
Extended ASP Tableaux and
Rule Redundancy in Normal Logic Programs

Matti Järvisalo and Emilia Oikarinen

Laboratory for Theoretical Computer Science
P.O. Box 5400, FI-02015 Helsinki University of Technology (TKK), Finland

Abstract. We introduce an extended tableau calculus for answer set program-
ming (ASP). The proof system is based on the ASP tableaux defined in [Geb-
ser&Schaub, ICLP 2006], with an added extension rule. We investigate the power
of Extended ASP Tableaux both theoretically and empirically. We study the rela-
tionship of Extended ASP Tableaux with the Extended Resolution proof system
defined by Tseitin for clause sets, and separate Extended ASP Tableaux from
ASP Tableaux by giving a polynomial length proof of a family of normal logic
programs{Πn} for which ASP Tableaux has exponential length minimal proofs
with respect ton. Additionally, Extended ASP Tableaux imply interesting insight
into the effect of program simplification on the length of proofs in ASP. Closely
related to Extended ASP Tableaux, we empirically investigate the effect of redun-
dant rules on the efficiency of ASP solving.

1 Introduction

Answer set programming (ASP) is a declarative problem solving paradigm which has
proven successful for a variety of knowledge representation and reasoning tasks. The
success has been brought forth by efficient solver implementations bringing the theo-
retical underpinnings into practice. However, there has been an evident lack of theo-
retical studies into the reasons for the efficiency of current ASP solvers (e.g. [1–4]).
Solver implementations and their inference techniques can be seen as determinisations
of the underlying rule-basedproof systems. Due to this strong interplay between theory
and practice, the study of the relative efficiency of these proof systems reveals impor-
tant new viewpoints and explanations for the successes and failures of particular solver
techniques. While such proof complexity [5] studies are frequent in the closely related
field of propositional satisfiability (SAT), where typical solvers have been shown to be
based on refinements of the well-known Resolution proof system [6], this has not been
the case for ASP. Especially, the inference techniques applied in current state-of-the-art
ASP solvers have been characterised by a family of tableau-style ASP proof systems
for normal logic programs only very recently [7], with some related preliminary proof
complexity theoretic investigations [8]. The close relation of ASP and SAT and the re-
spective theoretical underpinning of practical solver techniques has also received little
attention up until recently [9, 10], although the fields could gain much by further studies
on these connections.

This paper continues in part bridging the gap between ASP and SAT. Influenced
by Tseitin’sExtended Resolutionproof system [11] for clausal formulas, we introduce

Extended ASP Tableaux, an extended tableau calculus based on the proof system in [7].
The motivations for Extended ASP Tableaux are many-fold. Theoretically, Extended
Resolution has proven to be among the most powerful known proof systems, equivalent
to, e.g., extended Frege systems; no exponential lower bounds for the lengths of proofs
are known for Extended Resolution. We study the power of Extended ASP Tableaux,
showing a tight correspondence with Extended Resolution.

The contributions of this paper are not only of theoretical nature. Extended ASP
Tableaux is in fact based onadding structureinto programs by introducing additional
redundant rules. On the practical level, structure of problem instances has an important
role in both ASP and SAT solving. Typically, it is widely believed that redundancy
can and should be removed for practical efficiency. However, the power of Extended
ASP Tableaux reveals that this is not generally the case, and such redundancy removing
simplificationmechanism can drastically hinder efficiency. In addition, we contribute
by studying the effect of redundancy on the efficiency of a variety of ASP solvers.
The results show that the role of redundancy in programs is not as simple as typically
believed, and controlled addition of redundancy may in fact prove to be relevant in
further strengthening the robustness of current solver techniques.

The paper is organised as follows. After preliminaries on ASP and SAT (Sect. 2),
the relationship of Resolution and ASP Tableaux proof systems and concepts related
to the complexity of proofs are discussed (Sect. 3). By introducing the Extended ASP
Tableaux proof system (Sect. 4), proof complexity and simplification are then studied
w.r.t. Extended ASP Tableaux (Sect. 5). Experimental results related to Extended ASP
Tableaux and redundant rules in normal logic programs are presented in Sect. 6.

2 Preliminaries

As preliminaries we review basic concepts related to answer set programming (ASP) in
the context of normal logic programs, propositional satisfiability (SAT), and translations
between ASP and SAT.

2.1 Normal Logic Programs and Stable Models

We considernormal logic programs(NLPs) in thepropositionalcase. The symbol “∼”
denotesdefault negation. A default literalis an atom,a, or its default negation,∼a. We
define shorthandsL+ = {a | a ∈ L} andL− = {a | ∼a ∈ L} for a set of default
literalsL, and∼A = {∼a | a ∈ A} for a set of atomsA. A programΠ over the set of
propositional atomsatoms(Π) consists of a finite set of rulesr of the form

h← a1, . . . , an,∼b1, . . . ,∼bm, (1)

whereh ∈ atoms(Π) ∪ {⊥} and ai, bj ∈ atoms(Π). A rule consists of ahead,
head(r) = h, and abody, body(r) = {a1, . . . , an,∼b1, . . . ,∼bm}. This allows the
shorthandhead(r)← body(r)+ ∪∼body(r)− for (1). A ruler is afact if |body(r)| =
0. We definehead(Π) =

⋃
r∈Π{head(r)} andbody(Π) =

⋃
r∈Π{body(r)}. The set

of default literals of a programΠ is dlits(Π) = {a,∼a | a ∈ atoms(Π)}.

