Data Min Knowl Disc
DOI 10.1007/s10618-015-0406-1

Beyond rankings: comparing directed acyclic graphs

Eric Malmi - Nikolaj Tatti - Aristides Gionis

Received: 31 August 2014 / Accepted: 9 February 2015
© The Author(s) 2015

Abstract Defining appropriate distance measures among rankings is a classic area
of study which has led to many useful applications. In this paper, we propose a more
general abstraction of preference data, namely directed acyclic graphs (DAGs), and
introduce a measure for comparing DAGs, given that a vertex correspondence between
the DAGs is known. We study the properties of this measure and use it to aggregate
and cluster a set of DAGs. We show that these problems are NP-hard and present
efficient methods to obtain solutions with approximation guarantees. In addition to
preference data, these methods turn out to have other interesting applications, such as
the analysis of a collection of information cascades in a network. We test the methods
on synthetic and real-world datasets, showing that the methods can be used to, e.g.,
find a set of influential individuals related to a set of topics in a network or to discover
meaningful and occasionally surprising clustering structure.

Keywords Directed acyclic graphs - Aggregation - Clustering - Preferences -
Information cascades

Responsible editors: Joao Gama, Indre Zliobaite, Alipio Jorge, Concha Bielza.

E. Malmi (X) - N. Tatti - A. Gionis
HIIT and Department of Computer Science, Aalto University, Espoo, Finland
e-mail: eric.malmi@aalto.fi

N. Tatti
e-mail: nikolaj.tatti @aalto.fi

A. Gionis
e-mail: aristides.gionis @aalto.fi

Published online: 14 March 2015 @ Springer

E. Malmi et al.

1 Introduction

Rankings and partial rankings are used in real-life applications to model associations
in data. Examples include ranking documents for information-retrieval applications,
ranking user preferences for modeling users and making recommendations, ranking
experts for learning applications, and many more. Defining appropriate distance mea-
sures among rankings is a classic area of study (Kendall 1938, 1976; Goodman and
Kruskal 1972) and it provides useful tools to analyze datasets that contain rankings.

The problems of aggregating and clustering rankings are motivated by many appli-
cation scenarios and they have been widely studied in the literature (Madden 1995;
Murphy and Martin 2003; Borda 1781; Ailon et al. 2008). For example, the rank-
aggregation problem arises in meta-search engines, where a number of search engines
return different rankings over a set of documents and the goal is to find a new ranking
that incorporates the rankings of the individual search engines in the best possible
way. Similarly, the problem of clustering rankings is encountered when users state
their preferences with respect to a set of items (commercial products, movies, restau-
rants, etc.) and one needs to segment the user base so that in each market segment the
users agree as much as possible with respect to their rankings.

A number of authors convincingly argue that rankings encountered in practical
applications are not total orders over the full set of items (Ailon 2010; Fagin et al. 2003,
2006). Instead, it is more common to be confronted with missing information, and
rankings become partial rankings (rankings with ties) and top-k lists. Consequently,
the problem of defining distance measures among partial rankings and top-k lists was
studied in the literature, as well as the problem of aggregating such rankings with
missing information.

In this paper, we go one step further towards modeling and managing data with
missing information. We assume that associations in data are modeled not just by
partial rankings or by top-k lists, but by the more general abstraction of directed
acyclic graphs (DAGs). We view DAGs as a useful abstraction to model interesting
associations between data items in many modern applications. We thus consider the
problem of developing methods that can be used to cope with data represented as
DAGs. We start by addressing the problem of devising a meaningful distance measure
between DAGs, and we then consider the classic problems of aggregation and cluster-
ing on DAG data. We should point out that in our problem setting, the correspondence
between the vertices of different graphs is known, as will become clear later in the
examples and experiments that we provide. This makes the comparison of two graphs
computationally much cheaper than in methods based on graph edit distances (see
e.g., Bunke and Shearer 1998; Jiang et al. 2001).

The notion of a distance between partial orders, that is, transitively closed DAGs, has
been previously introduced by Brandenburg et al. (2012, 2013). However, computing
the two distance measures they propose results in an NP or coNP-complete problem,
so more efficient methods are called for.

Before discussing our methods and our contributions in more detail, we provide
further motivation for our approach by giving examples of real-world datasets modeled
as DAGs.

@ Springer

Comparing directed acyclic graphs

1.1 User preferences

Humans are better at making comparative rather than absolute judgements (Laming
2003). In many cases, preferences of users over a set of items can be recorded via user-
feedback mechanisms. For example, when a user is selecting an item among a small
number of choices provided by the application, the user, implicitly states a preference
for that item over the rest. In such applications, a user can be modeled by a preference
graph, a directed graph that represents preferences between pairs of data items. Such
preference graphs are likely to be DAGs, or near-DAGs, as the underlying preference
relation tends to be transitive. The crucial observation here is that since we are typically
recording preferences over small sets of items, a large number of edges is missing,
and thus, the preference graph resembles a DAG rather than a full or a partial ranking.

1.2 Information cascades

Our second example arises in the analysis of information cascades in social media
(Anagnostopoulos et al. 2008; Barbieri et al. 2013; Gomez-Rodriguez et al. 2011,
2012; Goyal et al. 2010; Kempe et al. 2003; Macchia et al. 2013; Saito et al. 2008;
Su et al. 2014). In this case we consider “actions” performed in a social network.
Due to social influence, copies of such actions are performed by neighboring nodes
in the network, e.g., retweets in the Twitter network, and thus information cascades
are observed. Due to time ordering, the cascade of an action in a network is a DAG.
Analysis of information cascades is important in understanding dynamic phenomena
in the social network, for example, who are the influential nodes, how information
propagates, and so on. Therefore, one needs appropriate tools to compare, aggregate,
and cluster cascades (DAGs) of different actions.

Motivated from the above applications, we develop techniques for managing data
represented as DAGs. We first propose a sound distance measure for comparing DAGs.
Our measure extends the Kendall-tau measure for full rankings and partial rankings.
Similar to the work of Fagin et al. (2006), our measure uses parameters 0 < p,q < 1
to penalize for pairs of items for which one, or both, of the two DAGs do not make
a clear ordering decision. We study the proposed distance measure with respect to its
metric properties. We are able to show that the measure satisfies a relaxed version of
the triangle inequality, where the “slackness” factor depends on the penalty parameters
p and g.

The proposed distance measure is then used to define the problems of aggregating
and clustering a set of DAGs. We show that the DAG aggregation and DAG clus-
tering problems are NP-hard and we present efficient methods to obtain solutions
with approximation guarantees. Our solutions rely crucially on the relaxed triangle
inequality property of the proposed distance measure.

We test our methods on synthetic and real-world datasets. Our experiments show
that a simple greedy approach yields good performance. It can be used to recover
ground-truth DAGs when data are inflicted with high levels of noise, as well as to

identify meaningful clusters in real-world applications where data are represented
with DAGs.

@ Springer

E. Malmi et al.

The rest of the paper is organized as follows. In Sect. 2 we discuss basic concepts
and we introduce our notation. Our distance measure is presented in Sect. 3. Sec-
tions 4 and 5 discuss the problems of aggregating and clustering DAGs. In Sect. 6
we discuss other work related to the problems we consider. Our experimental evalu-
ation on synthetic and real datasets are presented in Sect. 7, while Sect. 8 is a short
conclusion.

2 Preliminaries and notation

We will discuss basic concepts and we establish the notation that we will use throughout
the remaining paper.

