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Abstract 2004) suggest that the translation-based method can be ef-
_ _ _ _ fective and sometimes much faster than performing a simple
A Gaifman-Shapiro-style architecture of program modules is cross-check of stable models.

introduced in the case of normal logic programs under sta- 1 fieisag —
ble model semantics. The composition of program mod- As a potential limitation, the translation-based method

ules is suitably limited by module conditions which ensure as described above treats programs as integral entities and
the compatibility of the module system with stable models. therefore no computational advantage is sought by breaking
The resulting module theorem properly strengthens Lifschitz programs into smaller parts, smpdulef some kind. Such

and Turner’s splitting set theorem (1994) for normal logic an optimization strategy is largely preempted by the fact that
programs. Consequently, the respective notion of equiva-  weak equivalence, denoted by, fails to be acongruence
lence between modules, i.e. modular equivalence, proves to  relation for U, i.e. weak equivalence is not preserved un-
be a congruence relation. Moreover, it is analyzed (i) how  der substitutions in unions of programs. More formally put,
the translation-based verification technique from (Janhunen  p — Q does notimplyPUR = QU R in general. The same

& Oikarinen 2005) is accommodated to the case of modu- can be stated abouniform equivalencgSagiv 1987) but

lar equivalence and (ii) how the verification of weak/visible . . .
equivalence can be reorganized as a sequence of module-level not abousstrong equivalencelifschitz, Pearce, & Valverde

tests and optimized on the basis of modular equivalence. 2001) which admits substitutions by definition.
From our point of view, strong equivalence seems inap-
propriate forfully modularizingthe verification task of weak
Introduction equivalence. This is simply because two progrdfrendQ
may be weakly equivalent even if they build on respective
modulesP; C P and@; C @ which are not strongly equiv-
alent. For the same reason, program transformations that
are known to preserve strong equivalence (Edteal. 2004)
do not provide an inclusive basis for reasoning about weak
equivalence. Nevertheless, there are cases where one can
utilize the fact that strong equivalence implies weak equiv-

Answer set programmin@ASP) is a very promising con-
straint programming paradigm (Niendell999; Marek &
Truszczyiski 1999; Gelfond & Leone 2002) in which prob-
lems are solved by capturing their solutionsaaswer sets
or stable model®f logic programs. The development and
optimization of logic programs in ASP gives rise to a meta-

Leve_l F;:ggltengfSV;r';y'trr‘]gsv"hrgg‘lgLlsugifgr?;g:.gmg;ggj Zre_ alence. For instance, # and(Q are composed of strongly
quivi | ve this p ' : p equivalent pairs of moduleB; andQ); for all 4, thenP and

proach has been proposed and extended further (Janhunen &Q can be directly inferred to be strongly and weakly equiva-

\(/)\;gﬁrr;r;]ego%&())zirzgrnﬁa grcl)oi Q(';g;”.g?g s‘o‘:ﬁgzgqeg?gqg; lent. These observations about strong equivalence motivate
’ u ying1 ! IN€ WO 109IC the strive for a weaker congruence relation that is compatible

programsP and @ under consideration into two logic pro- with weak equi
, guivalence at program-level.
gramsBEQT(P, @) and EQT(Q, P) which have no stable To address the lack of a suitable congruence relation in

models iff P and (Q are weakly equivalenti.e. have the h ¢ ASP desian in thi
same stable models. This enables the use of the same ASP€ context of ASP, we propose a new design In this ar-
solver, such asMODELS (Simons, Niemed, & Soininen ticle. The_ design superficially resembles that .of Gaifman
2002), bLv (Leoneet al. 2006) orGNT (Janhuneret al. and Shapiro (1989) but stable model semantics (Gelfond
2006), for the equivalence verification problem as for the & Lifschitz 1988) and special module conditions are in-
corporated. The feasibility of the design is crystallized in

search of stable models in general. First experimental re- dule th hich sh h dul e full
sults (Janhunen & Oikarinen 2002; Oikarinen & Janhunen & Moduie theorenwhich shows the module system fully
compatible with stable models. In fact, the module theo-
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equivalence, i.emodular equivalengevhich turns out to be

a proper congruence relation and reduces to weak equiva-

lence for program modules which have a completely speci-
fied input and no hidden atoms. This kind of modules cor-
respond to normal logic programs with completely visible

Herbrand base. If normal progran’sand(@ are composed

of modularly equivalent moduleB; and Q; for all 4, then

P and @ are modularly equivalent or equivalently stated

weakly equivalent. The notion of modular equivalence

Herbrand base. Moreovelb(P) is supposed to be finite
wheneverP is.