In ASP, we are interested instable models[12] (or answer sets) of a programΠ. An
interpretationM ⊆ atoms(Π) defines which atoms ofΠ are true (a ∈ M) and which
are false (a 6∈ M). An interpretationM ⊆ atoms(Π) is a (classical) modelof Π if
and only ifbody(r)+ ⊆M andbody(r)− ∩M = ∅ imply head(r) ∈M for each rule
r ∈ Π. A modelM is a stable model of a programΠ if and only if there is no model
M ′ ⊂M for ΠM , where

ΠM = {head(r)← body(r)+ | r ∈ Π and M ∩ body(r)− = ∅}
is called theGelfond-Lifschitz reductof Π with respect toM . We say that a program
Π is satisfiableif it has a stable model, andunsatisfiableotherwise.

Given a, b ∈ atoms(Π), we say thatb depends directlyon a, denoteda ≤1 b,
if and only if there is a ruler ∈ Π such thatb = head(r) and a ∈ body(r)+.
The positive dependency graphof Π, denoted byDep+(Π), is a directed graph with
atoms(Π) and {〈b, a〉 | a ≤1 b} as the sets of vertices and edges, respectively. A
NLP is tight if and only if its positive dependency graph is acyclic. We denote by
loop(Π) the set of all loops inDep+(Π). Furthermore, theexternal bodiesof a set
of atomsA in Π is eb(A) = {body(r) | r ∈ Π, head(r) ∈ A, body(r)+ ∩A = ∅}. A
setU ⊆ atoms(Π) is unfoundedif eb(U) = ∅. We denote thegreatest unfounded set,
i.e., the union of all unfounded sets, ofΠ by gus(Π).

2.2 Propositional Satisfiability

Let X be a set of Boolean variables. Associated with every variablex ∈ X there are
two literals, the positive literal, denoted byx, and the negative literal, denoted byx̄. A
clauseis a disjunction of distinct literals. We adopt the standard convention of viewing
a clause as a finite set of literals and a CNF formula as a finite set of clauses. The sets of
variables and literals appearing in a set of clausesC are denoted byvars(C) andlits(C).

A truth assignmentτ associates a truth valueτ(x) ∈ {false, true} with each vari-
ablex ∈ X. A truth assignmentsatisfiesa set of clauses if it satisfies every clause in
it. A clause is satisfied if it contains at least one satisfied literal, where a literalx (re-
spectively,x̄) is satisfied ifτ(x) = true (respectively,τ(x) = false). A clause set is
satisfiableif there is a truth assignment that satisfies it, andunsatisfiableotherwise.

2.3 SAT as ASP

There is a natural linear-size translation from sets of clauses to normal logic programs
so that the stable models of the encoding represent the satisfying truth assignments of
the original clause set [13]faithfully, i.e., there is a bijective correspondence between
the satisfying truth assignments and stable models of the translation. Given a clause set
C, this translationnlp(C) introduces a new atomc for each clauseC ∈ C, and atomsax

andâx for each variablex ∈ vars(C). The resulting NLP is then

nlp(C) :=
⋃

x∈vars(C)
{{ax ← ∼âx} ∪ {âx ← ∼ax}} ∪

⋃

C∈C
{⊥ ← ∼c} ∪ (2)

⋃

C∈C
{{c← ax | x ∈ lits(C)} ∪ {c← âx | x̄ ∈ lits(C)}}. (3)

The rules (2) encode the facts that (i) each variable is assigned an unambiguous truth
value and that (ii) each clause inC must be satisfied, while (3) encodes that each clause
is satisfied if at least one of its literals is satisfied.

2.4 ASP as SAT

Contrarily to the case of translating SAT into ASP, there is no modular1 and faith-
ful translation from normal logic programs to propositional logic [13]. Moreover, any
faithful translation is potentially of exponential size when additional variables are not
allowed [14]2. However, if a programΠ satisfies the syntactictightnesscondition, the
answer sets ofΠ can be characterised faithfully by the classical models of a linear-size
propositional formula calledClark’s completion[19, 20] ofΠ, defined using a Boolean
variablexa for eacha ∈ atoms(Π) as

C(Π) =
∧

h∈atoms(Π)

(
xh ⇔

∨

B∈body(h)

(∧

b∈B+

xb ∧
∧

b∈B−
x̄b

))
, (4)

wherebody(h) = {body(r) | head(r) = h}. For simplicity, we have the special cases
that (i) if xh is⊥ then the equivalence becomes the negation of the right hand side, and
(ii) if h ∈ facts(Π) then the equivalence reduces to the clause{xh}.

As in this paper, often one needs to consider the clausal representation of Boolean
formulas. For a linear-size clausal translation ofC(Π), introduce additionally a new
Boolean variablexB for eachB ∈ body(Π) \ {∅}. Using these new variables, we
arrive at theclausal completion

comp(Π) :=
⋃

B∈body(Π)\{∅}

{
xB ≡

∧

b∈B+

xb ∧
∧

b∈B−
x̄b

}
∪

⋃

B∈body(⊥)

{x̄B} (5)

∪
⋃

h∈head(Π)\{⊥}
h 6∈facts(Π)

{
xh ≡

∨

B∈body(h)

xB

}
∪

⋃

h∈facts(Π)

{xh} (6)

∪
⋃

a∈atoms(Π)\head(Π)

{x̄a}, (7)

where the shorthandsx ≡ ∧
xi∈X xi andx ≡ ∨

xi∈X xi stand for the sets of clauses
{x̄1, . . . x̄n, x} ∪⋃

xi∈X{xi, x̄} and{x1, . . . xn, x̄} ∪⋃
xi∈X{x̄i, x}, respectively. For

an example of a logic program’s clausal completion, see Fig. 1(left).