A directed graph G = (V, E) is a tuple of vertices V and edges E, which is a set
of ordered pairs (i, j) € V x V. A directed acyclic graph (DAG) is a directed graph
that has no directed cycles.

Without loss of generality, we assume that graphs share the same set of vertices.
Indeed, if two graphs have different set of vertices, the missing vertices for each graph
can be added as singletons. Furthermore, as we will see, our DAG-comparison measure
penalizes appropriately for such missing vertices added as singletons. Consequently,
we assume that when comparing two DAGs we can just compare their edges. Given
two DAGs Gy = (V, E1) and G, = (V, E;) we say that a vertex pair (i, j) is a
discordant if (i, j) € Ej and (j,i) € E;. On the other hand, if (i, j) € E; and
(i, j) € E,, then we say that the pair is concordant.

A special case of DAG is a fotal order, in which the vertices are assumed to have
an order and the edge set E consists of ('g') edges, so that (i, j) € E if and only if i
occurs before j in the total order. We should point out that we do not assume that our
graphs are transitively closed. This means that while we can apply our distance to a
partial order, which is essentially a transitively closed DAG, we also consider DAGs
that are not partial orders.

Given two total orders G| and G5, a Kendall-tau distance K (G, G») between the
two orders is the number of all discordant vertex pairs between them. Kendall-tau is

a distance measure that takes values between 0 and ('g').1 It becomes 0 when the

two orders are the same, and it becomes ('g') when G is a reversed version of G».
Kendall-tau is a distance measure that is widely used to compare rankings. Fagin et al.
(2006) extend the Kendall-tau distance (as well as other ranking distances) for partial
rankings, that is, rankings with ties. Their work is not only theoretically interesting but
of great practical importance, since orders (rankings) encountered in practice are rarely
total orders (full rankings). In this paper, we take one further step on the problem of
devising measures to compare rankings: we extend the Kendall-tau distance to general
DAGs. Consequently, our methods provide a basis to deal with datasets in which DAGs
is the appropriate data abstraction.

! Most often the Kendall-tau distance is defined to be a value between 0 and 1 by normalizing with the
total number of vertex pairs (”2/').

@ Springer

Comparing directed acyclic graphs

3 Measuring DAG distance

Our goal is to develop a meaningful and well-founded distance measure between
DAGs. We first define such a distance measure as a generalization of Kendall-tau, and
then study its properties. In particular we show that the proposed measure satisfies
a relaxed version of the triangle inequality. This near-metric property is particularly
useful as it allows to develop approximation algorithms for aggregation and clustering
tasks.

3.1 Generalization of Kendall-tau for DAGs

As with the Kendall-tau distance, we consider a measure defined over pairs of vertices
in the two DAGs. As opposed to full rankings (total orders), in DAGs a pair of vertices
may not be directly comparable. As a result, given two directed acyclic graphs, a pair
of vertices may be neither concordant nor discordant. Thus, a distance measure that
considers pairs of vertices in two DAGs, should consider the following two cases of
assigning a penalty:

Discordant We should penalize an edge (i, j) if i precedes j in one graph
pairs: while j precedes i in the other graph.
Potentially If one or both of the input DAGs are not fully connected then there

discordant pairs: is a pair of vertices (i, j) for which we do not know if i precedes
J or vice versa, so we have a potentially discordant pair, which
should be penalized less heavily than a pure discordant pair.

The proposed DAG distance measure satisfies the above two requirements. Our
approach is similar to the approach by Fagin et al. (2006), where they generalize
the Kendall-tau distance to partial rankings by assigning a penalty O < p < 1 to pairs
for which the two partial rankings do not have clear agreement or disagreement. In
a similar way, our DAG distance measure is defined with respect to partial penalty
parameters p and g, where 0 < p,q < 1. As it will become clear below we also
assume g < p.

For our definition, we also assume an arbitrary ordering of the vertices of the two
DAGs. Such an ordering is only assumed for notational simplicity and is not related
to the concept of a total order. This ordering is only used to ensure that each pair
of vertices i and j is considered only once, so any arbitrary bijection from the set of
vertices V to {1, ..., |V|} can be used. We should stress that even though the definition
of the DAG distance is based on an ordering of vertices, the final result does not depend
on it.

Let Gy = (V, Ey)and G, = (V, E3) be two DAGs and let 0 < p, g < 1 be fixed
parameters. Let i and j be two vertices of V such thati < j. Let e = (i, j) and
f = (J,i) be e with reversed direction. We define K l.(’l;’q)(G 1, G2) to be a penalty
associated to vertices i and j for the DAGs G| and G, with respect to the parameters
p and g. We consider four cases:

Case l: (e € Efyande € Epy) or (f € Ey and f € E»). In this case, G| and G
agree on e, and we set the distance to be K;; (G, G2) = 0.

@ Springer

E. Malmi et al.

Fig.1 Toy graphs related to _»b _—»b
Examples 1-2 a\ @
d ~—d _—»b b b
c— c a o<+ a

(a) G1 (b) G2 (c) Hy (d) H2 (e) Hz

Case?2: (e € Eyand f € Ep) or (e € Er and f € Ey). In this case, G| and G
completely disagree on e, and we set the distance to be K;; (G, G2) = 1.

Case3: (eor f € Eyande, f ¢ Er)or(eor f € Ey ande, f ¢ Ep). In this case,
an edge between i and j exists in one graph but not in the other. We set
Kij(Gy, G2) = p.

Case4: e, f ¢ E1 and e, f ¢ E;. In this last case there is no edge between i and j
in either of the graphs. We set K;;(G1, G2) = ¢. The motivation for setting
q > 0 is that otherwise two empty DAGs are as similar as two identical
complete DAGs even though one might argue that the latter two have much
more in common than the empty DAGs.

We are now ready to define our DAG distance measure.

Definition 1 LetG| = (V, E1)and G, = (V, E;) betwo DAGsandlet0 < p,g <1
be fixed parameters. We define the DAG distance K (p ’Q)(Gl, G») to be the sum of
distances over pairs of vertices (i, j) € V x V such thati < j,

KPD(GL.Gy= > KPYG Gy.

@i,j)eVxV
i<j

Whenever clear from the context, we will drop p and ¢ from the notation and write
K (G1, Gy) instead of K P9 (G, G»).

Example 1 Let us compute the distance K ("9 (G, G,) of the graphs given in Fig. 1.
There is one concordant edge, namely (a, b), one discordant pair, (c, d), one pair of
type Case 3, (a, d), and the remaining three pairs are of Case 4. Hence, the distance
is equal to

KPD(Gy,Gy) =0+ 1+ p+3q.

A few observations are in order: First, it is easy to see that in the case that the two
DAGs are total orders, Definition 1 reduces to the standard Kendall-tau.

Second, it is reasonable to assume that Case 3, when an edge exists in one graph
but not the other, is a case of stronger or equal disagreement compared to Case 4,
when an edge is missing from both graphs. Therefore, we will assume that the penalty
associated to Case 3 is greater than or equal to the penalty associated to Case 4, that
1s, ¢ < p.Infact, the case ¢ > p has undesirable consequences. For example, for the
problem of DAG aggregation, which we discuss in the next section, g > p implies
that the optimal centroid of two empty DAGs will be a complete DAG.