Given a normal logic progran®, aninterpretation of
P is a subset ofib(P) defining which atoms ofib(P) are
true @ € M) and which are falsea( ¢ M). An interpre-
tation M C Hb(P) is a(classical) modebf P, denoted by
ME PIiff BPFC MandB~NM = Qimply h € M
for each ruleh < BT,~B~ ¢ P. For a positive program
P, M C Hb(P) is the (unique)east modebf P, denoted

opens immediately new prospects as regards the translation-by LM(P), iff there is noM’ = P such thatM’ C M.

based verification method (Janhunen & Oikarinen 2002;
Oikarinen & Janhunen 2004). First of all, the method can
be tuned for the task of verifying modular equivalence by at-
taching acontext generatoto program modules in analogy

to (Woltran 2004). Second, we demonstrate how the verifi-

cation of weak equivalence can be reorganized as a sequenc

Stable modelas proposed by Gelfond and Lifschitz (1988)
generalize least models for normal logic programs.

Definition 2 Given a normal logic progran® and an inter-
pretation M C Hb(P) the Gelfond-Lifschitz reduct

P = {h— B*|h— B*,~B~€ Pand MNB~ =},

of tests, each of which concentrates on a pair of respective and M is a stable model oP iff M = LM(P™).

modules in the programs subject to the verification task.
The plan for the rest of this article is as follows. As a

preparatory step, we briefly review the syntax and seman-

tics of normal logic programs and define notions of equiva-

lence addressed in the sequel. After that we specify program
modules as well as establish the module theorem discussedyyy,

above. Next, we define the notion of modular equivalence,
prove the congruence property for it, and give a brief account
of computational complexity involved in the respective ver-
ification problem. Connections between modular equiva-
lence and the translation-based method for verifying visible
equivalence (Janhunen & Oikarinen 2005) are also worked
out. Finally, we briefly contrast our work with earlier ap-
proaches and present our conclusions.

Normal Logic Programs

We will considerpropositional normal logic program@
this paper.

Definition 1 A normal logic program (NLP) is a (finite) set
of rules of the formh «— B*,~B~, whereh is an atom,
Bt and B~ are sets of atoms, andB = {~b | b € B} for
any set of atoms.

“w o
~

The symbol denotesdefault negationor negation as
failure to prove (Clark 1978). Atoms and their default
negations~a are calleddefault literals A rule consists
of two parts: i is the headand the rest is thbody Let
Head(P) denote the set of head atoms appearing,mne.

Head(P) = {h | h «— B*,~B~ € P}.

If the body of a rule is empty, the rule is calledact and
the symbol “-" can be omitted. IfB~ = {, the rule is
positive A program consisting only of positive rules is a
positive logic program

Usually theHerbrand basélb(P) of a normal logic pro-
gram P is defined to be the set of atoms appearing in the
rules of P. We, however, use a revised definitiolb(P)
is any fixed set of atoms containing all atoms appearing in
the rules of P. Under this definition the Herbrand base of
P can be extended by atoms having no occurrenceB.in
This aspect is useful e.g. whénis obtained as a result of
optimization and there is a need to keep track of the original

Stable models are not necessarily unique in general: a nor-
mal logic program may have several stable models or no sta-
ble models at all. The set of stable models of a NRRs
denoted bySM(P).

We define gpositive dependency relationC Hb(P) x

(P) as the reflexive and transitive closure of a relation
<, defined as follows. Given,b € Hb(P), we say thab
depends directly on, denoted: <, b, iff thereis a ruleh —
B*,~B~ ¢ Psuchthatz € BT. Thepositive dependency
graphof P, Dep™(P), is a graph withiIb(P) as the set of
vertices and{{(a,b) | a,b € Hb(P) and a < b} as the

set of edges. Theegative dependency graffep (P) can

be defined analogously. #trongly connected componenft
Dept(P) is a maximal subsef C Hb(P) such that for all

a,b € C, {a,b) is in Dep™(P). Thus strongly connected
components oDep™(P) partition Hb(P) into equivalence
classes. The dependency relatiortan then be generalized
for the strongly connected components; < Cj, i.e. C;
depends o, iff ¢; < ¢; foranyc; € C; ande; € C;.

A splitting setfor a NLP P is any setU C Hb(P) such
that for every ruleh <« BT,~B~ ¢ P, if h € U then
BT UB~ CU. The setof rules «— B*T,~B~ ¢ P such
that {h} U BT U B~ C U is thebottomof P relative to
U, denoted byby (P). The setty(P) = P\ by(P) is the
top of P relative toU. The top can be partially evaluated
with respect to an interpretatioXi C U resulting a program
e(ty(P), X) that contains arule < (B™\U),~(B~\U)
for eachh «— B*,~B~ € ty(P) suchthatBTNU C X
and(B~NU)N X = . Given a splitting set/ for a NLP
P, asolutionto P with respect taU is a pair(X,Y’) such
thatX C U,Y C Hb(P)\ U, X € SM(by(P)), and
Y € SM(e(ty(P), X)). The splitting set theorenmelates
solutions with stable models.

Theorem 1 (Lifschitz & Turner 1994) Let/ be a splitting
set for a NLPP and M C Hb(P). ThenM € SM(P) iff
the pair (M NU, M \ U) is a solution toP with respect to
U.

