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Abstract We study the problem of simplifying a given directed graph by keeping a
small subset of its arcs. Our goal is to maintain the connectivity required to explain
a set of observed traces of information propagation across the graph. Unlike previous
work, we do not make any assumption about an underlying model of information
propagation. Instead, we approach the task as a combinatorial problem. We prove
that the resulting optimization problem is NP-hard. We show that a standard greedy
algorithm performs very well in practice, even though it does not have theoretical
guarantees. Additionally, if the activity traces have a tree structure, we show that the
objective function is supermodular, and experimentally verify that the approach for
size-constrained submodular minimization recently proposed by Nagano et al. (28th
International Conference on Machine Learning, 2011) produces very good results.
Moreover, when applied to the task of reconstructing an unobserved graph, our meth-
ods perform comparably to a state-of-the-art algorithm devised specifically for this
task.
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1 Introduction

Simplifying graphs is a problem that has been studied extensively. The bulk of this
literature considers only structural properties of the graph. For example, a spanner of a
given graph G is a sparse subgraph of G, so that distances between pairs of nodes in G
are not distorted by much when measured on the spanner subgraph (Peleg and Schäffer
1989). Other problem formulations involve sparsifying a graph with the objective of
preserving the flow properties (Misiołek and Chen 2006), the cuts (Fung et al. 2011),
the connectivity (Zhou et al. 2010), or the community structure of the original graph
(Arenas et al. 2007).

In this paper we study the problem of simplifying a graph while maintaining the
connectivity required to explain a given set of observed activity traces over the graph.
Similar to the work by Mathioudakis et al. (2011), our goal is to identify the most
important pathways of the graph for understanding observed information propagation
across its nodes. However, in contrast to previous work, we take a model-free approach.
This gives the methods proposed in this paper wider applicability, because different
types of information propagation, such as sharing a link on Facebook on the one
hand, or adopting a product on the other, are unlikely to follow the same principles
of contagion. Therefore, a single model may not fit all applications. We suggest to
overcome this problem by not using a model at all. To summarize, sparsifying a graph
on the basis of observed activation traces can be useful in many applications, among
others:

Information propagation in social networks. In this case, the graph is the social
network and entities represent information memes that spread in the network.
Finding the social ties that are the most important information-diffusion channels
can be a useful tool to answer questions such as “what distinguishes the way
politics memes and sport memes propagate?” or “what is the structural difference
between the backbones of actual news and false rumors?”
Network reconstruction (Gomez-Rodriguez et al. 2010). In some cases we might
only observe a set of traces, but not the arcs of the underlying graph. Our methods
for finding the most important arcs can also be used to reconstruct an unobserved
graph by sparsifying an imaginary complete graph on the nodes.
Website usage analysis and re-organization (Srikant and Yang 2001). The graph
represents webpages and links between these, and every trace corresponds to the
activity of a certain user in the website. By sparsifying the graph we can find the
most important hyperlinks, which might provide important information regarding
user behavior inside the website and reachability of different parts of the website.
Information filtering and personalization. Given the amount of information
received by the average user of on-line social networks such as Facebook or
Twitter, simplifying the social graph on the basis of previously observed traces
can be used to identify the important connections of a user, and e.g. give preference
to messages arriving along these connections.
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Fig. 1 A directed graph G and two traces, φ1 and φ2

Influence maximization. Graph simplification can be used as a data reduction
mechanism in the seed selection problem (Kempe et al. 2003). In our previous
work (Mathioudakis et al. 2011) we show that sparsifying the social graph on
the basis of past traces yields significant improvements in terms of efficiency and
scalability, while sacrificing little in terms of quality.

In this paper we consider the following problem, illustrated by the simple example
in Fig. 1. We are given a directed graph G = (N , A), and a database of activation
traces. Our task is to select a small subset of arcs from A that maintain connectivity
in the traces. Figure 1 shows a directed graph G together with two traces, denoted φ1
and φ2. (In real applications we can have tens of thousands of traces.)

The graph G represents relations between nodes, and the traces correspond to,
e.g., information cascades in the graph G. Each trace is a directed acyclic graph
(DAG) defined on a subset of N , and it captures the temporal order in which the nodes
got activated. A trace φ has an arc from node u to node v if the arc (u, v) exists in
A and the node u got activated before node v. In trace φ1 of Fig. 1 node b must have
been activated before node c, because the arc (c, b) does not exist in φ1 even though
it is an arc of G. The nodes of a trace with zero in-degree are called sources. In Fig. 1
both traces φ1 and φ2 have only a single source: the node a.

Given a simplified graph, the coverage of a trace is the number of nodes that can
be reached from at least one source along a path in the simplified graph. Note that the
sources do not contribute to the coverage. Our task is to simplify the input graph G
by keeping only a small subset of its arcs so that the coverage over all input traces
is maximized. In the toy example of Fig. 1, the subgraph consisting only of the arcs
(a, c), (c, f ), and (b, d) has a coverage of 1 in trace φ1, and a coverage of 2 in trace φ2,
for a total coverage of 3. The subgraph with arcs (a, c) and (c, d) has a total coverage
of 4, as both φ1 and φ2 have a coverage of 2. There are thus two objectives to optimize:
minimize the number of arcs in the simplified graph and maximize the coverage. In
this example we would prefer the latter subgraph, because it is smaller and yields a
larger coverage. Observe that we do not assume any particular generative process for
the traces when computing coverage.
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To avoid a multi-objective optimization problem, we can constrain one quantity
and optimize the other, and thus obtain two complementary problem formulations.
We name the two problems MaxCover and MinArcSet, and we show they are
NP-hard.

We show that when traces are general DAGs, coverage is neither submodular nor
supermodular. As a consequence the standard greedy heuristic that adds arcs by max-
imizing marginal gain in coverage has no provable quality guarantees. Nonetheless,
our empirical evaluation shows that Greedy gives very good solutions in practice.

