Extended ASP Tableaux and
Rule Redundancy in Normal Logic Programs

Matti Jarvisalo and Emilia Oikarinen

Laboratory for Theoretical Computer Science
P.O. Box 5400, FI-02015 Helsinki University of Technology (TKK), Finland

Abstract. We introduce an extended tableau calculus for answer set program-
ming (ASP). The proof system is based on the ASP tableaux defined in [Geb-
ser&Schaub, ICLP 2006], with an added extension rule. We investigate the power
of Extended ASP Tableaux both theoretically and empirically. We study the rela-
tionship of Extended ASP Tableaux with the Extended Resolution proof system
defined by Tseitin for clause sets, and separate Extended ASP Tableaux from
ASP Tableaux by giving a polynomial length proof of a family of normal logic
programs{I1,, } for which ASP Tableaux has exponential length minimal proofs
with respect tar. Additionally, Extended ASP Tableaux imply interesting insight
into the effect of program simplification on the length of proofs in ASP. Closely
related to Extended ASP Tableaux, we empirically investigate the effect of redun-
dant rules on the efficiency of ASP solving.

1 Introduction

Answer set programming (ASP) is a declarative problem solving paradigm which has
proven successful for a variety of knowledge representation and reasoning tasks. The
success has been brought forth by efficient solver implementations bringing the theo-
retical underpinnings into practice. However, there has been an evident lack of theo-
retical studies into the reasons for the efficiency of current ASP solvers (e.g. [1-4]).
Solver implementations and their inference techniques can be seen as determinisations
of the underlying rule-basqutoof systemsDue to this strong interplay between theory
and practice, the study of the relative efficiency of these proof systems reveals impor-
tant new viewpoints and explanations for the successes and failures of particular solver
techniques. While such proof complexity [5] studies are frequent in the closely related
field of propositional satisfiability (SAT), where typical solvers have been shown to be
based on refinements of the well-known Resolution proof system [6], this has not been
the case for ASP. Especially, the inference techniques applied in current state-of-the-art
ASP solvers have been characterised by a family of tableau-style ASP proof systems
for normal logic programs only very recently [7], with some related preliminary proof
complexity theoretic investigations [8]. The close relation of ASP and SAT and the re-
spective theoretical underpinning of practical solver techniques has also received little
attention up until recently [9, 10], although the fields could gain much by further studies
on these connections.

This paper continues in part bridging the gap between ASP and SAT. Influenced
by Tseitin’'sExtended Resolutioproof system [11] for clausal formulas, we introduce

Extended ASP Tableauan extended tableau calculus based on the proof system in [7].
The motivations for Extended ASP Tableaux are many-fold. Theoretically, Extended
Resolution has proven to be among the most powerful known proof systems, equivalent
to, e.g., extended Frege systems; no exponential lower bounds for the lengths of proofs
are known for Extended Resolution. We study the power of Extended ASP Tableaux,
showing a tight correspondence with Extended Resolution.

The contributions of this paper are not only of theoretical nature. Extended ASP
Tableaux is in fact based audding structurento programs by introducing additional
redundant rulesOn the practical level, structure of problem instances has an important
role in both ASP and SAT solving. Typically, it is widely believed that redundancy
can and should be removed for practical efficiency. However, the power of Extended
ASP Tableaux reveals that this is not generally the case, and such redundancy removing
simplificationmechanism can drastically hinder efficiency. In addition, we contribute
by studying the effect of redundancy on the efficiency of a variety of ASP solvers.
The results show that the role of redundancy in programs is not as simple as typically
believed, and controlled addition of redundancy may in fact prove to be relevant in
further strengthening the robustness of current solver techniques.

The paper is organised as follows. After preliminaries on ASP and SAT (Sect. 2),
the relationship of Resolution and ASP Tableaux proof systems and concepts related
to the complexity of proofs are discussed (Sect. 3). By introducing the Extended ASP
Tableaux proof system (Sect. 4), proof complexity and simplification are then studied
w.r.t. Extended ASP Tableaux (Sect. 5). Experimental results related to Extended ASP
Tableaux and redundant rules in normal logic programs are presented in Sect. 6.

2 Preliminaries

As preliminaries we review basic concepts related to answer set programming (ASP) in
the context of normal logic programs, propositional satisfiability (SAT), and translations
between ASP and SAT.

2.1 Normal Logic Programs and Stable Models

We considenormal logic programgNLPs) in thepropositionalcase. The symbol”
denoteglefault negationA default literalis an atomg, or its default negationya. We
define shorthandé* = {a | @« € L} andL~ = {a | ~a € L} for a set of default
literals L, and~A = {~a | a € A} for a set of atomsl. A programII over the set of
propositional atomstoms(II) consists of a finite set of rulesof the form

h<—a1,...,an,~b1,...,~bm, (1)

whereh € atoms(IT) U {1} anda;,b; € atoms(II). A rule consists of ehead
head(r) = h, and abody, body(r) = {ai,...,an,~b1,...,~by}. This allows the
shorthanchead(r) < body(r)™ U ~body(r)~ for (1). Aruler is afactif |body(r)| =
0. We definehead(I1) = |J, . ;{head(r)} andbody(IT) = |,z {body(r)}. The set
of default literals of a progran is dlits(II) = {a, ~a | a € atoms(II)}.

