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Abstract

In many domains data items are represented by vectors of counts; count data arises for example in bioinformatics or analysis of text
documents represented as word count vectors. However, often the amount of data available from an interesting data source is too
small to model the data source well. When several data sets are available from related sources, exploiting their similarities bytrans-
fer learningcan improve the resulting models compared to modeling sources independently. We introduce a Bayesian generative
transfer learning model which represents similarity across document collections bysparse sharing of latent topicscontrolled by an
Indian Buffet Process. Unlike a prominent previous model, Hierarchical Dirichlet Process (HDP) based multi-task learning, our
model decouples topic sharing probability from topic strength, making sharing of low-strength topics easier. In experiments, our
model outperforms the HDP approach both on synthetic data and in first of the two case studies on text collections,and achieves
similar performance as the HDP approach in the second case study.
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1. Introduction

Traditionally machine learning methods learn models for
data from a single data source, for example learning a model
of news articles posted to a newsgroup or scientific papers sub-
mitted to a conference track. Learning the model can be called
a task. In particular, we consider learning models forcount
data, a prominent type of data that arises in bag-of-words rep-
resentations of text documents, in bioinformatics for example
as counts of active genes over pathways, and in other domains.
Latent structure in count data has often been modeled withtopic
models[1], in domains from document collections [2] to bioin-
formatics [3, 4].

When few training samples are available for the learning
task, methods may overfit or have too little information to infer
complicated models. To gain more information for the learn-
ing task,transfer learning[5] methods transfer knowledge from
earlier tasks to a new one, andmulti-task learning[6] methods
learn several tasks together from their respective data sets, ex-
ploiting their underlying relationships. For example, thedata
of these related tasks may be articles from other newsgroupsor
papers from other tracks in the conference.

A particular interesting setting is the case when one task is
more interesting than others: in the text data case this could cor-
respond to focusing on creating a model for a particular news-
group which could be of strong interest to advertisers analyzing
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the newsgroup that correspond to their business field. Similarly
a model for articles from a particular conference section would
interest researchers whose research topic matches well with the
conference section. In some cases the task of interest may be
a new task (a recent newsgroup or conference track) for which
less data is available, and multi-task learning is then crucial to
learn a good model for it.

When set in the probabilistic modeling framework, transfer
learning or multi-task learning approaches typically build a hi-
erarchical model describing how model parameters vary among
tasks; models for all tasks are then learned simultaneously. The
success of transfer learning and multi-task learning models de-
pends on whether the assumed kinds of relationships between
data sources match the real relationships.

In this paper we introduce a multi-task learning (transfer
learning) method for an unsupervised multi-task learning prob-
lem, generative modeling of count data in multiple tasks, such
as bag-of-words text documents from several collections. We
will model each data source with the topic model family. We
propose a nonparametric extension where both the number of
topics and their strengths are learned from data. To model shar-
ing of information among tasks, we allow topics to be shared
among tasks. We use an Indian Buffet Process (IBP; [7]) to
model how many topics are active overall and which topics each
task uses to model its respective documents; we allow a further
sparsity-inducing step to turn off some topics from each task.
Finally we generate the strengths of active topics in each task
from a Gamma prior. We use Bayesian inference (MCMC sam-
pling) to infer the posterior over topics and make predictions
about new documents as in any Bayesian model.

The most relevant earlier work is the Hierarchical Dirichlet
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Process model (HDP; [8]) which extends the single-task Latent
Dirichlet Allocation model (LDA; [1]) and learns the number
of topics from data by a Dirichlet Process (DP) prior; it is also
extended to multi-task problems by modeling topic strengths in
each task as draws from an upper-level Dirichlet Process prior;
we denote the multi-task version by MT-HDPLDA.

Due to the way topic strengths are hierarchically drawn from
Dirichlet Processes,MT-HDPLDA implicitly assumes that the
topics most likely to be shared are also the strongest topics,
(contributing most of the words in documents).This neglects
the possibility of sharing weak topics,and can make it hard to
learn such weak shared topics from data. Here “weak shared
topics” denotes shared topics that are either weak overall so
that they in total contribute only few words in documents, or
topics whose overall strength is moderate but whose strength is
relatively small in some subset of tasks.The term “weak shared
topic” is used only as an informal description of why HDP may
poorly represent sharing of some topics; the above described
implicit assumption in HDP affects strength and sharing of all
topics, and the weaker a shared topic is in some tasks, the harder
it may be to represent it properly in an HDP model.

In contrast to MT-HDPLDA, our IBP-based sharing sepa-
rates the choice of which topics to share from generation of
topic strengths, allowing more flexible sharing between multi-
ple tasks. In experiments our model outperforms MT-HDPLDA
on several data domains. Another related model is the single-
task model in [9], which uses an IBP prior to control which
topics are active in each document and draws strengths of ac-
tive topics from Gamma priors. The model in [9] is for single-
task learning only. Our model can be seen as a multi-task
counterpart, where the “IBP+Gamma” type generation of topic
strengths is used across multiple tasks rather than across docu-
ments in one task.

This paper extends our conference paper [10]; the main
changes in this journal version are a comparative analysis of our
proposed model with the multi-task HDP based LDA approach
under varying number of total tasks in a simulation study, a
new comparison between the two models on newsgroup data, a
discussion of the topics learned by our model for a multi-task
collection of scientific articles, andan extended description of
the methodincluding detailed equations and derivations for the
model inference.

The rest of the paper is organized as follows: Section 2 de-
scribes related earlier models, Section 3 describes our model,
Section 4 details the inference scheme and equations, Section 5
explains the experimental results while Section 7 concludes the
paper.

2. Background

In this section we discuss selected prominent earlier mod-
els for count data. We first describe the basic single-task topic
model, then describe a nonparametric model where the number
of available topics is not restricted, and lastly describe amulti-
task extension of the nonparametric model which we will use
as a comparison method.

2.1. Single-task topic model

The basic single-task topic model Latent Dirichlet Allocation
(LDA; [1]) generates a document through activity of latenttop-
ics; to generate a documentd, a topic distributionπd is drawn
from a priorso thatπd ∼ Dirichlet(α), andthen the words are
generated one by one.To generatethe nth word in the doc-
ument, a topic indexzd,n is drawn from the topic distribution
so thatzd,n ∼ Multinomial(πd), and the word is then drawn
from a topic-wise word distribution:wd,n ∼ Multinomial(βzd,n

)
whereβk = {βw|k}w are probabilities of each wordw in thekth
topic. The available topics are the same for all documents. Typ-
ically the topic-wise word distributions are drawn from a prior
βk ∼ Dirichlet(η), whereη is the topic hyperparameter. A plate
diagram for this generative process is presented in Figure 1.
Note that in LDA each word is generated independently given
the topic and the order of the word occurrences does not matter;
LDA is thus suitable for count data such as bag-of-words rep-
resentations of text, where only the overall occurrence count of
each different word is observed.

D: Documents

Nd: Words
K: Topics

wd,n πd αzd,n

β η

Figure 1: Plate diagram for the basic single task topic model(Latent Dirich-
let Allocation). Topic-to-word distributionsβ are first sampled from Dirichlet
priors governed byη, then for each documentd, topic proportions (topic proba-
bilities) πd are sampled from another Dirichlet prior governed byα, and finally
the words in the document are generated by sampling a topiczd,n and sampling
the wordwd,n itself from the corresponding topic-to-word distribution. Dark
shade denotes that the observed variables are counts of how many times each
word in the vocabulary appears in a document.

Given a data set of documents, the LDA model can be fitted
to the data by maximum a posteriori methods. Note that when
the LDA topic model is learned from a data set, the Dirichlet
priors for the word distribution somewhat mitigate overfitting
when large vocabularies are used, so that words that do not ap-
pear in the training set are still assigned some probabilityto
appear in future documents.

The use of Dirichlet priors in LDA stems from convenient
properties of the Dirichlet distribution, in particular ithas finite
dimensional sufficient statistics, and is conjugate to the multi-
nomial distribution. These properties allow some of the pa-
rameters to be integrated out analytically when fitting an LDA
model; similarly, we will use these properties of Dirichletdis-
tribution in development of inference and parameter estimation
algorithms for our model in Section 3.

The LDA model assumes the numberK of available topics
to be specified in advance. This restriction can be problematic
especially for complicated count data sets, where the number of
actual underlying topics can be large, and expert knowledgefor
choosing the correct number of topics may not be available. If
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the number of topics is chosen to be too small, fitting the model
effectively forces the model to merge some of the real topics in
the data. On the other hand, if the number of topics is chosen to
be at least as large as the true number of topics, then the model
can in principle represent the data correctly; however, fitting the
model by maximum likelihood methods will in practice overfit
to the limited number of documents and will effectively split
some of the real topics according to artifacts in the observed
data.