In some applications the parent of a node in a trace is unique. This can happen for
instance when information propagates by an explicit repost via a certain neighboring
node. We show that if all input traces are directed trees rooted at the sources, then
the coverage function is supermodular. In Fig. 1 the trace φ2 is such a tree, but the
trace φ1 is not. Since maximizing a supermodular function is equivalent to minimizing
a submodular function, we develop an algorithm based on recent advances in size-
constrained submodular minimization by Nagano et al. (2011). This algorithm, called
MNB, gives optimal solutions for some sizes of the simplified graph. These sizes,
however, can not be specified in advance, but are part of the output of the algorithm.

We implemented both methods and applied them on real datasets. The main con-
clusions drawn from our empirical evaluation are the following.

• The greedy algorithm is a reliable method that gives good results and scales grace-
fully. Over all our datasets, Greedy achieves a performance that is at least 85 %
of the optimal.

• With tree-shaped traces MNB is the most efficient algorithm and outperforms
Greedy by up to two orders of magnitude in running time.

• We apply our algorithms to the task of reconstructing an unobserved graph based
on observed propagations by simplifying a complete graph (clique). The empir-
ical evaluation suggests that our methods slightly outperform NetInf (Gomez-
Rodriguez et al. 2010), an algorithm specifically designed for this network-
reconstruction task.

• We use our methods to simplify a graph where the arcs contain social-influence
information, as a preprocessing step before influence maximization, as done by
Mathioudakis et al. (2011). When compared to their algorithm, our methods per-
form reasonably well, although our methods are at a disadvantage as explained in
detail in Sect. 5.

The rest of the paper is organized as follows. In Sect. 2 we review related work.
In Sect. 3 we formally define our problem and study the properties of our objective
function. Our algorithms are discussed in Sect. 4 and our empirical evaluation is
presented in Sect. 5. Finally, Sect. 6 concludes by outlining open problems and future
research directions.

2 Related work

Conceptually, our work contributes to the literature on network simplification, the
goal of which is to identify subnetworks that preserve properties of a given network.
Toivonen et al. (2010) as well as Zhou et al. (2010), for instance, prune arcs while
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keeping the quality of best paths between all pairs of nodes, where quality is defined
on concepts such as shortest path or maximum flow. Misiołek and Chen (2006) prune
arcs while maintaining the source-to-sink flow for each pair of nodes. In the theory
community, the notion of k-spanner refers to a sparse subgraph that maintains the
distances in the original graph up to a factor of k. The problem is to find the sparsest
k-spanner (Elkin and Peleg 2005). In pathfinder networks (Quirin et al. 2008; Serrano
et al. 2010) the approach is to select weighted arcs that do not violate the triangular
inequality. Fung et al. (2011) study cut-sparsifiers, i.e., subsets of arcs that preserve
cuts up to a multiplicative error. Serrano et al. (2009) and Foti et al. (2011) focus
on weighted networks and select arcs that represent statistically significant deviations
with respect to a null model. In a similar setting, Arenas et al. (2007) select arcs that
preserve modularity, a measure that quantifies quality of community structure.

The approach we take in this paper is substantially different from the work discussed
above. The main difference is that our problem of simplification is defined in terms
of observed activity in the network, and not only in terms of structural properties of
the network. A similar approach is taken by Gomez-Rodriguez et al. (2011, 2010) and
Mathioudakis et al. (2011). Gomez-Rodriguez et al. (2011, 2010) assume that con-
nections between nodes are unobserved, and use observed traces of activity to infer a
sparse, “hidden” network of information diffusion. Mathioudakis et al. (2011) instead
focus on sparsifying an available network. Both lines of research build on a proba-
bilistic propagation model that relies on estimated “influence probabilities” between
nodes. In contrast, we define graph simplification as a combinatorial problem that
does not assume any underlying propagation model. This is an important contribu-
tion, because the accuracy of propagation models to describe real-world phenomena
has not been shown conclusively. Our empirical evaluation suggests that our model-
free methods compare well with the model-based approaches by Gomez-Rodriguez
et al. (2010) and Mathioudakis et al. (2011).

3 Problem definition

In this section we provide formal definitions of the concepts that we already introduced
in Sect. 1. Our examples come from the context of social media, but we want to
emphasize that the results and algorithms are agnostic of the application, and can
easily be used with suitable data from any domain.

Underlying graph. The first input to our problem is a directed graph G = (N , A).
The direction of the arcs in A indicates the direction in which information propagates.
As an example, in Twitter the arc (u, v) belongs to A whenever user v follows user u,
and therefore information can potentially flow from u to v.

In some cases it is not possible to observe the graph. For example, when studying the
blogosphere we may assume that any blog can influence any other blog even though
there are no explicit links in between. When the graph is not observable, we simply
assume that the set of arcs A is complete, i.e., A = N × N .

Traces over the graph. The second input to our problem is a set Π of traces of
information propagation over G. Each trace φ ∈ Π corresponds to a different piece of
information. When a piece of information reaches a node, we say the node becomes
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activated in the corresponding trace. For example, in Twitter a trace could correspond
to some particular URL, and a user is activated whenever she tweets that URL. By
considering different URLs, we obtain a set of different traces. Note that a node can
become activated only once in the same trace.

We represent traces as DAGs that capture the temporal order in which the node
activations occur in G. Formally, a trace φ is represented by a DAG Gφ = (Nφ, Aφ),
where Nφ is the set of activated nodes, and Aφ is a set of arcs that indicate potential
information flow in G. That is, we have (u, v) ∈ Aφ whenever (u, v) is an arc of G,
both u and v belong to Nφ , and u got activated before v in φ. Note that (u, v) ∈ Aφ

does not imply that v indeed was “influenced” by u in any way. The trace graph Gφ

merely indicates the possible information pathways of a trace φ in G. Finally, nodes
in Nφ with no incoming arcs in Aφ are called trace sources, and belong to the set Sφ .
A node is a source if it is among the first nodes of a trace to become active, meaning
it has no neighbors that got activated earlier in the same trace.

