
T-79.4101 Discrete Models and Search

Emilia Oikarinen

Department of Information and Computer Science, Aalto University

Spring 2015

T-79.4101 Discrete Models and Search

Spring 2015

2/333

Practical arrangements

Lecture 1: Overview of the course

Background: Propositional logic

Lecture 2: Combinatorial search problems

Lecture 3: Intro to complete and local search methods

Lecture 4: Constraint satisfaction problems

Lecture 5: Complete and local search methods for CSP’s

Lecture 6: Boolean circuits

Lecture 7: Complete and local search methods for SAT problems

Lecture 8: Modern SAT solvers

Lecture 9: Intro to linear and integer linear programming

Lecture 10: Linear relaxation and the simplex method

Lecture 11: Introduction to Convex Optimization

Lecture 12: Advanced topics

T-79.4101 Discrete Models and Search

Spring 2015

3/333

T–79.4101 Discrete Models and Search (5 ECTS)

At this course you will learn to represent combinatorial search

problems in terms of propositional satisfiability, constraint

programming, and integer programming formulations. You will obtain a

basic understanding of linear programming methodology and become

familiar with several types of local search techniques. Having

completed the course, you will be able to translate your problem into

an appropriate general formulation and use a generic problem solver

to solve the problem, or design a local search method tailored

specifically to your problem of interest.

The course material is based on material by Prof. Ilkka Niemelä,

Prof. Pekka Orponen, Dr. André Schumacher and Dr. Emilia Oikarinen.

T-79.4101 Discrete Models and Search

Spring 2015

4/333

Why this course?

◮ With the increase in computing power, continually new

computation-intensive application areas emerge (e.g. various

types of planning & scheduling, data mining, bioinformatics,. . .)

◮ Many immediate problems in these areas are both

computationally demanding & mathematically weakly structured

(“Here is my messy objective function. Find a near-optimal

solution to it – quickly!”)

◮ In such “quick-and-dirty” settings a search problem formulation is

often the most effective (if not the only) approach.

◮ Moreover, the design and analysis of search algorithms is a

fascinating research topic in itself!

T-79.4101 Discrete Models and Search

Spring 2015

5/333

Practical arrangements

Lectures: Tue 10–12 T6, Emilia Oikarinen

Tutorials: Thu 16–18 T3, Laura Koponen (Starting Thu Jan. 15)

Registration: by WebOodi: https://oodi.aalto.fi/

Prerequisites: Basic knowledge of problem representations and logic,

facility in programming, data structures and algorithms;

T-79.4202 Principles of Algorithmic Techniques

recommended

Requirements: Examination (Apr. 8) and two programming

assignments (due Feb. 22 and Apr. 12)

Recall Aalto SCI policy: You MUST register to the

examinition beforehand!

Course home page: in Noppa:

https://noppa.tkk.fi/noppa/kurssi/t-79.4101/

Please: follow us in Noppa! (i.e., subscribe to the news)

https://oodi.aalto.fi/
https://noppa.tkk.fi/noppa/kurssi/t-79.4101/

T-79.4101 Discrete Models and Search

Spring 2015

6/333

Grading scheme

Exam: max 40 points

Programming: max 10 points

Extra assignments(⋆) : max 5 points

Tutorials: max 10 points

Note: The maximum number of points that can be obtained is 65.

(Note: we consider about half of the achievable points of programming

assignments and tutorials as well as the points from extra assignment

as bonus points)

The final grade is be computed as follows:

(see also the next slide for the requirements for passing the course!)

Total points 25 31 37 43 49

Grade 1 2 3 4 5

(⋆) Extra assignments are voluntary assignments related to some extra material and

involving independent work.

T-79.4101 Discrete Models and Search

Spring 2015

7/333

Grading scheme—cont’d

To pass the course you need to satisfy all the following requirements:

◮ Exam: ≥ 20 points

◮ Total: ≥ 25 points

◮ Both programming assignments completed successfully

For the programming assignments, a correctly functioning program,

returned on time with appropriate work description yields approx. half

the points available. The remaining points are allocated based on an

efficiency competition among the submitted programs and on the

quality of the report. Details of the grading scheme for programming

assignments will be introduced later.

T-79.4101 Discrete Models and Search

Spring 2015

8/333

Tutorial sessions

◮ Two sets of problems each week: demonstration problems and

homework problems

◮ Assistant presents the solutions for the demonstration problems.