Notions of Equivalence

The notion ofstrong equivalencevas introduced by Lifs-
chitz, Pearce and Valverde (2001) wheraagorm equiva-



lencehas its roots in the database community (Sagiv 1987); QU R for all normal logic programsR over the set of atoms
cf. (Eiter & Fink 2003) for the case of stable models. A; uniformly equivalent relative tol, denoted by? =4 Q,

Definition 3 Normal logic programsP and @ are (weakly) iff PUF = QU F for all sets of facts” € A.
equivalent, denote® = @, iff SM(P) = SM(Q); strongly SettingA = () in the above reduces both relativized notions

equivalent, denote® =, Q, iff PU R = Q U R for any to weak equivalence, and thus neither is a congruence.
normal logic programR; and uniformly equivalent, denoted Eiter et al. (2005) introduce a very general framework
P=,Q,iff PUF = QU F for any set of factg". based onequivalence frame$o capture various kinds of

equivalence relations. Most of the notions of equivalence
defined above can be defined using the framework. Vis-
ible equivalence is exceptional in the sense that it does
not fit into equivalence frames based projected answer
sets A projective variant of Definition 4 would simply
equate{ M NHb,(P) | M € SM(P)} to {N NHb,(Q) |

N € SM(Q)}. As aconsequence, the number of answer sets
may not be preserved which we find somewhat unsatisfac-
tory because of the general nature of ASP as discussed after

Clearly, P =5 Q impliesP =, @Q, andP =, @ implies

P = @, but not vice versa (in both cases). Strongly equiv-
alent logic programs are semantics preserving substitutes of
each other and the relatien, can be understood ascan-
gruence relatioramong normal programs, i.e. i =, Q,
thenP U R =; @ U R for all normal programsk. On

the other hand, uniform equivalence is not a congruence, as
shown in Example 1 below. Consequently, the same applies
to weak equivalence and thasand=, are best suited for Definition 4. Consider, for instance prografis— {a —
the comparison of complete programs, and not for modules. b b — ~a. andQ, = P U {ci — ~di. di — ~cy. |

Example 1 (Eiter et al. 2004, Example 1) Consider normal 0 < ¢ < n} with Hb, (P) = Hb,(Q,) = {a,b}. Whenever

logic programsP = {a.} and@ = {a «— ~b. a < b.}. It n > 0 these programs are not visibly equivalent but they
holdsP =, Q,butPUR # QU Rfor R = {b «— a.}. would be equivalent under the projective definition. With
ThusP #, Q and=, is not a congruence relation fa. sufficiently large values aof it is no longer feasible to count
For P = Q to hold, the stable models §M(P) andSM(Q) the number of different stable models (i.e. solutions)jf

have to be identical subsets Bb(P) andHb(Q), respec- is used.

tively. The same can be stated about strong and uniform )
equivalence. This makes these notions of equivalence less Modular Logic Programs

useful if Hb(P) andHb(Q) differ by some atoms which are e define dogic program modulsimilarly to Gaifman and
not trivially false in all stable models. Such atoms might, Shapiro (1989), but consider the case of normal logic pro-

however, be of use when formalizing some auxiliary con- grams instead of positive (disjunctive) logic programs.
cepts. Following the ideas from (Janhunen 2003) we par-

tition Hb(P) into two partsHb, (P) and Hby,(P) which Definition 6 Atriple P = (P, I, O) is a (propositional logic
determine thevisible and thehidden parts of Hb(P), re- program) module, if

spectively. Invisible equivalencéhe idea is that the hidden
atoms inHby, (P) and Hby, (Q) are local toP and @ and i
negligible as regards the equivalence of the two programs. 2 { andO are sets of propositional atoms such that

Definition 4 (Janh 2003) Normal logi me In0O =p; and
efinition 4 (Janhunen ormal logic progra -
and Q are visibly equivalent, denoted by =, @, iff 3. Head(P) NI =10.

1. Pis afinite set of rules of the forfn«— BT,~B~;

Hb, (P) = Hb,(Q) and there is a bijectiorf : SM(P) — The Herbrand base of moduke Hh(P), is the set of atoms
SM(Q) such that for all interpretationsM € SM(P), appearing inP combined with/ U O. Intuitively the setl
M N Hby(P) = f(M) N Hb(Q). defines thénputof a module and the sétis theoutput The

Note that the number of stable models is preserved under input and output atoms are considered visible, i.e_. the visible
=,. Such a strict correspondence of models is much dic- Herbrand base of moduleis Hb, (P) = I U O. Notice that
tated by the ASP methodology: the stable models of a pro-  @hdO can also contain atoms not appearin@irsimilarly
gram usually correspond to the solutions of the problem be- t0 the possibility of having additional atoms in the Herbrand
ing solved and thuss, preserves the number of solutions, Pases of normal logic programs. All other atoms are hidden,
too. In the fully visible case, i.éby,(P) = Hb,(Q) = 0, i.e. Hby (P) = Hb(P) \ Hby (P). .
the relation=, becomes very close ta. The only differ- As regards the composition of modules, we follow (Gaif-
ence is the additional requiremédiib(P) = Hb(Q) insisted man & Shapiro 1989) and take the union of the disjoint sets
by =.. This is of little importance as Herbrand bases can al- 0f rules involved in them. The conditions given by Gaifman
ways be extended to meHih(P) = Hb(Q). Since weak gnd Shapiro are not yet ;ufﬂmem for our purposes, 'and we
equivalence is not a congruence, visible equivalence cannot impose a further restriction denying positive recursion be-
be a congruence either. tween modules.

