
Modular Equivalence for Normal Logic Programs∗

Emilia Oikarinen † and Tomi Janhunen
Department of Computer Science and Engineering

Helsinki University of Technology (TKK)
P.O. Box 5400, FI-02015 TKK, Finland

Emilia.Oikarinen@tkk.fi and Tomi.Janhunen@tkk.fi

Abstract

A Gaifman-Shapiro-style architecture of program modules is
introduced in the case of normal logic programs under sta-
ble model semantics. The composition of program mod-
ules is suitably limited by module conditions which ensure
the compatibility of the module system with stable models.
The resulting module theorem properly strengthens Lifschitz
and Turner’s splitting set theorem (1994) for normal logic
programs. Consequently, the respective notion of equiva-
lence between modules, i.e. modular equivalence, proves to
be a congruence relation. Moreover, it is analyzed (i) how
the translation-based verification technique from (Janhunen
& Oikarinen 2005) is accommodated to the case of modu-
lar equivalence and (ii) how the verification of weak/visible
equivalence can be reorganized as a sequence of module-level
tests and optimized on the basis of modular equivalence.

Introduction
Answer set programming(ASP) is a very promising con-
straint programming paradigm (Niemelä 1999; Marek &
Truszczýnski 1999; Gelfond & Leone 2002) in which prob-
lems are solved by capturing their solutions asanswer sets
or stable modelsof logic programs. The development and
optimization of logic programs in ASP gives rise to a meta-
level problem of verifying whether subsequent programs are
equivalent. To solve this problem, a translation-based ap-
proach has been proposed and extended further (Janhunen &
Oikarinen 2002; Turner 2003; Oikarinen & Janhunen 2004;
Woltran 2004). The underlying idea is to combine two logic
programsP andQ under consideration into two logic pro-
gramsEQT(P,Q) andEQT(Q,P) which have no stable
models iff P and Q are weakly equivalent, i.e. have the
same stable models. This enables the use of the same ASP
solver, such asSMODELS (Simons, Niemel̈a, & Soininen
2002), DLV (Leoneet al. 2006) or GNT (Janhunenet al.
2006), for the equivalence verification problem as for the
search of stable models in general. First experimental re-
sults (Janhunen & Oikarinen 2002; Oikarinen & Janhunen

∗The research reported in this paper has been partially funded
by the Academy of Finland (project #211025).

†The financial support from Helsinki Graduate School in Com-
puter Science and Engineering, Nokia Foundation, and Finnish
Cultural Foundation is gratefully acknowledged.

2004) suggest that the translation-based method can be ef-
fective and sometimes much faster than performing a simple
cross-check of stable models.

As a potential limitation, the translation-based method
as described above treats programs as integral entities and
therefore no computational advantage is sought by breaking
programs into smaller parts, saymodulesof some kind. Such
an optimization strategy is largely preempted by the fact that
weak equivalence, denoted by≡, fails to be acongruence
relation for ∪, i.e. weak equivalence is not preserved un-
der substitutions in unions of programs. More formally put,
P ≡ Q does not implyP ∪R ≡ Q∪R in general. The same
can be stated aboutuniform equivalence(Sagiv 1987) but
not aboutstrong equivalence(Lifschitz, Pearce, & Valverde
2001) which admits substitutions by definition.

From our point of view, strong equivalence seems inap-
propriate forfully modularizingthe verification task of weak
equivalence. This is simply because two programsP andQ
may be weakly equivalent even if they build on respective
modulesPi ⊆ P andQi ⊆ Q which are not strongly equiv-
alent. For the same reason, program transformations that
are known to preserve strong equivalence (Eiteret al. 2004)
do not provide an inclusive basis for reasoning about weak
equivalence. Nevertheless, there are cases where one can
utilize the fact that strong equivalence implies weak equiv-
alence. For instance, ifP andQ are composed of strongly
equivalent pairs of modulesPi andQi for all i, thenP and
Q can be directly inferred to be strongly and weakly equiva-
lent. These observations about strong equivalence motivate
the strive for a weaker congruence relation that is compatible
with weak equivalence at program-level.

To address the lack of a suitable congruence relation in
the context of ASP, we propose a new design in this ar-
ticle. The design superficially resembles that of Gaifman
and Shapiro (1989) but stable model semantics (Gelfond
& Lifschitz 1988) and special module conditions are in-
corporated. The feasibility of the design is crystallized in
a module theoremwhich shows the module system fully
compatible with stable models. In fact, the module theo-
rem established here is a proper strengthening of the split-
ting set theorem established by Lifschitz and Turner (1994)
in the case of normal logic programs. The main difference
is that our result allows negative recursion between mod-
ules. Moreover, it enables the introduction of a notion of

equivalence, i.e.modular equivalence, which turns out to be
a proper congruence relation and reduces to weak equiva-
lence for program modules which have a completely speci-
fied input and no hidden atoms. This kind of modules cor-
respond to normal logic programs with completely visible
Herbrand base. If normal programsP andQ are composed
of modularly equivalent modulesPi andQi for all i, then
P and Q are modularly equivalent or equivalently stated
weakly equivalent. The notion of modular equivalence
opens immediately new prospects as regards the translation-
based verification method (Janhunen & Oikarinen 2002;
Oikarinen & Janhunen 2004). First of all, the method can
be tuned for the task of verifying modular equivalence by at-
taching acontext generatorto program modules in analogy
to (Woltran 2004). Second, we demonstrate how the verifi-
cation of weak equivalence can be reorganized as a sequence
of tests, each of which concentrates on a pair of respective
modules in the programs subject to the verification task.

The plan for the rest of this article is as follows. As a
preparatory step, we briefly review the syntax and seman-
tics of normal logic programs and define notions of equiva-
lence addressed in the sequel. After that we specify program
modules as well as establish the module theorem discussed
above. Next, we define the notion of modular equivalence,
prove the congruence property for it, and give a brief account
of computational complexity involved in the respective ver-
ification problem. Connections between modular equiva-
lence and the translation-based method for verifying visible
equivalence (Janhunen & Oikarinen 2005) are also worked
out. Finally, we briefly contrast our work with earlier ap-
proaches and present our conclusions.

Normal Logic Programs
We will considerpropositional normal logic programsin
this paper.