1 Intuitively, for a modular translation, adding an atom to a program leads to a local change not
involving the translation of the rest of the program [13].

2 However, polynomial size propositional encodings using extra variables are known, e.g. [15,
16]. Also, ASP as Propositional Satisfiability approaches for solving normal logic programs
have been developed, e.g., ASSAT [17] (based on incrementally adding loop formulas) and
ASP-SAT [18] (based on generating a classical model and testing its minimality).

3 Proof Systems for ASP and SAT

In this section we review concepts related to proof complexity (see, e.g., [5]) in the
context of this paper, and discuss the relationship of Resolution and ASP Tableaux [7].

3.1 Propositional Proof Systems and Complexity

Formally, a(propositional) proof systemis a polynomial-time computable predicateS
such that a propositional expressionE is unsatisfiable if and only if there is aproof p
for which S(E, p). A proof system is thus a polynomial-time procedure for checking
the correctness of proofs in a certain format. While proof checking is efficient, finding
short proofs may be difficult, or, generally, impossible since short proofs may not exist
for a too weak proof system. As a measure of hardness of proving unsatisfiability of an
expressionE in a proof systemS, the(proof) complexityof E in S is thelengthof the
shortest proof ofE in S. For a family{En} of unsatisfiable expressions over increasing
number of variables, the (asymptotic) complexity of{En} is measured with respect to
the sizes ofEn.

For two proof systemsS,S′, we say thatS′ (polynomially) simulatesS if for all
families{En} it holds thatCS′(En) ≤ p(CS(En)) for all En, wherep is a polynomial,
andCS andCS′ are the complexities inS andS′, respectively. IfS simulatesS′ and
vice versa, thenS andS′ arepolynomially equivalent. If there is a family{En} for
which S′ does not polynomially simulateS, we say that{En} separatesS from S′,
andS is strongerthanS′.

3.2 Resolution

The well-known Resolution proof system (RES) for clause sets is based on theresolu-
tion rule. Let C, D be clauses, andx a Boolean variable. The resolution rule states that
we candirectly deriveC ∪D from {x} ∪ C and{x̄} ∪D by resolving onx.

A RES derivationof a clauseC from a clause setC is a sequence of clausesπ =
(C1, C2, . . . , Cn), whereCn = C and eachCi, where1 ≤ i < n, is either (i) a clause
in C (an initial clause), or (ii) derived with the resolution rule from two clausesCj , Ck

wherej, k < i (aderived clause). Thelengthof π is n, the number of clauses occurring
in it. Any derivation of the empty clause∅ from C is aRES proof of C.

Any RES proofπ = (C1, C2, . . . , Cn) can be presented as a directed acyclic graph,
in which the leafs are initial clauses, inner nodes are derived clauses, and the root is the
empty clause. There are edges fromCi andCj to Ck iff Ck has been directly derived
from Ci andCj using the resolution rule. ManyResolution refinements, in which the
structure of the graph representation is restricted, have been proposed and studied. Of
particular interest here isTree-like Resolution(T-RES), in which it is required that
proofs are represented by trees. This implies that a derived clause, if subsequently used
multiple times in the proof, must be derived anew each time from initial clauses.

T-RES is aproperRES refinement, i.e.,RES is stronger thanT-RES [21]. On the
other hand, it is well known that the DPLL method [22], the basis of most state-of-
the-art SAT solvers, is polynomially equivalent toT-RES. However, conflict-learning
DPLL is stronger thanT-RES, and polynomially equivalent toRES under a slight gen-
eralisation [6].

3.3 ASP Tableaux

Although ASP solvers for normal logic programs have been available for many years,
the deduction rules applied in such solvers have only recently been formally defined as
a proof system, which we will here refer to as ASP Tableaux [7] (ASP-T).

An ASP tableau for a NLPΠ is a binary tree of the following structure. Theroot
of the tableau consists of the rulesΠ and theentryF⊥ for capturing that⊥ is always
false. The non-root nodes of the tableau are singleentriesof the formTa or Fa, where
a ∈ atoms(Π) ∪ body(Π). As typical for tableau methods, entries are generated by
extendinga branch(a path from the root to a leaf node) by applying one of the rules in
Fig.2; if the prerequisites of a rule hold in a branch, the branch can be extended with the
entries specified by the rule. For convenience, we have the shorthandtl (f l) for literals,
defined asTl if l is positive (negative), andFl if l is negative (positive).

A branch isclosed underthededuction rules(b)-(i) if the branch cannot be extended
using the rules. A branch iscontradictory if there are entriesTa,Fa for somea. A
branch iscompleteif it is contradictory or if there is the entryTa or Fa for each
a ∈ atoms(Π)∪body(Π) and the branch is closed under the deduction rules. A tableau
is complete if all its branches are complete. A complete tableau fromΠ in which all
branches are contradictory is anASP-T proof of the unsatisfiability ofΠ. Thelengthof
anASP-T proof is the number of entries in it. In Fig. 1 anASP-T proof is presented for
the programΠ given on the left of the proof, with the rule applied for deducing each
entry given in parenthesis.