The relativized variants of strong and uniform equiva-  pefinition 7 Consider modules?; — (P1,I,0,) and
lenceintroduced by Woltran (2004) allow the contexttobe  p, — (p, 1, 0,) and letCy, ..., C, be the str70ngly con-

constrained using a set of atoms nected components Bkp (P, UP,). There is a positive re-
Definition 5 Normal logic programsP and ) are strongly cursion betweei®; andPs, if C;N 01 # P andC;NOy # 0
equivalent relative tod, denoted byP =4 Q, iff PUR = for some componerdt;.



The idea is that all inter-module dependencies go through Definition 9 Given a modulé® = (P,I,0) and a set of
the input/output interface of the modules, i.e. the output atomsA C [ the instantiation ofP with the inputA is
of one module can serve as the input for another and hid- P(A) =P UF 4, whereF 4 = ({a. | a € A}, 0, 1).
den atoms are local to each module. Now, if there is a ; ;
. ' Note thatP(A) = (PU{a. | a € A},0,TUO) is essentially
+ ) )
strongly connected compone€} in Dep™(P1 U %) con- a normal logic program witd U O as the visible Herbrand

taining atoms from boti®, andOs, we know that, if pro- - ase \ne can thus generalize the stable model semantics for

gramsé?l and'tl?z :I;1re combined,t Sotmfbi’#tﬁfm ﬁ?“ﬂ"f Py modules. In the sequel we identif}{ A) with the respective
€pencs posriively on Some output & 2 Which again set of rulesP U F4, whereF4 = {a. | a € A}. Inthe

depends positively on. This yields a positive recursion. following M N I acts as a particular input with respect to

Definition 8 LetP; = (Py,I1,01) andPy = (Ps, I, 02) which the module is instantiated.

be modules su.ch that Definition 10 An interpretationM C Hb(P) is a stable
1. 01 N0y =0; model of a modul® = (P, I, O), denoted by\/ € SM(P),

2. Hby(P1) N Hb(Py) = Hby, (P2) N Hb(P;) = (; and iff M = LM(PM U Fyyny).

3. there 'S. nlo positive recursion betwdEnand]P’?. ] We define a concept @ompatibilityto describe when a sta-
Then the join ofP; andP,, denoted byP; LI P, is defined, ble modelM; of moduleP; can be combined with a stable
andP; UPy = (P U Py, (11 \ O2) U (12 \ O1),01 U Oz). model M, of another modul@,. This is exactly when\;

Remark. Condition 1 in Definition 8 is actually redundant andM, share the common (visible) part.
as it is implied by condition 3. Also, condition 2 can be

circumvented in practice using a suitable scheme, e.g. based
on module names, to rename the hidden atoms uniquely for

Definition 11 Let P; and Py be modules, and\/; ¢
SM(P,) and M € SM(IPy) their stable models which are
compatible, iffA; N Hb, (P2) = My N Hb, (Py).

each module.

Some observations follow. Since each atom is defined in If a program (module) consists of several modules, its stable
one module, the sets of rulesliiy andP, are disjoint, i.e. models are locally stable for the respective submodules; and
P, N P, ={. Also, on the other hand, local stability implies global stability as

Hb(P; UP,) = Hb(P;)UHb(P,), long as the stable models of the submodules are compatible.
Hb,(P; UP;) = Hby(P;)UHb,(Ps), and Theorem 2 (Module theorem). LeP; and P, be modules
Hby (P UP,) = Hby(Py) UHby(Py). such thatP; LI P, is defined. Now)M € SM(P; U P,) iff

.. . . M, = MnN Hb(Pl) € SM(]P)l), My = M N Hb(]P)Q) €
Note that the module conditions above impose no restric- SM(P,), and M, and M, are compatible.

tions onnegativedependencies or on positive dependencies
insidemodules. The input dP, LI P, might be smaller than Proof sketch. “=" M; and M- are clearly compatible and
the union of inputs of individual modules. This is illustrated it is straightforward to show that conditions 1 and 2 in Defi-

by the following example. nition 8 imply M, € SM(P,) andM; € SM(P,).

Example 2 Consider module® = ({a «— ~b.},{b},{a}) “<" ConsiderP, = (P,1,0:), Py = (P, I5,0,) and
andQ = ({b — ~a.},{a},{b}). The join ofP and Q is theirjoinP =P, UP, = (R,I,O). Let M, € SM(P,), and
defined, and® LI Q = ({a «— ~b. b — ~a.},0, {a, b}). M, € SM(IP;) be compatible and defink/ = M; U M.