@ Springer

Comparing directed acyclic graphs

3.2 Relaxed triangle inequality

Our next step is to examine whether the proposed distance measure K is a metric. We
remind that for a distance measure d : X x X — R to be a metric, the following
properties should hold: (i) non-negativity: d(x, y) > 0; (ii) symmetry: d(x,y) =
d(y, x); (iii) identity: d(x, y) = 0 if and only if x = y; and (iv) triangle inequality:
d(x,z) <d(x,y)+ d(y, z). The reason for undertaking this study is twofold: First,
satisfying the metric properties provides additional evidence that our distance measure
is meaningful and well founded. Second, many algorithms have been designed to take
advantage of metric properties with respect to efficiency, e.g., via effective pruning
rules, or with respect to satisfying certain quality guarantees. Indeed, after we show
that the proposed distance measure K satisfies relaxed metric properties, we are able
to exploit those properties in order to obtain high-quality solutions for the problems
of aggregating and clustering DAGs.

Back to the question whether the proposed distance K satisfies the metric properties,
it is immediate that the distance is non-negative and symmetric. If ¢ = 0, then the
distance satisfies the identity property, namely, K (G, G) = 0, however this property
does not hold for ¢ > 0 as penalty ¢ is induced by edges that are missing from
both input graphs. Note that this was done by design as we want to punish potential
discordant pairs. The most important property with respect to designing approximation
algorithms is the triangle inequality. Our next result shows that the distance measure
K satisfies a relaxed version triangle inequality, meaning that for any directed acyclic
graphs G1, G, Gz it holds K(G1, G») < ¢(K(G1, G3) + K(G3, G2)), for some
constant ¢ > 1, which depends on the parameters p and g.

Proposition1 Let 0 < g < p < 1 and 0 < p. Then distance measure K satisfies
relaxed triangle inequality,

K(G1, Gy) < c(K(Gy, G3) + K(G2, G3)),

where ¢ = max(4p2, q + max(2p, 1)) /2p.

Proof We will prove the result by upper bounding the distance K (G, G2) and lower
bounding the distance measures K (G, G3) and K (G», G3).

Consider K (G, G»), and let k; be the number of Case i edges as defined in Sect. 3.1.
The distance is equal to

K(G1, G2) = ko + pk3 + gky.

Define also ny, ..., nq for K(G1, G3) and my, ..., mq for K(G,, G3).

Consideraset D = (E1 \ E2) U (E> \ Eq). For every Case 2 edge, say e = (i, j),
there are two edges (i, j) € D and (j,i) € D. The remaining edges in D correspond
to Case 3 edges possibly with a reversed direction. This implies that |D| = 2ky + k3.
Let k = 2ky + k3, n = 2ny 4 n3, and m = 2my + m3. The previous argument shows
that k is the number of directed edges where G and G, disagree. This is a known
metric and it follows that k < n + m.

@ Springer

E. Malmi et al.

Note that any edge of Case 4 in K(G1, G>) can only be Case 3 or Case 4 edge in
K (G1, G3). Hence, k4 < n3 + n4 and similarly k4 < m3 + my.

We consider three cases, depending on values of p and g.

First, let us assume that p < 1/2. Since k; < k/2 we can upper bound K (G1, G»)
by

K(G1,G2) = ko + pk3 + gksa = ko + p(k — 2kp) + qky
= (1 —2p)ky + pk + gka
< (1 =2p)k/2 + pk + gks = k/2 + qka.

Define x = p/(1 + g). Note that x + gx = p and x < 1/2. Consequently,

K(G1,G3) = ny + pn3 +gna = ny + xn3 + q(ng + xn3)
=ny +x(n —2n2) +q(ng + xn3)
= (1 —2x)ny + xn + g(na + xn3)
> xn + g(ng4 + xnz).

Define ¢ = (1 + q)/(2p). Note that cx = 1/2 and that ¢ > 1/2. Multiplying the
previous inequality with ¢ gives us

cK(G1,G3) > cxn+cqng +xn3) =n/2 + q(cng + n3/2)
>n/2+q/2(ng + n3).

Similarly, we can lower bound the distance K (G3, G3) by
cK(Gz,G3) > m/2+ q/2(my + m3).
We can now combine the inequalities,

K(G1,G2) < k/2+ qkg
< (n+m)/2+q/2(m3 + my + n3 + ny)
< c¢(K(G2, G3) + K(G1, G3)).

Assume now that p > 1/2. We can upper bound K (G, G>) by setting k» = 0,
K(G1,G2) = —2p)ka + pk + gks < pk + gka.

Assume that 4p%> — g <2p.Letz = p/(qg +2p) and x = p — gz = 2p?/(q + 2p).
Note that the assumption implies that x < 1/2, which allows us to lower bound

K(G1, G3) = (1 —2x)ny + xn + q(ng4 + zn3)
> xn + q(ng + zn3z).

@ Springer

Comparing directed acyclic graphs

Letc = (q +2p)/2p. Then cx = p and cz = 1/2. Since ¢ > 1/2, we have
cK(G1, G3) = pn+q/2(n4 + n3).

Combining the inequalities, similar to the first case, proves the proposition for the
second case.

Finally, assume that 4p> — ¢ > 2p. Letz = 1/(4p) and set x = p — gz =
(4p% — q)/(4p?). Since x > 1/2, we obtain a lower bound

K(G1, G3) = (1 —2x)np + xn + q(ng + zn3)
> n/2 4+ q(ng + zn3).

Letc =2p. Thenc/2 = pandcz = 1/2. Sincec > 1/2,
cK(G1,G3) = pn+q/2(ng + n3).

Combining the inequalities, similar to the first case, proves the proposition for the
third case.

By setting ¢ = max(4p2, q + max(2p, 1)) /2p, we are able to handle all three
cases simultaneously. O

Note that if we set p = 1/2 and ¢ = 0, then the distance satisfies the triangle
inequality. In fact, K (1/2,0) (G1, Gy) is a half of symmetric difference between edge
sets E1 and E»,

1
K120(G, Gy = BT\ E) U (B2 \ D).

If we set p = g = 0, then we are penalizing only Case 1 edges, that is, discordant
pairs. Proposition 1 holds only when p > 0, but it suggests that when p = 0, K
does not satisfy even a relaxed version of the triangle inequality. In order to prove this
intuition, we show a simple example.

Example 2 Consider Hi, H>, and H3 given in Fig. 1. If we set p = 0, then
K(Hy, Hy) = 1but K(Hy, H3) = K(H>, H3) = 0. Consequently, there isno ¢ > 0
such that

K(Hy, Hy) < c¢(K(Hi, H3) + K(H>, H3)).

4 DAG aggregation

We now consider the problem of DAG aggregation, that is, summarizing a set of DAGs
with a single DAG. We define the problem and demonstrate that it is computationally
intractable. We then propose two different methods for solving the DAG-aggregation
problem, and we show that both methods provide approximations to the optimal solu-
tion. While one method provides a better theoretical bound than the other, a simple

@ Springer

E. Malmi et al.

heuristic based on the second approach is shown to be the algorithm that works best
in practice.

4.1 Problem definition

We formulate the problem of aggregating DAGs as the following median-type opti-
mization problem.

Problem 1 (DAG Aggregation) Given a set of M directed graphs G1, ..., Gy, find
a DAG C minimizing

M
> K9Gy, 0).

i=1

We can view DAG AGGREGATION as an extension of RANK AGGREGATION, if
we view ranks as graphs. It is known that RANK AGGREGATION is NP-hard (Dwork
et al. 2001), however this does not imply directly that DAG AGGREGATION is also
NP-hard, since in DAG AGGREGATION the output is not required to be a full ranking.