In ASP, we are interested stable model§l2] (or answer sefsof a programi/i. An
interpretationM C atoms(I1) defines which atoms dff are true ¢ € M) and which
are false ¢ ¢ M). An interpretationV/ C atoms(II) is a(classical) modebf I7 if
and only ifbody(r)* € M andbody(r)~ N M = @ imply head(r) € M for each rule
r € II. Amodel M is a stable model of a prografha if and only if there is no model
M' c M for ITM , where

IIM = {head(r) < body(r)" | r € IT and M N body(r)~ = 0}

is called theGelfond-Lifschitz reduodf IT with respect tal. We say that a program
11 is satisfiablef it has a stable model, anthsatisfiableotherwise.

Givena,b € atoms(IT), we say that depends directhon a, denoteda <; b,
if and only if there is a rule- € II such thatv = head(r) anda € body(r)*.
The positive dependency gragif I7, denoted byDep*(I7), is a directed graph with
atoms(IT) and {{(b,a) | a <; b} as the sets of vertices and edges, respectively. A
NLP is tight if and only if its positive dependency graph is acyclic. We denote by
loop(IT) the set of all loops iMep (7). Furthermore, thexternal bodieof a set
of atomsA in IT iseb(A) = {body(r) | 7 € II, head(r) € A, body(r)™NA=0}.A
setU C atoms(I7) is unfoundedf eb(U) = (. We denote thgreatest unfounded set
i.e., the union of all unfounded sets, Gfby gus(IT).

2.2 Propositional Satisfiability

Let X be a set of Boolean variables. Associated with every variabde X there are
two literals, the positive literal, denoted hy, and the negative literal, denoted byA
clauseis a disjunction of distinct literals. We adopt the standard convention of viewing
a clause as a finite set of literals and a CNF formula as a finite set of clauses. The sets of
variables and literals appearing in a set of clausase denoted byars(C) andlits(C).

A truth assignment associates a truth valuéz) € {false, true} with each vari-
ablez € X. A truth assignmensatisfiesa set of clauses if it satisfies every clause in
it. A clause is satisfied if it contains at least one satisfied literal, where a litgra-
spectively,z) is satisfied ifr(z) = true (respectivelyr(z) = false). A clause set is
satisfiableif there is a truth assignment that satisfies it, andatisfiableotherwise.

2.3 SAT as ASP

There is a natural linear-size translation from sets of clauses to normal logic programs
so that the stable models of the encoding represent the satisfying truth assignments of
the original clause set [13&ithfully, i.e., there is a bijective correspondence between
the satisfying truth assignments and stable models of the translation. Given a clause set
C, this translatiomlp(C) introduces a new atomfor each claus€' € C, and atomsi,

anda, for each variable: € vars(C). The resulting NLP is then

nlp(C) := U {{ay — ~a,} U{ay «— ~a,}} U U{J_<—~c}U (2)
xz€vars(C) cec

U e an |z €lits(C)} U{c — a, | z € lits(C)}}. (3)

ceC

The rules (2) encode the facts that (i) each variable is assigned an unambiguous truth
value and that (ii) each clause@must be satisfied, while (3) encodes that each clause
is satisfied if at least one of its literals is satisfied.

2.4 ASP as SAT

Contrarily to the case of translating SAT into ASP, there is no modukand faith-

ful translation from normal logic programs to propositional logic [13]. Moreover, any
faithful translation is potentially of exponential size when additional variables are not
allowed [14]2. However, if a prograni] satisfies the syntactitghtnesscondition, the
answer sets off can be characterised faithfully by the classical models of a linear-size
propositional formula calle@lark’s completior{19, 20] of I, defined using a Boolean
variablez, for eacha € atoms(IT) as

cun = N (m@ V (/\%M\%)) 4

hé€&atoms(IT) Bebody(h) \beB+ beB—

wherebody(h) = {body(r) | head(r) = h}. For simplicity, we have the special cases
that (i) if z;, is L then the equivalence becomes the negation of the right hand side, and
(i) if h € facts(IT) then the equivalence reduces to the clajse}.

As in this paper, often one needs to consider the clausal representation of Boolean
formulas. For a linear-size clausal translation(4(fI), introduce additionally a new
Boolean variablerz for eachB € body(II) \ {0}. Using these new variables, we
arrive at theclausal completion

comp(l):= | J {sz AN xb}u U {zs})

Bebody (IT)\{0} beB+ beB— Bebody(L)

U U {xhz \/()xB}U U {zn} (6)

hehead(IT)\{L} Bebody hefacts(IT)
h¢facts(IT)
U U {Za}, (7)

a€atoms(IT)\head(IT)

where the shorthands = /\xiex r; andx = \/x,-,ex xz; stand for the sets of clauses
{Z1, .. Zny 2} UU,, ex{mi, o} and{zy, ... 2, 2} U, cx{Zi, 2}, respectively. For
an example of a logic program’s clausal completion, see Fig. 1(left).

Y Intuitively, for a modular translation, adding an atom to a program leads to a local change not
involving the translation of the rest of the program [13].