Definition 1 A normal logic program (NLP) is a (finite) set
of rules of the formh ← B+,∼B−, whereh is an atom,
B+ andB− are sets of atoms, and∼B = {∼b | b ∈ B} for
any set of atomsB.

The symbol “∼” denotesdefault negationor negation as
failure to prove (Clark 1978). Atomsa and their default
negations∼a are calleddefault literals. A rule consists
of two parts: h is the headand the rest is thebody. Let
Head(P) denote the set of head atoms appearing inP , i.e.

Head(P) = {h | h← B+,∼B− ∈ P}.
If the body of a rule is empty, the rule is called afact and
the symbol “←” can be omitted. IfB− = ∅, the rule is
positive. A program consisting only of positive rules is a
positive logic program.

Usually theHerbrand baseHb(P) of a normal logic pro-
gramP is defined to be the set of atoms appearing in the
rules ofP . We, however, use a revised definition:Hb(P)
is any fixed set of atoms containing all atoms appearing in
the rules ofP . Under this definition the Herbrand base of
P can be extended by atoms having no occurrences inP .
This aspect is useful e.g. whenP is obtained as a result of
optimization and there is a need to keep track of the original

Herbrand base. Moreover,Hb(P) is supposed to be finite
wheneverP is.

Given a normal logic programP , an interpretationM of
P is a subset ofHb(P) defining which atoms ofHb(P) are
true (a ∈ M) and which are false (a 6∈ M). An interpre-
tationM ⊆ Hb(P) is a (classical) modelof P , denoted by
M |= P iff B+ ⊆ M andB− ∩ M = ∅ imply h ∈ M
for each ruleh ← B+,∼B− ∈ P . For a positive program
P , M ⊆ Hb(P) is the (unique)least modelof P , denoted
by LM(P), iff there is noM ′ |= P such thatM ′ ⊂ M .
Stable modelsas proposed by Gelfond and Lifschitz (1988)
generalize least models for normal logic programs.

Definition 2 Given a normal logic programP and an inter-
pretationM ⊆ Hb(P) the Gelfond-Lifschitz reduct

PM = {h← B+ | h← B+,∼B−∈ P and M∩B− = ∅},
andM is a stable model ofP iff M = LM(PM).
Stable models are not necessarily unique in general: a nor-
mal logic program may have several stable models or no sta-
ble models at all. The set of stable models of a NLPP is
denoted bySM(P).

We define apositive dependency relation≤⊆ Hb(P) ×
Hb(P) as the reflexive and transitive closure of a relation
≤1 defined as follows. Givena, b ∈ Hb(P), we say thatb
depends directly ona, denoteda ≤1 b, iff there is a ruleb←
B+,∼B− ∈ P such thata ∈ B+. Thepositive dependency
graphof P , Dep+(P), is a graph withHb(P) as the set of
vertices and{〈a, b〉 | a, b ∈ Hb(P) and a ≤ b} as the
set of edges. Thenegative dependency graphDep−(P) can
be defined analogously. Astrongly connected componentof
Dep+(P) is a maximal subsetC ⊆ Hb(P) such that for all
a, b ∈ C, 〈a, b〉 is in Dep+(P). Thus strongly connected
components ofDep+(P) partitionHb(P) into equivalence
classes. The dependency relation≤ can then be generalized
for the strongly connected components:Ci ≤ Cj , i.e. Cj

depends onCi, iff ci ≤ cj for anyci ∈ Ci andcj ∈ Cj .
A splitting setfor a NLPP is any setU ⊆ Hb(P) such

that for every ruleh ← B+,∼B− ∈ P , if h ∈ U then
B+ ∪ B− ⊆ U . The set of rulesh ← B+,∼B− ∈ P such
that {h} ∪ B+ ∪ B− ⊆ U is thebottomof P relative to
U , denoted bybU (P). The settU (P) = P \ bU (P) is the
top of P relative toU . The top can be partially evaluated
with respect to an interpretationX ⊆ U resulting a program
e(tU (P), X) that contains a ruleh← (B+\U),∼(B−\U)
for eachh ← B+,∼B− ∈ tU (P) such thatB+∩ U ⊆ X
and(B−∩ U) ∩X = ∅. Given a splitting setU for a NLP
P , a solution to P with respect toU is a pair〈X, Y 〉 such
that X ⊆ U , Y ⊆ Hb(P) \ U , X ∈ SM(bU (P)), and
Y ∈ SM(e(tU (P), X)). The splitting set theoremrelates
solutions with stable models.

Theorem 1 (Lifschitz & Turner 1994) LetU be a splitting
set for a NLPP andM ⊆ Hb(P). ThenM ∈ SM(P) iff
the pair〈M ∩ U,M \ U〉 is a solution toP with respect to
U .

Notions of Equivalence
The notion ofstrong equivalencewas introduced by Lifs-
chitz, Pearce and Valverde (2001) whereasuniform equiva-

lencehas its roots in the database community (Sagiv 1987);
cf. (Eiter & Fink 2003) for the case of stable models.

Definition 3 Normal logic programsP andQ are (weakly)
equivalent, denotedP ≡ Q, iff SM(P) = SM(Q); strongly
equivalent, denotedP ≡s Q, iff P ∪ R ≡ Q ∪ R for any
normal logic programR; and uniformly equivalent, denoted
P ≡u Q, iff P ∪ F ≡ Q ∪ F for any set of factsF .

Clearly, P ≡s Q implies P ≡u Q, andP ≡u Q implies
P ≡ Q, but not vice versa (in both cases). Strongly equiv-
alent logic programs are semantics preserving substitutes of
each other and the relation≡s can be understood as acon-
gruence relationamong normal programs, i.e. ifP ≡s Q,
then P ∪ R ≡s Q ∪ R for all normal programsR. On
the other hand, uniform equivalence is not a congruence, as
shown in Example 1 below. Consequently, the same applies
to weak equivalence and thus≡ and≡u are best suited for
the comparison of complete programs, and not for modules.

Example 1 (Eiter et al.2004, Example 1) Consider normal
logic programsP = {a.} andQ = {a ← ∼b. a ← b.}. It
holdsP ≡u Q, but P ∪ R 6≡ Q ∪ R for R = {b ← a.}.
ThusP 6≡s Q and≡u is not a congruence relation for∪.