◮ Assistant is ready to answer questions

◮ Homework problems (≈ 24 in total) to be solved until the following

week

◮ Each problem one is ready to present at the whiteboard counts

for the tutorial points as follows:

Solved problems 2 4 6 8 10 12 14 16 17 18

Points 1 2 3 4 5 6 7 8 9 10

◮ Even if you are not interested in tutorial points, come to the

session and participate actively (saves you time later when

studying for the exam)

◮ Be active, ask questions!

T-79.4101 Discrete Models and Search

Spring 2015

9/333

Programming assignments

◮ We will use automated system called Stratum1 for distributing,

submitting and checking the assignments

◮ Supported languages: Python and Java

◮ Start working early! (e.g., not on the day of the deadline)

◮ Read instructions carefully!

◮ If something is unclear, please ask (preferably early)→ helps you

and others

◮ Often main challenge: how to model a problem

◮ Assignments are compulsory!

1https://puzzle.ics.hut.fi/

https://puzzle.ics.hut.fi/

T-79.4101 Discrete Models and Search

Spring 2015

10/333

Material

◮ No existing textbook: lectures cover a wide range of material from

several textbooks & current scientific literature.

◮ Course problems based on lecture slides.

◮ Examples of reference material:

◮ Aarts & Lenstra (Eds.), Local Search in Combinatorial

Optimization. Wiley 1997.
◮ Apt, Principles of Constraint Programming. Cambrigde University

Press, 2003.
◮ T. Bäck, Evolutionary Algorithms in Theory and Practice. Oxford

University Press, 1996.
◮ Hoos & Stützle, Stochastic Local Search: Foundations and

Applications. Morgan Kaufmann 2005.
◮ Russell & Norvig, Artificial Intelligence: A Modern Approach,

Pearson Education, 2010.

T-79.4101 Discrete Models and Search

Spring 2015

11/333

A Motivating Example

◮ Twelve slightly different types of items, numbered 1. . . 12, arrive

for processing at a factory workshop.

◮ The workshop has four machines, numbered I . . . IV, and four

workers, named A . . . D, who have different qualifications for

working on the items.

◮ To make things more complicated, there are also four specialized

tools, numbered α . . . δ, that are needed for processing the

various items.

T-79.4101 Discrete Models and Search

Spring 2015

12/333

The requirements of machines, tools, and workers for the items are

indicated in the following table:

Machine Tool Worker

I: 1 5 9 α: 1 2 3 A: 1 7 8

II: 2 6 10 β: 4 9 10 B: 2 3 4

III: 3 7 11 γ: 5 11 12 C: 5 6 12

IV: 4 8 12 δ: 6 7 8 D: 9 10 11

Let’s say processing each item by a combination of the appropriate

machine, tool & worker (e.g., the combination (III,α,B) to process

item 3), requires 1 hour. Any given machine, tool, or worker can only

work on one item at a time. Since there are 12 items and 4 machines

(as well as tools & workers), processing all the items requires at least

3 hours. Can it be done in this minimal time?

T-79.4101 Discrete Models and Search

Spring 2015

13/333

How would you approach the preceding problem:

(a) By hand? (Design an appropriate schedule!)

(b) By computer, assuming that an arbitrary list of

requirements such as above would be given as input?

(The numbers of machines, tools, and workers do not

need to be the same: this is just a peculiarity of the

present example.)

T-79.4101 Discrete Models and Search

Spring 2015

14/333

Outline of this course (tentative schedule!)

Part I: Intro, search algorithms: complete & local search

Lecture 1 Introduction and general information (today)

Homework Study material on propositional logic!

Lecture 2 Computational problems and their properties;

reductions between problems from an algorithmic

point-of-view (13.1.)

Lecture 3 Complete search methods: search spaces, backtrack

and branch-and-bound search; local search methods

(hill climbing, simulated annealing, and tabu search)

(20.1.)

Assignment 1 Local search (DL: 22.2.)

T-79.4101 Discrete Models and Search

Spring 2015

15/333

Part II: CSP models and algorithms, Boolean circuits

Lecture 4 Constraints satisfaction problems (CSP): introduction &

modeling (27.1.)

Lecture 5 CSP algorithms: complete & local methods (3.2.)

Lecture 6 Boolean circuits: introduction & modeling (10.2.)

Lecture 7 Algorithms for circuit SAT: complete & local (24.2.)

Lecture 8 Modern SAT solvers (3.3.)