2.2. Nonparametric model for count data: Hierarchical
Dirichlet Process

The Hierarchical Dirichlet Process (HDP; [8]) is a Bayesian
hierarchical nonparametric model that can be used to general-
ize LDA to learn the number of topics from data, and can also
be used to model multiple document collections (data sets).We
first discuss the mathematical form of the hierarchical Dirichlet
process and discuss how it is used to create a single-task topic
model. We then discuss the multi-task version in the next sub-
section.

Preliminary: the (hierarchical) Dirichlet process.The Hier-
archical Dirichlet Process is a nonparametric prior based on
Dirichlet processes (DP; [11]). Dirichlet processes are prior
distributions over probability measures; intuitively it is an infi-
nite dimensional generalization of Dirichlet distribution. Mea-
sures drawn from a Dirichlet process are discrete with probabil-
ity one, meaning that the measure gives nonzero probabilityto
a finite number of discrete choices, but the number of available
choices can differ between different draws from the Dirichlet
process.

The Dirichlet process is defined based on a ‘base measure’,
and a draw from a Dirichlet process effectively redistributes
weight among the choices in the base measure, possibly shut-
ting off some of those choices. The choices in a draw from the
Dirichlet process are a subset of the choices in the base mea-
sure. The draw itself can be used as a base measure for another
Dirichlet process.

Formally, a Dirichlet process has two parameters: a base
probability measureH, which defines the mean of draws from
the process, and a strength parameterγ > 0 that controls the
variability aroundH. A draw G0 from a DP is represented as
G0 ∼ DP(γ,H) and with probability oneG0 can be represented
as G0 =

∑∞
k=1 πkδβk, where theβk are random variables dis-

tributed according toH andδβk is an atom atβk. The sequence
of probabilitiesπ = (πk)∞k=1 is defined by the stick-breaking
construction [8, 12] of a DP as follows:

G0 ∼ DP(γ,H), G0 =

∞
∑

k=1

πkδβk

πk = π
′
k

k−1
∏

l=1

(1− π′l ), π′k ∼ Beta(1, γ) (1)

where (π′k)
∞
k=1 are independent sequences of i.i.d. random vari-

ables.

Using the Dirichlet process in a topic model.The HDP based
single task topic model (HDPLDA; [8]) uses the Dirichlet pro-
cess to allow a potentially infinite number of topics. The Dirich-
let process (or hierarchical Dirichlet process) merely generates
a sequence of probabilities; to have a full generative model, the
probabilities must be connected to a generative model of thefi-
nally observed variables. In HDPLDA, observed variables are
counts of words in documents as usual, but now the topics are
no longer chosen from a pre-fixed finite number of choices, in-
stead the topics used in a document are drawn from a Dirichlet
process.

The topics are drawn as the atoms in a Dirichlet process (DP).
Each document has its own DP; to allow sharing of the topics
(atoms) among different documents, a shared global DPG0 is
placed as a prior over document level DPsGd, so that the base
measure of each document-level DP is a draw from the global
DP. Since the global DP has support (nonzero probability) at
the points (topics)β = (βk)∞k=1, eachGd necessarily has support
at a subset of these points. ThenGd can be written as:

Gd ∼ DP(α0,G0), Gd =

∞
∑

k=1

πd,kδβk

πd,k = π
′
d,k

k−1
∏

l=1

(1− π′d,l), π′d,k ∼ Beta
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To sample a topic for a word in documentd, the probabilities
πd,k are used as the topic probabilities. The rest of the model
is essentially the same as the basic LDA: the observed word
are generated from the topic-to-word distribution of the chosen
topic. The topic-to-word distribution of each topic is sampled
from a Dirichlet prior; the distribution only needs to be sampled
only for those topics that are actually used over the document
collection.

2.3. Multi-task extension of the HDPLDA model

The multi-task extension of HDPLDA models several docu-
ment collections (data sets, also denoted as tasks), by taking the
hierarchy of Dirichlet processes one level higher: in single-task
HDPLDA the topics over the document collection were con-
trolled by an overall DP, but in the multi-task extension each
document collection has its own overall DP, which are in turn
drawn from a top-level DP which controls topics over all the
document collections.

Technically, a data set level DPGc ∼ DP(α0,G0) is intro-
duced in the HDP prior: Inside each document collection (data
set)c, a document level DPGd ∼ DP(αc,Gc) is drawn for each
document from adata set level DP. The data set level DP,Gc,
can in turn be drawn from an overall DP across data sets, with
base measureH. The rest of the model is again similar to the
basic LDA: topic-to-word distributions are drawn for the topics
in use, and after drawing a topic the observed word is drawn
from the corresponding topic-to-word distribution. See Figure
2 for the plate diagram of the resulting multitask HDPLDA,
based on the stick-breaking representation.

In this hierarchical generative process,the topmost DP in the
hierarchy determines which topics are active overall and their
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C: Tasks

D: Documents

Nd: Words

∞: Topics

wc,d,n πc,d πczc,d,n π

β

a1

a2

γ

αc α0

H

Figure 2: Plate diagram for multitask HDPLDA, a nonparametric topic model
for multiple collections. In each document collection (task) the overall topic
distribution is controlled by a task-specific Dirichlet process, which are in
turn drawn from an overall Dirichlet process controlled by abase measure H.
Otherwise the generative process is the same as for the single-task HDPLDA.

C: Tasks

D: Documents

Nd: Words

∞: Topics

wc,d,n θc,d bc

φc

ψc

zc,d,n

nc,d nc

γ

π

β

a1

a2

α

η

ǫ

Figure 3: Plate diagram for our sparse transfer learning topic model. Notice
the parametersγ, π and hyperparametersa1 anda2 have a different meaning
that the MT-HDPLDA model. SeeTable 1 for notation and Section 3for
explanation of the generative process.

D: Documents

Nd: Words

∞: Topics

wd,n θd bd

φ

zd,n

nd γ

π

β

α

a1

a2

η

Figure 4: Plate diagram for the single task model of [9]. Topic-to-word dis-
tributions β are first sampled from Dirichlet priors governed byη, then for
each documentd, topic proportions (topic probabilities)θd are sampled from
another Dirichlet prior governed by document level topic presence; (bd) and
global topic strength parameters;φk ∼ Gamma(γ, 1). Otherwise the generative
process is the same as for the single-task LDA. Notice the parametersγ, π and
hyperparametersa1 anda2 have a different meaning than in the MT-HDPLDA
and our model. For details about the model the reader should refer to [9].

strengths; lower-level DPs choose among their parent-level ac-
tive topics, varying their strengths bythe previously detailed
stick-breaking construction, to yield differing topic distribu-
tions at each branch of the hierarchy. When inferring topics
from data, the topmost DP can activate new topics as well as
change their strength,and the activated new topics can then
be assigned nonzero probability on the next hierarchy levelfor
each document collection; the HDP can thus infer the number
of topics from data. See [8] forfurtherdetails.

The HDPLDA model has a potential problem due to an im-
plicit assumption about the topic sharing:since the sharing is
done by the topic strength hierarchy(topic probability hierar-
chy), with the stick-breaking construction the strongest topics
(which generate many words overall) are the most likely to sur-
vive in several branches of the hierarchy and thus be shared
across data sets. This property can make the HDPLDA model a
bad fit for multi-task problems with low-strength shared topics
(topics discussed in many document collections but not at great

length).

2.4. Single-task topic model with flexible sharing

Recently a single-task model with more flexible topic shar-
ing was proposed [9] using an Indian Buffet Process Compound
Dirichlet Process prior which can be seen as aspike-and-slab
prior [13] over topic strengths. An Indian Buffet Process prior
is placed on binary flags of whether topics are present in doc-
uments, rather than on the strengths of the topics;rows of the
IBP correspond to documents and columns correspond to top-
ics. The topic strengths are generated separately from Gamma
variables. In this way, the model avoids the coupling of topic
strength and topic sharing implicit in the HDP model.The plate
diagram for the model is presented in Figure 4.

Technically, in the HDP based prior the strength of topics was
generated at the same time as their sharing, through the stick-
breaking construction: topics that occurred later in the order of
the stick breaking process were likely to get lower strength.1 In
contrast, in the IBP Compound DP prior the strength of topics
is assigned independently of their order in the IBP process that
generates the binary sharing matrix.

