius ρ, with c as a center. As a third step, from sphere S(c, ρ)
we select a set of query nodes Q

S
of predetermined size s.

Selection is done uniformly at random. Finally, we select a
predetermined number of z random query nodes from outside
all spheres. To generate Q, we set varying values to:
• the number k of spheres S(c, ρ),

6http://snap.stanford.edu/

• the radius ρ of spheres,
• the number of query nodes s = |Q

S
| in each sphere S(c, ρ),

• the number of query nodes z outside all spheres.
Note that, while generating Q, we make sure that the randomly
selected sphere S(c, ρ) is large enough to accommodate s
query nodes; if this is not the case, then we repeat the random
selection until we obtain a sphere with more than s nodes.

We create experiments with all possible combinations of
graphs, expansion algorithms, and MAXDISCREPANCY al-
gorithms, and for each combination we create 20 different
instances, each with a different random set of query nodes.
For each experiment, we measure the following quantities: (1)
number of API calls to expand G into G

X
, (2) size of G

X
as

number of edges, (3) discrepancy of solution, (4) accuracy of
solution, (5) running time of MAXDISCREPANCY algorithm.

The number of API calls, as well as the size of G
X

are
used to compare expansion algorithms: the first measure is
of obvious interest under the local-access model, while the
second one influences the running time of MAXDISCREPANCY
algorithms. The rest of the measures are used to compare the
performance of MAXDISCREPANCY algorithms. Discrepancy
and running time measure the quality of the solution and the
efficiency of algorithms. Accuracy is defined as the Jaccard
coefficient between query nodes in the returned solution, and
the best matching sphere S(c, ρ) in the planted query nodes Q.

All quantities are measured as averages over all experiment
instances with the same parameters.

We also note that for all the experiments reported, the value
of parameter α of the discrepancy function g is set to α = 1.
As per Section III, α can be set to any positive value, and
thus account for different weighting between query and non-
query nodes. For our experiments, in absence of a particular
weighting preference, and due to space constraints, we present
results only for α = 1.

Implementation: All algorithms are implemented in Python
2.7 and each individual experiment was run on a dedicated
Intel Xeon 2.83 GHz processor, on a 32 GB machine. Each
graph G is stored in a separate MongoDB collection.7 Each
document in the collection stores the adjacency list of one node
in the form

(node id, [neighbor id, . . .])

with node id indexed as a key of the collection. One invoca-
tion of the API function N then, corresponds to the selection
of one document with a specified node id and the projection
of the associated adjacency list [neighbor id, . . .].

To make the experiments run in a reasonable amount of
time, we gave the MAXDISCREPANCY algorithms 5 minutes
to terminate their run in a single experiment. If they failed to
produce a solution in 5 minutes, the process was killed and
the evaluation moved on to the next experiment.

C. Results: expansion algorithms
To compare ObliviousExpansion and AdaptiveExpansion, we

ran a large number of experiments with different parameters

7http://www.mongodb.org

Table II. EXPANSION TABLE (AVERAGES OF 20 RUNS)

ObliviousExpansion AdaptiveExpansion
dataset s k cost size cost size
Grid 20 2 302 888 2783 7950
Grid 60 1 261 784 534 1604
Geo 20 2 452 2578 4833 30883
Geo 60 1 418 2452 578 3991
BA 20 2 3943 243227 114 6032
BA 60 1 4477 271870 135 7407
Patents 20 2 605 3076 13436 25544
Patents 60 1 620 3126 5907 13009
Pokec 20 2 3884 217592 161 7249
Pokec 60 1 4343 240544 116 5146
Livejournal 20 2 3703 348933 234 13540
Livejournal 60 1 4667 394023 129 7087

to generate Q, and in interest of presentation, here we report
what we consider to be representative results.

Table II shows the cost (number of API calls) as well
as the size (number of edges) of the retrieved graph G

X
.