Part III: LP and MIP models and algorithms

Lecture 9 Linear and integer linear programming: introduction &

modeling (10.3.)

Lecture 10 Algorithms for LP’s and MIP’s: branch-and-bound and

the simplex method (17.3.)

Assignment 2 MIP or SAT modeling problem (DL: 12.4.)

Lecture 11 Beyond MIP’s and LP’s (24.3.)

Part IV: Advanced topics

Lecture 12 Advanced topics, feedback, question session (31.3.)

T-79.4101 Discrete Models and Search

Spring 2015

16/333

Background: Propositional logic

Outline

◮ Syntax: propositional formulas

◮ Semantics

◮ Logical equivalence

◮ Normal form transformations

◮ Example: 3-coloring of a graph

T-79.4101 Discrete Models and Search

Spring 2015

17/333

Propositional formulas

◮ Syntax based on:

Boolean variables (atoms) X = {x1,x2, . . .}
Boolean connectives ∨,∧,¬

◮ The set of (propositional) formulas is the smallest set such that all

Boolean variables are formulas and if φ1 and φ2 are formulas, so

are ¬φ1, (φ1∧φ2), and (φ1∨φ2).
For example, ((x1∨ x2)∧¬x3) is a formula but ((x1∨ x2)¬x3) is

not.

◮ A formula of the form xi or ¬xi is called a literal where xi is a

Boolean variable.

◮ We employ usual shorthands:

φ1→ φ2: ¬φ1∨φ2

φ1↔ φ2: (¬φ1∨φ2)∧ (¬φ2∨φ1)
φ1⊕φ2: (¬φ1∧φ2)∨ (φ1∧¬φ2)

T-79.4101 Discrete Models and Search

Spring 2015

18/333

Semantics

◮ Atomic propositions (Boolean variables) are either true or false

and this induces a truth value for any formula as follows.

◮ A truth assignment T is mapping from a finite subset X ′ ⊂ X to

the set of truth values {true, false}.

◮ Consider a truth assignment T : X ′ −→ {true, false} which is

appropriate to φ, i.e., X(φ)⊆ X ′ where X(φ) be the set of

Boolean variables appearing in φ.

◮ T |= φ (T satisfies φ) is defined inductively as follows:

If φ is a variable, then T |= φ iff T (φ) = true.

If φ = ¬φ1, then T |= φ iff T 6|= φ1

If φ = φ1∧φ2, then T |= φ iff T |= φ1 and T |= φ2

If φ = φ1∨φ2, then T |= φ iff T |= φ1 or T |= φ2

Example Let T (x1) = true, T (x2) = false.

Then T |= x1∨ x2 but T 6|= (x1∨¬x2)∧ (¬x1∧ x2)

T-79.4101 Discrete Models and Search

Spring 2015

19/333

Representing Boolean Functions
◮ A propositional formula φ with variables x1, . . . ,xn expresses a

n-ary Boolean function f if for any n-tuple of truth values

t = (t1, . . . , tn), f (t) = true if T |= φ and f (t) = false if T 6|= φ

where T (xi) = ti , i = 1, . . . ,n.

Proposition. Any n-ary Boolean function f can be expressed as a

propositional formula φf involving variables x1, . . . ,xn.

◮ The idea: model each case of the function f

having value true as a disjunction of

conjunctions.

◮ Let F be the set of all n-tuples

t = (t1, . . . , tn) with f (t) = true.

For each t, let Dt be a conjunction of literals

xi if ti = true and ¬xi if ti = false.

◮ Let φf =
∨

t∈F Dt

Note that φf is big in the worst case: O(n2n).

Example.

x1 x2 f

0 0 0

0 1 1

1 0 1

1 1 0

φf =
(¬x1∧ x2)∨
(x1∧¬x2)

T-79.4101 Discrete Models and Search

Spring 2015

20/333

Logical Equivalence

Definition

Formulas φ1 and φ2 are equivalent (φ1 ≡ φ2) iff for all truth

assignments T appropriate to both of them, T |= φ1 iff T |= φ2.