Note that like the HDP based prior, the IBP Compound DP
prior allows a potentially infinite number of active topics,yet
sampling only requires finite computational effort. Because the
sampling of the IBP matrix is based on a stick-breaking con-
struction, the sampled binary IBP vector for each document al-
most surely contains a finite number of active topics, hence the
whole document collection will contain a finite number of ac-
tive topics. The overall prior for strengths of the topics can then
be sampled by sampling a Gamma-distributed strength variable
for each active topic in the collection. The topic probability
vector for each individual document is then sampled by turning
off topics that are inactive in the document according to the IBP,
and sampling the probabilities of the remaining topics accord-
ing to their strengths in the prior.

1It is easy to show that topic weights in the top-level Dirichlet process are
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The model of [9] is for single-task learning only, and the IBP
is defined to model the sharing of topics among documents from
a single data source (document collection). It cannot modelre-
lationships between several data sources. When only few data
are available from each data source, a multi-task solution is
needed. The model that we propose in the next section is for
a multi-task scenario, and we will use an IBP based construc-
tion to model sharing of topics among several data sources. The
essential difference between our new model and [9] is then that
we handle the multi-task learning case, and focus our modeling
effort on modeling the sharing between tasks.

3. New sparse nonparametric topic model for transfer
learning

We present a new hierarchical Bayesian multi-task (transfer
learning) model which allows flexible sharing of low-strength
and high-strength topics across multiple data sets, with a spike-
and-slab prior. Learning the model for each data set is called a
task; our model performs transfer learning by learning the tasks
together.

Preliminary: the Indian Buffet Process.In our model, we will
draw a binary matrix that indicates which topics are presentin
each task. The matrix will be drawn from an Indian Buffet Pro-
cess (IBP; [7]), which is a nonparametric prior over binary ma-
trices. The use of the IBP prior ensures that the number of top-
ics does not need to be fixed and can instead be learned from
the data. The IBP prior allows a potentially infinite number of
active topics, but each draw from the prior yields some finite
number of active topics.

The IBP prior can be derived by as a limit of finite-sized bi-
nary matrices: ifK is the number of columns in a binary ma-
trix, then the IBP is the limit, whenK approaches infinity, of a
finite C×K binary matrixB whose elementsb(k)

c are distributed
according to:π(k) ∼ Beta(α/K, 1) andb(k)

c ∼ Bernoulli(π(k)),
where thecth row of B is bc. Theπ(k) is probability of turning
on an entry in thekth column of the matrix.

In the limit whenK → ∞ theπ(k) has been shown ([14]) to
obey the following stick-breaking construction:

v(k) iid
∼ Beta(α, 1)

π(k) = v(k)π(k−1) =

k
∏

j=1

v( j) (2)

The construction can be understood as follows; consider a stick
of length 1, at each iterationk = 1, 2, ....,we break off a piece at
a pointv(k) relative to the current length of the stickπ(k−1). We

upper bounded by a monotonously decreasing sequence; we cansimply rewrite
Equation (1) for thekth stick weight asπk = π′kπ̃k whereπ̃k =

∏k−1
l=1 (1 − π′l )

andπ′l are random variables between 0 and 1. We thus haveπk ≤ π̃k where
the π̃k are a monotonously decreasing sequence, therefore topics far in the stick
breaking process (having largek) are likely to get small weights. On the lower
levels of the HDP, the topic weights are sampled using the upper-level DP as
a base distribution, and therefore topics with very small weight at the top level
are unlikely to get large weight on the lower levels anymore.

record the lengthπ(k) of the stick we just broke off and recurse
on this piece. The sequence produces a decreasing ordering of
latent probabilitesπ(k) which can be used as a prior over un-
bounded binary matrices;

b(k)
c ∼ Bernoulli(π(k)) for eachc. (3)

In our model, the columns of the IBP correspond to topics and
the rows represent different tasks. Thus an entry in the matrix
indicates which topic contributes to which task.

Our model: nonparametric transfer learning topic model based
on the IBP. In our model the rows of the matrixB represent dif-
ferent tasks (the number of document collections), the columns
represent topics, and the individual binary entriesb(k)

c indicate
whether topick is present in taskc. To draw a topic for a new
task, the IBP chooses one of the existing topics according to
how many tasks they are already present in, or activates a new
topic. Therefore the IBP can choose to increase the number of
topics with no upper limit; when fitting a topic model with an
IBP prior, the number of active topics is then inferred from data.

Note that we use the IBP prior differently from the single-
task model [9] discussed in Section 2.4; that model used the
IBP to draw the presence of topics across different documents
of the same collection, we use the IBP in a multi-task context,
to draw the presence of topics across different document collec-
tions (tasks), consequently our IBP matrix has only one row per
each task (not one row per document as in [9]).

We empirically found that in our setting IBP by itself does
not provide enough sparsity. This is because the IBP matrix
has just one row per task, so the IBP parameters are learned
from few observations (the matrix rows), which leaves the IBP
uncertain about the number of active topics and hence causesit
to activate more topics than really needed. This formulation of
IBP is necessary to decouple topic sharing from topic strength.
To combat the unwanted effect of activating too many topics,
we incorporated an additional newsparsity-inducing masking
step: for each topic in each task, the sparsity inducing masking
step simply turns off the topic with probabilityǫ.

After the two topic selection operations (IBP and the addi-
tional masking, together denotedIBP-masking) have been done,
the strength of remaining active topics is drawn from Gamma
distribution within each task; these strengths define the prior
distribution of topic activities within the task. The combi-
nation of the Gamma-distributed topic strengths and the IBP-
masking can be seen as an infinitespike and slabprior, where
the IBP-masking generates the spikes (possibility for a topic to
be turned completely off) and the Gamma distribution acts as a
slab (which generates the strengths of topics that are not turned
off). The use of the independent topic strength variables avoids
the restrictions imposed by the DP construction of Section 2.3;
it makes inference easier and is able to model weak topics by
decoupling the strength and presence of a topic.

When the task-specific topic priors have been generated, the
rest of the generative process proceeds within each task as in
LDA: for each topic that is active in any task, a topic-to-word
distribution is drawn from a Dirichlet prior, and documents
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Algorithm 1 Pseudo-code for our multi-task topic model Gibbs sampler. Text after symbol ‘⊲’ are comments.
1: for iter = 1 to ITERdo
2: for c = 1 to TOTAL TASKS do
3: for d = 1 to TOTAL DOCUMENTSIN TASK do
4: for Each wordwc,d,n in documentd do
5: k← z(n) ⊲ Get topic assignment
6: Decreasen(k)

wc,d,n
andn(k)

(.),(.) by 1

7: Decreasen(k)
c,d andn(k)

c by 1
8: for k = 1 to TOTAL TOPICS+1 do ⊲ The+1 is for the inactive topic

9: p(k)←
n(k)

wc,d,n
+η

n(k)
(.),(.)+ηVocabSizeE[θ(k)

c,d] ⊲ For expectation use; Eq. (A.11), (A.12) and (A.13)

10: end for ⊲ ‘VocabSize’ is the number of different words in the vocabulary.
11: k← sample(p)
12: z(n)← k
13: Increasen(k)

wc,d,n
andn(k) by 1

14: Increasen(k)
c,d andn(k)

c by 1
15: if k > ACTIVE TOPICSthen 3

16: p(b(k)
c = 1)← Eq. (8)

17: p(ψ(k)
c = 1)← Eq. (8) by replacingb(k)

c by ψ(k)
c andπ(k) by ǫ

18: Sampleπ(k)• andπ(k+1)◦ using Eq. (6) and Eq. (7) with details in [14]
19: Sampleφ(k)

c,d using Eq. (9)
20: Sampleγ(k) using Eq. (10)
21: end if
22: end for
23: end for
24: for all k = 1 to TOTAL TOPICSdo
25: Reinitializeb(k)

c andψ(k)
c as before

26: Sampleπ(k) andφ(k)
c as before

27: end for
28: end for
29: end for

within a task are generated as usual by drawing a topic dis-
tribution from the task-specific topic prior and then drawing the
words for each document.