Π = {a← ∼a, b. b← c. c← ∼b}
comp(Π) = {{x̄{∼a,b}, x̄a}, {x̄{∼a,b}, xb},

{x{∼a,b}, xa, x̄b}, {x̄{c}, xc},
{x{c}, x̄c}, {x̄{∼b}, x̄b},
{x{∼b}, xb}, {x̄a, x{∼a,b}},
{xa, x̄{∼a,b}}, {x̄b, x{c}},
{xb, x̄{c}}, {x̄c, x{∼b}}, {xc, x̄{∼b}}}

Ta Fa

F{∼a, b}
Fb
T{∼b}
Tc
T{c}
Tb
×

(e)
(c)
(b)
(d)
(b)
(d)

T{∼a, b} (i§)
Fa (g)
×

c← ∼b
F⊥

a← ∼a, b
b← c

Fig. 1. A logic programΠ, its clausal completioncomp(Π), and anASP-T proof forΠ.

Any branchB describes apartial assignmentA onatoms(Π) in a natural way, i.e.,
if there is an entryTa (Fa, respectively) inB for a ∈ atoms(Π), then(a, true) ∈ A
((a, false) ∈ A, respectively).ASP-T is a sound and complete proof system for nor-
mal logic programs [7], i.e., there is a complete non-contradictory ASP tableau from
Π if and only if Π is satisfiable. Thus the assignmentA described by a complete non-
contradictory branch gives a stable modelM = {a ∈ atoms(Π) | (a, true) ∈ A}. As
argumented in [7], current ASP solver implementations are tightly related toASP-T,
with the intuition that the cut rule is determinised with decision heuristics, while the
deduction rules describe the propagation mechanism in ASP solvers. For instance,
thenoMore++ system [2] is a determinisation of the rules (a)-(g),(h§),(h†),(i§), while
smodels [1] applies the same rules with the cut rule restricted toatoms(Π).

Tφ Fφ (\)

(a) Cut

h← l1, . . . , ln
tl1, . . . , tln

T{l1, . . . , ln}
(b) Forward True Body

F{l1, . . . , li, . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li
(c) Backward False Body

h← l1, . . . , ln
T{l1, . . . , ln}

Th
(d) Forward True Atom

h← l1, . . . , ln
Fh

F{l1, . . . , ln}
(e) Backward False Atom

h← l1, . . . , li, . . . , ln
f li

F{l1, . . . , li, . . . , ln}
(f) Forward False Body

T{l1, . . . , li, . . . , ln}
tli

(g) Backward True Body

FB1, . . . , FBm

Fh
([)

(h)

Th
FB1, . . . , FBi−1, FBi+1, . . . , FBm

TBi
(])

(i)

(\): φ ∈ atoms(Π) ∪ body(Π)
([): § (Forward False Atom) or† (Well-Founded Negation) or‡ (Forward Loop)
(]): § (Backward True Atom) or† (Well-Founded Justification) or‡ (Backward Loop)
(§): body(h) = {B1, . . . , Bm}
(†): {B1, . . . , Bm} ⊆ body(Π) andh ∈ gus({r ∈ Π | body(r) 6∈ {B1, . . . Bm}})
(‡): h ∈ L, L ∈ loop(Π), eb(L) = {B1, . . . , Bm}

Fig. 2. Rules in ASP Tableaux

Interestingly,ASP-T andT-RES are polynomially equivalent under the translations
comp andnlp. Although the similarity of DPLL’s unit propagation and propagation in
ASP solvers is discussed in [9, 10], here we want to stress the direct connection between
ASP-T andT-RES.

Theorem 1. Considering tight programs,T-RES under the translationcomp can poly-
nomially simulateASP-T.

The intuitive idea of the proof of Theorem 1 is the following. Consider again the tight
NLP Π and theASP-T proof T in Fig. 1. The completioncomp(Π) is also shown
in Fig. 1. We transformT into a binarycut treeT ′ where every entry generated by a
deduction rule inT is replaced by an application of the cut rule on the corresponding
entry. See Fig. 3 (left) for the cut tree corresponding to theASP-T proof in Fig. 1. Now
there is aT-RES proof of comp(Π) such that for any prefixp of an arbitrary branchB
in T ′ there is a clauseC ∈ π contradictory to the partial assignment inp, i.e., there is
the entryFa (Ta) in p for each corresponding positive literalxa (negative literal̄xa)
in C. Furthermore, each suchC has a Tree-like Resolution derivation fromcomp(Π)
of polynomial length w.r.t. the postfix ofB starting directly afterp. When reaching the
root ofT ′, we must have derived∅ since it is contradictory with the empty assignment.
TheT-RES proof resulting from the cut tree in Fig. 3 (left) is shown in Fig. 3 (right).

The reverse direction, as stated by Theorem 2, follows from a similar argument.

Theorem 2. Considering clause sets,ASP-T under the translationnlp can polynomi-
ally simulateT-RES.

Ta Fa

T{∼b}

F{∼a, b}

Tb

F{∼b}

Fb

FcTc

F{c}T{c}

T{∼a, b}

F{∼a, b} T{∼a, b}

{xa}

{xb} {x{∼a,b}, xa, x̄b}

{xb, x̄{∼b}}

{x̄c, xb}

{x̄c, x{c}}

{xb, x{∼b}}

{xc, x̄{∼b}}

{x̄{c}, xb}

{x̄{∼a,b}, xa}

∅

{x̄a}

{x̄{∼a,b}, x̄a} {x{∼a,b}, xa}{x{∼a,b}, x̄a}

Fig. 3. Left: cut tree based on theASP-T proof in Fig. 1. Right: resultingT-RES proof.