Our main observation from this is that for Grid, Geo,
and Patents, ObliviousExpansion results in fewer API calls
than AdaptiveExpansion, while for BA, Pokec, and Live-
journal the situation is reversed. This agrees with the
intuition discussed in section IV-B that, for densely connected
graphs, AdaptiveExpansion should be able to uncover the nodes
of a large and densely connected component of G that contains
many of the query nodes Q. Indeed, graphs BA, Pokec, and
Livejournal are more densely connected than Grid, Geo,
and Patents, and it appears that AdaptiveExpansion is able
to terminate significantly earlier than the (α + 1) expansion
iterations of ObliviousExpansion.

Notice that the number of edges in G
X

is proportional to
the number of API calls, as expected. The number of edges
is of interest as it affects directly the running time of MAX-
DISCREPANCY algorithms, as shown in Figure 6. Figure 6
contains one point for each experiment we ran, with different
MAXDISCREPANCY algorithms indicated with different color.

Figure 7 shows a comparison of the expansion algorithms in
terms of how they affect the MAXDISCREPANCY algorithms.
Every point in the figure corresponds to the same input
(graph and set of query nodes), while the x and y axes
show the accuracy obtained when the expansion is done using
AdaptiveExpansion and ObliviousExpansion, respectively. If the
expansion algorithms had no effect, all points would fall on the
diagonal. However, we observe that in particular with Random-
ST using ObliviousExpansion leads to substantially worse ac-
curacy than when using AdaptiveExpansion. For BFS-Tree and
Smart-ST the effect is not as strong, with ObliviousExpansion
leading to slightly better performance (points are more likely
to reside above than below the diagonal). We observe similar
behavior for the other networks.

D. Results: discrepancy maximization

Continuing our discussion on Figure 6, we observe that
Random-ST, BFS-Tree and Smart-ST scale to up to two orders
of magnitude larger inputs than PCST-Tree. This behavior is
well-aligned with the theoretical complexity of the algorithms.

Running time (in sec)

1e+01 1e+03 1e+05

1e-02

1e-01

1e+00

1e+01

1e+02

expansion size (#edges)

BFS-Tree
Random-ST
PCST-Tree
Smart-ST

Figure 6. Running times of the different algorithms as a function of expansion
size (number of edges). We can see that in comparison to PCST-Tree Smart-ST
scales to inputs that are up to two orders of magnitude larger.

Indeed, the running time of BFS-Tree is O(|Q||E|), the run-
ning time of Random-ST is O(I |E| log |E|), where I is the
number of random trees sampled, and the running time of
Smart-ST is O(|E| log |E|), that is, they all scale very well.
On the other hand, the best implementation for PCST-Tree is
O(|V |2 log |V |) [10], while our non-optimized implementation
has complexity O(|V ||E|). Thus, theory and practice suggest
that, from the perspective of efficiency, PCST-Tree is the least
attractive algorithm.

To compare the MAXDISCREPANCY algorithms in terms of
the quality of results, we measure and report the accuracy and
discrepancy of the returned solutions. The results are shown
in Tables III and IV.

Tables III shows the accuracy of the algorithms for different
graphs, query sets, and the two expansion algorithms. Next to
each reported value, we cite in parenthesis the number of times
the algorithm failed to finish in 5 minutes.

Our main observation is that there are no major differences
across the different algorithms in terms of the accuracy of
the solution found. The only exception to that rule appears to
be the case of ObliviousExpansion on the graphs of Pokec
and Livejournal, where BFS-Tree outperforms the others.
However, observe that if the solution must be computed very
fast, Smart-ST can be a feasible choice, as it always finished
within the 5 minute time limit.