In order to prove hardness we reduce a known NP-hard problem called FEEDBACK
ARC SET, where the goal is to construct a DAG with least amount of edges.

Problem 2 (Feedback Arc Set (FAS)) Given a directed graph G = (V, E), find the
smallest set of edges F' C E such that (V, E \ F) is a DAG.

The NP-hardness of FAS (Karp 1972) implies the following result.
Proposition 2 DAG AGGREGATION is NP-hard.

Proof We will prove the hardness by reducing FAS to DAG AGGREGATION. Fix
p,q > 0.

Assume that we are given a directed graph G = (V, E). We can safely assume
that there are no 2-cycles in G, otherwise we can modify G by splitting edge into two
edges by adding at most | E| vertices.

Our first step is to split G into two DAGs. In order to do that select and fix an
arbitrary order over the vertices. Define E1 = {(i, j) € E |i < j}and E; = E \ E.
Clearly Ei N Ey; =@ and Ey U Ey, = E.Set G; = (V, E1) and G> = (V, E3). Both
G1 and G, are DAGs.

Let C = (V, H) be the solution for DAG AGGREGATION for G, G». We claim
that F = E \ H solves FAS.

In order to prove this, let us first show that H C E. Assume otherwise and let
e € H \ E. Then this edge contributes either 2p or p + 1 to the cost, depending
whether the reversed edge is in E. However, if we delete e from H, then the cost is
either 2¢g or p 4+ q. Consequently, we can always decrease the cost by deleting e. Thus,
we can safely assume that H C E.

Since we have no 2-cycles in E, an edge e € H contributes p to the cost of DAG
AGGREGATION because e € E1 and e ¢ E;, or vice versa. On the other hand, an edge

@ Springer

Comparing directed acyclic graphs

e € E \ H contributes p + ¢ to the cost. Hence, the cost of DAG AGGREGATION is
equal to

K(G1,0) + K(G2,C) =q(VI(IVI -1 = 2[E]) + p|H|
+(p+qI|E\ H
=q(VI(VI=1) =2|E]) —q|H| + (p + 9| E|.

Consequently, minimizing the cost is equal to maximizing |H| which is equal to
minimizing |E \ H|. O

Proposition 2 implies that solving DAG AGGREGATION optimally is computation-
ally intractable. Hence, in the rest of this section we consider two approximation
algorithms.

4.2 Approximating DAG aggregation by a median centroid

Our first approach to select a centroid is simply picking the centroid from the input
graphs instead of constructing it from scratch. Remarkably, the fact that the distance
is almost a metric gives us an approximation ratio guarantee.

More formally, assume that we are given G 1, ..., Gr. We select the centroid from
the input graphs G1, ..., G minimizing the distance, that is,

M
MEDIAN (G, ..., Gy) = argrrGlinZK(p"I)(Gi, G)).
7 i=1

Since K satisfies a relaxed triangle inequality, we can achieve a constant approxi-
mation ratio. The proof of the following proposition is standard and it is omitted for
lack of space.

Proposition 3 Assume a set of DAGs G1,...,Gpy. For0 < g < p < 1with0 <
p, MEDIAN (G, ..., Gy) yields an approximation ratio of 2c, where c is a constant
as defined in Proposition 1.

4.3 Greedy approximation of DAG aggregation

Our next approach is based on the fact that we can express DAG AGGREGATION as
an instance of WEIGHTED FEEDBACK ARC SET problem.

In order to do that, assume that we are given G, ..., Gyy DAGsandletC = (V, E)
be a candidate centroid. Let b(i, j) define the cost of not having (i, j) as an edge in

the centroid,
M

b, j) = D Kij(Gm, Hempry),)

m=1

@ Springer

E. Malmi et al.

7/12 7/12

b b
/Vb /Vb b a/l/y(i 1/6 a/l/'G
/6
aw a / a\ \ 7/12\“\/2 7/12\“\/03
Crd CA/d) d c7/12 c7/12
(a) G1 (b) G2 (c) Gs (d) (v;P) (e)C

Fig. 2 Toy graphs related to Example 3

where Heppy is a graph with no edges. Similarly, define w(i, j) to be the cost of
having (i, j) as an edge in the centroid,

M
w(i, j) = D Kij(Gm, Hyun),)

m=1

where Hy,y; is a full directed graph. This gives us

M
Z K(Gy, C) = Zw(e) + Zb(e).
m=1

eck e¢E

Let us now define P = {e €V x V | w(e) < b(e)} to be the set of edges that
ideally we would like to have in the centroid. We can safely assume that the centroid
edges are all in P, E € P. However, since P may contain cycles, we cannot have
all of these edges. For each edge e not included in the centroid, we define regret
r(e) = b(e) — w(e) to be the difference we need to pay for not having the edge in C.
We can write the cost as

M
D K(Gu.C)=> we)+ D ble)+ > rlo).
m=1 eeP e¢ P ec P\E

Since the first two terms do not depend on C, we see that for selecting optimal centroid
we need to minimize the third sum. This is in fact an instance of WEIGHTED FEEDBACK
ARC SET (WFAS) problem, with an input graph (V, P, r).

Example 3 Consider G1, G3, and G3 given in Fig. 2. Set p = 1/3 and ¢ = 1/4 and
let us compute the optimal centroid. In order to do that, let us compute P. The regret
for an edge (a, b) is equal to
r(a,by=2/3+1/4—-1/3="7/12.
Similarly, r(a, ¢) = r(c,d) = 7/12. The regret for (a, d) and (b, d) is
r(a,d)y=rb,d)=1/3+2/4-2/3=1/6.
Finally, the regret for (b, c) is

r(b,c) =2/3+1/4—1/3—1=-5/12

@ Springer

Comparing directed acyclic graphs

which is negative and hence (b, c) is not included in P. The rest of the vertex pairs
also have negative regrets, and are not included in P. The graph (V, P) is given in
Fig. 2d. This graph has a cycle and the optimal DAG, C, is obtained by removing the
weakest edge (b, d). The optimal centroid is given in Fig. 2e.

We can estimate WFAS with O(log|V|loglog|V|) with an algorithm based on
Linear Programming techniques (Even et al. 1995).

Algorithm 1: AGGRFAS, solves DAG AGGREGATION problem using
Feedback arc set solver
compute w and b for each pair (4,5) using Egs. 1-2;
P—{eeVxV]w(e)<ble)};
r(e) < b(e) — w(e) for all e € P;
F < WFAS(V, P, r);
return (V, P\ F);

Proposition 4 AGGRFAS yields an approximation ratio of O (log |V |loglog|V]).

Proof Let G, ..., G, be the input graphs and let r be the regret. We showed earlier
that we can write the cost function as

M
ZK(Gm,C)zconst+ Z r(e),

m=1 eeP\E

for any graph C = (V, E), where const > 0 is a constant and does not depend on
C. Let OPT be the optimal solution of the second term and let Q be the cost of a
solution of weighted FAS found by an algorithm given in Even et al. (1995). Then
since const > 0 and Q > OPT, we have

const + Q - 0
const+ OPT — OPT’

The solver in Even et al. (1995) has an approximation ratio guarantee of
Q/OPT € O(log|V|loglog|V])

which proves the result. O

As approximation algorithms based on LP-approaches are rarely practical, we con-
sider a significantly simpler but efficient approach, given in Algorithm 2.