2 However, polynomial size propositional encodings using extra variables are known, e.g. [15,
16]. Also, ASP as Propositional Satisfiability approaches for solving normal logic programs
have been developed, e.g., ASSAT [17] (based on incrementally adding loop formulas) and
ASP-SAT [18] (based on generating a classical model and testing its minimality).

3 Proof Systems for ASP and SAT

In this section we review concepts related to proof complexity (see, e.g., [5]) in the
context of this paper, and discuss the relationship of Resolution and ASP Tableaux [7].

3.1 Propositional Proof Systems and Complexity

Formally, a(propositional) proof systens a polynomial-time computable predicaie

such that a propositional expressighis unsatisfiable if and only if there is@oof p

for which S(E, p). A proof system is thus a polynomial-time procedure for checking
the correctness of proofs in a certain format. While proof checking is efficient, finding
short proofs may be difficult, or, generally, impossible since short proofs may not exist
for a too weak proof system. As a measure of hardness of proving unsatisfiability of an
expression® in a proof systent, the (proof) complexityof E in S is thelengthof the
shortest proof oF in S. For a family{ E,, } of unsatisfiable expressions over increasing
number of variables, the (asymptotic) complexity{@, } is measured with respect to

the sizes oft,,.

For two proof systems,S’, we say thatS’ (polynomially) simulates if for all
families{ £, } it holds thatC's. (E,,) < p(Cs(E,,)) for all E,,, wherep is a polynomial,
andCs andCys: are the complexities it and S’, respectively. IfS simulatesS’ and
vice versa, thert and .S’ are polynomially equivalentlf there is a family{E,,} for
which S’ does not polynomially simulat8, we say tha E,,} separatesS from S’,
andS is strongerthans’.

3.2 Resolution

The well-known Resolution proof systerRES) for clause sets is based on tiesolu-
tion rule. Let C, D be clauses, and a Boolean variable. The resolution rule states that
we candirectly deriveC' U D from {z} U C' and{z} U D by resolving on.

A RES derivationof a clauseC' from a clause sef is a sequence of clauses=
(C1,C4,...,Cy), whereC,, = C and eaclC;, wherel < i < n, is either (i) a clause
in C (aninitial clause), or (ii) derived with the resolution rule from two claus€s, C},
wherej, k < i (aderived clausk Thelengthof = is n, the number of clauses occurring
in it. Any derivation of the empty claugifrom C is aRES proof of C.

Any RES proofr = (C4,Cs, ..., C,) can be presented as a directed acyclic graph,
in which the leafs are initial clauses, inner nodes are derived clauses, and the root is the
empty clause. There are edges fraipandC; to C, iff C) has been directly derived
from C; andC; using the resolution rule. Mangesolution refinement which the
structure of the graph representation is restricted, have been proposed and studied. Of
particular interest here i$ree-like ResolutiorfT-RES), in which it is required that
proofs are represented by trees. This implies that a derived clause, if subsequently used
multiple times in the proof, must be derived anew each time from initial clauses.

T-RES is aproper RES refinement, i.e.RES is stronger thaT-RES [21]. On the
other hand, it is well known that the DPLL method [22], the basis of most state-of-
the-art SAT solvers, is polynomially equivalent TeRES. However, conflict-learning
DPLL is stronger thai -RES, and polynomially equivalent tBES under a slight gen-
eralisation [6].

3.3 ASP Tableaux

Although ASP solvers for normal logic programs have been available for many years,
the deduction rules applied in such solvers have only recently been formally defined as
a proof system, which we will here refer to as ASP TableauxABR-T).

An ASP tableau for a NLHT is a binary tree of the following structure. Ti&ot
of the tableau consists of the rulésand theentry F L for capturing thatlL is always
false. The non-root nodes of the tableau are siegteiesof the formTa or Fa, where
a € atoms(IT) U body(IT). As typical for tableau methods, entries are generated by
extendinga branch(a path from the root to a leaf node) by applying one of the rules in
Fig.2; if the prerequisites of a rule hold in a branch, the branch can be extended with the
entries specified by the rule. For convenience, we have the shorthéiijifor literals,
defined adl'l if [is positive (negative), anB! if [is negative (positive).

A branch isclosed undethededuction rulegb)-(i) if the branch cannot be extended
using the rules. A branch isontradictoryif there are entrief'a, Fa for somea. A
branch iscompleteif it is contradictory or if there is the entril'a or Fa for each
a € atoms(II)Ubody(IT) and the branch is closed under the deduction rules. A tableau
is complete if all its branches are complete. A complete tableau fiom which all
branches are contradictory is ABP-T proof of the unsatisfiability of/. Thelengthof
anASP-T proof is the number of entries in it. In Fig. 1 &%P-T proof is presented for
the programiI given on the left of the proof, with the rule applied for deducing each
entry given in parenthesis.

a «— ~a,b
b+—c
II = {a < ~a,b. b c.c— ~b} c—~b
B B B FL
comp(IT) = {{Z~a,b}> Ta}, {T{~a,p}, To},
_ _ Ta Fa
{Z{~ap}s Ta, To}, {Z (e}, Te},
o0 T 7 7 T{~a,b} (i§) F{~a,b}(e)
{Z (e}, T}y {fﬂ{jb}, T}, Fo © Fb ©
{Z by o} {Ta, Tlmaby) x T{~b} (b)
_ _ Tec (d)
{za, Zicany b AZ0, vy} T{c} (b)

Tb (d)

{zo, Z(cr 1 {Ze, oty o {Te, Tny y

Fig. 1. A logic programII, its clausal completionomp(II), and anASP-T proof for IT.