The notation we use for our model is summarized in Table 1.
The full generative scheme for our model (corresponding to the
plate model in Figure 3) is as follows:

1. For each topick = 1, 2, ..., draw,
(a) topic strength priorγ(k) ∼ Gamma(a1, a2)
(b) IBP probablility of topic activationπ(k) from Eq. 2
(c) topic-to-word distributionsβk ∼ Dirichlet(η)

2. For each topick in taskc = 1, 2, ..,C draw,
(a) topic strengthφ(k)

c ∼ Gamma(shape= γ, scale= 1)
(b) IBP topic activationb(k)

c from Eq. 3
(c) additional sparsity maskingψ(k)

c ∼ Bernoulli(ǫc)

3. Draw the size of the task; total number of word occurrences,
n(.)

c ∼ NB(
∑

k b(k)
c φ

(k)
c ψ

(k)
c , 1

2)2

4. For every documentd = 1, 2, ...D in taskc,
(a) draw distribution over topicsθc,d ∼ Dirichlet(bc.φc.ψc)

For each wordn = 1, 2, ...,Nd in the document
(b) Draw the topic indexzc,d,n ∼ Multinomial(θc,d)
(c) Draw the word termwc,d,n ∼ Multinomial(βzc,d,n

)

Note that the Dirichlet distribution is defined based on pseu-
docounts, which are herean elementwisemultiplication of the
binary IBP flagsbc, the additional sparsity-inducing masking
ψc, and the topic strengthsφc; any topic which has been turned
off by the IBP or the additional masking gets a zero pseudo-
count, hence draws from the Dirichlet distribution always yield
zero probability for such topics, as desired.

2As a simplification, our model generates the total numbers ofwords per
task but not how this total is divided among the individual documents. Essen-
tially this means that fitting the model does not draw information from the size
variation between documents, only from the total size variation between tasks.
In the plate diagram of Figure 3 we mark the sizesnc,d of individual documents
for clarity since they affect the generation of the document content.

3In our implementation we have theif clause (line no. 15− 21) outside the
for loop over words (line no. 4); this helps us speeds up our implementation.
To cater for the new inactive topics that might emerge for subsequent words;
we sample a series of inactive topic stick parameters beforeentering thef or
loop.
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In the above-described generative process,the set of hyper-
parameters are:{α, ǫ, η, a1, a2} and the unknown model parame-
ters are:{z, θ, β,B,ψ,φ}. To fit the model to data in a Bayesian
fashion, we infer the posterior of the model parameters given
the observed word counts in all documents of all tasks. In-
ference by sampling, discussed next, is efficient and only pro-
cesses a finite number of topics at each step as is usual in non-
parametric models.

4. Bayesian inference for our model

To infer our model from the multi-task data sets (document
collections), we use a combination of collapsed Gibbs sampling
and the Metropolis-Hastings algorithm to sample from the pos-
terior distribution of the model parameters.It turns out it is
possible to directly integrate out some of the ‘nuisance’ model
parameters; then the posterior of the rest of the variables can
be sampled more efficiently. We integrate out the topic specific
distribution over wordsβ, the topic mixture distributionθ and
the binary IBP matrixB; sampling is needed only over the re-
maining variables. In the Gibbs sampling we cyclically sample
the topic assignmentz, the topic strengthφ and the IBP prior
π (stick-breaking parameters) for topic activation.Algorithm
1 presents the complete pseudocode for the algorithm and in-
cludes references to the sampling distributions discussedin the
following section.

4.1. Sampling zk and the stick parameterπk

To sample topic assignments within a documentd in taskc,
we integrate out the topic distributionθc,d of the document. The
posterior probability that thenth word in documentd of taskc
comes from topick is

p(zc,d,n = k|z\c,d,n,wc,d,n,∆)

=
p(wc,d,n|zc,d,n = k)p(zc,d,n = k|z\c,d,n)p(z\c,d,n,∆)

p(wc,d,n, z\c,d,n,∆)

∝ p(wc,d,n|zc,d,n = k)p(zc,d,n = k|z\c,d,n,∆)

∝ (n(k)
wc,d,n,\c,d,n

+ η)
∫

dθc,d p(zc,d,n = k|θc,d)p(θc,d|z\c,d,n,∆)

(4)

wherez\c,d,n denotes the current values of all other topic as-
signments except the one whose probability we are computing,
∆ = {φ•c, π

•,γ, α, ǫ}, and the superscript• denotes active topics.
The first equality follows from the Bayes rule since the word
wc,d,n only depends on the topiczc,d,n. The second proportion-
ality follows by explicitly writing out how the (posterior)word
probability in topick depends on word counts and prior pseu-
docounts, and by explicitly writing the probability of choosing
topick as an integral over the posterior of the latent topic prob-
ability variableθc,d.

On the right-hand side of (4), we simply havep(zc,d,n =

k|θc,d) = θ
(k)
c,d which is thekth value of the topic-probability

vector θc,d; therefore the integral on the right-hand side

of (4) is an expectation of the topic probability. How-
ever, that expectation is taken over a complicated posterior
distribution of topic probabilities, wherep(θc,d|z\c,d,n,∆) ∝
∫

dφ◦c
∑

bc

∑

ψc
p(θc,d|ψc, bc,φc, z\c,d,n)p(bc,ψc,φ

◦|∆).This like-
lihood involves a combinatorial integration over values ofthe
sparse IBP matrix, but since we only need the posterior for tak-
ing topick, it can be shown(refer to equation (A.2) in Appendix
A for derivation)that the integralon the right-hand side of (4)
ultimately simplifies to

E[θ(k)
c,d|z\c,d,n,∆] ∝ E



























(n(k)
c,d,\c,d,n+ φ

(k)
c )b(k)

c ψ
(k)
c

n(.)
c,d,\c,d,n+

∑

j
b( j)

c ψ
( j)
c φ

( j)
c



























. (5)

In the above equation,n(k)
c,d,\c,d,n is the number of words in the

document assigned to topick not counting thenth word, and
n(.)

c,d,\c,d,n is the total number of words in the document not count-
ing thenth word. While not combinatorial, the expectation in
(5) is inefficient to evaluate in closed form as we would need
to do so for every wordduring theGibbs sampling. We use
an approximation similar to [9], using 1st order Taylor expan-
sion for the three possible cases: topick is active in the current
task (data set); topick does not appear in the current task but
is active in the corpus (all data sets); or topick is inactive in
the whole corpus. Details of the approximation are providedin
Appendix A.

During the Gibbs sampling (including the above-mentioned
approximation) we must processinactive topicsin case the
sampling activates one;the ability to activate new topics is es-
sential so we can learn the number of topics from data instead
of pre-specifying it. In particular, we must be able to sample
the IBP prior (stick-breaking parameters) for both inactive and
active topics.A topic is inactive (denoted by a superscript◦)
if it is never used in the whole corpus, i.e.the total number of
word occurrences assigned to topick is nk

(.)(.) = 0, and active
otherwise.Note that a topic without any word occurrences as-
signed to it is considered inactiveeven if the IBP had enabled
the topic for some tasks so that

∑

c b(k)
c > 0; for sampling ac-

tive and inactive topics we follow [14].For active topics stick
lengthsπ•k have the conditional distribution;

p(π•k|B) ∼ Beta















C
∑

c=1

b(k)
c , 1+C −

C
∑

c=1

b(k)
c















. (6)

where B is the current value of the IBP (the binary matrix).The
posterior can be sampled directly using Gibbs sampling. To
sample the stick parameters for the inactive topics we follow
thesemi-ordered stick breaking construction[14]; considerK†

be an index such that all active topics have indexk < K†; thus
all topics beyond indexK† have no word occurrences assigned
to them, denote this byzk:k>K† = 0. The inactive topics have an
ordering of decreasing stick lengths:the stick length distribu-
tion of the inactive topick, given the stick length of the previous
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Table 1:Notation used for our model

Parameter Meaning

n index for thenth word token in a document.
wc,d,n contains the vocabulary index of thenth word token in documentd of taskc.
zc,d,n topic assignment of thenth word token in documentd of taskc.
nc,d total no. of words in documentd of taskc.
nc total no. of words in all document of taskc.
n(k)

(.)(.) total no. of words assigned to topick in the whole corpus.

n(k)
c,d total no. of words assigned to topick in the documentd of taskc.

n(k)
wc,d,n

total no. of times the termwc,d,n has been assigned to topick in the documentd of taskc.
n(.)

c,d,\c,d,n total no. of words in the document not counting thenth word.

n(k)
c,d,\c,d,n total no. of words in the document assigned to topick not counting thenth word.
θc,d topic mixture distribution for the documentd of taskc.
βk topic specific distribution over words for topick.
η prior for the topic specific distribution overβk.
B aC × K binary IBP matrix whereC is the number of tasks andK is the current number of topics in the IBP matrix,

and the rows and columns index tasks and topics respectively.
bc a binary vector which is thecth row of the IBP matrix and indicates which topics should be turned off in taskc.
π(k) probability of turning on thekth topic in the IBP matrix.
• The superscript• denotes active topics; the ones that are currently represented in the corpus.
◦ The superscript◦ denotes inactive(unused)topics;their corresponding parameter values are unknown.
φ

(k)
c strength parameter for topick in taskc. Strenghts of all topics in taskc are together denoted asφc.
γ(k) parameter for topick in the prior for topic strengths; the parameters together are denoted byγ and they define

the prior for allφc.
a1, a2 hyperparameters for the gamma prior over the topic strengthprior: a1 is the shape anda2 is the scale parameter.