ForP ≡ Q to hold, the stable models inSM(P) andSM(Q)
have to be identical subsets ofHb(P) andHb(Q), respec-
tively. The same can be stated about strong and uniform
equivalence. This makes these notions of equivalence less
useful ifHb(P) andHb(Q) differ by some atoms which are
not trivially false in all stable models. Such atoms might,
however, be of use when formalizing some auxiliary con-
cepts. Following the ideas from (Janhunen 2003) we par-
tition Hb(P) into two partsHbv(P) and Hbh(P) which
determine thevisible and thehiddenparts ofHb(P), re-
spectively. Invisible equivalencethe idea is that the hidden
atoms inHbh(P) and Hbh(Q) are local toP and Q and
negligible as regards the equivalence of the two programs.

Definition 4 (Janhunen 2003) Normal logic programsP
and Q are visibly equivalent, denoted byP ≡v Q, iff
Hbv(P) = Hbv(Q) and there is a bijectionf : SM(P) →
SM(Q) such that for all interpretationsM ∈ SM(P),
M ∩Hbv(P) = f(M) ∩Hbv(Q).

Note that the number of stable models is preserved under
≡v. Such a strict correspondence of models is much dic-
tated by the ASP methodology: the stable models of a pro-
gram usually correspond to the solutions of the problem be-
ing solved and thus≡v preserves the number of solutions,
too. In the fully visible case, i.e.Hbh(P) = Hbh(Q) = ∅,
the relation≡v becomes very close to≡. The only differ-
ence is the additional requirementHb(P) = Hb(Q) insisted
by≡v. This is of little importance as Herbrand bases can al-
ways be extended to meetHb(P) = Hb(Q). Since weak
equivalence is not a congruence, visible equivalence cannot
be a congruence either.

The relativized variants of strong and uniform equiva-
lenceintroduced by Woltran (2004) allow the context to be
constrained using a set of atomsA.

Definition 5 Normal logic programsP andQ are strongly
equivalent relative toA, denoted byP ≡A

s Q, iff P ∪ R ≡

Q∪R for all normal logic programsR over the set of atoms
A; uniformly equivalent relative toA, denoted byP ≡A

u Q,
iff P ∪ F ≡ Q ∪ F for all sets of factsF ⊆ A.

SettingA = ∅ in the above reduces both relativized notions
to weak equivalence, and thus neither is a congruence.

Eiter et al. (2005) introduce a very general framework
based onequivalence framesto capture various kinds of
equivalence relations. Most of the notions of equivalence
defined above can be defined using the framework. Vis-
ible equivalence is exceptional in the sense that it does
not fit into equivalence frames based onprojected answer
sets. A projective variant of Definition 4 would simply
equate{M ∩Hbv(P) | M ∈ SM(P)} to {N ∩Hbv(Q) |
N ∈ SM(Q)}. As a consequence, the number of answer sets
may not be preserved which we find somewhat unsatisfac-
tory because of the general nature of ASP as discussed after
Definition 4. Consider, for instance programsP = {a ←
∼b. b ← ∼a. } andQn = P ∪ {ci ← ∼di. di ← ∼ci. |
0 < i ≤ n} with Hbv(P) = Hbv(Qn) = {a, b}. Whenever
n > 0 these programs are not visibly equivalent but they
would be equivalent under the projective definition. With
sufficiently large values ofn it is no longer feasible to count
the number of different stable models (i.e. solutions) ifQn

is used.

Modular Logic Programs
We define alogic program modulesimilarly to Gaifman and
Shapiro (1989), but consider the case of normal logic pro-
grams instead of positive (disjunctive) logic programs.

Definition 6 A tripleP = (P, I, O) is a (propositional logic
program) module, if

1. P is a finite set of rules of the formh← B+,∼B−;

2. I andO are sets of propositional atoms such that
I ∩O = ∅; and

3. Head(P) ∩ I = ∅.
The Herbrand base of moduleP, Hb(P), is the set of atoms
appearing inP combined withI ∪ O. Intuitively the setI
defines theinputof a module and the setO is theoutput. The
input and output atoms are considered visible, i.e. the visible
Herbrand base of moduleP is Hbv(P) = I ∪O. Notice that
I andO can also contain atoms not appearing inP , similarly
to the possibility of having additional atoms in the Herbrand
bases of normal logic programs. All other atoms are hidden,
i.e.Hbh(P) = Hb(P) \Hbv(P).

As regards the composition of modules, we follow (Gaif-
man & Shapiro 1989) and take the union of the disjoint sets
of rules involved in them. The conditions given by Gaifman
and Shapiro are not yet sufficient for our purposes, and we
impose a further restriction denying positive recursion be-
tween modules.

Definition 7 Consider modulesP1 = (P1, I1, O1) and
P2 = (P2, I2, O2) and letC1, . . . , Cn be the strongly con-
nected components ofDep+(P1∪P2). There is a positive re-
cursion betweenP1 andP2, if Ci∩O1 6= ∅ andCi∩O2 6= ∅
for some componentCi.

The idea is that all inter-module dependencies go through
the input/output interface of the modules, i.e. the output
of one module can serve as the input for another and hid-
den atoms are local to each module. Now, if there is a
strongly connected componentCi in Dep+(P1 ∪ P2) con-
taining atoms from bothO1 andO2, we know that, if pro-
gramsP1 andP2 are combined, some output atoma of P1

depends positively on some output atomb of P2 which again
depends positively ona. This yields a positive recursion.

Definition 8 LetP1 = (P1, I1, O1) andP2 = (P2, I2, O2)
be modules such that
1. O1 ∩O2 = ∅;
2. Hbh(P1) ∩Hb(P2) = Hbh(P2) ∩Hb(P1) = ∅; and
3. there is no positive recursion betweenP1 andP2.
Then the join ofP1 andP2, denoted byP1 t P2, is defined,
andP1 t P2 = (P1 ∪ P2, (I1 \O2) ∪ (I2 \O1), O1 ∪O2).
Remark. Condition 1 in Definition 8 is actually redundant
as it is implied by condition 3. Also, condition 2 can be
circumvented in practice using a suitable scheme, e.g. based
on module names, to rename the hidden atoms uniquely for
each module.