4 Extended ASP Tableaux

We will now introduce anextension ruleto ASP-T, which results inExtended ASP
Tableaux(E-ASP-T), an extended tableau proof system for ASP. The idea is that one
can define names for conjunctions of default literals, i.e., given twol1, l2 ∈ dlits(Π),
the (elementary) extension rule allows adding the rulep ← l1, l2 to Π, wherep 6∈
atoms(Π) ∪ {⊥}. It is essential thatp is a new atom for preserving satisfiability.

When convenient, we will apply a generalisation of the elementary extension. By
allowing one to introduce multiple bodies forp, the general extension rule3 is

Π := Π ∪
⋃

i

{p← li,1, . . . , li,ki | lj,k ∈ dlits(Π), p 6∈ atoms(Π) ∪ {⊥}}.

An E-ASP-T proof of programΠ is anASP-T proof T of Π ∪ E, whereE is a set of
extending rulesgenerated with the extension rule. The length of anE-ASP-T proof is
the length ofT plus the number of rules inE.

Sincehead(r) 6∈ atoms(Π)∪ {⊥} for all extending rulesr ∈ E, the extension rule
does not affect the existence of stable models, i.e., for each stable modelM of Π, there
is a uniqueN ⊆ atoms(E) \ atoms(Π) such thatM ∪N is a stable model ofΠ ∪ E.
ThusE-ASP-T is a sound and complete proof system.

5 Proof Complexity

In this section we study proof complexity theoretic issues related toE-ASP-T from
several viewpoints: we (i) consider the relationship betweenE-ASP-T and Tseitin’s

3 Notice equivalent constructs can be introduced with the elementary rule. For example, using
additional new atoms, bodies with more than two literals can be decomposed with balanced
parentheses.

Extended Resolution, (ii) give an explicit separation ofE-ASP-T from ASP-T, and (iii)
relate the extension rule to the effect of program simplification on proof lengths.

5.1 Relationship with Extended Resolution

E-ASP-T is motivated by Extended Resolution (E-RES), a proof system by Tseitin [11].
E-RES consists of the resolution rule and an extension rule which allows one to intro-
duce equivalences of the formx ≡ l1 ∧ l2, wherex is a new variable andl1, l2 literals
in the clause set. In other words, given a clause setC, one application of the exten-
sion rule adds the clauses{x̄, l1}, {x̄, l2}, and{x, l̄1, l̄2} to C. E-RES is known to be
more powerful thanRES; in fact,E-RES is polynomially equivalent with, e.g., extended
Frege systems, and no superpolynomial proof complexity lower bounds are known for
E-RES. We will now relateE-ASP-T with E-RES, and show that they are polynomially
equivalent under the translationscomp andnlp.

Theorem 3. E-RES and E-ASP-T are polynomially equivalent proof systems in the
sense that

(i) considering tight normal logic programs,E-RES under the translationcomp poly-
nomially simulatesE-ASP-T, and

(ii) considering clause sets,E-ASP-T under the translationnlp polynomially simulates
E-RES.

Proof. (i): Let T be anE-ASP-T proof for a tight NLPΠ, i.e.,T is anASP-T proof
of Π ∪ E, whereE is the extension ofΠ. We use the shorthandxl for the variable
corresponding to default literall in comp(Π), i.e.,xl = xa (xl = x̄a) if l = a (l = ∼a)
for a ∈ atoms(Π). By Theorem 1 there is a polynomialT-RES proof for comp(Π ∪
E). Sincehead(E) ∩ (atoms(Π) ∪ {⊥}) = ∅, the clauses introduced forhead(E) in
comp(Π ∪ E) can be seen as extensions inE-RES, i.e., for eachh ← l1, l2 ∈ E there
are the clausesxh ≡ xl1 ∧ xl2 in comp(Π ∪ E). Thus there is an extensionE′ for
comp(Π) such that theT-RES proof ofcomp(Π ∪E) is anE-RES proof ofcomp(Π).

(ii): Let π = (C1, . . . , Cn = ∅) be anE-RES proof of a set of clausesC. LetE be the
set of clauses generated with the extension rule inπ. We introduce shorthands for atoms
corresponding to literals, i.e.,al = ax (al = ∼ax) if l = x (l = x̄) for x ∈ atoms(C).
We add the following rules tonlp(C) with the ASP extension rule:ax ← al1 , al2 for
each extensionx ≡ l1 ∧ l2; c ← al for eachl ∈ C in π such thatC 6∈ C; andp1 ← c1

andpi ← ci, pi−1 for eachCi ∈ π and2 ≤ i < n.
An E-ASP-T proof for nlp(C) is generated as follows. Fromi = 1 to n − 1 apply

the cut rule onpi in the branch withTpj for all j < i. We notice that each branch with
Fpi andTpj for all j < i closes without further application of the cut. We can deduce
Fci from Fpi. Now either (i)Ci ∈ C, (ii) Ci is a derived clause, or (iii)Ci ∈ E. For
instance, ifCi = {x̄, l1} from the extensionx ≡ l1 ∧ l2, then fromci ← ∼ax and
ci ← al1 we deduceTax andFal1 . The branch closes asT{al1 , al2} andTal1 are
deduced fromax ← al1 , al2 . Other cases are similar.