. . . There is a strict total ordering for the strongly connected
The following hold for the intersections of Herbrand bases components”; of Dep*(P) such that ifC; < C;, then

under the conditions 1 and 2 in Definition 8: C; < C;jandC; £ Ci;orC; £ C; andC; £ Ci. Let
Hby (P1) N Hby (P2) C, < -+ < C,, be such an ordering. Show that exactly

= Hb(P;) N Hb(P3) one of the following holds for eact;: (i) C; C I, (ii)

= (11 N 12) U (Il N 02) U ([2 N 01)7 and C; CO1U th(]Pl)! or (”I) C; €O U th(PQ)' Fma”y!

Hby (P1) N Hby, (Py) = 0. show by induction that

Join operationJ has the following properties: M (.@ Ci) = LM(PM U Farnp) 0 (‘@ )

o Identity: P L (0,0,0) = (0,0,0) UP =P for all . i=1 i=1

e Commutativity: P; LI P, = P, LI P; for all modulesP; holds for0 < k < n by applying the splitting set theorem
andP, such thaf?; U P, is defined. (Lifschitz & Turner 1994). |

e Associativity: (P, LI Py) LIP; = Py L (P, U Ps) for all Example 3 shows that condition 3 in Definition 8 is neces-
modulesP;, P, andP5 such that the joins are defined. sary to guarantee that local stability implies global stability.

Note that equality sign=" used here denotes syntactical Example 3 ConsiderP; = ({a <« b.},{b},{a}) and

equivalence, whereas semantical equivalence will be defined P, = ({b « a.},{a}, {b}) with SM(P;) = SM(P2) =

in the next section. {0,{a,b}}. The join ofP; and P, is not defined because
The stable semantics of a module is defined with respect of positive recursion (conditions 1 and 2 in Definition 8 are

to a given input, i.e. a subset of the input atoms of the mod- satisfied, however). Fora NLP = {a « b. b «— a.}, we

ule. Input is seen as a set of facts (or a database) to be addedyet SM(P) = {f}. Thus, the positive dependency between

to the module. a andb excludega, b} from SM(P).



Theorem 2 is strictly stronger than the splitting set theorem Definition 12 Logic program module® = (P,Ip,Op)
(Lifschitz & Turner 1994) for normal logic programs. Uf andQ = (Q,Ig,Oq) are modularly equivalent, denoted
is a splitting set for a NLFP, then byP =, Q, iff

P=BUT= (by(P),0.U) U (ty(P),U,Hb(P)\U), 1 Ip=Ig=TIandOp =0Oq =0, and

and it follows from Theorems 1 and 2 thaf; € SM(B) 2. P(A) = Q(A) for a.II Act. o _
andM, e SM(T) iff (My, M, \ U) is a solution forP with Modular equivalence is very close to visible equivalence de-
respect td/. On the other hand the splitting set theorem can- fined for modules. As a matter a fact, if Definition 4 is gen-
not be applied to e.d? LI Q from Example 2, since neither ~ eralized for program modules, the second condition in Defi-
{a} nor {b} is a splitting set. Our theorem also strength- hition 12 can be revised =, Q. HoweverP =, Qisnot
ens a module theorem given in (Janhunen 2003, Theorem enough. to cover the first condition in Definition 12, as visi-
6.22) to cover normal programs that involve positive body ble equivalence only enforcétb, (P) = Hb, (Q). If I =0,
literals, too. Moreover, Theorem 2 can easily be general- modular EQU|Va|enCG coincides with visible equalence. If
ized for modules consisting of several submodules. Con- O = 0, thenP =, Q means thal’ andQ have the same
sider a collection of moduleB, ..., P, such that the join number of stable models on each input. _
P, U---UP, is defined (recall that is associative). We say Furthermore, if one considers tifielly visible casei.e.
that a collection of stable mode{g\/;, ..., M, } for mod- Hby (P) = Hby(Q) = 0, modular equivalence can be seen
ulesPy, ..., P,, respectively, isompatible iff 1/; and M; as a special case of-uniform equivalence forl = I. Re-
are pairwise compatible for all < i, j < n. call, however, the restrictioread(P) N I = Head(Q) N
I = () imposed by module structure. With a further restric-
tion I = (), modular equivalence coincides with weak equiv-
alence becauddhb(P) = Hb(Q) can always be satisfied by
extending Herbrand bases. Basically, setting- Hb(IP)
would give us uniform equivalence, but the additional con-
dition Head(P) N I = () leaves room for the empty module
only.

Since=, is not a congruence relation far, neither is
modular equivalence. The situation changes, however, if
one considers the join operatianwhich suitably restricts

Corollary 1 LetPq,...,P, be acollection of modules such
thatP; U --- LU P, is defined. Now € SM(P, U---UP,)

iff M; = M NHb(P;) € SM(P;) forall 1 <4 <mn, and the
set of stable modelghM, ..., M, } is compatible.

Corollary 1 enables the computation of stable models on a
module-by-module basis, but it leaves us the task of exclud-
ing mutually incompatible combinations of stable models.