Some observations follow. Since each atom is defined in
one module, the sets of rules inP1 andP2 are disjoint, i.e.
P1 ∩ P2 = ∅. Also,

Hb(P1 t P2) = Hb(P1) ∪Hb(P2),
Hbv(P1 t P2) = Hbv(P1) ∪Hbv(P2), and

Hbh(P1 t P2) = Hbh(P1) ∪Hbh(P2).
Note that the module conditions above impose no restric-
tions onnegativedependencies or on positive dependencies
insidemodules. The input ofP1 t P2 might be smaller than
the union of inputs of individual modules. This is illustrated
by the following example.

Example 2 Consider modulesP = ({a ← ∼b.}, {b}, {a})
andQ = ({b ← ∼a.}, {a}, {b}). The join ofP andQ is
defined, andP tQ = ({a← ∼b. b← ∼a.}, ∅, {a, b}).
The following hold for the intersections of Herbrand bases
under the conditions 1 and 2 in Definition 8:

Hbv(P1) ∩Hbv(P2)
= Hb(P1) ∩Hb(P2)
= (I1 ∩ I2) ∪ (I1 ∩O2) ∪ (I2 ∩O1), and

Hbh(P1) ∩Hbh(P2) = ∅.
Join operationt has the following properties:
• Identity: P t (∅, ∅, ∅) = (∅, ∅, ∅) t P = P for all P.

• Commutativity:P1 t P2 = P2 t P1 for all modulesP1

andP2 such thatP1 t P2 is defined.

• Associativity: (P1 t P2) t P3 = P1 t (P2 t P3) for all
modulesP1,P2 andP3 such that the joins are defined.

Note that equality sign “=” used here denotes syntactical
equivalence, whereas semantical equivalence will be defined
in the next section.

The stable semantics of a module is defined with respect
to a given input, i.e. a subset of the input atoms of the mod-
ule. Input is seen as a set of facts (or a database) to be added
to the module.

Definition 9 Given a moduleP = (P, I, O) and a set of
atomsA ⊆ I the instantiation ofP with the inputA is
P(A) = P t FA, whereFA = ({a. | a ∈ A}, ∅, I).

Note thatP(A) = (P ∪{a. | a ∈ A}, ∅, I ∪O) is essentially
a normal logic program withI ∪ O as the visible Herbrand
base. We can thus generalize the stable model semantics for
modules. In the sequel we identifyP(A) with the respective
set of rulesP ∪ FA, whereFA = {a. | a ∈ A}. In the
following M ∩ I acts as a particular input with respect to
which the module is instantiated.

Definition 10 An interpretationM ⊆ Hb(P) is a stable
model of a moduleP = (P, I, O), denoted byM ∈ SM(P),
iff M = LM(PM ∪ FM∩I).

We define a concept ofcompatibilityto describe when a sta-
ble modelM1 of moduleP1 can be combined with a stable
modelM2 of another moduleP2. This is exactly whenM1

andM2 share the common (visible) part.

Definition 11 Let P1 and P2 be modules, andM1 ∈
SM(P1) andM2 ∈ SM(P2) their stable models which are
compatible, iffM1 ∩Hbv(P2) = M2 ∩Hbv(P1).

If a program (module) consists of several modules, its stable
models are locally stable for the respective submodules; and
on the other hand, local stability implies global stability as
long as the stable models of the submodules are compatible.

Theorem 2 (Module theorem). LetP1 andP2 be modules
such thatP1 t P2 is defined. Now,M ∈ SM(P1 t P2) iff
M1 = M ∩ Hb(P1) ∈ SM(P1), M2 = M ∩ Hb(P2) ∈
SM(P2), andM1 andM2 are compatible.

Proof sketch. “⇒” M1 andM2 are clearly compatible and
it is straightforward to show that conditions 1 and 2 in Defi-
nition 8 implyM1 ∈ SM(P1) andM2 ∈ SM(P2).
“⇐” ConsiderP1 = (P1, I1, O1), P2 = (P2, I2, O2) and
their joinP = P1 tP2 = (P, I, O). Let M1 ∈ SM(P1), and
M2 ∈ SM(P2) be compatible and defineM = M1 ∪M2.
There is a strict total ordering< for the strongly connected
componentsCi of Dep+(P) such that ifCi < Cj , then
Ci ≤ Cj andCj 6≤ Ci; or Ci 6≤ Cj andCj 6≤ Ci. Let
C1 < · · · < Cn be such an ordering. Show that exactly
one of the following holds for eachCi: (i) Ci ⊆ I, (ii)
Ci ⊆ O1 ∪ Hbh(P1), or (iii) Ci ⊆ O2 ∪ Hbh(P2). Finally,
show by induction that

M ∩ (
k∪

i=1
Ci) = LM(PM ∪ FM∩I) ∩ (

k∪
i=1

Ci)

holds for0 ≤ k ≤ n by applying the splitting set theorem
(Lifschitz & Turner 1994). ¤

Example 3 shows that condition 3 in Definition 8 is neces-
sary to guarantee that local stability implies global stability.

Example 3 ConsiderP1 = ({a ← b.}, {b}, {a}) and
P2 = ({b ← a.}, {a}, {b}) with SM(P1) = SM(P2) =
{∅, {a, b}}. The join ofP1 and P2 is not defined because
of positive recursion (conditions 1 and 2 in Definition 8 are
satisfied, however). For a NLPP = {a ← b. b ← a.}, we
getSM(P) = {∅}. Thus, the positive dependency between
a andb excludes{a, b} fromSM(P).

Theorem 2 is strictly stronger than the splitting set theorem
(Lifschitz & Turner 1994) for normal logic programs. IfU
is a splitting set for a NLPP , then

P = B t T = (bU (P), ∅, U) t (tU (P), U,Hb(P) \ U),

and it follows from Theorems 1 and 2 thatM1 ∈ SM(B)
andM2 ∈ SM(T) iff 〈M1,M2 \U〉 is a solution forP with
respect toU . On the other hand the splitting set theorem can-
not be applied to e.g.P t Q from Example 2, since neither
{a} nor {b} is a splitting set. Our theorem also strength-
ens a module theorem given in (Janhunen 2003, Theorem
6.22) to cover normal programs that involve positive body
literals, too. Moreover, Theorem 2 can easily be general-
ized for modules consisting of several submodules. Con-
sider a collection of modulesP1, . . . ,Pn such that the join
P1t· · ·tPn is defined (recall thatt is associative). We say
that a collection of stable models{M1, . . . , Mn} for mod-
ulesP1, . . . ,Pn, respectively, iscompatible, iff Mi andMj

are pairwise compatible for all1 ≤ i, j ≤ n.