Each topic strength prior parameterγ(k) is drawn from the gamma distribution defined bya1 anda2.
ψc sparsity inducing binary masking vector which tells which topics should be turned off in taskc.
ǫ probability of turning on a topic in the sparsity inducing binary vector;ψc.

topic, is

P(π◦k|π
◦
k−1, zk:k>K† = 0)

∝ exp
(

N
∑

i=1

1
i
(1− π◦k)

i
)

(π◦k)
α−1(1− π◦k)

N · I(0 ≤ π◦k ≤ π
◦
k−1) (7)

whereI(0 ≤ π◦k ≤ π◦k−1) is 1 when the statement inside the
parenthesis is true and 0 otherwise.Using (7), we sample the
stick parameters for the inactive topics by adaptive rejection
sampling(ARS) 4 [15]. ARS samples from a distributionp(x)
by first constructing an envelope function for log(p(x)). The
envelope function is then used for rejection sampling. When-
ever a sample is rejected, the envelope function is updated to
correspond better to the underlying density. The R packagears
[15] is used to generate samples using ARS.

4.2. Reinstantiating the IBP and Bernoulli masking matrices

Even though topic assignments can be sampled while inte-
grating over the binary IBP matrix, the IBP matrix is still tem-
porarily required here for sampling the stick parameters for the
active topics in (6); more precisely, the valuesb(k)

c in all rowsc

4Multiple samples were generated and an average was used to get a better
approximation.

of thekth matrix column are needed to sample the stick param-
eter of active topick. For this purpose, the current value of the
IBP matrix is reinstantiated based on the known values of the
other parameters, according to

p(b(k)
c = 1|π(k), φ(k)

c , ψ
(k)
c , n(k)

c ) =


























1 : if n(k)
c,(.) > 0

π(k) : if n(k)
c,(.) = 0, ψ(k)

c = 0
π(k)

π(k)+2φ
(k)
c (1−π(k))

: if n(k)
c,(.) = 0, ψ(k)

c = 1
(8)

where on the right-hand side, the topmost choice simply means
that the topic must be activated for the task if some word is al-
ready assigned to it; the middle choice means that if the topic is
unused and moreover the additional masking has turned it off,
then the activation probability comes from the prior and thebot-
tom choice means that if the topic is unused but the additional
masking has not turned it off, then the activation probability
is derived through the IBP and the total number of words as-
signed to thek-th topic in taskc. The additional masking vector
ψc is initialized by a similar equation as the IBP matrix by in-
terchangingb(k)

c with ψ(k)
c andπk with ǫ.

4.3. Sampling topic strength parameters
Lastly,to samplethe topic strength parameters,we first com-

putethe joint probability ofthe strengthφ(k)
c of topic k in task
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c and the total number of counts assigned to topick in the
task; the joint probability depends on the corresponding topic
strength prior parameterγ(k), the IBP matrix valueb(k)

c , and the
additional masking valueψ(k)

c , as follows:

p(φ(k)
c ,n

(k)
(.) |γ

(k), b(k)
c , ψ(k)

c ) =
(φ(k)

c )γ
(k)−1 e−φ

(k)
c

Γ
(

γ(k)
)

C
∏

c:b(k)
c .ψ

(k)
c =1

Γ(n(k)
c + φ

(k)
c )

Γ(φ(k)
c ) n(k)

c ! 2(φ(k)
c +n(k)

c )
(9)

where the right-hand side follows because the topic strength
has a Gamma prior with parameterγ(k) and the total number of
words assigned to thek-th topic in thec-th task is distributed
according ton(k)

c ∼ NB(b(k)
c φ

(k)
c ψ

(k)
c , 1/2).

We use Metropolis-Hastings to compute the posteriorfor φ(k)
c .

We sample the prior topic strength parameterγ(k) in a similar
manner from the joint posterior forγ(k) andthe topic strengths
φ

(k)
(.) : the result is

p(γ(k),φ
(k)
(.) |n

(k)
c , b(k)

c , ψ(k)
c , a1, a2)

= p(γ(k)|a1, a2)
C

∏

c:b(k)
c .ψ

(k)
c =1

p(φ(k)
(c)|n

(k)
c , γ(k), b(k)

c , ψ(k)
c ) (10)

5. Empirical results

We compare our model to the nearest method Hierarchical
Dirichlet Process based multi-task learning (MT-HDPLDA).

Model Selection.The hyperparametersǫ, η, a1, a2 andα can
have a clear effect on the results. The precise values are listed
in theExperimentsections that follow, here we briefly discuss
their roles; Smaller values ofǫ lead to less active topics. In
the experiments we setǫ by a very simple manner according to
the average number of documents per task: since the artificial
data experiments have few documents per task we use the same
moderately largeǫ value 0.01 in all artificial data runs; since the
real data experiments have more documents per task we use a
smallǫ value 0.0001 in all real data runs. The topic distribution
prior controlled byη is also found in MT-HDPLDA and has the
same meaning; smallη would yield more specific topics; for
a discussion of the parameter see [2] (in that paperη is called
β). Our real data experiments (Sections 5.3 and 5.4) are similar
to the ones used by the authors of MT-HDPLDA in [8], so we
follow them and use the same value ofη. In our simulated data
experiments (Sections 5.1 and 5.2) the data size is small andwe
aim to extract fine grained topics; therefore we use a smaller
value ofη. The hyperparameters of our modela1, a2 andα have
the same meanings as in the IBP compound Dirichlet prior of
[9]; a1 anda2 are the ‘shape’ and ‘scale’ hyperparameters for
the Gamma distribution of topic strengths (largea1 linearly in-
creases mean and variance of topic strenghts; largea2 linearly
increases the mean and quadratically increases variance oftopic
strenghts), andα sets the prior for the stick-breaking in the IBP
(largeα decreases the number of active topics). We seta1, a2

andα as in [9].
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Figure 5: Experiment results: test set predictive likelihoods for simulated data
continuum, error bars show±1 standard deviation over 10 random datasets.

5.1. Experiment 1: Continuum of problem domains

We expect our model to perform well in the case of multi-task
problems where some shared topics are strong in all tasks where
they appear whereas other shared topics are only weakly present
in several tasks; we build a continuum of multi-task problem
domains where this situation occurs. At either end of the con-
tinuum, data is generated from a model where shared topics
are strong (they generate many words in all tasks where they
appear); the left end is a simpler case where both models can
work well, and the right end is a complicated case especially
suitable for MT-HDPLDA. Interesting domains lie between the
two ends: in these intermediate domains, the topic generation
mechanisms from either end are mixed together linearly, yield-
ing small shared topics from both generators in each individual
task. We create nine domains across the continuum, identified
by the mixing coefficient (0 to 1) between the generators.See
Appendix B for a detailed description of the construction ofthe
synthetic data continuum.

Each problem domain is a multi-task scenario where each
learning problem has 10 tasks (data sets). We use the setting
where one task is more interesting than others; the interesting
task has 24 documents with 8 words each, other tasks have 8
documents with 8 words each, all generated from 10 topics with
a vocabulary of 150 words. We generate 10 such learning prob-
lems in each domain and run our method and MT-HDPLDA on
each problem. Weinitialize the Gibbs sampler randomly,take
1500 burnin iterations and draw 100 samples 15 iterations apart.

For setting the hyperparameters we follow [8] for MT-
HDPLDA and for ours we useα = 5 andγ ∼ Gamma(5, 0.1)
following [9]. We fixed ǫ = 0.01 as discussed in the Model
selection paragraph earlier. In both our model and the MT-
HDPLDA we use a relatively small value ofη = 0.00005.

The results are evaluated by predictive likelihood on held-out
documents from the interesting task using the empirical likeli-
hood based approach [16]. Figure 5 shows that in the interme-
diate domains where weak topics are shared in the interesting
task, we outperform MT-HDPLDA.

It should be noted that the horizontal axis in Figure 5 is overa
continuum of very different prediction problems, and the scale
of results is not intended to be comparable between different
parts of the continuum: rather, the take-home message is that
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our method is better at five locations in the middle of the con-
tinuum where weak shared topics are likely to appear in the
interesting task.

5.2. Experiment 2: Model performance under varying number
of total tasks

In this experiment we evaluate the performance of the two
models when the total number of tasks are varied. We fix the
location in the intermediate domain continuum at point 0.25of
the mixing coefficient (from Figure 5) such that there are weak
topics in the data generation and expand it further such thatthe
total number of tasks is varied from 5to 30. The rest of the
experimental setting is the same as before. We use the same
evaluation criterion as before, predictive likelihood on held-out
documents from the interesting task. Figure 6 shows the results:
under the interesting case when the total number of tasks is rel-
atively small we outperform MT-HDPLDA. When the number
of tasks grows, performance of both methods increases and the
methods become comparable at the end of many tasks.