Any branchB describes partial assignmentd onatoms(II) in a natural way, i.e.,
if there is an entryT'a (Fa, respectively) inB for a € atoms(II), then(a,true) € A
((a,false) € A, respectively)ASP-T is a sound and complete proof system for nor-
mal logic programs [7], i.e., there is a complete non-contradictory ASP tableau from
11 if and only if IT is satisfiable. Thus the assignmehtiescribed by a complete non-
contradictory branch gives a stable modél= {a € atoms(II) | (a,true) € A}. As
argumented in [7], current ASP solver implementations are tightly relaté®RT,
with the intuition that the cut rule is determinised with decision heuristics, while the
deduction rules describe the propagation mechanism in ASP solvers. For instance,
the noMore++ system [2] is a determinisation of the rules (a)-()(nf),(i5), while
smodels [1] applies the same rules with the cut rule restrictedttons(I7).

To[Fg @

(a) Cut
heli,....ln F{ly,..., L, ..., ln}
tly, ..., tls thy, ., tlia,tliga, ... tln
T{l1,...,0ln} fl;

(b) Forward True Body (c) Backward False Body
he—li,...,ln he—li,... .l
T{l1,...,ln} Fh

Th F{li,...,ln}
(d) Forward True Atom (e) Backward False Atom
he—li,.... 0L, ..y ln
fl; T{li,.. ., li,...,ln}
F{li,...,li ..., ln} tl;
(f) Forward False Body (g) Backward True Body
Th
FBi,...,FBnp b FBi,...,FB;_1,FBit1,...,FBy,
5 () TE; ®

(h) @
(1): ¢ € atoms(I1) U body(IT)
(b): § (Forward False Atom) of (Well-Founded Negation) ar (Forward Loop)
(#): § (Backward True Atom) ot (Well-Founded Justification) dr(Backward Loop)
(8): body(h) ={Bi1,...,Bm}
(1): {B1,--.,Bm} C body(II) andh € gus({r € II | body(r) € {Bi1,...Bm}})
(1):he L, L €loop(Il),eb(L) ={B1,...,Bm}

Fig. 2. Rules in ASP Tableaux

Interestingly ASP-T andT-RES are polynomially equivalent under the translations
comp andnlp. Although the similarity of DPLL's unit propagation and propagation in
ASP solversis discussed in [9, 10], here we want to stress the direct connection between
ASP-T andT-RES.

Theorem 1. Considering tight programsl-RES under the translatioromp can poly-
nomially simulateASP-T.

The intuitive idea of the proof of Theorem 1 is the following. Consider again the tight

NLP II and theASP-T proof T in Fig. 1. The completiorromp(II) is also shown

in Fig. 1. We transforn¥” into a binarycut treeT” where every entry generated by a

deduction rule ifl" is replaced by an application of the cut rule on the corresponding

entry. See Fig. 3 (left) for the cut tree corresponding toABE-T proof in Fig. 1. Now

there is al-RES proof of comp(I7) such that for any prefix of an arbitrary branctB

in T’ there is a claus€ € 7 contradictory to the partial assignmentini.e., there is

the entryFa (Ta) in p for each corresponding positive litera) (negative literalz,,)

in C. Furthermore, each sueti has a Tree-like Resolution derivation fraremp(I7)

of polynomial length w.r.t. the postfix d8 starting directly aftep. When reaching the

root of T/, we must have deriveisince it is contradictory with the empty assignment.

The T-RES proof resulting from the cut tree in Fig. 3 (left) is shown in Fig. 3 (right).
The reverse direction, as stated by Theorem 2, follows from a similar argument.

Theorem 2. Considering clause set8SP-T under the translatiomlp can polynomi-
ally simulateT-RES.

0

_ /\
{Za} {za}

Ta Fa /\ >
/\ {f{wa,b%ja} {I{Na,b}vi‘a}{x{"’a»b}’xa} {I{N"‘ab}’xa}
A F{~a,b} T{~a,b}

Ty} {T(~a,b}s Ta, To}

F{~a,b} T{~a,b} Fb

/%

Tb

/

T{~b} \ F{~b} {20, Tt} {p, ()}

/

Te Fc {Ze, ap} {xe, Zyapy}

8l

T{c} F{c} {:EC,ZL'{C}} { {C}?mb}

Fig. 3. Left: cut tree based on th&SP-T proof in Fig. 1. Right: resultind -RES proof.

4 Extended ASP Tableaux

We will now introduce arextension rulgo ASP-T, which results inExtended ASP
Tableaux(E-ASP-T), an extended tableau proof system for ASP. The idea is that one
can define names for conjunctions of default literals, i.e., givenliwig € dlits(IT),
the (elementary) extension rule allows adding the pule- [y,1> to II, wherep ¢
atoms(IT) U {_L}. Itis essential that is a new atom for preserving satisfiability.