Corollary 1 LetP1, . . . ,Pn be a collection of modules such
thatP1 t · · · t Pn is defined. NowM ∈ SM(P1 t · · · t Pn)
iff Mi = M ∩Hb(Pi) ∈ SM(Pi) for all 1 ≤ i ≤ n, and the
set of stable models{M1, . . . , Mn} is compatible.

Corollary 1 enables the computation of stable models on a
module-by-module basis, but it leaves us the task of exclud-
ing mutually incompatible combinations of stable models.

Example 4 Consider modules

P1 = ({a← ∼b.}, {b}, {a}),
P2 = ({b← ∼c.}, {c}, {b}), and

P3 = ({c← ∼a.}, {a}, {c}).
The joinP = P1 t P2 t P3 is defined,

P = ({a← ∼b. b← ∼c. c← ∼a.}, ∅, {a, b, c}).
Now SM(P1) = {{a}, {b}}, SM(P2) = {{b}, {c}} and
SM(P3) = {{a}, {c}}. To apply Corollary 1 for finding
SM(P), one has to find a compatible triple of stable models
M1, M2, andM3 for P1, P2, andP3, respectively.

• Now{a} ∈ SM(P1) and{c} ∈ SM(P2) are compatible,
since{a} ∩ Hbv(P2) = ∅ = {c} ∩ Hbv(P1). However,
{a} ∈ SM(P3) is not compatible with{c} ∈ SM(P2),
since{c} ∩ Hbv(P3) = {c} 6= ∅ = {a} ∩ Hbv(P2).
On the other hand,{c} ∈ SM(P3) is not compatible with
{a} ∈ SM(P1), since{a} ∩ Hbv(P3) = {a} 6= ∅ =
{c} ∩Hbv(P1).
• Also{b} ∈ SM(P1) and{b} ∈ SM(P2) are compatible,

but {b} ∈ SM(P1) is incompatible with{a} ∈ SM(P3).
Nor is{b} ∈ SM(P2) compatible with{c} ∈ SM(P3).

Thus it is impossible to selectM1 ∈ SM(P1), M2 ∈
SM(P2) and M3 ∈ SM(P3) such that{M1,M2,M3} is
compatible, which is understandable asSM(P) = ∅.

Modular Equivalence
The definition ofmodular equivalencecombines features
from relativized uniform equivalence (Woltran 2004) and
visible equivalence (Janhunen 2003).

Definition 12 Logic program modulesP = (P, IP , OP)
andQ = (Q, IQ, OQ) are modularly equivalent, denoted
byP ≡m Q, iff

1. IP = IQ = I andOP = OQ = O, and
2. P(A) ≡v Q(A) for all A ⊆ I.

Modular equivalence is very close to visible equivalence de-
fined for modules. As a matter a fact, if Definition 4 is gen-
eralized for program modules, the second condition in Defi-
nition 12 can be revised toP ≡v Q. However,P ≡v Q is not
enough to cover the first condition in Definition 12, as visi-
ble equivalence only enforcesHbv(P) = Hbv(Q). If I = ∅,
modular equivalence coincides with visible equivalence. If
O = ∅, thenP ≡m Q means thatP andQ have the same
number of stable models on each input.

Furthermore, if one considers thefully visible case, i.e.
Hbh(P) = Hbh(Q) = ∅, modular equivalence can be seen
as a special case ofA-uniform equivalence forA = I. Re-
call, however, the restrictionsHead(P) ∩ I = Head(Q) ∩
I = ∅ imposed by module structure. With a further restric-
tion I = ∅, modular equivalence coincides with weak equiv-
alence becauseHb(P) = Hb(Q) can always be satisfied by
extending Herbrand bases. Basically, settingI = Hb(P)
would give us uniform equivalence, but the additional con-
dition Head(P) ∩ I = ∅ leaves room for the empty module
only.

Since≡v is not a congruence relation for∪, neither is
modular equivalence. The situation changes, however, if
one considers the join operationt which suitably restricts
possible contexts. Consider for instance the programsP
andQ given in Example 1. We can define modules based
on them:P = (P, {b}, {a}) andQ = (Q, {b}, {a}). Now
P ≡m Q and it is not possible to define a moduleR based
onR = {b← a.} such thatQ t R is defined.

Theorem 3 Let P,Q andR be logic program modules. If
P ≡m Q and bothP t R andQ t R are defined, thenP t
R ≡m Q t R.

Proof. Let P = (P, I, O) andQ = (Q, I, O) be modules
such thatP ≡m Q. Let R = (R, IR, OR) be an arbitrary
module such thatP t R andQ t R are defined. Consider
an arbitraryM ∈ SM(P t R). By Theorem 2,MP = M ∩
Hb(P) ∈ SM(P) andMR = M ∩ Hb(R) ∈ SM(R). Since
P ≡m Q, there is a bijectionf : SM(P) → SM(Q) such
thatMP ∈ SM(P)⇐⇒ f(MP) ∈ SM(Q), and

MP ∩ (O ∪ I) = f(MP) ∩ (O ∪ I). (1)

Let MQ = f(MP). Clearly,MP andMR are compatible.
Since (1) holds, alsoMQ andMR are compatible. Applying
Theorem 2 we getMQ∪MR ∈ SM(QtR). Define function
g : SM(P t R)→ SM(Q t R) as

g(M) = f(M ∩Hb(P)) ∪ (M ∩Hb(R)).

Clearly,g restricted to the visible part is an identity function,
i.e.M ∩ (I ∪ IR ∪O ∪OR) = g(M)∩ (I ∪ IR ∪O ∪OR).
Functiong is a bijection, since

• g is an injection:M 6= N impliesg(M) 6= g(N) for all
M, N ∈ SM(P t R), sincef(M ∩ Hb(P)) 6= f(N ∩
Hb(P)) or M ∩Hb(R) 6= N ∩Hb(R).