As detailed in Sect. 3.1, when traces have a tree structure they possess interesting
properties that we can leverage in our algorithms. Before formalizing the problem, we
provide motivation why considering tree traces is an interesting special case. There are
many cases where we can unambiguously observe the information propagation paths.
For example, when considering re-tweeting activity in Twitter, either the string ‘RT@’
is present in the tweet text, followed by the username of the information source, or
an explicit retweet_source field is available via the API. Likewise in Facebook,
when users share, say, links, the source is always explicitly mentioned. As our objective
is to provide methods to study information propagation in networks, using tree traces
is a very meaningful abstraction for many real-world applications.

Definition 1 (Tree traces) Let Gφ = (Nφ, Aφ) represent a trace φ with set of
sources Sφ . A trace φ is a tree trace if it is the disjoint union of directed trees rooted
at the source nodes Sφ .

According to Definition 1, a trace is a tree trace when the DAG has one connected
component for each source. Without loss of generality, if the trace has multiple sources
we can consider each as a separate trace. Therefore, hereafter we refer to a tree trace
as a single directed tree rooted at the source.

Objective function. Our objective function is the coverage attained by a set of arcs
A′. A precise definition of coverage is given below. In less formal terms, coverage
referes to the total number of nodes in every trace that are reachable from one of the
sources of the trace by using only arcs in A′.
Definition 2 (Reachability) Let Gφ = (Nφ, Aφ) represent a trace φ with set of
sources Sφ , and let u ∈ Nφ \ Sφ . For a set of arcs A′ ⊆ A we define the variable
r(A′, u | φ) to be 1 if there is a path in Gφ from any node in Sφ to u using only arcs
in A′. If no such path exists we define r(A′, u | φ) to be 0.

Definition 3 (Coverage) Consider a graph G = (N , A) and a set of traces Π . We
define the coverage of a set of arcs A′ ⊆ A as

CΠ(A′) =
∑

φ∈Π

∑

u∈Nφ\Sφ

r(A′, u | φ). (1)
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For simplicity of notation, and when the set of traces is implied by the context, we
also write C(A′) for CΠ(A′).

Our goal is to find a small set of arcs that has large coverage. Thus, there are
two quantities to optimize: the number of arcs and the coverage achieved. We can
constrain one quantity and optimize the other, thus obtaining two complementary
problem formulations.

Problem 1 (MaxCover) Consider a graph G = (N , A), a set of traces Π , and an
integer k. Find a set of arcs A′ ⊆ A of cardinality at most k that maximizes the
coverage CΠ(A′).

Problem 2 (MinArcSet) Consider a graph G = (N , A), a set of traces Π , and a
coverage ratio η ∈ [0, 1]. Find a set of arcs A′ ⊆ A of minimum cardinality such that
CΠ(A′) ≥ η

∑
φ∈Π |Nφ \ Sφ |.

3.1 Problem characterization

Next we discuss the complexity of MaxCover and MinArcSet, and study the prop-
erties of the coverage function.

We first note that MaxCover and MinArcSet are equivalent: for instance, if
there is an algorithm A that solves the MaxCover problem, then we can solve the
MinArcSet problem with calls to A while performing a binary search on the parame-
ter k. Indeed both problems, are optimization versions of the same decision problem,
(k, η)-Cover.

Problem 3 ((k, η)-Cover) Consider a graph G = (N , A), a set of traces Π , a number
k, and a coverage ratio η ∈ [0, 1]. Does there exist a set of arcs A′ ⊆ A such that
|A′| ≤ k and CΠ(A′) ≥ η

∑
φ∈Π |Nφ \ Sφ |.

Theorem 1 The (k, η)-Cover problem is NP-hard.

Proof We obtain a reduction from the SetCover problem, which is an NP-complete
problem defined as follows. A problem instance for SetCover is specified by a ground
set U = {1, . . . , n} of n elements, a collection X = {X1, . . . , Xm} of subsets of U ,
and a number k. A solution to SetCover is provided by a sub-collection X ′ ⊂ X
of at most k sets that covers the ground set U , i.e.,

⋃
Xi ∈X ′ Xi = U . The SetCover

problem is to decide whether there exists a solution, given a problem instance.
We now proceed to build an instance of the (k, η)-Cover problem starting

from an instance of SetCover. Given the ground set U and the set collection
X = {X1, . . . , Xm}, we build a graph G = (N , A) with m + 1 nodes where
N = {v1, . . . , vm, w}, i.e., there is a node vi for each set Xi and one additional
node w. The set of arcs of G is A = {(vi , w)}m

i=1, i.e., there is an arc from each node
vi to w. The set of traces Π will contain the trace φu for every element u ∈ U , meaning
|Π | = |U |. The DAG of φu has an arc from vi to w for every Xi that contains u, that
is, Aφu = {(vi , w) | u ∈ Xi }. Note that in every φu every vertex except w is a source
node, and is thus always reachable, i.e. |Nφ \ Sφ | = 1. Hence, the maximum coverage
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is equal to the size of U . Finally, we set the arc budget k equal to the parameter k of
the SetCover instance, and η = 1, i.e., we seek complete cover.

Clearly any solution A′ to the (k, η)-Cover problem can be directly mapped to a
solution of the original SetCover problem instance we were given: include the set
Xi to the SetCover solution if the arc (vi , w) belongs to the (k, η)-Cover solution.
Any solution A′ to (k, η)-Cover that is at most of size k and has coverage ratio η = 1
(and thus coverage |U |) must map to a SetCover solution that is at most of size k
and covers the entire universe U . �	

A direct corollary of Theorem 1 is that both problems, MaxCover and MinArc-
Set, are NP-hard. We now examine whether the coverage measure is submodular or
supermodular. The reason is that there is extensive literature on optimizing functions
with these properties: for example, greedy strategies provide approximation guaran-
tees when maximizing submodular functions (Nemhauser et al. 1978). Recall that,
given a ground set U , a function f : 2U → R is submodular if it satisfies the
diminishing-returns property

f (X ∪ {z}) − f (X) ≥ f (Y ∪ {z}) − f (Y ), (2)

for all sets X ⊆ Y ⊆ U and z ∈ U \ Y . The function f is supermodular if − f is
submodular. We first show that the coverage objective function is neither submodular
nor supermodular.