Algorithm 2: GREEDY, estimates optimal centroid given a set of DAGs
Gl, ey G]w

Q — {Uf\il Ei}?

compute w and b for each edge e € @ using Eqgs. 1-2;
P —{ecQ|w(e) <ble)};

r(e) «— b(e) — w(e) for all e € P;

E —0;

foreach e € P sorted by regret do

L if e U E has no cycle then

L add e to E;

return (V, E);

@ Springer

E. Malmi et al.

The idea behind this algorithm is straightforward. We order the edges based on
regret, edges with smallest regret first. Note that we only need to consider edges that
have appeared in at least one of the input DAGs since w(e) < b(e) can not hold for the
other edges. Then we keep adding edges into a centroid in an order, ignoring the edges
that create cycles. Even though this is a very simple approach, in our experiments
it outperforms MEDIAN , an algorithm for which we have a constant approximation
guarantee.

4.3.1 Computational complexity

Calculating the proposed distance measure K between DAGs G| = (V, E1) and
G> = (V, E3) only requires counting the number of concordant and discordant pairs
as the potentially discordant pairs can be computed based on these two numbers and
the number of vertices |V|. If we store edges in a hash table as a preprocessing step,
this yields a complexity of O (min(|E1|, |E>])).

Assume that we are given M input DAGs. Let k be the total number of edges in
the input graphs, k = Zf‘il |E(G;)|. Computing the cost of a centroid can be done in
O (k) time. Hence, the complexity cost for MEDIAN is O (Mk).

In GREEDY , we first need to form sets Q = {Ulﬂil Ei} and P = {e €

Q such that w(e) < b(e)}. Taking the union of all edges for Q takes O (k) steps. We
canseethat |P| < |Q|. Second, we need to detect cycles in an incrementally increasing
graph. This can be done in O (min(|P| %, V| 3)| P|) steps using the method described
by Bender et al. (2011), which gives us a running time of O (k 4+ min(| P| > , 1V 5)| P]).
However, in our experiments, we implemented the cycle detection simply by keeping
track of the transitive closure of the centroid while adding new edges to it since term
O (k) seemed to be the bottleneck of the algorithm.

Finally, we would like to point out that the main computational challenge in DAG
AGGREGATION is due to the requirement of having an acyclic centroid. Indeed, if we
ignored the acyclicity constraint, we could compute the optimal centroid in polynomial
time by taking all edges for which it holds that w(e) < b(e). Nevertheless, in some
cases it is useful to have a DAG centroid, for example, if you want to also get a topo-
logical ordering of the vertices. Such a scenario is exemplified by our last experiment
on clustering preference data.

5 Clustering DAGs

A natural application for distance measure is clustering. More formally, consider the
following problem.

Problem 3 Given a set of DAGs Gq,...,Gy and a number k, find k clusters
Py, ..., Py and centroids Cq, ..., Cg such that
k
>3 k6.0
i=1 GeP;

1s minimized.

@ Springer

Comparing directed acyclic graphs

Note that since we require to discover centroids along with the clusters, the cluster-
ing problem becomes automatically NP-hard. In fact, if we set k = 1, then the problem
reduces into finding a single centroid for all input graphs, a DAG AGGREGATION prob-
lem. This contrasts standard clustering problems where finding the centroid is typically
a straightforward computation.

We approach this problem by running a k-means type algorithm. Given a set of
centroids, we group the input DAGs into clusters minimizing the distance. Once the
groups are selected, we then select a centroid from each cluster. In order to select a
centroid, we use MEDIAN and GREEDY algorithms introduced in the previous section.

6 Related work

DAG AGGREGATION is an extension of the rank aggregation problem. The latter task
arises typically from aggregating search engine results. However, this optimization
problem has been studied in the context of voting, centuries before first computers,
see for example (Borda 1781). When using Kendall-tau distance, the rank aggregation
problem is also known as Kemeny-Young rank aggregation problem. The problem is
NP-hard (Dwork et al. 2001), however it admits a PTAS scheme (Kenyon-Mathieu
and Schudy 2007). Extensions of rank aggregations have suggested such as partial
rankings, that is, rankings with ties (Ailon 2010; Fagin et al. 2006), and top-k rank-
ings (Ailon 2010; Fagin et al. 2003), where only top-k elements are ranked and the
remaining objects are left unranked.

Extensions of rank aggregation to DAGs have been considered by Brandenburg et al.
(2012, 2013). Here the extension is done by representing a DAG with a set of linear
extensions. This allows to use set distances with Kendall-tau or Spearman footrule
as a base distance. Unfortunately, the number of extensions may be exponential and
indeed the problem of computing certain set distances becomes NP-hard.

In case the vertex correspondence between the graphs to be compared is unknown,
the main computational challenge is to find an alignment between vertices. Several
studies are based on this premise (see e.g., Bunke and Shearer 1998; Jiang et al. 2001).
However, since our starting point is rankings, it is natural to assume that the vertex
correspondence is known. Thus we focus on the problem of defining a meaningful
distance measure given the correspondence, which makes the distance measure eval-
uation computationally much cheaper.

As we have seen in previous sections, finding the optimal solution for DAG
AGGREGATION is intimately related to the FEEDBACK ARC SET (FAS) problem. The
reduction of NP-hardness is done by reducing FAS to DAG AGGREGATION and one
we can get an approximation algorithm by using a solver given in Even et al. (1995).
FAS is known to be APX-hard with a known coefficient of ¢ = 1.3606 (Kann 1992;
Dinur and Safra 2005), that is, given that P £ NP there is no approximation algo-
rithm with a constant approximation guarantee of c¢. On the other hand, selecting a
centroid from the input graphs gives us a guarantee ratio of (1 4+ ¢g)/p. Solving FAS
for tournaments, graphs having edges for each vertex pair, is substantially easier as
this problem admits a PTAS scheme (Kenyon-Mathieu and Schudy 2007). Note that

@ Springer

E. Malmi et al.

in order to get a tournament graph we need to have dense input graphs. This hints that
DAG AGGREGATION may be easier to solve if the input graphs are dense.

7 Experimental evaluation
7.1 Experiments on synthetic data

In this section, we present our experiments with synthetic datasets. The objective is to
test the ability of the K distance measure to distinguish DAGs generated from different
distributions, and also to study the sensitivity of the distance measure with respect to
its parameters. For the aggregation and clustering tasks, knowing the ground truth
in the generated data allows to compare the MEDIAN and the GREEDY algorithms
against baselines. We start our discussion by describing how we generate the data.

7.1.1 Synthetic DAG generation

In order to generate synthetic DAGs having a cluster structure, we use the following
approach. We start by generating a seed DAG, adding edges (i, j), where i < j, with
probability pedge. From this seed we create N corrupted DAGs, by deleting edges
with a probability premove, adding new edges with a probability of paqq, and swapping
vertices Ngwaps times. The probability paqq is determined from pedge and premove SO
that the corrupted graphs have on average the same amount of edges as the seed. This
leaves us three parameters, pedge, Premove aNd Ngwaps. Increasing premove and Ngwaps
will make graphs more corrupt. The parameter pegge determines the density of the
DAGs, 80 that pegee = 0 will produce an empty DAG while pegee = 1 will produce
a total order. In all experiments with the synthetic data, we set the number of vertices
to 50 and we assume transitivity, thus taking the transitive closures of the DAGs once
all of them have been generated. Note that transitivity is not required for the proposed
distance measure and algorithms to work. Indeed, in Sect. 7.2, we present experiments
on real-world information cascade data where transitivity does not hold.