• g is a surjection: for anyM ∈ SM(QtR), N = f−1(M∩
Hb(Q)) ∪ (M ∩ Hb(R)) ∈ SM(P t R) andg(N) = M ,
sincef is a surjection.

The inverse functiong−1 : SM(Q t R) → SM(P t R) can
be defined asg−1(N) = f−1(N ∩Hb(Q))∪ (N ∩Hb(R)).
ThusP t R ≡m Q t R. ¤

It is instructive to consider a potentially stronger variant
of modular equivalence defined in analogy to strong equiva-
lence (Lifschitzet al. 2001):P ≡s

m Q iff P t R ≡m Q t R
holds for allR such thatPtR andQtR are defined. How-
ever, Theorem 3 implies that≡s

m adds nothing to≡m since
P ≡s

m Q iff P ≡m Q.

Complexity Remarks
Let us then make some observations about the computa-
tional complexity of verifying modular equivalence of nor-
mal logic programs. In general, deciding≡m is coNP-
hard, since deciding the weak equivalenceP ≡ Q re-
duces to deciding(P, ∅,Hb(P)) ≡m (Q, ∅, Hb(Q)). In
the fully visible caseHbh(P) = Hbh(Q) = ∅, deciding
P ≡m Q can be reduced to deciding relativized uniform
equivalenceP ≡I

u Q (Woltran 2004) and thus deciding≡m

is coNP-complete in this restricted case. In the other ex-
treme,Hbv(P) = Hbv(Q) = ∅ andP ≡m Q iff P and
Q have the same number of stable models. This suggests a
much higher computational complexity of verifying≡m in
general because classical models can be captured with stable
models (Niemel̈a 1999) and counting stable models cannot
be easier than#SAT which is#P-complete (Valiant 1979).

A way to govern the computational complexity of ver-
ifying ≡m is to limit the use of hidden atoms as done in
the case of≡v by Janhunen and Oikarinen (2005). There-
from we adopt the property of havingenough visible atoms
(the EVA property for short) defined as follows. For a nor-
mal programP and an interpretationMv ⊆ Hbv(P) for
the visible part ofP , thehidden partPh/Mv of P relative
Mv contains for each ruleh ← B+,∼B− ∈ P such that
h ∈ Hbh(P) andMv |= B+

v ∪ ∼B−
v , the respective hid-

den parth ← B+
h ,∼B−

h . The construction of the hidden
partPh/Mv is closely related to the simplification operation
simp(P, T, F) proposed by Cholewinski and Truszczyński
(1999), but restricted in the sense thatT andF are subsets
of Hbv(P) rather thanHb(P). More precisely put, we have
Ph/Mv = simp(P, Mv,Hbv(P)−Mv) for any programP .

Definition 13 A normal logic programP has enough vis-
ible atoms iffPh/Mv has a unique stable model for every
interpretationMv ⊆ Hbv(P).

The intuition behind Definition 13 is that the interpreta-
tion of Hbh(P) is uniquely determined for each interpreta-
tion of Hbv(P) if P has the EVA property. Consequently,
the stable models ofP can be distinguished on the basis of
their visible parts. By the EVA assumption (Janhunen &
Oikarinen 2005), the verification of≡v becomes acoNP-
complete problem forSMODELS programs1 involving hid-
den atoms. This complexity result enables us to generalize
the translation-based method from (Janhunen & Oikarinen

1This class of programs includes normal logic programs.

2002) for deciding≡v. Although verifying the EVA prop-
erty can be hard in general, there are syntactic subclasses
of normal programs (e.g. those for whichPh/Mv is always
stratified) with the EVA property. It should be stressed that
the use of visible atoms remains unlimited and thus the full
expressiveness of normal rules remains at our disposal.

So far we have discussed the role of the EVA assumption
in the verification of≡v. It is equally important in conjunc-
tion with ≡m. This becomes evident once we work out the
interconnections of the two relations in the next section.

Application Strategies
The objective of this section is to describe ways in which
modular equivalence can be exploited in the verification of
visible/weak equivalence. One concrete step in this respect
is to reduce the problem of verifying≡m to that of≡v by
introducing a special moduleGI that acts as a context gen-
erator. A similar technique is used by Woltran (2004) in the
case of relativized uniform equivalence.

Theorem 4 Let P and Q be program modules such that
Hbv(P) = Hbv(Q) = O ∪ I. ThenP ≡m Q iff P tGI ≡v

Q tGI whereGI = ({a← ∼a. a← ∼a | a ∈ I}, ∅, I) is
a module generating all possible inputs forP andQ.

Proof sketch. Note thatGI has2|I| stable models of the
form A ∪ {a | a ∈ I \A} for eachA ⊆ I. ThusP ≡v

PtGI andQ ≡v QtGI follow by Definitions 2 and 4 and
Theorem 2. It follows thatP ≡m Q iff P(A) ≡v Q(A) for
all A ⊆ I iff P tGI ≡v Q tGI . ¤

As a consequence of Theorem 4, the translation-based
technique from (Janhunen & Oikarinen 2005, Theorem 5.4)
can be used to verifyP ≡m Q given thatP andQ have
enough visible atoms (GI has the EVA property trivially).
More specifically, the task is to show thatEQT(PtGI ,Qt
GI) andEQT(Q tGI ,P tGI) have no stable models.

The introduction of modular equivalence was much moti-
vated by the need of modularizing the verification of weak
equivalence2. We believe that such a modularization could
be very effective in a setting whereQ is an optimized ver-
sion of P . Typically Q is obtained by making some local
modifications toP . In the following, we propose a further
strategy to utilize modular equivalence in the task of verify-
ing the visible/weak equivalence ofP andQ.

An essential prerequisite is to identify a module struc-
ture forP andQ. Basically, there are two ways to achieve
this: either the programmer specifies modules explicitly or
strongly connected components ofDep+(P) andDep+(Q)
are computed to detect them automatically. Assuming the
relationship ofP andQ as described above, it is likely that
these components are pairwise compatible and we can parti-
tionP andQ so thatP = P1t· · ·tPn andQ = Q1t· · ·tQn

where the respective modulesPi andQi have the same in-
put and output. Note thatPi andQi can be the same for a
number ofi’s under the locality assumption.