We further investigate the effect of total number of tasks on
the performance of two models at two other points in the do-
main continuum, corresponding to mixture coefficient 0.5 and
to mixture coefficient 1; for the latter coefficient the data gen-
eration assumptions match those of MT-HDPLDA. The result-
ing predictive likelihoods are plotted in Figure 7 and Figure 8
respectively. In these domains MT-HDPLDA performs better
for a large number of tasks; however, if the number of tasks
is small (near the left end of the horizontal axes in the figures)
our model performs better than MT-HDPLDA, even in the case
of the domain with mixture coefficient 1 (Figure 8) which was
expected to favor MT-HDPLDA. The good performance of our
model on small numbers of tasks is therefore consistent in all
our simulated experiments (mixture coeff. 0.25, 0.5 and 1).

Another interesting factor affecting performance is the num-
ber of documents in the task of interest; in many scenarios the
task of interest may be a newer task with fewer documents
available, for example a recently started newsgroup or a re-
cently introduced track in a conference. We study the model
performance with different numbers of documents in the task of
interest in the following real data experiments (20newsgroups
and NIPS conference articles).

5.3. Experiment 3: 20 newsgroups data

We next compare our method to MT-HDPLDA on a real-life
collection of count data.

We take the computational group of the 20newsgroups
data5. This group (often abbreviated ascomp) is di-
vided into five subgroups; some of the subgroups such as
comp.sys.ibm.pc.hardwareand comp.sys.mac.hardwarehave
closely related topics and therefore thecompgroup may be
well suited for a multitask problem. The data contains 11293
documents. We remove common words likeandandyou from
the whole collection. We choose thecomp.sys.ibm.pc.hardware

5We use the stemmed version of the data downloaded from
http://web.ist.utl.pt/∼acardoso/datasets/

5 8 10 13 15 18 20 23 25

−4.2

−4

−3.8

−3.6

−3.4

−3.2

Total number of tasks

T
es

t s
et

 p
re

di
ct

iv
e 

lo
g−

lik
el

ih
oo

ds

 

 

HDP Multitask
Our Model

Figure 6: Experiment results: test set predictive likelihoods for datasets with
different number of total tasks. The multi-task domain in this experiment is
one of the domains in the domain continuum of Experiment 1, corresponding
to mixture coefficient 0.25 in Figure 5. The error bars show±1 standard devi-
ation over 10 random datasets. Our model outperforms MT-HDPLDA (“HDP
Multitask”) when the number of tasks is small.
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Figure 7: Experiment results: test set predictive likelihoods for datasets with
different number of total tasks. The multi-task domain in this experiment is one
of the domains in the domain continuum of Experiment 1, corresponding to
mixture coefficient 0.5 in Figure 5. The error bars show±1 standard deviation
over 10 random datasets. Our model again outperforms MT-HDPLDA (“HDP
Multitask”) when the number of tasks is small.
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Figure 8: Experiment results: test set predictive likelihoods for datasets with
different number of total tasks. The multi-task domain in this experiment is
one of the domains in the domain continuum of Experiment 1, corresponding
to mixture coefficient 1 in Figure 5. The error bars show±1 standard deviation
over 10 random datasets. This multi-task domain was designed to favor MT-
HDPLDA (“HDP Multitask”), but our model still outperforms MT-HDPLDA
when the number of tasks is very small.
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Figure 9: Test set Predictive likelihoods for 20newsgroups, error bars show±1
standard deviation over 5 folds.

subgroup as the interesting task. We run our model, MT-
HDPLDA and single-task HDP as a baseline; we follow [8] for
MT-HDPLDA and setη = 0.5 for both models. For our model
we setα = 5, γ ∼ Gamma(5, 0.1) and setǫ = 0.0001 as dis-
cussed in the Model Selection paragraph earlier.For sampling
we initialize the Gibbs samplers randomly, take 1000 burn-in it-
erations, and then draw a total of 10 samples 50 iterations apart.
We learn models for different sizes of training data in the inter-
esting task (5-40 documents) with 50 documents in each other
task, and use 5-fold cross-validation in each case. Resultsare
again evaluated by average predictive log-likelihood of held-
out documents from the interesting task. Figure 9 shows the
results. Single-task learning naturally works poorly, andour
model outperforms MT-HDPLDAin scenarios where training
data is small and hence multi-task learning is most needed.

5.4. Experiment 4: NIPS data

We compare our model to MT-HDPLDA on another real-life
collection of count data, a collection of scientific articles repre-
sented as bags-of-words.

We take the five most frequent sections of NIPS articles from
1987 to 1999 (http://www.gatsby.ucl.ac.uk/∼ywteh); in total
they contain 1147 documents with vocabulary size 1321 and av-
erage document length∼ 950 words. The most frequent group
is ”Algorithms and Architecture”, which we choose as the in-
teresting task. Like the 20newsgroups experiment we run our
model, MT-HDPLDA and single-task HDP models and evalu-
ate performance over the held-out dataset in a 5-fold cross val-
idation setting. The number of documents per task,and the hy-
perparameters and the other experimental settingsare the same
as the ones used in 20newsgroups experiment. Figure 10 shows
the results: single-task learning works poorly as before. There
is not a large performance improvement for our model against
MT-HDPLDA; however we observe essentially similar shapes
of the peformance curves in both the NIPS and the 20 news-
groups data, and additionally observe consistent difference in
several domains in the artificial continuum, which demonstrates
an overall better predictive performance for our model espe-
cially under limited tasks and limited numbers of documentsin
the task of interest.
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Figure 10: Test set Predictive likelihoods for the NIPS dataset, error bars show
±1 standard deviation over 5 folds.

To illustrate the topic model our method has learned for the
NIPS collection, we show learned topics for the problem set-
ting where the number of documents in task of interest is 10
and each supplementary task has 50 documents (second loca-
tion on the horizontal axis in Figure 10). We extract the top
ten words from the strongest two topics for each taskand from
the weakest shared topic. Table 2 lists the top words. The
first topic (first column of the table) is the strongest in all of
the tasks; it lists words about general machine learning con-
cepts. The next-to-strongest topics are listed in from column
two to five: The next-to-strongest topic is different in each task
(NIPS section), except that tasks LT and AA (task of interest)
have the same next-to-strongest topic. Note that these “next-to-
strongest” topic are all relatively weak even in their respective
NIPS sections, compared to the strongest topic listed in thefirst
column. Note also that these next-to-strongest topics are also
used in other tasks (NIPS sections) but to a weaker extent; they
can be interpreted as concepts encountered in many NIPS pa-
pers and most commonly in the particular section where their
inferred probability was greatest. The strongest topic canbe
interpreted as general concepts of learning from data includ-
ing neural learning (appropriately for the NIPS conference), the
topic most active in CNP can be interpreted as general concepts
of reinforcement learning especially in robotics; the topic most
active in NS can be interpreted as biological concepts of neural
learning; in LT and AA the most active topic is somewhat varied
but can be interpreted as general concepts of probabilisticand
kernel learning; in AP the most active topic can be interpreted
as concepts of rules and schedules (for example for learning
agents).

The last topic (last column of the table) is another weak topic
which is uniformly present in all NIPS tasks. It can be inter-
preted as a mixture of concepts related to the structure of a pa-
per (words like “discussion” and “conclusion”) and to general
experimental settings which might appear across several NIPS
sections like neuroscience and control, navigation and planning
(words such as “positions”, “recorded” and “threshold”).
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Strongest Topic CNP NS LT and AA AP Weakest Shared Topic

learning control neurons variables rules recorded
network reinforcement neuron kernel coarse side
model robot cortical markov instruction positions
time learned arbors conditional fine discussions
input policy dendritic group schedule technical
neural tangent competition likelihood instructions conclusions

algorithm interpolation cells face dec scales
data steps axonal database blocks fire
set initial cell generalized rl exploration

system grid modules matrix resolution threshold

Table 2: Top ten words in the strongest topic, four next-to-strongest but relatively weak topics,and the weakest shared topic, for the NIPS article collection. The
NIPS collection is divided into five sections (tasks): CNP - Control Navigation and Planning, NS - Neuroscience, LT - Learning Theory, AA - Algorithms and
Architecture, and AP - Applications. The strongest topic turned out to be the same in every tasks; the top words in that topic are listed in the first column. The next
strongest topic is different in every task (except the task of interest AA), and its top words are listed under each task’s name. The weakest shared topic is weakly
present in all tasks.