Lemma 1 When Π may contain general DAGs, the coverage function CΠ is neither
submodular nor supermodular.

Proof We prove the theorem by providing a counterexample for each case. Con-
sider Fig. 2 illustrating a graph G = (N , A), with node set N = {a, b, b′, c, d, e},
and arc set A = {(a, d), (b, c), (b′, c), (c, d), (d, e)}. Consider a set of two traces
Π = {α, β}, with DAGs Gα = (Nα, Aα) and Gβ = (Nβ, Aβ), where Nα = {a, d, e},
Aα = {(a, d), (d, e)}, Nβ = {b, b′, c, d, e}, and Aβ = {(b, c), (b′, c), (c, d), (d, e)}.
The source sets are Sα = {a}, and Sβ = {b, b′}.

Fig. 2 A counterexample that shows that the coverage measure is neither submodular nor supermodular
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Consider the following sets of arcs: X = {(a, d)} ⊂ Y = {(a, d), (c, d), (d, e)}
and z = (b, c). We have

CΠ(X ∪ {z}) − CΠ(X) = 2 − 1 < 5 − 2 = CΠ(Y ∪ {z}) − CΠ(Y ),

which contradicts Inequality (2) and proves that the coverage function is not submod-
ular.

Next, let X = {(a, d), (c, d), (d, e)} ⊂ Y = {(a, d), (b, c), (c, d), (d, e)}, and
z = (b′, c). In this case we have

CΠ(X ∪ {z}) − CΠ(X) = 5 − 2 > 5 − 5 = CΠ(Y ∪ {z}) − CΠ(Y ),

which conforms to Inequality (2) and proves that the coverage function is not super-
modular. �	

As a result of Lemma 1, the greedy heuristic does not have any performance guar-
antee. On the other hand, the coverage function is supermodular when we can attribute
the activation of a node to precisely one of its neighbors in every trace in Π . This is
true if and only if Π only contains tree traces. For example, the trace φ1 in Fig. 1 is a
tree trace, while φ2 of the same figure is not.

Theorem 2 The coverage function CΠ is supermodular when every trace φ ∈ Π is
a tree trace.

Proof We show that the coverage function is supermodular for one trace φ, by letting
Π = {φ}. Since CΠ is additive with respect to traces, and the sum of supermodular
functions is supermodular, the property holds for sets of traces.

Let Z be a set of arcs, and let (u, v) be an arc not in Z . Consider the tree Gφ of
trace φ and denote by R(u, v | Z) the set of nodes in Gφ that become reachable from
any node in Sφ when the arc (u, v) is added to Z . Note that if u is not reachable from
Sφ by using arcs in Z , then the set R(u, v | Z) is empty. However, if u is reachable
from Sφ given Z , R(u, v | Z) will consist of the node v, as well as every node that
is reachable from v given Z . If any vertex that is reachable from v given Z were also
reachable from Sφ without the arc (u, v), the DAG Gφ would not be a tree. We have
thus

|R(u, v | Z)| = CΠ(Z ∪ {(u, v)}) − CΠ(Z). (3)

To show supermodularity, consider two sets of arcs X and Y , with X ⊆ Y , and let
(u, v) be an arc not in X or Y . Since X ⊆ Y it is easy to show that

|R(u, v | X)| ≤ |R(u, v | Y )|. (4)

The result follows by combining Eqs. (3) and (4). �	
Lemma 1 indicates that optimizing the coverage function in the general case is a

difficult problem. However, for the special case of the problem when all traces are
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trees, we use the result of Theorem 2 to develop an efficient and nontrivial algorithm,
which is described in the next section. Furthermore, our techniques can be useful
even when the observed traces are not trees, but general DAGs. This can be done by
first converting the observed DAGs into trees via an application-dependent heuristic.
Although we have not experimented with such ideas for this paper, we think that it is
a fruitful research direction.

4 Algorithms

We now describe two algorithms for graph simplification. Both algorithms are devel-
oped for the MaxCover problem. As already noted, any algorithm for MaxCover
can be used to solve MinArcSet by applying binary search on the coverage score.

In addition to the algorithms discussed below, we have also formulated MaxCover
as an integer program. In Sect. 5 we apply a standard linear programming solver to
find optimal solutions for small problem instances. We also experiment with a simple
rounding technique to find good solutions given a fractional solution to the linear
program. Whether more sophisticated algorithms based on the linear programming
formulation can be devised is an interesting open question.

4.1 Greedy algorithm

The first algorithm, Greedy, is the standard greedy heuristic for covering problems.
It starts with the empty solution set A′ = ∅. At each step it adds to A′ the arc (u, v)

that yields the largest marginal gain to the current coverage. The marginal gain for
an arc (u, v) is defined as ρA′(u, v) = CΠ(A′ ∪ {(u, v)}) − CΠ(A′). The algorithm
terminates when it reaches a solution of size k, i.e., |A′| = k.

Lemma 1 suggests that there is no immediate proof that Greedy is an approximation
algorithm for our problem. In fact, we can construct problem instances for which
Greedy gives bad solutions. In the lemma below, an algorithm with approximation
factor equal to c is an algorithm that, for any problem instance, guarantees to find
a solution whose value is at least c times the value of the optimal solution in that
instance.

Lemma 2 When every trace φ ∈ Π is a tree trace, the approximation factor of
Greedy is no better than O( 1

k ).

Proof An example that satisfies the result of the lemma is shown in Fig. 3. In this
example, we assume that the arc budget k is an even number, and we set p = k

2 .
The graph contains the nodes a, c and d, as well as the nodes b1, . . . , bp all of which
have an arc to node c, and the nodes e1, . . . , ek−1 all of which have an arc from
node d. We assume two different traces (named α1 and α2) observed on the nodes
{a, d, e1, . . . , ek−1}, and p different traces (named βi ) each of which is observed on
the nodes {bi , c, d, e1, . . . , ek−1}, for i = 1, . . . , p.