7.1.2 Selecting distance measure parameters

A good distance measure should be able to differentiate between samples from dif-
ferent distributions while recognizing the similarity of the samples from the same
distribution. In order to measure the goodness of the distance, we can vary parameters
p and g of the proposed measure K, and see how well K can differentiate two sets
of DAGs, given that they are drawn from two different distributions. To measure the
similarity of the sets, we use the Friedman-Rafsky MST-based runs test (Friedman and
Rafsky 1979). The idea is that we calculate the pairwise distances between all samples
from both sets and find the minimum spanning tree. Test statistic R is the number of
edges that connect samples from different sets, and a low value of R indicates that we
can reject the null hypothesis of the sets being from the same distribution.

Our experimental setting is the following. First, we generate two sets of DAGs with
the same parameters but with different seed DAGs. Then, we use the Friedman-Rafsky

@ Springer

Comparing directed acyclic graphs

Sparse DAGs, p=0.5 Dense DAGs, p=0.5
20 35
g >
o o
o 15 o
%) »
= = 25
© ©
w» 10 ®
B y @ 20
F 5 B
15
0 10
0 01 02 03 04 0 01 02 03 04
q q
Sparse DAGs, q=0.85"p Dense DAGs, q=0.45%p
20 35
o o
o 15 o
@ @
= = 25
] O]
w 10 @
2 5 20
F 5 P
VPPN Bo0ees 15 W@
0 10
0 0.5 1 0 0.5 1
p p

Fig. 3 Differentiation capability of the proposed measure K with different values of g (top) and different
values of p keeping the ratio of p and ¢ fixed (bottom)

test to see whether these two sets follow the same distribution, while varying p and
q. Since we know that the two sets are from different distributions, we can simply
see how the variation in the parameters p and g affects the statistics R. The analysis
is repeated for sparse DAGS (pedge = 0.03) and dense DAGs (pedge = 0.08) and
for different levels of corruption. Results for a single level of corruption (premove =
0.7, Ngwaps = 0) while varying p and g are shown in Fig. 3. From the top figures, we
have computed the optimal ratios of p and ¢ for sparse DAGs (¢/p = 0.85) and for
dense DAGs (g/p = 0.45) when p is fixed. In the bottom figures, these ratios have
been fixed after which we have varied p and ¢ accordingly.

We omit detailed illustration of our results, however, the main conclusions drawn
are the following: (i) When setting p = 0.5, the optimal value of ¢ depends on the
density of the DAGs so that for sparse DAGs ¢ should be near to p, whereas for
denser DAGs ¢ can be smaller in order to be able to distinguish DAGs from different
distributions. (ii) When the ratio of p and g has been fixed, the distance measure is
not sensitive to the value of p. (iii) The optimal value of ¢ depends on how corrupted
the DAGs are.

All in all, these results show that the optimal values of p and g are problem depen-
dent and it remains an open problem how to best select them. Nevertheless, in our
experiments with real-world data, the following simple strategy proved to be useful:
set p = 0.5, ¢ = 0 and increase ¢ until the obtained aggregated centroids become
nonempty. Furthermore, an expert might be able to use his or her domain knowledge

@ Springer

E. Malmi et al.

Sparse DAGS’ Nswap3=20 Dense DAGS, NswapS=2O
330 400
S |
8 320 350
= 310
g 300
o 300
o
250
X 290 @RGIATH L K gk g e 3k Fok K K
280 200
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
premove premove
Sparse DAGs, premove=o Dense DAGs, premove=0
330 400
£
8 320 350
= 310
..C'C_’. 300
o 300
o
X 290 gB¢ 250
280 200

N
swaps swaps

—©— median —*— greedy —+— empty baseline — % — optimal

Fig.4 DAG aggregation performance measured as the distance from the planted seed DAG to the obtained
centroid

to decide how much potentially discordant pairs should be penalized and select p and
q accordingly.

7.1.3 DAG aggregation

Next we evaluate our DAG aggregation methods, by testing how well they are able to
uncover an underlying seed DAG. Our methodology here is to generate a set of input
DAGs from a fixed seed, apply our DAG aggregation methods to compute a centroid,
and then calculate the distance between the centroid and the seed DAG.

We compare MEDIAN and GREEDY along with two other methods. The baseline
method uses an empty DAG as the centroid, while the optimal method outputs the
seed DAG itself giving a lower bound for the distance. We set the parameters of the
measure to p = % and g = zlt' The results are shown in Fig. 4 for different values of
Premove and N, swaps-

From the results we see that in most cases GREEDY performs significantly better
than MEDIAN . However, the drawback of GREEDY is that if the data generation
parameters are increased above a certain point so that the input DAGs become very
diverse, then the centroid converges into an empty DAG. In our other experiments, we
notice that this happens even more easily if the value of ¢ is decreased.

@ Springer

Comparing directed acyclic graphs

Sparse DAGs, N =0 Dense DAGs, N

swaps

=0

swaps

x x
) [0)
° °
£ £
2 2 06
< c
o @C 4 || —©— median
° - v
Q @ —%— greedy
‘g "g 0.2 || —+— hierarchical
= T 0 — % —optimal
< <
0 025 05 0.75 1 0 025 05 0.75 1
Premove Premove
Sparse DAGs, p =0 Dense DAGs, p =0
remove remove
x x
) [O)
° °
£ £
ko] °
C C
© @
o o
o o
2 o
7] 0
.: .:
T T 0
< <
0 5 10 15 20
N
swaps swaps

Fig. 5 Clustering method comparison for the synthetic data. Higher values are better

7.1.4 DAG clustering

In our final experiment with synthetic data we cluster DAGs. We generate 5 clusters
using our synthetic-data generator, each cluster containing 20 graphs. Furthermore,
we make 20 additional vertex index swaps for each seed creating discordant pairs
between clusters, and furthering clusters away from each other.

Evaluating the performance of a clustering algorithm is generally a difficult prob-
lem due to lack of ground truth but with our synthetic dataset we know the correct
partitioning of the DAGs. Thus we can measure performance using the Adjusted Rand
Index (ARI) (Hubert and Arabie 1985).

We use k-means type algorithm which updates the cluster centroids using either
MEDIAN or GREEDY . These approaches are compared to a hierarchical clustering
method with complete linkage criterion and to optimal method which sets the seed
DAGs as the initial cluster centroids and then assigns each input DAG to the closest
centroid, giving us an upper bound for the performance. For the k-means approaches,
we run ten restarts with random initial cluster assignments and select the run which
minimizes the clustering cost defined in Problem 3. For all methods, we run ten
repetitions with newly generated datasets and calculate the average ARI. We set the
parameters for the distance measure to p = % and g = é—lt. The results are shown in
Fig. 5.

When varying premove, GREEDY yields the correct clustering up to premove = 0.6
for sparse DAGs, but after this the performance drops. MEDIAN and the hierarchical
methods perform comparably. For dense DAGs all methods are able to find the correct

@ Springer

E. Malmi et al.

clustering on almost every occasion. On the other hand, when varying parameter
Ngwaps and potentially inducing discordant pairs within a cluster, the differences are
more clear. GREEDY has the best overall performance, whereas the hierarchical method
performs the worst.