When convenient, we will apply a generalisation of the elementary extension. By
allowing one to introduce multiple bodies fprthe general extension rutds

=T U J{p—lir, - Lk, | Lk € dlits(IT), p & atoms(IT) U {L}}.

An E-ASP-T proof of programiI is anASP-T proofT" of I U E, whereFE is a set of
extending rulegienerated with the extension rule. The length oEaASP-T proof is
the length ofl" plus the number of rules iR

Sincehead(r) ¢ atoms(I7) U {L} for all extending rules € E, the extension rule
does not affect the existence of stable models, i.e., for each stable ioalfel/, there
is a uniqueN C atoms(E) \ atoms(I7) such thatM U N is a stable model off U E.
ThusE-ASP-T is a sound and complete proof system.

5 Proof Complexity

In this section we study proof complexity theoretic issues relatele-ASP-T from
several viewpoints: we (i) consider the relationship betweekSP-T and Tseitin’'s

% Notice equivalent constructs can be introduced with the elementary rule. For example, using
additional new atoms, bodies with more than two literals can be decomposed with balanced
parentheses.

Extended Resolution, (ii) give an explicit separatiorceASP-T from ASP-T, and (iii)
relate the extension rule to the effect of program simplification on proof lengths.

5.1 Relationship with Extended Resolution

E-ASP-T is motivated by Extended Resolutidf-RES), a proof system by Tseitin [11].
E-RES consists of the resolution rule and an extension rule which allows one to intro-
duce equivalences of the form= [; A I, wherex is a new variable and , I- literals

in the clause set. In other words, given a clauseCsaine application of the exten-
sion rule adds the clausés, !/}, {7,1,}, and{xz,l,l>} to C. E-RES is known to be
more powerful thaiRES; in fact, E-RES is polynomially equivalent with, e.g., extended
Frege systems, and no superpolynomial proof complexity lower bounds are known for
E-RES. We will now relateE-ASP-T with E-RES, and show that they are polynomially
equivalent under the translatioasmp andnlp.

Theorem 3. E-RES and E-ASP-T are polynomially equivalent proof systems in the
sense that

(i) considering tight normal logic program&-RES under the translatiomomp poly-
nomially simulate€-ASP-T, and

(i) considering clause set&-ASP-T under the translatiomlp polynomially simulates
E-RES.

Proof. (i): Let 7' be anE-ASP-T proof for a tight NLPIT7, i.e.,T is anASP-T proof
of IT U E, whereF is the extension ofl. We use the shorthang for the variable
corresponding to default literain comp(I7), i.e.,x; = z, (x; = T,) If | = a (I = ~a)
for a € atoms(II). By Theorem 1 there is a polynomi@tRES proof for comp(Z U
E). Sincehead(E) N (atoms(II) U {L}) = 0, the clauses introduced faead(E) in
comp(II U E) can be seen as extensionEhRRES, i.e., for eachh — [4,1 € E there
are the clauses, = x;, A x;, in comp(II U E). Thus there is an extensia’ for
comp(I) such that th& -RES proof of comp(II U E) is anE-RES proof of comp(IT).

(i): Let m = (C4,...,C, = 0) be anE-RES proof of a set of clauses Let £ be the
set of clauses generated with the extension rute We introduce shorthands for atoms
corresponding to literals, i.ey; = a, (o) = ~a,) if I = (I = z) for z € atoms(C).
We add the following rules talp(C) with the ASP extension rulet, — ay,,a;, for
each extension = 1 A lo; ¢ <+ a; foreachl € C'in 7w such thatC ¢ C; andp; «— ¢;
andp; < ¢;,p;_1 foreachC; € mand2 < i < n.

An E-ASP-T proof for nlp(C) is generated as follows. Froin= 1 ton — 1 apply
the cut rule orp; in the branch witH'p; for all j < <. We notice that each branch with
Fp; andTp; for all j < i closes without further application of the cut. We can deduce
Fe,; from Fp;. Now either (i)C; € C, (ii) C; is a derived clause, or (ii)l; € E. For
instance, ifC; = {z,l;} from the extensiorx = I; A Iy, then from¢; «— ~a, and
¢; < a;, we deduce€l'a, andFa;,. The branch closes &{ay,,a;,} andTq,;, are
deduced fromu, < a;,,a;,. Other cases are similar.

Now, consider the branch wiftlip; foralli = 1...n — 1. The empty claus€’,, is
obtained by resolving’; = {z} andC} = {z}, j,k < n. Thus we can deduc&c;
andTcy, fromp; «— ¢;j,pj—1 andpy «— cx, pr—1, respectively, and furthermor&a,,

andFa, from¢; < landec, « [(I = z orl =), closing the branch. The obtained
contradictory ASP tableau is of linear length w.r.t. ad

5.2 Pigeonhole Principle Separates Extended ASP Tableaux from ASP Tableaux

As an example, we now consider a family of normal logic progrdiiis } which sep-
aratesE-ASP-T from ASP-T, i.e., we give an explicit polynomial length proof &f,,
for which ASP-T has exponential length minimal proofs with respect:toNe will
consider this family also in the experiments of this paper.