It is easy to see that Greedy selects as solution the k arcs {(a, d), (d, e1), . . . ,

(d, ek−1)} and achieves a coverage score of 2k. On the other hand, the optimal solution
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Fig. 3 An example where Greedy reaches only a O( 1
k )-factor approximation

consists of the k arcs {(b1, c), . . . , (bp, c), (c, d), (d, e1), . . . , (d, ep−1)} and achieves
a coverage score of p(p + 1). By our selection of p, it follows that the relative
performance of Greedy with respect to the optimal is no better than O( 1

k ).

This result only implies that there are adversarial examples for which Greedy has
poor performance. Furthermore, note that the traces in the example of Fig. 3 are trees
and therefore the coverage function is supermodular. The worst-case performance of
Greedy is thus unaffected by supermodularity. However, our empirical evaluation
shows that in practice Greedy gives solutions of good quality in all the datasets we
experimented.

4.2 Minimum-norm base algorithm

Our second algorithm is based on mapping our cover-maximization problem to a
problem of minimizing a submodular function under size constraints. Minimization
of submodular functions has a rich theory (Fujishige 2005) much of which utilizes the
basic polyhedron associated with the submodular function. A family of algorithms for
minimizing submodular functions is based on finding a minimum-norm base vector
on the basic polyhedron. Our method, called MNB, is an instantiation of such an
algorithm. We start our discussion on MNB by reviewing the related theory and then
we present the details of the algorithm for the specific problem we consider in this
paper.

First recall from Sect. 3 that a function f : 2U → R, defined over subsets of a
ground set U , is submodular if it satisfies Eq. (2). Given a submodular function f and
an integer k, the size-constrained minimization problem is to find a set X ⊆ U that

minimizes f (X) subject to |X | ≤ k. (5)

We note that minimizing a submodular function without size constraints is a
polynomially-time solvable problem; alas, the faster strongly-polynomial algorithm,
by Iwata and Orlin (2009), has complexity O(n5 F +n6), where F is the time required
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to evaluate the function f . On the other hand, the size-constrained version of the

problem, as defined in problem (5), is also an NP-hard problem, with an o
(√

n
ln n

)

in-approximability lower bound (Svitkina and Fleischer 2011). In this paper we fol-
low the recently-developed approach of Nagano et al. (2011). Even though Nagano et
al. do not provide an approximation algorithm, they are able to show how to obtain
optimal solutions for some values of the size constraint k. These values can not be
specified in advance, however, but are a part of the output of the algorithm. Turns out
that this property is not a limitation in practice.

4.2.1 Basic definitions

Consider the space Rm , where m = |U |, that is, each dimension of Rm is associated
with one and only one element i ∈ U . Let x denote a vector in Rm . For any X ⊆ U ,
x(X) is the total weight of those elements of x that are at coordinates specified by X ,
that is, x(X) = ∑

i∈X xi . Given a submodular function f : 2U → R, we can consider
the submodular polyhedron P( f ) and the base polyhedron B( f ) that are both subsets
of Rm . In particular, these polyhedra are defined as

P( f ) = {x ∈ Rm | x(X) ≤ f (X), for all X ⊆ U },
B( f ) = {x ∈ Rm | x ∈ P( f ) and x(U ) = f (U )}.

Consider now the minimum-norm base vector x∗ on B( f ), that is,

x∗ = arg min

{
m∑

i=1

x2
i | x ∈ B( f )

}
.

From the general theory of submodular functions it is known that the minimum-
norm base x∗ is closely related to the problem of unconstrained submodular mini-
mization (Fujishige 2005). In particular, the negative coordinates of x∗ specify the
minimizer set X of f . If we define

X− = {i ∈ U | x∗
i < 0}, and X0 = {i ∈ U | x∗

i ≤ 0},

then X− is the unique minimal minimizer of f , and X0 is the unique maximal mini-
mizer of f .

4.2.2 The SSM algorithm

Recently, Nagano et al. (2011) show how the minimum-norm base vector x∗ can
also be used to give optimal solutions to the problem of size-constrained submodular
minimization, for some possible values of the budget k. Their algorithm, named SSM,
consists of the following two steps:

1. Compute the minimum-norm base x∗ ∈ B( f ).
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2. Let ξ1 < . . . < ξL denote all distinct values of the coordinates of x∗. Return the
sets T0 = ∅ and Tj = {i ∈ U | x∗

i ≤ ξ j }, for all j = 1, . . . , L .

Nagano et al. show the following surprising result.

Theorem 3 (Nagano et al. 2011) Let T0, T1, . . . , TL ⊆ U be the sets returned by the
SSM algorithm. Then, for all j = 0, 1, . . . , L , the set Tj is the optimal solution for
the size-constrained submodular minimization problem defined in (5) for k = |Tj |.
Given the result of Theorem 3 one can find optimal solutions to the size-constrained
minimization problem for a number of values of k, which, however, are prescribed in
the structure of the minimum-norm base x∗ and not specified in the input. Observe that
the algorithm will find the optimal solution for exactly as many different k as there
are distinct values in the vector x∗. In the worst case all elements of x∗ have the same
value, which means that the algorithm has only found the solution that corresponds
to choosing every item of the universe U . However, in practice we observe the vector
x∗ to contain several distinct elements that allow us to construct optimal solutions for
different values of the size constraint k.

From the computational point of view, the heart of the SSM algorithm is finding
the minimum-norm base x∗. Recall that x∗ is a point of the B( f ) polyhedron, which
implies that x∗ will be in one of the extreme points of the polyhedron. The problem of
finding a minimum-norm vector in a polyhedron defined by a set of linear constraints
can be solved by the standard Wolfe algorithm (Fujishige 2005; Wolfe 1976), which is
not known to be polynomial, but performs very well in practice. In Sect. 4.3 we provide
a brief outline of the algorithm, mostly in reference to implementing the algorithm effi-
ciently in our setting. More details on the algorithm can be found elsewhere (Fujishige
2005).