Now, consider the branch withTpi for all i = 1 . . . n− 1. The empty clauseCn is
obtained by resolvingCj = {x} andCk = {x̄}, j, k < n. Thus we can deduceTcj

andTck from pj ← cj , pj−1 andpk ← ck, pk−1, respectively, and furthermore,Tax

andFax from cj ← l andck ← l̄ (l = x or l = x̄), closing the branch. The obtained
contradictory ASP tableau is of linear length w.r.t.π. ut

5.2 Pigeonhole Principle Separates Extended ASP Tableaux from ASP Tableaux

As an example, we now consider a family of normal logic programs{Πn} which sep-
aratesE-ASP-T from ASP-T, i.e., we give an explicit polynomial length proof ofΠn

for which ASP-T has exponential length minimal proofs with respect ton. We will
consider this family also in the experiments of this paper.

The program family{PHPn+1
n } in question is the following typical encoding of the

pigeon-hole principleas a normal logic program:

PHPn+1
n :=

⋃

1≤i≤n+1

{⊥ ← ∼pi,1, . . . ,∼pi,n} ∪
⋃

1≤i<j≤n+1
1≤k≤n

{⊥ ← pi,k, pj,k} (8)

∪
⋃

1≤i≤n+1
1≤j≤n

{{pi,j ← ∼p′i,j} ∪ {p′i,j ← ∼pi,j}} (9)

In the above,pi,j has the interpretation that pigeoni sits in holej. The rules in (8)
require that (i) each pigeon must sit in some hole and that (ii) no two pigeons can sit in
the same hole. The rules in (9) enforce that for each pigeon and each hole, the pigeon
either sits in the hole or does not sit in the hole. EachPHPn+1

n is unsatisfiable since
there is no bijective mapping from an(n + 1)-element set to ann-element set.

Theorem 4. The complexity of{PHPn+1
n } with respect ton is polynomial inE-ASP-T

and exponential inASP-T

Proof. (i): Following Cook’s extension [23] for achieving a polynomial-lengthE-RES
proof of a clausal encoding of the pigeonhole principle4, we define the polynomial size
program extension

EXTl :=
⋃

1≤i≤l
1≤j≤l−1

{{el
i,j ← el+1

i,j } ∪ {el
i,j ← el+1

i,l , el+1
l+1,j}} (10)

for 1 ≤ l ≤ n, where eachen+1
i,j is interpreted aspi,j .

Although not explicitly given by Cook, the extension given in [23] does not seem
to yield a polynomial lengthtree-likeproof of the clausal representation, so Theorem 3
does not directly imply a polynomial lengthASP-T proof forPHPn+1

n ∪⋃
1≤l≤n EXTl.

However, given the polynomial lengthE-RES proof5 π = (C1, C2, . . . , Cn = ∅) of
the clausal representation, we can follow the general strategy given in the proof of
Theorem 3 for defining an additional extensionE(π) which allows a polynomial length
ASP-T proof for the resulting program

EPHPn+1
n := PHPn+1

n ∪
⋃

1≤l≤n

EXTl ∪ E(π).

4 The particular encoding is
S

1≤i≤n+1{
Wn

j=1 xi,j} ∪
S

1≤i<i′≤n+1,1≤j≤n{¬xi,j ∨ ¬xi′,j}.
5 The intuitive idea is that the extension allows for reducingPHPn+1

n to PHPn
n−1 with a poly-

nomial number of Resolution steps. Due to space constraints we do not giveπ explicitly here.

(ii): comp(PHPn+1
n) consists of the clausal encoding of the pigeon-hole principle

and additional clauses (tautologies) for rules of the forma ← ∼a′, a′ ← ∼a. Assume
now that there is a polynomialASP-T proof for PHPn+1

n . By Theorem 1 there is a
polynomialT-RES of comp(PHPn+1

n). It is easy to see that the additional tautologies
in comp(PHPn+1

n) do not help in the resolution proof. Thus there is a polynomial
lengthT-RES proof for the clausal pigeonhole encoding. However, this contradicts the
fact that the complexity of the clausal pigeonhole principle is exponential w.r.t.n for
(Tree-like) Resolution [24]. ut

In fact, Theorem 4 is also witnessed bynon-tight programs. Consider the family
{PHPn+1

n ∪ {pi,j ← pi,j | 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n}}, which is non-tight with
the additional self-loops{pi,j ← pi,j}, but preserves (un)satisfiability ofPHPm

n for
all n, m. Since the self-loops do not contribute to the proofs ofPHPn+1

n , ASP-T still
has exponential length minimal proofs for these programs, while theE-ASP-T proof
presented in the proof of Theorem 4 is still valid.

5.3 Program Simplification and Complexity

We will now give an interesting corollary of Theorem 4, addressing the effect of pro-
gram simplification on the length of proofs.

Tightly related to the development of efficient solver implementations for resolv-
ing ASP programs arising from practical applications is the development of techniques
for simplifyingprograms. Efficient program simplification throughlocal transformation
rulesbecomes especially important as practically relevant programs are often produced
automatically, because often a high number of redundant constraints is produced in the
process. While various satisfiability-preserving local transformation rules for simplify-
ing logic programs have been introduced (see, e.g., [25]), the effect of applying such
transformations on the lengths of proofs has not received attention.

Taking a first step into this direction, we now show that even simple transformation
rules may have a drastic negative effect on proof complexity. Consider the local trans-
formation rulered(Π) := Π \ {r ∈ Π | head(r) 6∈ body(Π)}. The rules removed
by red are redundant with respect to satisfiability of the program in the sense thatred
preservesvisible equivalence[16]. The visible equivalence relation takes the interfaces
of programs into account:atoms(Π) is partitioned intov(Π) andh(Π) determining
the visible and thehiddenatoms inΠ, respectively. ProgramsΠ1 andΠ2 are visibly
equivalent, denoted byΠ1 ≡v Π2, if and only ifv(Π1) = v(Π2) and there is a bijective
correspondence between the stable models ofΠ1 andΠ2 mapping eacha ∈ v(Π1) onto
itself. Definingv(Π) = v(red(Π)) = atoms(red(Π)), one can see thatred(Π) ≡v Π.