7.2 Experiments on information cascades

In this section, we apply the proposed DAG-aggregation methods to real-world music-
listening data from Last.fm. This type of analysis can provide valuable insights, e.g.,
for artists who want to advertise their music to targeted individuals that are influential
among their peers. Our experimental setting is inspired by the large body of work in
social-network analysis, where one observes information cascades in social networks
and the goal is to infer the underlying influence model (Anagnostopoulos et al. 2008;
Barbieri et al. 2013; Gomez-Rodriguez et al. 2011, 2012; Goyal et al. 2008, 2010;
Macchia et al. 2013; Saito et al. 2008; Su et al. 2014). This line of work focuses on
learning influence probabilities on the edges of the social network, but also the roles
of the network users in the information-diffusion process.

7.2.1 Music listening data

The dataset we use is collected from Last.fm, a music service that tracks user music
listening and provides recommendations. The dataset contains 1 372 users who have
listened to a total of 1.2 million tracks (51495 unique tracks) from 4 322 different
artists between Jan 1, 2010 and Nov 10, 2010. The dataset also includes the social
network of the users. Since we want to analyze information cascades, we study how
the listening of different artists is propagated in the social network. When user A starts
listening to an artist that her friend B is already listening to, we say that A is following
B, and draw an edge (B, A). We note that we do not have complete user histories,
so user A may have listened to the same artist previously (or in fact from another
platform), but as all studies of social influence we ignore this effect. This process
gives us a DAG for each artist whose vertices are the Last.fm users. We limit ourselves
to 196 artists who have at least 100 listeners.

7.2.2 Artist clustering

We apply k-means, using GREEDY and MEDIAN for selecting centroids, with ten
restarts. We set the number of clusters to 5, and p = 1/2 and ¢ = 0.4.

GREEDY outperforms MEDIAN both in terms of the average running time and the
average cost of the clustering. The results are shown in Table 1. The relative differences
of the costs are small since the costs mainly consists of the penalties caused by Case
4 pairs as the DAGs are very sparse. Nevertheless, GREEDY consistently outperforms
MEDIAN .

The clustering that obtained the lowest cost using GREEDY is shown in Table 2.
We can see that different clusters capture different music genres. Clusters 2 and 5
contain mostly rock artists with the difference that the former is focused on classic

@ Springer

Comparing directed acyclic graphs

Table 1 Clustering results for

. . Clustering cost + std Time (s) Iterations
information cascades
MEDIAN 73746 000 £ 960 166 2.3
GREEDY 73738430 £ 350 63 8.3

Table 2 A clustering for artists in the Last.fm dataset

Cluster #artists Example artists Top tags

1 25 Amy Winehouse, Kelly Rowland, Pop, female vocalists, rnb,
Evanescence, Linkin Park, Jason Mraz dance, soul

2 24 Pink Floyd, Black Sabbath, Joy Division, Rock, classic rock, 80s, new
Led Zeppelin, Duran Duran wave, alternative

3 12 Shakira, Taylor Swift, Lana Del Rey, Pop, female vocalists, rnb,
Florence + the Machine, Madonna dance, indie

4 16 Feist, La Roux, Mika, Bat for Lashes, Indie, alternative, female
Gossip vocalists, rock, indie rock

5 119 Johnny Cash, Placebo, Vampire Rock, alternative, indie, pop,
Weekend, Air, Kiss electronic

rock whereas the latter is more diverse. Cluster 3 captures female pop artists, whereas
in Cluster 4, we have indie artists. Cluster 1 is an interesting mix of pop artists and
alternative metal artists suggesting that there is a group of users listening to both
genres. The results also show that the pop and rock genres are well represented in the
data causing smaller genres to merge to these.

7.2.3 Influential users

We should note that our approach gives not only a clustering of artists based on
cascades, but it can also help us identify the most influential users for each cluster.
The users who are roots in the centroid DAG of each cluster and have large subtrees
below are the potentially influential ones. Identifying influential users is very important
for viral marking and campaign design.

7.3 Experiments on preference data
In this section, we apply our methods to analyze preference data of different users.

This analysis shows how the proposed methods can be used to discover and visualize
groups of people with different tastes.

7.3.1 Artist preference data
The data was collected through a Finnish music related website whose owner allowed

us to display a survey for the visitors of the site for two days. We selected twenty
popular Finnish/foreign artists from five different music genres (pop, rock, rap, metal,

@ Springer

E. Malmi et al.

Table 3 Clustering results for

preference data Clustering cost % std Time (ms) Iterations
MEDIAN 43751 £22 650 2.0
GREEDY 43097 £ 28 260 14.0

and electronic) and presented the visitors a series of questions of the form “Which artist
do you like more: A or B” where A and B were two randomly selected, distinct artists.
In total, we received data from 3 683 users (=IP addresses) out of whom 960 satisfy
the following criteria: (i) answered at least 10 preference questions (ii) answered
questions about their age and gender (iii) country is Finland (iv) preference graph is
acyclic (6 % of the graphs contain a cycle).?

7.3.2 User clustering

A preference DAG is formed by taking all the pairwise preferences of a user and
drawing an edge (a, b) if the user prefers artist a to b. We divide the users into 480
train users and 480 test users and cluster the train users using the greedy method with 3
clusters and parameters p = 0.50, ¢ = 0.48. The value of g is selected by increasing
it until the centroids obtained by GREEDY become nonempty. The results averaged
over ten restarts are shown in Table 3. Again GREEDY obtains a better performance
than MEDIAN in terms of the clustering cost and the running time even though it uses
more iterations to converge.

The centroids of the clustering with the lowest cost are shown in Fig. 6. An analysis
of the centroids reveals that the clusters capture very different types of preferences.
The bottom cluster contains all metal fans, whereas the top-left cluster contains all
those who like anything but metal. Quite interestingly, the users in the top-right cluster
seem to be indifferent to genre, however, preferring Finnish artists over foreign ones.
To make the structure of the DAGs more visible, we removed all edges e = (u, v) if
there was an alternative path from u to v via some intermediate vertices.

7.3.3 Preference prediction

To obtain further evidence that the obtained clusters are meaningful, we apply them to
a music preference prediction problem. For each test user, we use k randomly selected
preferences to determine the closest cluster centroid ¢ and then predict all the remaining
preferences by taking the majority vote over all train users in cluster c. As a baseline,
we use a majority vote over the train users in all clusters. The results in Fig. 7 show
that we obtain up to an 8 % absolute improvement over the baseline method. Note that
further improvements might be attainable using more sophisticated methods but the
purpose of this experiment is merely to show that the proposed clustering method is
able to group people with similar preferences.

2 The dataset can be downloaded at http://users.ics.aalto.fi/emalmi/artist_preference_data.zip.

@ Springer

Comparing directed acyclic graphs

Poik
— Ellie =
[Eminem | Goulding
N o<1
: : Eppu
% (Kotitcollisuus) (Apulanta) (PMMP) | “PPY | |Coldplay| (Cheek
y
: System of| | Lady Isac
Metallica] |55 © Gaga Elliot

Eppu
| (=

YT Ellie I Children

Goulding of Bodom,

Y

Daft Mileyv n

Pitbull Armin
van Buuren

Eppu
Normaali

Ellie
GouldmiF
\d

Isac
@ MME

Genre: IMetalI IRockI IPOPI IRaPI IElectronicl
Origin:lInternational| (Finnish)

Fig. 6 Centroids for a clustering of the artist preference data

Fig. 7 Artist preference 0.64
prediction results
0.62
)
e 06 B
=]
Q
Q
< 058}
0.56 T
—x— Majority vote (baseline)
—©— Majority vote within cluster
q
0.54 - - - - :
1 3 5 7 9 11 13

of train preferences

8 Conclusions

In this paper, we suggested a natural generalization of Kendall-tau distance to directed
acyclic graphs. We showed that this distance is a near-metric, that is, it satisfies a
relaxed version of triangle inequality. We considered two applications of the distance:
DAG aggregation and clustering. We were able to use the near-metric property to
show that we can obtain a constant approximation guarantee for the DAG aggregation

@ Springer

E. Malmi et al.

problem using a median approach. DAG aggregation, in turn, can used to obtain a
clustering by running a k-means type algorithm.