In this setting, the verification ofPi ≡m Qi for each pair
of modulesPi andQi is not of interest asPi 6≡m Qi does

2Recall that≡v coincides with≡ for programsP andQ having
equal and fully visible Herbrand bases.

not necessarily implyP 6≡v Q. However, the verification of
P ≡v Q can still be organized as a sequence ofn tests at the
level of modules, i.e. it is sufficient to show

Q1 t · · · tQi−1 t Pi t · · · t Pn ≡m

Q1 t · · · tQi t Pi+1 t · · · t Pn (2)

for each1 ≤ i ≤ n and the resulting chain of equalities
conveysP ≡v Q under the assumption thatP andQ have a
completely specified input. If not, then≡m can be addressed
using a similar chaining technique based on (2).

Example 5 Consider normal logic programsP andQ both
consisting of two submodules, i.e.P = P1 t P2 and Q =
Q1 tQ2 whereP1,P2,Q1, andQ2 are defined by

P1 = ({c← ∼a.}, {a, b}, {c}),
P2 = ({a← b.}, ∅, {a, b}),
Q1 = ({c← ∼b.}, {a, b}, {c}), and

Q2 = ({b← a.}, ∅, {a, b}).
Now,P1 6≡m Q1, butP1 andQ1 are visibly equivalent in all
contexts produced by bothP2 andQ2 (in this case actually
P2 ≡m Q2 holds, but that is not necessary). Thus

P1 t P2 ≡m Q1 t P2 ≡m Q1 tQ2,

which verifiesP ≡v Q as well asP ≡ Q.

It should be stressed that the programs involved in each
test (2) differ inPi andQi for which the other modules
form a common context, sayCi. A way to optimize the
verification of Pi t Ci ≡m Qi t Ci is to view Ci as
a module generating input forPi and Qi and to adjust
the translation-based method from (Janhunen & Oikarinen
2005) for such generators. More specifically, we seek com-
putational advantage from usingEQT(Pi,Qi) t Ci rather
thanEQT(Pi t Ci,Qi t Ci) and especially when the con-
text Ci is clearly larger than the modulesPi andQi. By
symmetry, the same strategy is applicable toQi andPi.

Related Work
The notion of modular equivalence is already contrasted
with other equivalence relations in previous sections.

Bugliesi, Lamma and Mello (1994) present an extensive
survey of modularity in conventional logic programming.
Two mainstream programming disciplines can be identified:
programming-in-the-largewhere programs are composed
with algebraic operators (O’Keefe 1985) andprogramming-
in-the-small with abstraction mechanisms (Miller 1986).
Our approach can be classified in the former discipline due
to resemblance to that of Gaifman and Shapiro (1989). But
stable model semantics and the denial of positive recursion
between modules can be pointed out as obvious differences
in view of their approach.

A variety of conditions on modules have also been intro-
duced. For instance, in contrast to our work, Maher (1993)
forbids all recursion between modules and considers Przy-
musinski’sperfect modelsrather than stable models. Brogi
et al. (1994) employ operators for program composition and
visibility conditions that correspond to the second item in

Definition 8. However, their approach covers only positive
programs and the least model semantics. Etalle and Gab-
brielli (1996) restrict the composition ofconstraint logic
program (CLP) modules with a condition that is close to
ours:Hb(P)∩Hb(Q) ⊆ Hbv(P)∩Hbv(Q) but no distinc-
tion between input and output is made; e.g.OP ∩ OQ 6= ∅
is allowed according to their definitions. They also strive for
congruence relations but in the case of CLPs.

Eiter, Gottlob, and Mannila (1997) consider the class of
disjunctive Datalogused as query programsπ over rela-
tional databases. As regards syntax, such programs are dis-
junctive programs which cover normal programs (involving
variables though) as a special case. The rough idea is that
π is instantiated with respect to an input databaseD for the
given input schemaR. The resulting models ofπ[D], which
depend on the semantics chosen forπ, are projected with re-
spect to an output schemaS. To link this approach to ours,
it is possible to viewπ as a program moduleP with input
I and outputO based onR andS, respectively. Thenπ[D]
is obtained asP(D). In contrast to our work, their mod-
ule architecture is based on bothpositive and negative de-
pendenciesand no recursion between modules is tolerated.
These constraints enable a straightforward generalization of
the splitting set theorem for the architecture.

Faberet al.(2005) apply themagic set methodin the eval-
uation of Datalog programs with negation, i.e. effectively
normal programs. This involves the concept of aninde-
pendent setS of a programP which is a specialization of
a splitting set (recall Theorem 1). Roughly speaking, the
idea is that the semantics of an independent setS is not af-
fected by the rest ofP and thusS gives rise to amodule
T = {h← B+,∼B− ∈ P | h ∈ S} of P so thatT ⊆ P
andHead(T) = S. Due to close relationship to splitting
sets, independent sets are not that flexible as regards parcel-
ing normal programs. For instance, the splittings demon-
strated in Examples 2 and 4 are impossible with independent
sets. In certain cases, the distinction ofdangerous rulesin
the definition of independent sets pushes negative recursion
inside modules which is unnecessary in view of our results.
Finally, the module theorem of Faberet al.(2005) is weaker
than Theorem 2.

Eiter, Gottlob and Veith (1997) address modularity within
ASP and view program modules asgeneralized quantifiers
the definitions of which are allowed to nest, i.e.P can refer
to another moduleQ by using it as a generalized quantifier.
This is an abstraction mechanism typical to programming-
in-the-small approaches.

Conclusion
In this article, we a propose a module architecture for logic
programs in answer set programming. The compatibility
of the module system and stable models is achieved by
allowing positive recursion to occur inside modules only.
The current design gives rise to a number of interesting re-
sults. First, the splitting set theorem by Lifschitz and Turner
(1994) is generalized to the case where negative recursion
is allowed between modules. Second, the resulting notion
of modular equivalenceis a proper congruence relation for
the join operation between modules. Third, the verification

of modular equivalence can be accomplished with existing
methods so that specialized solvers need not be developed.
Last but not least, we have a preliminary understanding how
the task of verifying weak equivalence can be modularized
using modular equivalence.

Yet the potential gain from the modular verification strat-
egy has to be evaluated by conducting experiments. A fur-
ther theoretical question is how the existing model theory
based onSE-modelsandUE-models(Eiter & Fink 2003) is
tailored to the case of modular equivalence. There is also a
need to expand the module architecture and module theorem
proposed here to cover other classes of logic programs such
as e.g. weight constraint programs, disjunctive programs,
and nested programs.