A polynomial time, satisfiability-preserving simplification algorithmred∗(Π) is ob-
tained by closing programΠ underred. However, notice that, in the worst case when we
definev(EPHPn+1

n) = v(PHPn+1
n) = atoms(PHPn+1

n), we havered∗(EPHPn+1
n) =

PHPn+1
n . Thus, by Theorem 4,red∗ transforms a program family having polynomial

complexity in ASP Tableaux into one with exponential complexity with respect ton.

6 Experiments

We evaluate empirically how well current state-of-the-art ASP solvers can make use
of the additional structure introduced to programs using the extension rule. We run
the solverssmodels [1] (version 2.32, a widely used lookahead solver),clasp [4] (rc4,
with many techniques—including conflict learning—adopted from DPLL-based SAT
solvers), andcmodels [18] (version 3.66, a SAT-based ASP solver running the conflict-
learning SAT solver zChaff version 2004.11.15 as the back-end). The experiments are
run on standard PCs with 2-GHz AMD 3200+ processors under Linux.

First, we investigate whether ASP solvers are able to benefit from the extension
in EPHPn+1

n . We compare the number of decisions and running times of each of the
solvers onPHPn+1

n , CPHPn+1
n := PHPn+1

n ∪ ⋃
1≤l≤n EXTl, andEPHPn+1

n . By
Theorem 4 the solvers should in theory be able to exhibit polynomially scaling number
of decisions forEPHPn+1

n . In fact with conflict-learning this might also be possible
for CPHPn+1

n due to the tight correspondence with conflict-learning SAT solvers and
Resolution. The results forn = 10 . . . 12 are shown in Table 1. While the number
of decisions for the conflict-learningclasp andcmodels is somewhat reduced by the
extensions, the solvers do not seem to be able to reproduce the polynomial size proofs,
and we do not observe a dramatic change in the running times. With a timeout of 2
hours,smodels gives no answer forn = 12 on PHPn+1

n or CPHPn+1
n . However, for

EPHPn+1
n smodels returns without any branching, which should be due to the fact that

smodels’s complete lookahead notices that by branching on the critical extension atoms
(as in part (ii) of the proof of Theorem 4) thefalse branch closes immediately. With
this in mind, an interesting further study out of the scope of this paper would be the
possibilities of integrating conflict learning techniques with (partial) lookahead.

In the second experiment, we study the effect of having a modest number of redun-
dant rules on the behaviour of ASP solvers. For this we apply the following procedure
ADDRANDOMREDUNDANCY(Π, n, p):

1. For i = 1 to b p
100

nc:
1a. Randomly selectl1, l2 ∈ dlits(Π) such thatl1 6= l2.
1b. Π := Π ∪ {ri ← l1, l2}, whereri 6∈ atoms(Π)

2. Return Π

Given a programΠ, the procedure iteratively adds rules of the formri ← l1, l2 to Π,
wherel1, l2 are random default literals currently in the program andri is a new atom.
The number of introduced rules isp% of the integern.

Table 1.Results onPHPn+1
n , CPHPn+1

n , andEPHPn+1
n with timeout (-) of 2 hours.

Time (s) Decisions
Solver n PHPn+1

n CPHPn+1
n EPHPn+1

n PHPn+1
n CPHPn+1

n EPHPn+1
n

smodels 10 32.28 120.24 9.28 158878 141177 0
smodels 11 471.54 1828.40 23.07 1885949 1619703 0
smodels 12 - - 52.20 - - 0

clasp 10 8.60 7.78 19.26 197982 114840 38842
clasp 11 72.78 62.74 97.23 1072358 574874 116534
clasp 12 900.33 1046.86 881.90 7787578 4964309 646278

cmodels 10 1.91 2.23 27.42 9455 9916 20615
cmodels 11 7.99 10.28 70.39 23058 26283 38648
cmodels 12 48.36 56.70 270.63 87864 98994 97745

In Fig. 4, the median, minimum, and maximum number of decisions and running
times for the solvers onADDRANDOMREDUNDANCY(PHPn+1

n , n, p) are shown for
p = 50, 100 . . . , 450 over 15 trials at each data point. The mean number of decisions
(left) and running times (right) on the originalPHPn+1

n are presented by the horizontal
lines. Notice that the number of added atoms and rules is linear ton, which is negligible
to the number of atoms (in the order ofn2) and rules (n3) in PHPn+1

n . For similar
running times, the number of holesn is 10 for clasp andsmodels and11 for cmodels.
The results are very interesting: each of the solvers seems to react individually to the
added redundancy. Forcmodels (b), only a few added redundant rules are enough to
worsen its behaviour. Forsmodels (c), the number of decisions decreases linearly with
the number of added rules. However, the running times grow fast at the same time,
most probably due tosmodels’s lookahead. We also ran the experiment forsmodels (d)
without using lookahead. This had a visible effect on the number of decisions, showing
a benefit from the added rules compared tosmodels onPHPn+1

n .
The most interesting effect is seen forclasp; clasp benefits from the added rules

w.r.t. the number of decision, while the running times stay similar on the average, con-
trarily to the other solvers. In addition to this robustness against redundancy, we believe
that this shows promise for further exploiting redundancy added in a controlled way dur-
ing search; the added rules give new possibilities to branch on definitions which were
not available in the original program. However, for benefiting from redundancy with
running times in mind, optimised lightweight propagation mechanisms are essential.