Furthermore, we observe that for the synthetic networks
Grid and Geo the expansion algorithm used (Oblivious-
Expansion and AdaptiveExpansion) does not affect the accu-
racy of the solutions we obtain. (For BA, most experiments
exceeded the imposed time limit and therefore we do not
compare accuracy in its case). However, the measurements
in Table III show that ObliviousExpansion leads to solutions
of higher accuracy on real graphs. We believe this is again
explained by the larger expansions that are produced by

Table III. ACCURACY, AVERAGES OF 20 RUNS

ObliviousExpansion AdaptiveExpansion
dataset s k BFS-Tree Random-ST PCST-Tree Smart-ST BFS-Tree Random-ST PCST-Tree Smart-ST
Grid 20 2 0.88 (0) 0.81 (0) 0.93 (0) 0.93 (0) 0.88 (0) 0.85 (0) 0.93 (0) 0.93 (0)
Grid 60 1 1.00 (0) 0.94 (0) 1.00 (0) 1.00 (0) 0.99 (0) 0.98 (0) 1.00 (0) 1.00 (0)
Geo 20 2 1.00 (0) 0.95 (0) 1.00 (0) 1.00 (0) 1.00 (0) 0.98 (0) 1.00 (0) 1.00 (0)
Geo 60 1 1.00 (0) 0.96 (0) 1.00 (0) 1.00 (0) 0.99 (0) 0.98 (0) 0.99 (0) 0.99 (0)
BA 20 2 0.47 (12) 0.18 (12) NaN (20) 0.46 (0) 0.46 (0) 0.44 (0) 0.46 (0) 0.45 (0)
BA 60 1 NaN (20) NaN (20) NaN (20) 0.77 (0) 0.76 (0) 0.76 (0) 0.77 (3) 0.76 (0)
Patents 20 2 0.92 (0) 0.86 (0) 0.91 (0) 0.90 (0) 0.72 (0) 0.74 (0) 0.77 (3) 0.74 (0)
Patents 60 1 0.89 (0) 0.76 (0) 0.89 (0) 0.89 (0) 0.74 (0) 0.73 (0) 0.74 (0) 0.74 (0)
Pokec 20 2 0.53 (2) 0.13 (3) NaN (20) 0.46 (0) 0.43 (0) 0.41 (0) 0.42 (2) 0.40 (0)
Pokec 60 1 0.74 (6) 0.09 (6) NaN (20) 0.61 (0) 0.48 (0) 0.46 (0) 0.45 (1) 0.45 (0)
Livejournal 20 2 0.62 (5) 0.19 (5) NaN (20) 0.54 (0) 0.56 (0) 0.53 (0) 0.58 (5) 0.56 (0)
Livejournal 60 1 0.88 (12) 0.26 (9) NaN (20) 0.68 (0) 0.65 (0) 0.62 (0) 0.62 (1) 0.62 (0)

Table IV. DISCREPANCY, AVERAGES OF 20 RUNS

ObliviousExpansion AdaptiveExpansion
dataset s k BFS-Tree Random-ST PCST-Tree Smart-ST BFS-Tree Random-ST PCST-Tree Smart-ST
Grid 20 2 14.5 (0) 11.8 (0) 16.8 (0) 16.7 (0) 14.8 (0) 13.8 (0) 16.4 (0) 16.3 (0)
Grid 60 1 41.0 (0) 36.9 (0) 41.0 (0) 41.0 (0) 40.5 (0) 38.9 (0) 40.9 (0) 40.9 (0)
Geo 20 2 19.9 (0) 18.4 (0) 20.0 (0) 20.0 (0) 19.9 (0) 19.2 (0) 20.0 (0) 20.0 (0)
Geo 60 1 22.0 (0) 20.6 (0) 22.0 (0) 22.0 (0) 21.8 (0) 21.6 (0) 21.8 (0) 21.8 (0)
BA 20 2 15.0 (12) 2.8 (12) NaN (20) 15.2 (0) 15.6 (0) 14.4 (0) 14.4 (0) 15.0 (0)
BA 60 1 NaN (20) NaN (20) NaN (20) 36.1 (0) 37.4 (0) 35.3 (0) 35.9 (3) 35.5 (0)
Patents 20 2 17.4 (0) 15.8 (0) 17.7 (0) 17.6 (0) 14.9 (0) 13.8 (0) 15.8 (3) 14.8 (0)
Patents 60 1 40.0 (0) 31.1 (0) 40.8 (0) 40.6 (0) 33.0 (0) 32.2 (0) 33.2 (0) 33.3 (0)
Pokec 20 2 11.6 (2) 2.6 (3) NaN (20) 11.8 (0) 8.6 (0) 8.0 (0) 8.2 (2) 8.0 (0)
Pokec 60 1 36.6 (6) 4.7 (6) NaN (20) 28.6 (0) 20.9 (0) 17.4 (0) 18.3 (1) 18.5 (0)
Livejournal 20 2 14.3 (5) 3.5 (5) NaN (20) 13.8 (0) 11.8 (0) 9.8 (0) 10.8 (5) 10.2 (0)
Livejournal 60 1 45.6 (12) 12.0 (9) NaN (20) 31.1 (0) 29.8 (0) 25.6 (0) 26.8 (1) 27.4 (0)