References
Brogi, A.; Mancarella, P.; Pedreschi, D.; and Turini, F.
1994. Modular logic programming.ACM Transactions on
Programming Languages and Systems16(4):1361–1398.
Bugliesi, M.; Lamma, E.; and Mello, P. 1994. Modular-
ity in logic programming.Journal of Logic Programming
19/20:443–502.
Cholewinski, P., and Truszczyński, M. 1999. Extremal
problems in logic programming and stable model compu-
tation. Journal of Logic Programming38(2):219–242.
Clark, K. L. 1978. Negation as failure. In Gallaire, H., and
Minker, J., eds.,Logic and Data Bases. New York: Plenum
Press. 293–322.
Eiter, T., and Fink, M. 2003. Uniform equivalence of logic
programs under the stable model semantics. InProc. of the
19th International Conference on Logic Programming, vol-
ume 2916 ofLNCS, 224–238. Mumbay, India: Springer.
Eiter, T.; Fink, M.; Tompits, H.; and Woltran, S. 2004.
Simplifying logic programs under uniform and strong
equivalence. InProc. of the 7th International Confer-
ence on Logic Programming and Nonmonotonic Reason-
ing, volume 2923 ofLNAI, 87–99. Fort Lauderdale, USA:
Springer.
Eiter, T.; Gottlob, G.; and Mannila, H. 1997. Disjunc-
tive datalog. ACM Transactions on Database Systems
22(3):364–418.
Eiter, T.; Gottlob, G.; and Veith, H. 1997. Modular logic
programming and generalized quantifiers. InProc. of the
4th International Conference on Logic Programming and
Nonmonotonic Reasoning, volume 1265 ofLNCS, 290–
309. Dagstuhl, Germany: Springer.
Eiter, T.; Tompits, H.; and Woltran, S. 2005. On solution
correspondences in answer-set programming. InProc. of
19th International Joint Conference on Artificial Intelli-
gence, 97–102. Edinburgh, UK: Professional Book Center.
Etalle, S., and Gabbrielli, M. 1996. Transformations
of CLP modules. Theoretical Computer Science166(1–
2):101–146.
Faber, W.; Greco, G.; and Leone, N. 2005. Magic sets
and their application to data integration. InProc. of 10th
International Conference on Database Theory, ICDT’05,
volume 3363 ofLNCS, 306–320. Edinburgh, UK: Springer.

Gaifman, H., and Shapiro, E. 1989. Fully abstract com-
positional semantics for logic programs. InProc. of the
16th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, 134–142. Austin, Texas, USA:
ACM Press.
Gelfond, M., and Leone, N. 2002. Logic programming
and knowledge representation — the A-Prolog perspective.
Artificial Intelligence138:3–38.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. InProc. of the 5th Inter-
national Conference on Logic Programming, 1070–1080.
Seattle, Washington: MIT Press.
Janhunen, T., and Oikarinen, E. 2002. Testing the equiva-
lence of logic programs under stable model semantics. In
Proc. of the 8th European Conference on Logics in Artifi-
cial Intelligence, volume 2424 ofLNAI, 493–504. Cosenza,
Italy: Springer.
Janhunen, T., and Oikarinen, E. 2005. Automated verifi-
cation of weak equivalence within theSMODELS system.
Submitted to Theory and Practice of Logic Programming.
Janhunen, T.; Niemelä, I.; Seipel, D.; Simons, P.; and You,
J.-H. 2006. Unfolding partiality and disjunctions in sta-
ble model semantics.ACM Transactions on Computational
Logic7(1):1–37.
Janhunen, T. 2003. Translatability and intranslatability
results for certain classes of logic programs. Series A: Re-
search report 82, Helsinki University of Technology, Lab-
oratory for Theoretical Computer Science, Espoo, Finland.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.;
and Scarcello, F. 2006. The DLV system for knowledge
representation and reasoning.ACM Transactions on Com-
putational Logic. Accepted for publication.
Lifschitz, V., and Turner, H. 1994. Splitting a logic
program. InProc. of the 11th International Conference
on Logic Programming, 23–37. Santa Margherita Ligure,
Italy: MIT Press.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs.ACM Transactions on Compu-
tational Logic2(4):526–541.
Maher, M. J. 1993. A transformation system for deductive
database modules with perfect model semantics.Theoreti-
cal Computer Science110(2):377–403.
Marek, W., and Truszczýnski, M. 1999. Stable models and
an alternative logic programming paradigm. InThe Logic
Programming Paradigm: a 25-Year Perspective. Springer-
Verlag. 375–398.
Miller, D. 1986. A theory of modules for logic program-
ming. InProc. of the 1986 Symposium on Logic Program-
ming, 106–114. Salt Lake City, USA: IEEE Computer So-
ciety Press.
Niemel̈a, I. 1999. Logic programming with stable model
semantics as a constraint programming paradigm.Annals
of Math. and Artificial Intelligence25(3-4):241–273.
Oikarinen, E., and Janhunen, T. 2004. Verifying the equiv-
alence of logic programs in the disjunctive case. InProc. of
the 7th International Conference on Logic Programming

and Nonmonotonic Reasoning, volume 2923 ofLNAI, 180–
193. Fort Lauderdale, USA: Springer.
O’Keefe, R. A. 1985. Towards an algebra for constructing
logic programs. InProc. of the 1985 Symposium on Logic
Programming, 152–160.
Sagiv, Y. 1987. Optimizing datalog programs. InProc. of
the 6th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, 349–362. San Diego,
USA: ACM Press.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and implementing the stable model semantics.Artificial
Intelligence138(1–2):181–234.
Turner, H. 2003. Strong equivalence made easy: Nested
expressions and weight constraints.Theory and Practice
of Logic Programming3(4-5):609–622.
Valiant, L. G. 1979. The complexity of enumeration and re-
liability problems.SIAM Journal on Computing8(3):410–
421.
Woltran, S. 2004. Characterizations for relativized no-
tions of equivalence in answer set programming. InProc. of
the 9th European Conference on Logics in Artificial Intel-
ligence, volume 3229 ofLNAI, 161–173. Lisbon, Portugal:
Springer.