Example 4 Consider modules

Py = ({a+ ~b.},{b},{a}), possible contexts. Consider for instance the programs
P, = ({b— ~c},{c},{b}), and and@ given in Example 1. We can define modules based
Py ({e — ~a}, {a}, {c}). on them:P = (P, {b},{a}) andQ = (@, {b}, {a}). Now

P =, Q and it is not possible to define a modRebased
on R = {b « a.} such that) LI R is defined.

Theorem 3 Let P, Q@ and R be logic program modules. If
P =, Qand bothP UR andQ LI R are defined, thei® LI
R=,QUR.

Proof. LetP = (P,1,0) andQ = (Q, I,0) be modules
such thatP =,, Q. LetR = (R, Ir,Opr) be an arbitrary
module such thaP? U R andQ U R are defined. Consider
an arbitraryM € SM(P U R). By Theorem 2Mp = M N
Hb(P) € SM(PP) andMr = M N Hb(R) € SM(R). Since
P =, Q, there is a bijectiory : SM(P) — SM(Q) such
thatMp € SM(P) <= f(Mp) € SM(Q), and

Mpn(OUI) = f(Mp)Nn(OUI). 1)

Let Mg = f(Mp). Clearly, Mp and My are compatible.
Since (1) holds, alsd/g and M are compatible. Applying
Theorem 2 we getdo UMy € SM(QUR). Define function
g: SM(PUR) - SM(QUR) as

g(M) = f(M N Hb(P)) U (M N Hb(R)).

Clearly, g restricted to the visible part is an identity function,
e MN(IUIRUOUOR)=g(M)N(ITUIgUOUOR).
Functiong is a bijection, since

The joinlP = Py LI P, LI P53 is defined,
P=({a— ~b. b— ~c.c— ~a.},0,{a,b,c}).

Now SM(Py) = {{a},{b}}, SM(Py) = {{b},{c}} and
SM(P3) = {{a},{c}}. To apply Corollary 1 for finding
SM(P), one has to find a compatible triple of stable models
My, M, and M3 for Py, Py, andP3, respectively.

e Now{a} € SM(P;) and{c} € SM(P,) are compatible,
since{a} N Hby(P2) = § = {c} N Hby(P;). However,
{a} € SM(P3) is not compatible with{c} € SM(P;),
since{c} N Hb,(P3) = {c} # 0 = {a} N Hb,(Py).
On the other hand{c} € SM(P3) is not compatible with
{a} € SM(PPy), since{a} N Hb,(P3) = {a} # 0 =
{C} n Hbv(Pl)

e Also{b} € SM(PP,) and{b} € SM(P2) are compatible,
but {b} € SM(P,) is incompatible with{a} € SM(Ps).
Nor is {b} € SM(P2) compatible with{c} € SM(P3).

Thus it is impossible to seledt/; € SM(Py), My €

SN:[(]P)Q) and M3 € SM(]P;;) such that{Ml,Mg,Mg} is

compatible, which is understandable &&[(P) = 0.

Modular Equivalence

The definition ofmodular equivalenceombines features
from relativized uniform equivalence (Woltran 2004) and
visible equivalence (Janhunen 2003).

e gis aninjection:M # N impliesg(M) # g(N) for all
M,N € SM(P UR), sincef(M NnHb(P)) # f(NN
Hb(P)) or M N Hb(R) # N N Hb(R).



e gisasurjection: forany/ € SM(QUR), N = f~1(MnN
Hb(Q)) U (M NHb(R)) € SM(PUR) andg(N) = M,
sincef is a surjection.

The inverse functiog—! : SM(Q U R) — SM(P U R) can

be defined ag=!(N) = f~1(N NHb(Q)) U (N NHb(R)).

ThusPUR =, QUR. O
It is instructive to consider a potentially stronger variant

of modular equivalence defined in analogy to strong equiva-

lence (Lifschitzet al. 2001):P =5, Qiff PUR =, QUR
holds for allR such that” LR andQ LR are defined. How-
ever, Theorem 3 implies that;, adds nothing te=,, since

P=s Qiff P=, Q.

Complexity Remarks

2002) for deciding=,. Although verifying the EVA prop-
erty can be hard in general, there are syntactic subclasses
of normal programs (e.g. those for whiéh /M, is always
stratified) with the EVA property. It should be stressed that
the use of visible atoms remains unlimited and thus the full
expressiveness of normal rules remains at our disposal.

So far we have discussed the role of the EVA assumption
in the verification of=,. It is equally important in conjunc-
tion with =,,,. This becomes evident once we work out the
interconnections of the two relations in the next section.

Application Strategies

The objective of this section is to describe ways in which
modular equivalence can be exploited in the verification of

Let us then make some observations about the computa- Visible/weak equivalence. One concrete step in this respect

tional complexity of verifying modular equivalence of nor-
mal logic programs. In general, deciding,, is CONP-
hard, since deciding the weak equivalenee = (@ re-
duces to decidind P, 0, Hb(P)) =, (Q,0,Hb(Q)). In
the fully visible casetib, (P) = Hb,(Q) = 0, deciding
P =, Q can be reduced to deciding relativized uniform
equivalence? =. @ (Woltran 2004) and thus decidirg,,
is coNP-complete in this restricted case. In the other ex-
treme, Hb, (P) = Hb,(Q) = 0 andP =,, Q iff P and

is to reduce the problem of verifying,, to that of=, by
introducing a special modul&; that acts as a context gen-
erator. A similar technique is used by Woltran (2004) in the
case of relativized uniform equivalence.