Our measure has potential applications in information-scarce rank analysis, where
instead of full rankings we only have partial ranking information. Interestingly enough,
DAGs also arise naturally from information cascades. The nature of the problem here
is different: in rank analysis we have DAGs because we have missing information
while in cascade analysis, DAGs contain all information that we hope to have. Here
clustering and analyzing DAGs also have many applications, for example, by studying
different clusters and their centroids, we can find the influential users in each cluster.

We run experiments both on synthetic data, measuring how well we are able to
recover a planted clustering, and on real-world data regarding user preferences and
information cascades, measuring the clustering cost and running time. In most cases
a simple greedy approach outperformed MEDIAN , an algorithm for which we have
a constant approximation guarantee. Furthermore, we showed that the obtained clus-
terings reveal meaningful and occasionally surprising information. For instance, a
clustering of music preferences showed that while the preferences of some users are
dictated by the genre of the music, for others they depend on the nationalities of the
artists.

Our work opens several lines for future work. First, we could study how to rank items
from a given set of DAGs. Second, we saw that DAG aggregation and FEEDBACK ARC
SET problem are intimately related to each other. The latter is a well-studied problem
and it would be fruitful to see whether this connection can be used further to establish
new theoretical complexity results concerning both problems. Third, the standard
Kendall-tau coefficient is often used as a test statistic for studying the dependency
between two variables. Similarly, it would be interesting to look into whether the
proposed measure could be used as a test statistic for assessing the dependency between
two graphs.

A limitation of the proposed distance measure is that it is not clear how to find the
best values of parameters p and g since these are problem dependent as our experiments
show. In the experiments with real-world datasets, we have used a simple heuristic
proposed in Sect. 7.1, but it remains an open problem how to select the parameter
values optimally.

Acknowledgments The authors are grateful to Nicola Barbieri for providing the Last.fm dataset. We also
thank the anonymous reviewers for their constructive feedback. This work was supported by Academy of
Finland grant 118653 (ALGODAN).

References

Ailon N (2010) Aggregation of partial rankings, p-ratings and top-m lists. Algorithmica 57(2):284-300

Ailon N, Charikar M, Newman A (2008) Aggregating inconsistent information: ranking and clustering. J
ACM 55(5):23

Anagnostopoulos A, Kumar R, Mahdian M (2008) Influence and correlation in social networks. In: Proceed-
ings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining.
pp 7-15

Barbieri N, Bonchi F, Manco G (2013) Cascade-based community detection. In: Proceedings of the sixth
ACM international conference on Web search and data mining. pp 3342

@ Springer

Comparing directed acyclic graphs

Bender MA, Fineman JT, Gilbert S, Tarjan RE (2011) A new approach to incremental cycle detection and
related problems. arXiv:1112.0784

Borda J (1781) Mémoire sur les élections au scrutin. Histoire de I’ Académie Royale des Sciences

Brandenburg F, GleiBner A, Hofmeier A (2012) Comparing and aggregating partial orders with Kendall tau
distances. In: WALCOM: algorithms and computation. Lecture notes in computer science, vol 7157.
Springer Berlin Heidelberg, pp 88-99

Brandenburg F, Gleiner A, Hofmeier A (2013) The nearest neighbor Spearman footrule distance for bucket,
interval, and partial orders.] Comb Optim 26(2):310-332

Bunke H, Shearer K (1998) A graph distance metric based on the maximal common subgraph. Pattern
Recognit Lett 19(3):255-259

Dinur I, Safra S (2005) On the hardness of approximating minimum vertex cover. Ann Math 162(1):439-485

Dwork C, Kumar R, Naor M, Sivakumar D (2001) Rank aggregation methods for the web. In: Proceedings
of the 10th international conference on World Wide Web. pp 613-622

Even G, Naor J, Schieber B, Sudan M (1995) Approximating minimum feedback sets and multi-cuts in
directed graphs. In: Proceedings of the 4th international conference on integer programming and
combinatorial optimization. pp 14-28

Fagin R, Kumar R, Mahdian M, Sivakumar D, Vee E (2006) Comparing partial rankings. SIAM J Discrete
Math 20(3):628-648

Fagin R, Kumar R, Sivakumar D (2003) Comparing top-k lists. SIAM J Discrete Math 17(1):134-160

Friedman JH, Rafsky LC (1979) Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-
sample tests. Ann Stat 7(4):697-717

Gomez-Rodriguez M, Balduzzi D, Scholkopf B (2011) Uncovering the temporal dynamics of diffusion
networks. In: Proceedings of the 28th international conference on machine learning. pp 561-568

Gomez-Rodriguez M, Leskovec J, Krause A (2012) Inferring networks of diffusion and influence. ACM
Trans Knowl Discov Data 5(4):21

Goodman LA, Kruskal WH (1972) Measures of association for cross classifications, iv: simplification of
asymptotic variances. J Am Stat Assoc 67(338):415-421

Goyal A, Bonchi F, Lakshmanan LVS (2008) Discovering leaders from community actions. In: Proceedings
of the 17th ACM conference on information and knowledge management. pp 499-508

Goyal A, Bonchi F, Lakshmanan LVS (2010) Learning influence probabilities in social networks. In: Pro-
ceedings of the third ACM international conference on Web search and data mining. pp 241-250

Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193-218

Jiang X, Munger A, Bunke H (2001) An median graphs: properties, algorithms, and applications. IEEE
Trans Pattern Anal Mach Intell 23(10):1144-1151

Kann V (1992) On the approximability of np-complete optimization problems. Ph.D. thesis, KTH

Karp RM (1972) Reducibility among combinatorial problems. In: Complexity of computer computations.
Springer, New York

Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In:
Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data
mining. pp 137-146

Kendall M (1938) A new measure of rank correlation. Biometrika 30:81-93

Kendall M (1976) Rank correlation methods, 4th edn. Hodder Arnold, London

Kenyon-Mathieu C, Schudy W (2007) How to rank with few errors. In: Proceedings of the 39th annual
ACM symposium on theory of computing. pp 95-103

Laming D (2003) Human judgment: the eye of the beholder. Cengage Learning EMEA

Macchia L, Bonchi F, Gullo F, Chiarandini L (2013) Mining summaries of propagations. In: Proceedings
of the 13th IEEE international conference on data mining. pp 498-507

Madden JI (1995) Analyzing and modeling rank data. Chapman & Hall, London

Murphy TB, Martin D (2003) Mixtures of distance-based models for ranking data. Comp Stat Data Anal
41(3-4):645-655

Saito K, Nakano R, Kimura M (2008) Prediction of information diffusion probabilities for independent
cascade model. In: Knowledge-based intelligent information and engineering systems. pp 67-75

Su H, Gionis A, Rousu J (2014) Structured prediction of network response. In: Proceedings of the 31st
international conference on machine learning. pp 442-450

@ Springer