The program family{ PHP” "'} in question is the following typical encoding of the
pigeon-hole principleas a normal logic program:

PHP; = | {Le—~pir,oomopintU | AL <= pikpint 8
1<i<n+1 1<i<j<n+1
1<k<n
U U e — ~i vl — ~pigt) 9)
1<i<n41
1<j<n

In the abovep; ; has the interpretation that pigeersits in holej. The rules in (8)
require that (i) each pigeon must sit in some hole and that (ii) no two pigeons can sitin
the same hole. The rules in (9) enforce that for each pigeon and each hole, the pigeon
either sits in the hole or does not sit in the hole. EREIP!' ™! is unsatisfiable since
there is no bijective mapping from &n + 1)-element set to an-element set.

Theorem 4. The complexity of PHP™ !} with respect tan is polynomial inE-ASP-T
and exponential iIMSP-T

Proof. (i): Following Cook’s extension [23] for achieving a polynomial-len@HRES
proof of a clausal encoding of the pigeonhole prindiplee define the polynomial size
program extension

! l l l
EXT' := U {{eéjj — eijl} U {e;j — eﬁl,eli}}j}} (10)
1<i<l
1§£771

for1 <1 < n,where eacta?jl is interpreted ag; ;.

Although not explicitly given by Cook, the extension given in [23] does not seem
to yield a polynomial lengtlree-likeproof of the clausal representation, so Theorem 3
does not directly imply a polynomial leng&6P-T proof forPHPZ“UUKKn EXT!.
However, given the polynomial lengt-RES proof = = (Cy,Cs,...,C, = 0) of
the clausal representation, we can follow the general strategy given in the proof of
Theorem 3 for defining an additional extensiB(yr) which allows a polynomial length
ASP-T proof for the resulting program

EPHP, ™ := PHP; ™ U |] EXT'UE(m).
1<i<n
* The particular encoding 1 <icni V=1 2t UlUiciciraniii<jen{™@is V x5}

5 The intuitive idea is that the extension allows for reduditigP?+! to PHP”_, with a poly-
nomial number of Resolution steps. Due to space constraints we do not gi@icitly here.

(i)): comp(PHP"™) consists of the clausal encoding of the pigeon-hole principle
and additional clauses (tautologies) for rules of the farm- ~ad’, o’ «+— ~a. Assume
now that there is a polynomi@lSP-T proof for PHP" !, By Theorem 1 there is a
polynomial T-RES of comp(PHP”*1). It is easy to see that the additional tautologies
in comp(PHP™*!) do not help in the resolution proof. Thus there is a polynomial
lengthT-RES proof for the clausal pigeonhole encoding. However, this contradicts the
fact that the complexity of the clausal pigeonhole principle is exponential w.fdr
(Tree-like) Resolution [24]. O

In fact, Theorem 4 is also withessed hgn-tight programs. Consider the family
{(PHP!" U {p;ij « pij | 1 <i <n+1,1 < j < n}}, which is non-tight with
the additional self-loop$p; ; < p; ;}, but preserves (un)satisfiability ®fHP;," for
all n, m. Since the self-loops do not contribute to the proof?HfPZ“, ASP-T still
has exponential length minimal proofs for these programs, whil&tA8P-T proof

presented in the proof of Theorem 4 is still valid.

5.3 Program Simplification and Complexity

We will now give an interesting corollary of Theorem 4, addressing the effect of pro-
gram simplification on the length of proofs.

Tightly related to the development of efficient solver implementations for resolv-
ing ASP programs arising from practical applications is the development of techniques
for simplifyingprograms. Efficient program simplification throuigical transformation
rulesbecomes especially important as practically relevant programs are often produced
automatically, because often a high number of redundant constraints is produced in the
process. While various satisfiability-preserving local transformation rules for simplify-
ing logic programs have been introduced (see, e.g., [25]), the effect of applying such
transformations on the lengths of proofs has not received attention.

Taking a first step into this direction, we now show that even simple transformation
rules may have a drastic negative effect on proof complexity. Consider the local trans-
formation rulered(II) := I \ {r € II | head(r) ¢ body(II)}. The rules removed
by red are redundant with respect to satisfiability of the program in the sense:zthat
preservegwisible equivalencgl6]. The visible equivalence relation takes the interfaces
of programs into accountitoms(IT) is partitioned intov(ZI) andh(II) determining
thevisible and thehiddenatoms inII, respectively. Programb; and Il are visibly
equivalent, denoted b/, =, II,, if and only ifv(I1;) = v(II2) and there is a bijective
correspondence between the stable model$,aind 7, mapping each € v(I1;) onto
itself. Definingv(IT) = v(red(II)) = atoms(red(II)), one can see tha¢d(I1) =, II.

A polynomial time, satisfiability-preserving simplification algorithed™ (I7) is ob-
tained by closing prografY underred. However, notice that, in the worst case when we
definev(EPHP” ') = v(PHP! ™) = atoms(PHP”*!), we havered* (EPHP! ') =
PHP”*!. Thus, by Theorem 4ed* transforms a program family having polynomial
complexity in ASP Tableaux into one with exponential complexity with respegt to

6 Experiments

We evaluate empirically how well current state-of-the-art ASP solvers can make use
of the additional structure introduced to programs using the extension rule. We run
the solversmodels [1] (version 2.32, a widely used lookahead solveRsp [4] (rc4,

with many techniques—including conflict learning—adopted from DPLL-based SAT
solvers), anadmodels [18] (version 3.66, a SAT-based ASP solver running the conflict-
learning SAT solver zChaff version 2004.11.15 as the back-end). The experiments are
run on standard PCs with 2-GHz AMD 3200+ processors under Linux.