Theorem 4 Let P and Q be program modules such that
Hb,(P) = Hb,(Q) = OUI. ThenP =, Qiff PUG; =,
QUG whereG; = ({a « ~a. @+ ~a|ael},0,1)is

a module generating all possible inputs #Band Q.

Q have the same number of stable models. This suggests aProof sketch. Note thatG; has2!/! stable models of the

much higher computational complexity of verifyirg,, in

form Au{a | a eI\ A} foreachA C I. ThusP =,

general because classical models can be captured with stablé” L/ Gr andQ =, QUG follow by Definitions 2 and 4 and

models (Niem&l 1999) and counting stable models cannot
be easier thagtSAT which is#P-complete (Valiant 1979).

A way to govern the computational complexity of ver-
ifying =, is to limit the use of hidden atoms as done in
the case ofs, by Janhunen and Oikarinen (2005). There-
from we adopt the property of havirenough visible atoms
(the EVA property for short) defined as follows. For a nor-
mal programP and an interpretatiod/, C Hb,(P) for
the visible part ofP, the hidden parth, /M, of P relative
M, contains for each rulé «— BT,~B~ € P such that
h € Hby(P) and M, = B} U~B;, the respective hid-
den parth «— B;,~B, . The construction of the hidden
part P, /M, is closely related to the simplification operation
simp(P, T, F) proposed by Cholewinski and Truszéski
(1999), but restricted in the sense tliaand F' are subsets
of Hb, (P) rather tharHb(P). More precisely put, we have
P, /M, = simp(P, M, Hb, (P) — M) for any programP.

Definition 13 A normal logic programP has enough vis-
ible atoms iff P, /M, has a unique stable model for every
interpretation)M, C Hb, (P).

The intuition behind Definition 13 is that the interpreta-
tion of Hby, (P) is uniquely determined for each interpreta-
tion of Hb, (P) if P has the EVA property. Consequently,
the stable models aP can be distinguished on the basis of
their visible parts. By the EVA assumption (Janhunen &
Oikarinen 2005), the verification of, becomes a&oNP-
complete problem fosMODELS programs involving hid-
den atoms. This complexity result enables us to generalize
the translation-based method from (Janhunen & Oikarinen

1This class of programs includes normal logic programs.

Theorem 2. It follows thalP =,,, Q iff P(4) =, Q(A) for
alACTiff PUG; =, QUG;. O

As a consequence of Theorem 4, the translation-based
technique from (Janhunen & Oikarinen 2005, Theorem 5.4)
can be used to verif =, Q given thatP andQ have
enough visible atoms¥; has the EVA property trivially).
More specifically, the task is to show tHaQT(PUG,, QU
Gr) andEQT(Q U G, P U Gy) have no stable models.

The introduction of modular equivalence was much moti-
vated by the need of modularizing the verification of weak
equivalencé We believe that such a modularization could
be very effective in a setting wherg is an optimized ver-
sion of P. Typically @ is obtained by making some local
modifications toP. In the following, we propose a further
strategy to utilize modular equivalence in the task of verify-
ing the visible/weak equivalence #fand@.

An essential prerequisite is to identify a module struc-
ture for P and@. Basically, there are two ways to achieve
this: either the programmer specifies modules explicitly or
strongly connected componentsdép™(P) andDep1(Q)
are computed to detect them automatically. Assuming the
relationship ofP and(@ as described above, it is likely that
these components are pairwise compatible and we can parti-
tion P and@ so thatP = P,U- - -LIP,, and@ = Q- - -LQ,,
where the respective modul®s andQ; have the same in-
put and output. Note th&; and@Q; can be the same for a
number ofi's under the locality assumption.

In this setting, the verification &; =,, Q; for each pair
of modulesP; and@Q; is not of interest a®; #,, Q; does

2Recall that=, coincides with= for programsP and@ having
equal and fully visible Herbrand bases.



not necessarily imply? #, Q. However, the verification of
P =, Q can still be organized as a sequence tésts at the
level of modules, i.e. it is sufficient to show

QU UQ UP U UP, =y

QU uQUP U UP, (2)

for eachl < i < n and the resulting chain of equalities
conveysP =, Q under the assumption thatand@ have a
completely specified input. If not, thes,, can be addressed

using a similar chaining technique based on (2).

Example 5 Consider normal logic programB and @ both
consisting of two submodules, iB.= P, UP; andQ =
Q1 U Q2 wherePy, Py, Q;, andQ, are defined by

Py ({C<_ Na'}v{avb}v{c})a

Py, = ({a+<0.}0,{a,b}),

Q1 = (e« ~b.},{a,b},{c}), and
Q- ({b < a.},0,{a,b}).