4.2.3 The MNB algorithm: applying SSM for MaxCover

Next we discuss how to apply the theory reviewed above on our problem definition. The
main observation stems from Theorem 2, namely from the fact that the cover measure
CΠ is supermodular when all trace DAGs are trees. Thus, in the case that Π contains
only tree traces, the MaxCover problem asks to maximize a supermodular function
CΠ over sets of size k. This is equivalent to minimizing the submodular function −CΠ

over sets of size k. We can solve the latter problem by direct application of the SSM
algorithm, which only requires evaluations of the submodular function −CΠ . Note
that each dimension of the minumum-norm base x∗ corresponds to one and only one
arc in A. By Theorem 3 we can read the optimal arc subsets Tj from x∗.

Additionally, Theorem 3 implies that for the values of k not falling on any of the
values |Tj |, for j = 1, . . . , L , the algorithm does not yield an optimal solution. We
address this shortcoming by introducing a greedy strategy to extend one of the sets
returned by the minimum-norm base approach to a set with size exactly k. In particular,
let j∗ ≤ L be the largest index among all j = 1, . . . , L such that |Tj∗ | ≤ k. The set Tj∗
is a feasible solution to our problem since it has cardinality less then k. We can then
use the set Tj∗ as an initial solution, and extend it by iteratively adding arcs until we
reach at a solution set with cardinality exactly k. Adding arcs to the initial set Tj∗
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is done by the greedy strategy used in Greedy. The coverage obtained by the final
solution is at least as good as the coverage obtained by Tj∗ . The MNB algorithm can
be summarized as follows:

1. Given the graph G = (N , A), the integer k and Π , run the SSM algorithm with
−CΠ . Of the solution sets given by SSM, let A′ denote the largest that has size at
most k.

2. If |A′| < k, run Greedy starting from the set A′, until A′ contains exactly k arcs.
3. Return A′.

4.3 Comparing Greedy and MNB

The Greedy algorithm requires computing the marginal gain

ρA′(u, v) = CΠ(A′ ∪ {(u, v)}) − CΠ(A′)

of an arc (u, v) with respect to a current solution A′. In particular, one iteration of
Greedy corresponds to a loop that computes the marginal gain ρA′(u, v) for all arcs
(u, v) ∈ A, and selects the arc that yields the largest gain.

It turns out that at the heart of the MNB algorithm there is a similar computation,
namely, a loop that computes marginal gains ρ(u, v) over all arcs (u, v) ∈ A. To
see how computation of marginal gains enters in the MNB algorithm, we provide a
high-level description of the Wolfe algorithm (Fujishige 2005; Wolfe 1976), which
computes the minimum-norm base point x∗ of the polyhedron B( f ) for the sub-
modular function f . The Wolfe algorithm traverses extreme points of the polyhedron
B( f ) until finding a minimum-norm point. It starts with an arbitrary, but feasible,
extreme point x̂ ∈ B( f ) and iteratively moves to other extreme points with smaller
norm. In each iteration, the algorithm needs to find a new extreme point x̂ of B( f )

that minimizes a linear function w · x̂, where w ∈ Rm is a weight vector appropriately
defined. (Since w ∈ Rm with m = |A|, we can index the elements of w with arcs in
A.)

Now, given the submodular function f = −CΠ and a vector w, finding the extreme
point x̂ in B( f ) that minimizes w · x̂ can be solved efficiently by the following greedy
algorithm, due to Edmonds (2003):

1. Sort the coordinates of w in order of increasing value, i.e., find an ordering π :
{1, . . . , m} → A such that wπ(1) ≤ . . . ≤ wπ(m).

2. For every i , compute

x̂π(i) = f (Aπ,i ) − f (Aπ,i−1) = − (
CΠ(Aπ,i ) − CΠ(Aπ,i−1)

)
,

where Aπ,i = {π(1), . . . , π(i)} ⊆ A, that is, the subset of A containing the first i
arcs according to the ordering π .

Observe that Aπ,i = Aπ,i−1 ∪π(i), and thus x̂π(i) is simply the negative marginal gain
of the arc π(i) ∈ A when it is added to the set of arcs that precede it in the ordering
π . This means that one iteration of the Wolfe algorithm involves almost exactly the
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same computation that Greedy must carry out on each iteration: a loop that computes
marginal gains over all arcs. The only difference is that Greedy computes the marginal
gains with respect to a fixed A′, while the Wolfe algorithm computes them w.r.t. the
sets induced by the ordering π , and these sets are slightly different for each π(i) ∈ A.

From a computational point of view this difference between Greedy and the Wolfe
algorithm is in practice negligible. What matters is that in both cases we must compute
the marginal gain for every arc in A given some subset of A. The complexity of this is
linear in the size of Π . We also want to point out that other computations carried out
by the Wolfe algorithm only involve solving small systems of linear equations, which
is extremely fast in comparison to evaluating CΠ even for a relatively small Π . This
means that the computationally intensive part is exactly the same for both Greedy
and MNB.

To speed up the above computation we employ the following optimization: we
iterate over all traces in Π , and we incrementally compute the contribution of each
trace φ ∈ Π to the marginal gains for every arc in A. Since traces are in general small
compared to the number of arcs in the graph, each iteration can be done very fast. In
practice this optimization leads to two orders of magnitude improvement over a naïve
computation of the cover measure. The same optimization applies both to Greedy
and to MNB algorithms.

Finally, note that Greedy computes the marginal gain of every arc k times, while
MNB computes the vector x̂ as many times as the number of iterations required by
the Wolfe algorithm to find a solution that is accurate enough. As the Wolfe algorithm
converges fast, the number of iterations required is usually significantly smaller than
typical values of k. As a result, in practice the MNB algorithm is significantly faster
than Greedy.