First, we investigate whether ASP solvers are able to benefit from the extension
in EPHP!"*!. We compare the number of decisions and running times of each of the
solvers onPHP” ™!, CPHP ™! := PHP!* U |J, ., EXT', and EPHP ', By
Theorem 4 the solvers should in theory be able to exhibit polynomially scaling number
of decisions forEPHP” ™. In fact with conflict-learning this might also be possible
for CPHP” ! due to the tight correspondence with conflict-learning SAT solvers and
Resolution. The results for = 10...12 are shown in Table 1. While the number
of decisions for the conflict-learningasp and cmodels is somewhat reduced by the
extensions, the solvers do not seem to be able to reproduce the polynomial size proofs,
and we do not observe a dramatic change in the running times. With a timeout of 2
hours,smodels gives no answer fon, = 12 on PHP" ™! or CPHP” . However, for
EPHP” ! smodels returns without any branching, which should be due to the fact that
smodels’s complete lookahead notices that by branching on the critical extension atoms
(as in part (ii) of the proof of Theorem 4) tHelse branch closes immediately. With
this in mind, an interesting further study out of the scope of this paper would be the
possibilities of integrating conflict learning techniques with (partial) lookahead.

In the second experiment, we study the effect of having a modest number of redun-
dant rules on the behaviour of ASP solvers. For this we apply the following procedure
ADDRANDOMREDUNDANCY (11, n, p):

1. Fori=1to |55n]:
la. Randomly seleét, l» € dlits(II) such thai; # ls.
1b. IT := IT U {r; < 1,12}, wherer; & atoms(II)
2. Return I
Given a prograni/, the procedure iteratively adds rules of the farm— 14,5 to II,
wherely, [, are random default literals currently in the program ants a new atom.
The number of introduced rules;i86 of the integer.

Table 1.Results oPHP? !, CPHPZ !, andEPHP?*! with timeout (-) of 2 hours.

Time (s) T Decisions |
[Solver [» [[PHP.TT[CPHP. T [EPHP. TT[[PHP. TT[CPHP, T [EPHP. |

smodels[10[] 32.28 120.24 9.28 158878 | 141177 0
smodels[11[| 471.54 | 1828.40 23.07 1885949| 1619703 0
smodels|12 - - 52.20 - - 0
clasp [10 8.60 7.78 19.26 197982 | 114840 38842
clasp [11]] 72.78 62.74 97.23 1072358| 574874 116534
clasp [12]] 900.33 1046.86 881.90 7787578| 4964309 646278
cmodels|[10 191 2.23 27.42 9455 9916 20615
cmodels|11 7.99 10.28 70.39 23058 26283 38648
cmodels|[12]| 48.36 56.70 270.63 87864 98994 97745

In Fig. 4, the median, minimum, and maximum number of decisions and running
times for the solvers oADDRANDOMREDUNDANCY (PHP™ 1! n, p) are shown for
p = 50,100...,450 over 15 trials at each data point. The mean number of decisions
(left) and running times (right) on the originBHP”** are presented by the horizontal
lines. Notice that the number of added atoms and rules is linegnttich is negligible
to the number of atoms (in the order of) and rules %) in PHP""*. For similar
running times, the number of holesis 10 for clasp andsmodels and11 for cmodels.

The results are very interesting: each of the solvers seems to react individually to the
added redundancy. Famodels (b), only a few added redundant rules are enough to
worsen its behaviour. Famodels (c), the number of decisions decreases linearly with
the number of added rules. However, the running times grow fast at the same time,
most probably due temodels’s lookahead. We also ran the experimentdondels (d)
without using lookahead. This had a visible effect on the number of decisions, showing
a benefit from the added rules compareéit@dels on PHP" ™,

The most interesting effect is seen fdasp; clasp benefits from the added rules
w.r.t. the number of decision, while the running times stay similar on the average, con-
trarily to the other solvers. In addition to this robustness against redundancy, we believe
that this shows promise for further exploiting redundancy added in a controlled way dur-
ing search; the added rules give new possibilities to branch on definitions which were
not available in the original program. However, for benefiting from redundancy with
running times in mind, optimised lightweight propagation mechanisms are essential.

As a final remark, an interesting observation is that the effect of the transforma-
tion presented in [8], which enablesiodels to branch on the bodies of rules, having
an exponential effect on the proof complexity of a particular program family, can be
equivalently obtained by applying the ASP extension rule. This may in part explain the
effect on adding redundancy on the number of decision madenbyels.

7 Conclusions

We introduce Extended ASP Tableaux, an extended tableau calculus for normal logic
programs under the stable model semantics. We study the strength of the calculus, show-
ing a tight correspondence with Extended Resolution, which is among the most power-
ful known propositional proof systems. This sheds further light on the relation of ASP
and propositional satisfiability solving and their underlying proof systems, something
which we believe is for the benefit of both of the communities.