ObliviousExpansion for denser graphs.
Finally, Table IV reports the discrepancy of returned solu-

tions. These measurements paint a picture similar to that of
Table III: ObliviousExpansion can lead to better performance
at the cost of more API calls and for large, dense graphs
(BA, Pokec, Livejournal) PCST-Tree fails to produce
results within the set time limit. Additionally, we observe that
Random-ST is consistently outperformed by the other algo-
rithms, and the difference in performance is most pronounced
in the case of real-world networks (Patents, Pokec, Live-
journal) and ObliviousExpansion.

E. Discussion on state-of-the-art methods
To the best of our knowledge, this is the first work to study

the discrepancy-maximization problem on graphs, under the
local-access model, so there is lack of a natural competitor to
compare the performance of our expansion algorithms.

With respect to solving the MAXDISCREPANCY problem in
the unrestricted-access model, the most similar approaches are
the discovery of center-piece subgraphs [18], the “cocktail-
party” approach [17], and the DOT2DOT family of algo-
rithms [3]. However, all of those algorithms are distinct enough
so that direct comparison is problematic. Firstly, they all
optimize functions that are very different than the discrepancy.
Secondly, they all return solutions that are required to contain
all query nodes, while our problem formulation allows solu-
tions with subsets of the query nodes.

We also note that once a subgraph has been discovered in
the expansion phase, any of the above-mentioned algorithm can

be applied on the resulting subgraph, and in this sense these
methods can be considered complementary to our approach.
The caveat here, however, is that the expansion algorithms
have been designed having in mind that in the second phase
we aim to maximize the discrepancy function.

VI. CONCLUSION

We introduce the problem of discrepancy maximization in
graphs, which we formulate as a generalization of discrepancy
maximization in Euclidean spaces, a family of problems often
referred to as “scan statistics.” We are particularly interested in
settings where only a set of initial “query nodes” is available,
while the rest of the graph is hidden and it needs to be
discovered via an expansion phase. This setting, which we
call local-access model, is motivated by real-world application
scenarios, where accessing the graph is expensive or the graph
is not materialized. The challenge in the local-access model is
to decide when to stop the expensive expansion phase, while
ensuring that the discovered subgraph contains a maximum-
discrepancy solution. Conceptually, the model allows to work
with graphs that are potentially infinite.

We then study how to find a maximum-discrepancy solution,
once a graph has been discovered and it can be stored in the
main memory. We refer to this setting as unrestricted-access
model. The problem is NP-hard in the general case, but we
show that if the graph is a tree the problem can be solved
optimally in linear time, via dynamic programming. Based on
this observation, we propose four different algorithms for the
general case of the discrepancy-maximization problem, three
of which scale extremely well as they are almost linear.

BA, accuracy

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Adaptive

O
bl
iv
io
us

BFS-Tree
Random-ST
PCST-Tree
Smart-ST

BA, discrepancy

0 10 20 30 40 50

0

10

20

30

40

50

Adaptive

O
bl
iv
io
us

BFS-Tree
Random-ST
PCST-Tree
Smart-ST

Figure 7. Accuracy and discrepancy of the algorithms when using either
ObliviousExpansion or AdaptiveExpansion on the same set of query nodes in BA.