Now,P; #,, Qq, butlP; andQ; are visibly equivalent in all
contexts produced by boify and Q- (in this case actually
Py =, Q- holds, but that is not necessary). Thus

P UPy = Q1 UP2 =, Q1 UQ2,
which verifiesP =, @ as well asP = Q.

It should be stressed that the programs involved in each
test (2) differ inlP; and Q; for which the other modules
form a common context, sa§{;. A way to optimize the
verification of P, U C; =, Q; U C; is to view C; as
a module generating input fdP, and Q; and to adjust
the translation-based method from (Janhunen & Oikarinen
2005) for such generators. More specifically, we seek com-
putational advantage from usifgQT(P;, Q;) U C; rather
thanEQT(P; U C;, Q; U C;) and especially when the con-
text C; is clearly larger than the modulés andQ;. By
symmetry, the same strategy is applicabl&tcandP;.

Related Work

The notion of modular equivalence is already contrasted
with other equivalence relations in previous sections.
Bugliesi, Lamma and Mello (1994) present an extensive
survey of modularity in conventional logic programming.
Two mainstream programming disciplines can be identified:
programming-in-the-largewhere programs are composed
with algebraic operators (O’Keefe 1985) gmmgramming-
in-the-small with abstraction mechanisms (Miller 1986).
Our approach can be classified in the former discipline due
to resemblance to that of Gaifman and Shapiro (1989). But

Definition 8. However, their approach covers only positive
programs and the least model semantics. Etalle and Gab-
brielli (1996) restrict the composition afonstraint logic
program (CLP) modules with a condition that is close to
ours:Hb(P)NHb(Q) € Hb,(P)NHb,(Q) but no distinc-

tion between input and output is made; e N Oq # 0

is allowed according to their definitions. They also strive for
congruence relations but in the case of CLPs.

Eiter, Gottlob, and Mannila (1997) consider the class of
disjunctive Datalogused as query programs over rela-
tional databases. As regards syntax, such programs are dis-
junctive programs which cover normal programs (involving
variables though) as a special case. The rough idea is that
7 is instantiated with respect to an input databBstor the
given input schem®. The resulting models of[ D], which
depend on the semantics chosenrfpare projected with re-
spect to an output schen$a To link this approach to ours,
it is possible to viewr as a program modulB with input
I and outpuD based orR andS, respectively. Ther[D]
is obtained af(D). In contrast to our work, their mod-
ule architecture is based on bgtbsitive and negative de-
pendenciesnd no recursion between modules is tolerated.
These constraints enable a straightforward generalization of
the splitting set theorem for the architecture.

Faberet al. (2005) apply thenagic set methoith the eval-
uation of Datalog programs with negation, i.e. effectively
normal programs. This involves the concept of inde-
pendent sef of a programP which is a specialization of
a splitting set (recall Theorem 1). Roughly speaking, the
idea is that the semantics of an independentSsistnot af-
fected by the rest of? and thusS gives rise to amodule
T ={h«— B",~B~€P | heS}of Psothatl C P
andHead(T') = S. Due to close relationship to splitting
sets, independent sets are not that flexible as regards parcel-
ing normal programs. For instance, the splittings demon-
strated in Examples 2 and 4 are impossible with independent
sets. In certain cases, the distinctiondaingerous rulesn
the definition of independent sets pushes negative recursion
inside modules which is unnecessary in view of our results.
Finally, the module theorem of Fabetral. (2005) is weaker
than Theorem 2.

Eiter, Gottlob and Veith (1997) address modularity within
ASP and view program modules generalized quantifiers
the definitions of which are allowed to nest, ifé can refer
to another modulé) by using it as a generalized quantifier.
This is an abstraction mechanism typical to programming-
in-the-small approaches.

Conclusion
In this article, we a propose a module architecture for logic

stable model semantics and the denial of positive recursion programs in answer set programming. The compatibility
between modules can be pointed out as obvious differences of the module system and stable models is achieved by

in view of their approach.
A variety of conditions on modules have also been intro-
duced. For instance, in contrast to our work, Maher (1993)

allowing positive recursion to occur inside modules only.
The current design gives rise to a number of interesting re-
sults. First, the splitting set theorem by Lifschitz and Turner

forbids all recursion between modules and considers Przy- (1994) is generalized to the case where negative recursion

musinski'sperfect modelsather than stable models. Brogi
et al. (1994) employ operators for program composition and
visibility conditions that correspond to the second item in

is allowed between modules. Second, the resulting notion
of modular equivalencés a proper congruence relation for
the join operation between modules. Third, the verification



of modular equivalence can be accomplished with existing

methods so that specialized solvers need not be developed.

Last but not least, we have a preliminary understanding how
the task of verifying weak equivalence can be modularized
using modular equivalence.

Yet the potential gain from the modular verification strat-
egy has to be evaluated by conducting experiments. A fur-
ther theoretical question is how the existing model theory
based orSE-modelandUE-modelgEiter & Fink 2003) is
tailored to the case of modular equivalence. There is also a
need to expand the module architecture and module theorem
proposed here to cover other classes of logic programs such
as e.g. weight constraint programs, disjunctive programs,
and nested programs.
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