As a final remark, an interesting observation is that the effect of the transforma-
tion presented in [8], which enablessmodels to branch on the bodies of rules, having
an exponential effect on the proof complexity of a particular program family, can be
equivalently obtained by applying the ASP extension rule. This may in part explain the
effect on adding redundancy on the number of decision made bysmodels.

7 Conclusions

We introduce Extended ASP Tableaux, an extended tableau calculus for normal logic
programs under the stable model semantics. We study the strength of the calculus, show-
ing a tight correspondence with Extended Resolution, which is among the most power-
ful known propositional proof systems. This sheds further light on the relation of ASP
and propositional satisfiability solving and their underlying proof systems, something
which we believe is for the benefit of both of the communities.

Furthermore, this work shows the intricate nature of the interplay of structure and
the hardness of solving ASP instances. We anticipate that controlled use of the exten-
sion rule is possible and will yield performance gains by considering in more detail
the structural properties of programs in particular problem domains. One could also
consider implementing branching on any possible formulainsidea solver. However,
this would require novel heuristics, since choosing the formula to branch on from the
exponentially many alternatives is nontrivial and is not applied in current solvers. We
find this an interesting future direction of research. Another important research direc-
tion set forth by this study is a more in-depth investigation into the effect of program
simplification on the hardness of solving ASP instances.

Acknowledgements.Financial support from Academy of Finland (grant #211025), Helsinki
Graduate School in Computer Science and Engineering, Emil Aaltonen Foundation, the Finnish
Cultural Foundation (EO), the Technological Foundation TES, and the Nokia Foundation (EO) is
gratefully acknowledged.

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 0 100 200 300 400 500

D
ec

is
io

ns

p

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

 0 100 200 300 400 500

T
im

e
(s

ec
on

ds
)

p

(a) clasp decisions (left), time in seconds (right)

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 100 200 300 400 500

D
ec

is
io

ns

p

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 100 200 300 400 500

T
im

e
(s

ec
on

ds
)

p

(b) cmodels decisions (left), time in seconds (right)

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 170000

 0 100 200 300 400 500

D
ec

is
io

ns

p

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 100 200 300 400 500

T
im

e
(s

ec
on

ds
)

p

(c) smodels decisions (left), time in seconds (right)

 1.3e+06

 1.4e+06

 1.5e+06

 1.6e+06

 1.7e+06

 1.8e+06

 0 100 200 300 400 500

D
ec

is
io

ns

p

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 0 100 200 300 400 500

T
im

e
(s

ec
on

ds
)

p

(d) smodels without lookahead: decisions (left), time in seconds (right)

Fig. 4. Effects of adding randomly generated redundant rules toPHPn+1
n

References

1. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence138(1-2) (2002) 181–234

2. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: The nomore++ approach to
answer set solving. In: LPAR. Volume 3835 of LNCS., Springer (2005) 95–109

3. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM TOCL7(3) (2006) 499–562

4. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving.
In: IJCAI. (2007) 286–392

5. Beame, P., Pitassi, T.: Propositional proof complexity: Past, present, and future. Bulletin of
the EATCS65 (1998) 66–89

6. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of
clause learning. Journal of Artificial Intelligence Research22 (2004) 319–351

7. Gebser, M., Schaub, T.: Tableau calculi for answer set programming. In: ICLP. Volume 4079
of LNCS., Springer (2006) 11–25

8. Anger, C., Gebser, M., Janhunen, T., Schaub, T.: What’s a head without a body? In: ECAI,
IOS Press (2006) 769–770

9. Giunchiglia, E., Maratea, M.: On the relation between answer set and SAT procedures (or,
between cmodels and smodels). In: ICLP. Volume 3668 of LNCS., Springer (2005) 37–51

10. Gebser, M., Schaub, T.: Characterizing ASP inferences by unit propagation. In: LaSh ICLP
Workshop. (2006) 41–56

11. Tseitin, G.: On the complexity of derivation in propositional calculus. In: Automation of
Reasoning 2: Classical Papers on Computational Logic. Springer (1983) 466–483

12. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP,
MIT Press (1988) 1070–1080

13. Niemel̈a, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence25(3-4) (1999) 241–273

14. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on
Computational Logic7(2) (2006) 261–268

15. Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Annals
of Mathematics and Artificial Intelligence12(1-2) (1994) 53–87

16. Janhunen, T.: Some (in)translatability results for normal logic programs and propositional
theories. Journal of Applied Non-Classical Logics16(1-2) (2006) 35–86

17. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers.
Artificial Intelligence157(1–2) (2004) 115–137

18. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning36(4) (2006) 345–377

19. Clark, K.: Negation as failure. In: Readings in nonmonotonic reasoning. Morgan Kaufmann
Publishers (1987) 311–325

20. Fages, F.: Consistency of Clark’s completion and existence of stable models. Journal of
Methods of Logic in Computer Science1 (1994) 51–60

21. Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near optimal separation of tree-like and
general resolution. Combinatorica24(4) (2004) 585–603

22. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Commu-
nications of the ACM5(7) (1962) 394–397

23. Cook, S.A.: A short proof of the pigeon hole principle using extended resolution. SIGACT
News8(4) (1976) 28–32

24. Haken, A.: The intractability of resolution. TCS39(2-3) (1985) 297–308
25. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and

strong equivalence. In: LPNMR. Volume 2923 of LNCS., Springer (2004) 87–99