5 Empirical evaluation

In this section we report the experiments we conducted in order to assess of our
methods. We present four kinds of experiments:

1. Effectiveness with respect to the basic task of selecting a subset of arcs that
maximize the coverage, i.e., our objective function;

2. Efficiency of the algorithms;
3. Network reconstruction: comparing with the NetInf algorithm (Gomez-

Rodriguez et al. 2010) for reconstructing an unobserved network;
4.Influence maximization: comparing with the Spine algorithm (Mathioudakis et

al. 2011) in the task of sparsifying the social graph while trying to maximize the spread
of influence (Kempe et al. 2003).

We start by presenting the experimental settings: implementation of the algorithms
and datasets.

Algorithms. We implemented the Greedy algorithm in Java, while our MNB
implementation is based on the Matlab Toolbox for Submodular Optimization by
Krause (2010). In the experiments we stop the iterations in Wolfe’s algorithm after
50 rounds. As discussed above, both Greedy and MNB compute marginal gains in
almost exactly the same way. Our implementations of the algorithms can thus share
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this part of the code. We implemented the marginal gain computation in Java, and use
the Java interface of Matlab to call this from within the Wolfe algorithm.

As mentioned before, we also formulated our problem as a linear program. This
could possibly be used to devise efficient approximation algorithms by applying exist-
ing techniques. These are left as future work, however. In the experiments discussed
here we simply solve the linear programs directly.

We consider both and integer program (IP), as well as its relaxed form (LP) that
we combine with a rounding scheme that selects the k edges having the largest weight
in the optimal fractional solution. The IP finds optimal solutions (for small problem
instances), and it is included in this study mainly to show that the Greedy algorithm
tends to find solutions that are close to optimal. For small problem instances solving
the IP can be a reasonable approach even in practice. The LP will not produce an
optimal solution in general. However, we think it is an alternative worth studying,
because it can be solved much more efficiently than the IP, and even simple rounding
schemes can produces solutions that are reasonably good in practice.

Efficiency of both linear programming approaches heavily depend on the solver
being used. These experiments were carried out using Gurobi,1 a highly optimized
linear programming solver.

Datasets. We extract samples from three different datasets, referred to as YMeme,
MTrack and Flixter. YMeme is a set of microblog postings in Yahoo! Meme. 2 Nodes
correspond to users, actions to postings, and arcs (u, v) indicate that v follows u.

The second dataset, MTrack, 3 is a set of phrases propagated over prominent online
news sites in March 2009, obtained by the MemeTracker system (Leskovec et al.
2009). Nodes are news portals or news blogs and actions correspond to phrases found
to be repeated across several sites. Arcs (u, v) indicate that the website v linked to the
website u during March 2009.

We used a snowball sampling procedure to obtain several subsets from these data
sources. In the case of YMeme, we sampled a connected sub-graph of the social
network containing the users that participated in the most reposted items. This yields
very densely connected subgraphs. In the case of MTrack, we sampled a set of highly
reposted items posted by the most active sites. This yields more loosely connected
subgraphs.

Finally, our third data set comes from Flixster,4 a social movie site. The data was
originally collected by Jamali and Ester (2010). Here, an action represents a user rating
a movie. If user u rates “The King’s Speech,” and later on u’s friend v does the same,
we consider the action of rating “The King’s Speech” as having propagated from u
to v. We use a subset of the data that corresponds to taking one unique “community,”
obtained by means of graph clustering performed using Graclus.5

1 www.gurobi.com.
2 Yahoo! Meme was a microblogging service that was discontinued on May 25, 2012.
3 snap.stanford.edu/data/memetracker9.html.
4 www.cs.sfu.ca/~sja25/personal/datasets.
5 www.cs.utexas.edu/users/dml/Software/graclus.html.
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Table 1 Dataset characteristics: numbers are rounded

Dataset Traces Nodes Arcs Arcs in DAGs Max. cover

kron-cp 2000 720 2040 1900 8970

YMeme-M 1800 1000 163000 11100 6100

YMeme-L 4500 2570 464000 86400 49800

MTrack-M 1800 35000 111000 1400 4500

MTrack-L 9000 44000 196000 4580 6800

Flixter 16400 12900 176000 32800 188400

Fig. 4 Coverage with DAG traces

We also experimented with random graphs and traces generated by a tool sup-
plied with the NetInf algorithm (Gomez-Rodriguez et al. 2010). This tool cre-
ates random graphs using the Kronecker model (Leskovec and Faloutsos 2007). In
our experiments we used a “core-periphery” graph generated with the seed matrix
0.962, 0.535; 0.535, 0.107 as was done by Gomez-Rodriguez et al. (2010).

A summary of the datasets is shown in Table 1. “Arcs in DAGs” refers to the size
of the union of the DAGs, and “Max. cover” is the maximum coverage that a solution
can reach.

Effectiveness. First we compare our algorithms in the basic task of selecting a
subset of arcs to maximize coverage. Overall we observe only a very small difference
in solution quality between the methods, and the Greedy algorithm produces very
good solutions despite its bad worst-case performance. Two examples are shown in
Fig. 4, with coverage plotted as a function of the budget k. We want to emphasize that
the Greedy algorithm finds solutions that are surprisingly close to the optimal ones
found by IP. With tree traces we can also use the MNB algorithm. Figure 5 shows again
coverage versus k for various datasets, but also the improvement obtained over the
Greedy algorithm. We note that MNB finds optimal solutions as verified by solutions
to the integer program (IP), especially when k > 100. The MNB algorithm can improve
solution quality up to 10–15 % when traces are trees.
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Fig. 5 Covering tree traces with kron-cp, YMeme-M and MTrack-M. Left side shows fraction of traces
covered as a function of k (notice logarithmic scale) and right side shows relative improvement over the
Greedy algorithm
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Table 2 Running time and number of marginal gain computations of the algorithms Greedy and MNB
with tree traces as input