Furthermore, this work shows the intricate nature of the interplay of structure and
the hardness of solving ASP instances. We anticipate that controlled use of the exten-
sion rule is possible and will yield performance gains by considering in more detail
the structural properties of programs in particular problem domains. One could also
consider implementing branching on any possible fornintade a solver. However,
this would require novel heuristics, since choosing the formula to branch on from the
exponentially many alternatives is nontrivial and is not applied in current solvers. We
find this an interesting future direction of research. Another important research direc-
tion set forth by this study is a more in-depth investigation into the effect of program
simplification on the hardness of solving ASP instances.

AcknowledgementsFinancial support from Academy of Finland (grant #211025), Helsinki
Graduate School in Computer Science and Engineering, Emil Aaltonen Foundation, the Finnish
Cultural Foundation (EO), the Technological Foundation TES, and the Nokia Foundation (EOQ) is
gratefully acknowledged.

220000 12
[15 |
200000 1
11
,, 180000]J{J g st !
2 160000 g 10
140000 E 9y B % ,,,,,
al ==
120000 % {
- sl
100000 : : : : 75 : : : :
0 100 200 300 400 500 100 200 300 400 500
p P
(a) clasp decisions (left), time in seconds (right)
50000 24
45000 2
A 20
I S R S %)
g 40000 1 ey T ERRT l l l l
S 3 .
@ 35000 g 16 S N D S
& 2 14 L
30000 E]
12
25000 10
20000 8
0 100 200 300 400 500 0 100 200 300 400 500
P p
(b) cmodels decisions (left), time in seconds (right)
170000 200 ;
160000 180 {
150000 } _ 160 _L
@ 140000 } g m P
S 8 120 P
2 130000 ~%xn 2 L
S { < 100 ¥
Q120000 {{ g & A
110000 1 } T e e
100000 ~1 wl *
90000 20
0 100 200 300 400 500 0 100 200 300 400 500
p p
(c) smodels decisions (left), time in seconds (right)
1.8¢+06 30
28 ,«$
1.7e+06 2 l ”ﬁ%/
£ 1.6e+06 g 2 %,x
g | 2 2
a 1.5e+06 J{ g 18 { %
1.46+06 16 1
14 ¥
1.3e+06 12
0 100 200 300 400 500 0 100 200 300 400 500
P p

(d) smodels without lookahead: decisions (left), time in seconds (right)

Fig. 4. Effects of adding randomly generated redundant rul@H®" ™

References

1

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,
25.

. Simons, P., Niem@l ., Soininen, T.: Extending and implementing the stable model seman-

tics. Artificial Intelligencel381-2) (2002) 181-234

Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.. The nomore++ approach to

answer set solving. In: LPAR. Volume 3835 of LNCS., Springer (2005) 95-109

. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM T@@).(2006) 499-562

. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving.
In: IJCAI. (2007) 286-392

. Beame, P,, Pitassi, T.: Propositional proof complexity: Past, present, and future. Bulletin of
the EATCS65 (1998) 66—89

. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of
clause learning. Journal of Artificial Intelligence Rese&2/§2004) 319-351

. Gebser, M., Schaub, T.: Tableau calculi for answer set programming. In: ICLP. Volume 4079
of LNCS., Springer (2006) 11-25

. Anger, C., Gebser, M., Janhunen, T., Schaub, T.: What’s a head without a body? In: ECAI,
10S Press (2006) 769-770

. Giunchiglia, E., Maratea, M.: On the relation between answer set and SAT procedures (or,

between cmodels and smodels). In: ICLP. Volume 3668 of LNCS., Springer (2005) 37-51

Gebser, M., Schaub, T.: Characterizing ASP inferences by unit propagation. In: LaSh ICLP

Workshop. (2006) 41-56

Tseitin, G.: On the complexity of derivation in propositional calculus. In: Automation of

Reasoning 2: Classical Papers on Computational Logic. Springer (1983) 466-483

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP,

MIT Press (1988) 1070-1080

Niemed, I.: Logic programs with stable model semantics as a constraint programming

paradigm. Annals of Mathematics and Atrtificial Intelliger®®3-4) (1999) 241-273

Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on

Computational Logi@(2) (2006) 261—-268

Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Annals

of Mathematics and Artificial Intelligenc&2(1-2) (1994) 53—-87

Janhunen, T.: Some (in)translatability results for normal logic programs and propositional

theories. Journal of Applied Non-Classical Logi®1-2) (2006) 35-86

Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers.

Artificial Intelligence157(1-2) (2004) 115-137

Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional

satisfiability. Journal of Automated Reasoni3®(4) (2006) 345-377

Clark, K.: Negation as failure. In: Readings in nonmonotonic reasoning. Morgan Kaufmann

Publishers (1987) 311-325

Fages, F.: Consistency of Clark’s completion and existence of stable models. Journal of

Methods of Logic in Computer Sciendq1994) 51-60

Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near optimal separation of tree-like and

general resolution. Combinatori@4(4) (2004) 585-603

Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Commu-

nications of the ACM5(7) (1962) 394-397

Cook, S.A.: A short proof of the pigeon hole principle using extended resolution. SIGACT

News8(4) (1976) 28-32

Haken, A.: The intractability of resolution. TG9(2-3) (1985) 297-308

Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and

strong equivalence. In: LPNMR. Volume 2923 of LNCS., Springer (2004) 87-99