Our empirical evaluation shows that the best choice for
the expansion strategy depends on the structure of the graph.
For sparse graphs an oblivious strategy works best, while for
dense graphs, an adaptive strategy is preferable. Our results
also indicate that the four algorithms we considered for the
unrestricted-access model yield comparable performance. In
this respect, the BFS-Tree algorithm is a reasonable choice, as
it is both efficient and the quality of its solutions compares
favorably to other heuristics.

Our work opens many opportunities for future research. As
an immediate next step, one could study alternative expansion
strategies based on different rules for selecting which nodes

to expand next, and different stopping criteria. Additionally,
node information (attributes, text, tags, etc.) could be used to
refine the expansion strategy. Another very interesting direction
is to consider other families of discrepancy functions, e.g.,
when the discrepancy function depends also on the edges of
the component, and not only on its nodes.

REFERENCES

[1] D. Agarwal, A. McGregor, J. M. Phillips, S. Venkatasubramanian, and
Z. Zhu. Spatial scan statistics: approximations and performance study.
In KDD, 2006.

[2] D. Agarwal, J. M. Phillips, and S. Venkatasubramanian. The hunting
of the bump: on maximizing statistical discrepancy. In SODA, 2006.

[3] L. Akoglu, D. H. Chau, C. Faloutsos, N. Tatti, H. Tong, and J. Vreeken.
Mining connection pathways for marked nodes in large graphs. In SDM,
2013.

[4] R. Andersen and K. J. Lang. Communities from seed sets. In WWW,
2006.

[5] S. D. Bay and M. J. Pazzani. Detecting group differences: Mining
contrast sets. Data Min. Knowl. Discov., 5(3):213–246, 2001.

[6] D. P. Dobkin, D. Gunopulos, and W. Maass. Computing the maxi-
mum bichromatic discrepancy, with applications to computer graphics
and machine learning. Journal of Computer and System Sciences,
52(3):453–470, 1996.

[7] G. Dong and J. Li. Efficient mining of emerging patterns: Discovering
trends and differences. In KDD, 1999.

[8] J. H. Friedman and N. I. Fisher. Bump hunting in high-dimensional
data. Statistics and Computing, 9(2):123–143, 1999.

[9] M. X. Goemans and D. P. Williamson. A general approximation
technique for constrained forest problems. SIAM Journal of Computing,
24(2):296–317, 1995.

[10] D. S. Johnson, M. Minkoff, and S. Phillips. The prize collecting Steiner
tree problem: Theory and practice. In SODA, 2000.

[11] M. Kulldorff. A spatial scan statistic. Communications in Statistics-
Theory and methods, 26(6):1481–1496, 1997.

[12] D. B. Neill and A. W. Moore. A fast multi-resolution method for
detection of significant spatial disease clusters. In NIPS, 2003.

[13] D. B. Neill and A. W. Moore. Rapid detection of significant spatial
clusters. In KDD, 2004.

[14] D. B. Neill, A. W. Moore, F. Pereira, and T. M. Mitchell. Detecting
significant multidimensional spatial clusters. In NIPS, 2004.

[15] P. K. Novak, N. Lavrač, and G. I. Webb. Supervised descriptive rule
discovery: A unifying survey of contrast set, emerging pattern and
subgroup mining. The Journal of Machine Learning Research, 10:377–
403, 2009.

[16] S. Seufert, S. Bedathur, J. Mestre, and G. Weikum. Bonsai: Growing
interesting small trees. 2013 IEEE 13th International Conference on
Data Mining, 0:1013–1018, 2010.

[17] M. Sozio and A. Gionis. The community-search problem and how to
plan a successful cocktail party. In KDD, 2010.

[18] H. Tong and C. Faloutsos. Center-piece subgraphs: problem definition
and fast solutions. In KDD, 2006.

[19] B. Wang, J. M. Phillips, R. Schreiber, D. M. Wilkinson, N. Mishra, and
R. Tarjan. Spatial scan statistics for graph clustering. In SDM, pages
727–738. SIAM, 2008.

[20] S. Wrobel. An algorithm for multi-relational discovery of subgroups.
In PKDD, 1997.