Time Marginal gain computations
Dataset Greedy MNB Greedy MNB

kron-cp 10 sec 2 sec 2.6 × 106 0.11 × 106

YMeme-M 20 sec 2 sec 12.9 × 106 0.25 × 106

YMeme-L 5 min 16 sec 474 × 106 1.54 × 106

MTrack-M 17 sec 3 sec 3.4 × 106 0.13 × 106

MTrack-L 3 min 7 sec 49.8 × 106 0.49 × 106

Flixter 1 hour 30 sec 539 × 106 1.64 × 106

The numbers are rounded

Efficiency. The MNB algorithm is very fast, much faster than Greedy. Table 2
shows the running times of MNB and Greedy on various datasets to produce the
curves shown in Fig. 5. (We do not report times for IP and LP because they are
more than one order of magnitude larger.) For example, with Flixter we observe a
speedup of two orders of magnitude together with a higher solution quality. Note that
this comparison is fair, because both Greedy and MNB use the same implementa-
tion to compute marginal gains, and other operations carried out by the algorithms
are negligible. Table 2 also shows the number of marginal gain computations car-
ried out by both algorithms. These help to explain the better performance of MNB.
Note that the runtime needed for a single marginal gain computation depends on
the number of traces in the input. For example, Flixter contains a larger number of
traces than YMeme-L (see Table 1), and hence Greedy runs much faster on YMeme-
L than on Flixter, even if the number of marginal gain computations is not that
different.

Network reconstruction. In this experiment we use our approach to reconstruct an
unobserved network given a set of traces. Recall that we can convert any sequence of
node activations to DAGs that correspond to cliques where a node has every previously
activated node as a parent. Clearly the resulting DAGs are not trees, and hence the
MNB algorithm can not be used. The experiment is run using Greedy and the linear-
programming algorithms. We compare these against the original implementation of
the NetInf algorithm by Gomez-Rodriguez et al. (2010) that is specifically designed
for the network-inference problem. Since all of our datasets have an underlying graph
associated with them, we can use this graph as the ground truth.

Figure 6 shows precision (defined as the fraction of true positives in a set of k arcs
chosen by the algorithm) as a function of k. As shown by Gomez-Rodriguez et al.
the NetInf algorithm has a very good performance on the synthetic Kronecker graph,
which we confirm. On the real-world datasets our approach gives results that are at
least as good as those obtained by NetInf, or slightly better. (Results on the remaining
datasets are qualitatively similar.) Notice that with YMeme-M the rounded LP has in
some cases a higher precision than IP, even if IP is guaranteed to have the highest
possible coverage. Alas, due to the very large size of the problem when we assume the
network to be complete, we were not able to run IP and LP on all the possible datasets.
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Fig. 6 Network reconstruction with kron-cp, YMeme-M and MTrack-M. On both real-world datasets our
methods are at least as good as the NetInf algorithm for k > 10 in terms of precision. See also Fig. 7.
(MTrack-M results in too many constraints for the linear programming approaches to be feasible.)

Fig. 7 Coverage in the network reconstruction experiment. See also Fig. 6

Finally, we note that even if the algorithms perform similarly in terms of precision,
our methods reach a higher coverage, as shown in Fig. 7.

Influence maximization. The problem of influence maximization (Kempe et al.
2003) has received a lot of attention in the data-mining community. The problem is
defined as follows. We are given a directed graph G = (N , A, p), where p(u, v)

represents the probability that an action performed by user u will cause node v to
perform the action, too. We then ask to select a set of nodes S ⊆ N , |S| = k, such
that the expected size of a propagation trace that has S as the set of source nodes,
is maximized. The problem is NP-hard but due to the submodularity property of the
objective function, the simple greedy algorithm produces a solution with provable
approximation guarantee.

Following Mathioudakis et al. (2011) we experiment with graph simplification as
a pre-processing step before the influence maximization algorithm. The idea is to
show that computations on simplified graphs give up little in terms of effectiveness
(measured as the expected size of the trace generated by S), but yield significant
improvements in terms of efficiency.

The experiment is conducted following Mathioudakis et al. (2011). First of all
we assume the independent cascade model as the underlying propagation model.
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Fig. 8 Size of the cascades and run time for influence maximization

Given our graph G = (N , A) and the log of sequences D, we learn for each arc
(u, v) the probability p(u, v) with the same expectation-maximization method used
by Mathioudakis et al. (2011), and using their own original implementation. Then
given the directed probabilistic graph G = (N , A, p), we sparsify it with the Spine
algorithm and with our Greedy method, and we compare the effectiveness and the
run time of the influence maximization algorithm of Kempe et al. (2003) when run on
the whole of G = (N , A, p) and on the two sparsified graphs.

It is worth noting that the comparison is “unfair” for our method for at least two
reasons: (i) both the evaluation process and the Spine algorithm assume the same
underlying propagation model (the independent cascade model), while our method
does not assume any propagation model; (i i) both the evaluation process and Spine
use exactly the same influence probabilities associated to the arcs, while our methods
only use the graph structure and the set of traces D.

We sparsify YMeme-L to 25 % of its original size by using both Spine and Greedy,
and compare the expected size of the cascades. We also measure the run time of the
influence maximization algorithm for different sizes of the seed set when running on
the full network and on the two sparsified ones.

Figure 8 shows the results of the experiments. The running time of the influence
maximization algorithm is comparable when run on the two sparsified networks. Spine
achieves larger cascades in expectations. This results is not surprising given that Spine
is designed to take advantage of the underlying propagation model. Nevertheless,
Greedy achieves good results with only a constant difference from the results obtained
on the full network.

6 Conclusions

We studied the problem of simplifying a graph while maintaining the maximum
connectivity required to explain observed activity in the graph. Our problem can
be expressed as follows: given a directed graph and a set of DAGs (or trees) with
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specified roots, select a subset of arcs in the graph so as to maximize the number of
nodes reachable in all DAGs by the corresponding DAG roots. We studied the prop-
erties of this problem and we developed different algorithms, which we evaluated on
real datasets.

Several future research directions and open problems remain. Our NP-hardness
proof (Theorem 1) relies on traces being DAGs. What is the complexity of the problem
when all traces are trees? Also gaining a deeper understanding of the MNB algorithm
is of interest. Under what conditions does it produce solutions that cover a useful range
of k? Finally, can we find other efficient algorithms for the problem on the basis of
the linear programming formulation?
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