6. Discussion

Overall we observe that under limited tasks and docu-
ments our model has better predictive performance than MT-
HDPLDA. Our experiments suggest that this happens partic-
ularly in data domains where there are weak shared topics in
some tasks. Since the MT-HDPLDA model makes too strong
assumptions (it couples topic sharing with topic strength), our
decoupled IBP based method performs better in such scenarios;
a probable reason is the lack of strong evidence for the presence
of topics in individual tasks in such settings.

Our model outperformed MT-HDPLDA in Figures 9 and
10 when the number of documents in the task of interest was
small. One potential reason is that MT-HDPLDA couples topic
strength with sharing, thus it assumes the topics shared in the
task of interest are likely to be the ones that are strong in the
other tasks: then weaker shared features of the task of inter-
est (topics that are present in that task and in other tasks, but
which are not always strongly present in the tasks where they
appear) might not be learned well by MT-HDPLDA when few
data are available. In Figures 9 and 10, performance increases
for both our model and MT-HDPLDA as the number of data
in the task of interest grows; this suggests that if a sufficient
number of data points is available, MT-HDPLDA may be able
to learn also weaker topics in the task of interest since the data
provides sufficient evidence to make them visible in the poste-
rior despite the coupling assumption.

In theory we expect that in both MT-HDPLDA and in our
method, learning both strong and weak topics will benefit from
having more tasks: as more tasks become available, the topics
that are shared across most of the tasks can be learned from
more data. In MT-HDPLDA the evidence for topics accumu-
lates through the HDP hierarchy, and the benefit of many tasks
will be greatest for strong shared topics due to the couplingas-
sumption of sharing and strength. In our method the evidence
of sharing accumulates in the learning of the IBP matrix and
the extra sparsity vector, without a tight coupling to learning
the topic strengths. Both our model and MT-HDPLDA increase
their performance as more tasks become available; for exam-

ple, in Figure 8 all topics in the domain are relatively strongly
present in their respective tasks, thus here the performance in-
crease is due to learning strong topics well. The fact that our
method outperforms MT-HDPLDA in the intermediate domains
where shared topics are weakly present in some tasks (see Fig-
ure 5) suggests our model is useful in such domains.

The continuum of multi-task domains studied in Experiment
1 (Figure 5) is not an exhaustive list of all multi-task do-
mains; although the continuum already showed an advantage
to our method in domains where some shared topics are weakly
present in tasks, even larger differences between our method
and MT-HDPLDA might be available in other multi-task sce-
narios.

In our case studies we evaluated the predictive performance
for the task-of-interest, however the benefit of our model isnot
an artifact of the particular newsgroup/NIPS section choice that
we used: the artificial experiment shows that our method has an
advantage even when average over a large number of multi-task
scenarios. More symmetric scenarios (e.g. predictions in all
tasks with within-task and across-task accuracies) are also very
important and will be considered in further work. Moreover
in addition to the predictive likelihood we believe it is crucial
to measure the comprehensibility of the extracted topics, for
example in terms of their semantic coherence. Recently [17]
have proposed the topic coherence score (a pointwise mutual
information score) this can be used in future work as additional
evaluation criterion for our model and other topic models.

The IBP has a “rich-get-richer” property where new matrix
rows are likely to use frequently activated old topics rather than
activating new topics; this keeps the IBP matrix sparse. How-
ever, in our setting there is only one IBP matrix row per task
(data collection), thus none of the topics can become very rich:
with C tasks, each topic is activated at mostC times. Then the
rich-get-richer property has only a weak effect, and new rows of
the IBP matrix are likely to activate more topics than needed. To
keep the topics sparsely used and prevent activating too many
topics, our model uses an additional sparsity inducing step.

In this paper we set the prior for the additional sparsity by a
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very simple manner according to the average number of docu-
ments per task, as described in Section 5 in theModel Selection
paragraph. A cross-validation approach or a Bayesian prior,
could also have been used; however, this simple first choice al-
ready worked well. Additionally, it is possible that a variant of
IBP (e.g. through some variant of Hierarchical Beta Processes
[18]) could achieve the same effect as our additional sparsity
step; this would be an interesting direction of future work.

Another recent line of research is on statistic domain adapta-
tion involving HDP and related models specially in the context
of sequential data. In several works time dependence is incor-
porated to model time evolving topics among documents ap-
pearing in a sequence. For instance, the dynamic HDP model
in [19] and [20] models the time evolution of topics and en-
courages topic sharing among temporally proximal data. These
models are for a single task setting; in contrast, our model
and MT-HDPLDA consider settings with multiple document
collections. The recent single-task topic model of [21] stud-
ies sequential evolution not over time but rather within docu-
ments; it uses a two parameter generalization of Dirichlet pro-
cess prior; a Poisson Dirichlet prior (Pitman-Yor process). It
simultaneously models the hierarchical and the sequentialtopic
structures within subparts (groups of sentences of paragraphs)
of documents. The model is again for a single task setting
whereas our model and MT-HDPLDA consider settings with
multiple document collections. Another interesting approach is
the HDP based evolutionary model in [22], which models the
time evolution of topics both within and across multiple cor-
pora. The paper focuses on mixture models rather than topic
models; each document is generated by a mixture component,
and strengths of mixture components over time and corpora are
modeled through a HDP construction; evolution is modeled fol-
lowing a Markovian assumption. In contrast, we focus on topic
models and unlike HDP we decouple component (here topic)
strength from its sharing.

7. Conclusions

We have introduced a sparse multi-task topic model that is a
robust and flexible method to model strong and weak sharing
of topics in multiple heterogeneous collections of documents
in an unsupervised manner.The generative model decouples
the sharing of topics from the generation of the topic strengths
by using a spike-and-slab prior. The proposed non-parametric
model outperforms a state of the art Hierarchical DirichletPro-
cess based topic model on a simulated data continuum and
in case studies on real data with small training sets.In our
real-data experiments (20 newsgroups and NIPS data sets) our
model and the state of the art MT-HDPLDA method are both
much better than the single-task topic model, and our model
still achieves further improvement: the error bars show that we
get a consistent improvement over MT-HDPLDA. In particular,
our experiments suggest that our model extractsweak topics
better than the previous method, when the number of available
tasks and documents per task is low. This shows that our new
multi-task approach is a promising alternative to the standard
approach in methods like MT-HDPLDA. Thus we recommend

our method in cases where weak shared topics are likely to ex-
ist, and there are not very many documents or tasks to learn the
models from.
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APPENDIX A

As described in Section 4.1, in order to sample the topic as-
signmentzwe wish to approximate the expectation overθ(k). In
this section we describe the approximation; it is an extension
of the technique used to approximate the expectation of topic
mixtureθ for a single task model in [9].

We first rewrite the expectation as

E[θ(k)
c,d|z\c,d,n,∆] ∝

∫

θ̃
(k)
c,d p(θ̃c,d, z\c,d,n|∆)dθ̃c,d

∝

∫

θ̃
(k)
c,d p(z\c,d,n|θ̃c,d,∆)p(θ̃c,d|∆)dθ̃c,d

∝

∫

θ̃
(k)
c,d p(zc,d\n|θ̃c,d)p(z\c,d|θ̃c,d,∆)p(θ̃c,d|∆)dθ̃c,d

and approximatingp(z\c,d|θ̃c,d,∆) ≈ p(z\c,d|∆) which is constant
with respect toθ(k)

c,d, we further write

E[θ(k)
c,d|z\c,d,n,∆]

∝

∫

θ̃
(k)
c,d

∫

φ
◦

c

∑

b◦c:b(k)
c =1

∑

ψ
◦

c:ψ(k)
c =1

p(zc,d\n|θ̃c,d)

p(θ̃c,d|ψc, bc,φc)dθ̃c,dp(φ◦c|γ)p(b◦c|π
•, α)p(ψ◦c|ǫ)dφ

◦
c .

Sincep(zc,d\n|θ̃c,d) is the value of a Multinomial distribution and
p(θ̃c,d|ψc, bc,φc) is the value of a Dirichlet, their product is pro-
portional to the value of another Dirichlet; we can then further
rewrite the equation as

E[θ(k)
c,d|z\c,d,n,∆]

∝

∫

φ
◦

c

dφ◦c
∑

b◦c:b(k)
c =1

∑

ψ
◦

c:ψ(k)
c =1

∫

θ̃
(k)
c,dDir(θ̃c,d|nc,d,\c,d,n+ φc)dθ̃c,d

p(φ◦c|γ)p(b◦c|π
•, α)p(ψ◦c|ǫ)
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and since the integral overθ̃c,d simply takes thek:th element
from the mean of the Dirichlet distribution, we finally arrive at

E[θ(k)
c,d|z\c,d,n,∆]

∝

∫

dφ◦c
∑

b◦c:b(k)
c =1

∑

ψ
◦

c:ψ(k)
c =1

(n(k)
c,d,\c,d,n+ φ

(k)
c )

n(.)
c,d,\c,d,n+

∑

j
b( j)

c ψ
( j)
c φ

( j)
c

p(φ◦c|γ)p(b◦c|π
•, α)p(ψ◦c|ǫ) . (A.1)

On the right-hand side, the sums over the binary vectorsb◦c and
ψ◦c are only over values whosekth entry is 1. This is equivalent
to taking the sum over all possible vectors but multiplying the
summed function by the binary flagsb(k)

c andψ(k)
c , and the above

equation can therefore be rewritten as

E[θ(k)
c,d|z\c,d,n,∆] ∝ E



























(n(k)
c,d,\c,d,n+ φ

(k)
c )b(k)

c ψ
(k)
c

n(.)
c,d,\c,d,n+

∑

j
b( j)

c ψ
( j)
c φ

( j)
c



























. (A.2)

Let us divide
∑

j
b( j)

c , ψ
( j)
c , φ

( j)
c into active topics corresponding to

entries ofb in b• (these are the topics represented in the corpus)
and inactive topics corresponding to elements inb◦

∑

j

b( j)
c ψ

( j)
c φ

( j)
c =

∑

j:n(k)
c,(·),\n>0

φ
( j)
c +

∑

j:n(k)
c,(·),\n=0

b( j)
c ψ

( j)
c φ

( j)
c (A.3)

= X + Y (A.4)

We further split the inactive term into two componentsY1 and
Y2 thus:

∑

j

b( j)
c ψ

( j)
c φ

( j)
c

=
∑

j:n(k)
c,(·),\n>0

φ
( j)
c +

∑

j∈J1

b( j)
c ψ

( j)
c φ

( j)
c +

∑

j∈J2

b( j)
c ψ

( j)
c φ

( j)
c

= X + Y1 + Y2 (A.5)

where:

J1: n( j)
c,(·),\n = 0 andn( j)

(·),(·),\n > 0 (A.6)

J2: n( j)
(·),(·),\n = 0 (A.7)

Thus (A.2) becomes:

E[θ(k)
c,d|z\c,d,n,∆] ∝ E

















(n(k)
c,d,\c,d,n+ φ

(k)
c )b(k)

c ψ
(k)
c

n(.)
c,d,\c,d,n+ X + Y1 + Y2

















(A.8)

The expectation ofY is:

E[Y|π•, α,γ, ǫ] = E[Y1|π
•,γ, ǫ] + E[Y2|α,γ, ǫ] (A.9)

E[Y1|π
•,γ, ǫ] =

∑

j∈J1

π( j)γ( j)ǫ

E[Y2|α,γ, ǫ] = αa1a2ǫ (A.10)

Since it is not feasible to evaluate the above expectation in
closed form as we would need to evaluate it for every word in

each Gibbs sampling so we perform an approximation. The
E[ f (X)|Y] can be approximated by the first order Taylor expan-
sion E[f (X)|Y] ≈ f (E[X|Y]). We approximate the expectation
under the following cases:

Case 1: n(k)
c,d,\c,d,n = 0 andn(k)

c,(.),\n,d,c > 0, i.e. thek-th topic

is active in the taskc which meansψ(k)
c = b(k)

c = 1, Eq (A.8)
becomes:

E[θ(k)
c,d|z\c,d,n,∆] ∝ (n(k)

c,d,\c,d,n+φ
(k)
c )E

[

1

n(.)
c,d,\c,d,n+ X + Y1 + Y2

]

∝
(n(k)

c,d,\c,d,n+ φ
(k)
c )

n(.)
c,d,\c,d,n+

[

∑

j:n( j)
c,(.),\n>0

φ
( j)
c

]

+

[

∑

j:n( j)
(.),(.),\n>0

π( j)γ( j)ǫ

]

+ αǫa1a2

(A.11)

Case 2: n(k)
c,(.),\n,d,c = 0 andn(k)

(.),(.),\n,d,c > 0 i.e. thek-th topic
does not appear in the current task but is active in the corpus,
so the expectation in Eq (A.8) is

E[θ(k)
c,d|z\c,d,n,∆] ∝ γ(k)π(k)ǫ E

[

1

n(.)
c,d,\c,d,n+ X + Y\k + γ(k)

]

∝ (γ(k)π(k)ǫ)
/

(

n(.)
c,d,\c,d,n+

[

∑

j:n( j)
c,(.),\n>0

φ
( j)
c

]

+

[

∑

j:n( j)
(.),(.),\n>0 & j,k

π( j)γ( j)ǫ

]

+ γ(k) + αǫa1a2

)

(A.12)

Case 3: n(k)
(.),(.),\n,d,c = 0 implying the topic is inactive in the

whole corpus. In this case we evaluate the probability of as-
signing any of the infinite number of components:

E[θ(k)
c,d|z\c,d,n,∆] ∝ E

















Y2

n(.)
c,d,\c,d,n+ X + Y1 + Y2

















(A.13)

∝
(αǫa1a2)

n(.)
c,d,\c,d,n+



















∑

j:n( j)
c,(.),\n>0

φ
( j)
c
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∑

j:n( j)
(.),(.),\n>0

π( j)γ( j)ǫ



















+ αǫa1a2

(A.14)

These cases together suffice to compute the approximated ex-
pectation.

APPENDIX B

In our simulated experiment of Figure 5 we construct a con-
tinuum of synthetic domains. From each domain we generate
several multi-task learning problems: each multi-task learning
problem consists of several data sets (tasks).

In detail, each learning problem is generated from the model
structure of our model, that is, from a multi-task topic model.
There are 10 active topics across 10 tasks. The overall sum of
pseudocounts across topics was set to 300 for each task. The
division of pseudocounts across topics in each task was fixed
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according to the continuum as described below. For each task
c, elements of the vectorbc were set to 1 if the correspond-
ing topic had been allocated nonzero pseudocounts, and to 0
otherwise. In order to generate small training data, the topic-to-
word distributions were generated according to the sparse topic
model in [23].

At each intermediate point (domain) in the continuum, the
prior topic strength vector is generated by linearly mixingtwo
extreme values ofφc, with a mixing coefficientu between zero

and one:φc = (1−u)φLeft
c +uφ

Right
c where “Left” and “Right”

denote the two extreme choices. The mixing coefficient corre-
sponds to the position in the domain continuum (horizontal axis
of Figure 5) so thatu = 0 at the left end of the continuum and
u = 1 at the right end, andu takes intermediate values between
the two ends.

The first extreme choicefor the topic pseudocount vectors
φLeft

c in each taskc is as follows. In the task of interestc =
1, only the first topic is active (pseudocount 300), all others
have pseudocount 0. In a supplementary taskc > 1, the first
topic is active with pseudocount 150, and additionally a task-
specific topic (topic indexc, same as the task index) is active
with pseudocount 150; all other topics have pseudocount 0. In
this extreme choice, the first topic is very strong (it is active
in all tasks with high pseudocount) and other topics are also
strong (active in one task with pseudocount 150). Thesecond

extreme choicefor pseudocount vectorsφRight
c is as follows.

For each taskc, three randomly picked topics were activated
(their pseudocount was set to 100 each) and other topics were
inactive (pseudocount 0). The overall strength of each topic
then depends on how many tasks picked them; all topics active
in at least one task have total pseudocount at least 100.

In both extreme choicesφLeft
c andφRight

c the active topics
are strongly active in their respective tasks. However, theset of
which topics are active in which tasks differs between the ex-
tremes. In particular, in “Left” the task of interest (TOI) uses
only topic 1 so thatφLeft

TOI = [300 0 0 0 0 0 0 0 0 0] whereas in
“Right” the task of interest uses a random three topics so that for

exampleφRight
TOI = [0 0 100 0 100 0 0 100 0 0]. Then the inter-

polated weight vector for the task of interest contains weakval-

ues, for exampleu = 0.1 yieldsφTOI = (1−u)φLeft
TOI +uφ

Right
TOI =

[270 0 10 0 10 0 0 10 0 0]. The topic strength vectors of other
tasks also get weak values through the interpolation.

We sample the two extreme choices several times; each time
we generate the learning problems for the whole continuum (for
both extreme positions in the continuum, and for each interme-
diate position by interpolating the pseudocount vectors asde-
scribed above).
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