Properties:

◮ Commutativity

(φ1∨φ2)≡ (φ2∨φ1)
(φ1∧φ2)≡ (φ2∧φ1)

◮ Associativity

((φ1∨φ2)∨φ3)≡ (φ1∨ (φ2∨φ3))
((φ1∧φ2)∧φ3)≡ (φ1∧ (φ2∧φ3))

◮ Distributivity

((φ1∨φ2)∧φ3)≡ ((φ1∧φ3)∨ (φ2∧φ3))

T-79.4101 Discrete Models and Search

Spring 2015

21/333

Properties of logical Equivalence continued

◮ De Morgan’s law

¬(φ1∨φ2)≡ (¬φ1∧¬φ2)
¬(φ1∧φ2)≡ (¬φ1∨¬φ2)

◮ Laws of absorption

(φ1∨φ1)≡ φ1

(φ1∧φ1)≡ φ1

◮ Double negation

¬¬φ≡ φ

◮ Identity

(φ1∨ false)≡ φ1

(φ1∧ true)≡ φ1

◮ Nullity

(φ1∨ true)≡ true

(φ1∧ false)≡ false

◮ Complement

(φ1∨¬φ1)≡ true

(φ1∧¬φ1)≡ false

Notational shorthand

∨n
i=1 ϕi stands for ϕ1∨ ·· ·∨ϕn and

∧n
i=1 ϕi stands for ϕ1∧ ·· ·∧ϕn

T-79.4101 Discrete Models and Search

Spring 2015

22/333

Normal Forms

◮ Many solvers for Boolean constraints require that the constraints

are represented in a normal form (typically in conjunctive normal

form).

Proposition. Every propositional formula is equivalent to one in

conjunctive (respectively, disjunctive) normal form.

CNF: (l11∨ ·· ·∨ l1n1
)∧ ·· ·∧ (lm1∨ ·· ·∨ lmnm

)
DNF: (l11∧ ·· ·∧ l1n1

)∨ ·· ·∨ (lm1∧ ·· ·∧ lmnm
)

where each lij is a literal (Boolean variable or its negation).

◮ A disjunction l1∨ ·· ·∨ ln is called a clause.

◮ A conjunction l1∧ ·· ·∧ ln is called an implicant.

T-79.4101 Discrete Models and Search

Spring 2015

23/333

Normal Form Transformations

CNF/DNF transformation:

1. remove↔ and→:

α→ β ❀ ¬α∨β (1)

α↔ β ❀ (¬α∨β)∧ (¬β∨α) (2)

2. Push negations in front of Boolean variables:

¬¬α ❀ α (3)

¬(α∨β) ❀ ¬α∧¬β (4)

¬(α∧β) ❀ ¬α∨¬β (5)

3. CNF: move ∧ connectives outside ∨ connectives:
α∨ (β∧ γ) ❀ (α∨β)∧ (α∨ γ) (6)

(α∧β)∨ γ ❀ (α∨ γ)∧ (β∨ γ) (7)

DNF: move ∨ connectives outside ∧ connectives:
α∧ (β∨ γ) ❀ (α∧β)∨ (α∧ γ) (8)

(α∨β)∧ γ ❀ (α∧ γ)∨ (β∧ γ) (9)

T-79.4101 Discrete Models and Search

Spring 2015

24/333

Example

Transform (A∨B)→ (B↔ C) to CNF.

(A∨B)→ (B↔ C) (1,2)

¬(A∨B)∨ ((¬B∨C)∧ (¬C∨B)) (4)

(¬A∧¬B)∨ ((¬B∨C)∧ (¬C∨B)) (7)

(¬A∨ ((¬B∨C)∧ (¬C∨B)))∧ (¬B∨ ((¬B∨C)∧ (¬C∨B))) (6)

((¬A∨ (¬B∨C))∧ (¬A∨ (¬C∨B)))∧ (¬B∨ ((¬B∨C)∧ (¬C∨B))) (6)

((¬A∨ (¬B∨C))∧ (¬A∨ (¬C∨B)))∧ ((¬B∨ (¬B∨C))∧ (¬B∨ (¬C ∨B)))

(¬A∨¬B∨C)∧ (¬A∨¬C∨B)∧ (¬B∨¬B∨C)∧ (¬B∨¬C∨B)

◮ We can assume that normal forms do not have repeated

clauses/implicants or repeated literals in clauses/implicants

(for example (¬B∨¬B∨C)≡ (¬B∨C)).

◮ In the worst case CNF/DNF form can be exponentially larger than

the original formula.

T-79.4101 Discrete Models and Search

Spring 2015

25/333

Example: Graph coloring

◮ Consider the problem of finding a 3-coloring for a graph.

◮ Note: the graph coloring problem asks for an assignment of

colors to vertices such that no pair of adjacent vertices (vertices

that share an edge) have the same color.

◮ In the special case of 3-coloring one restricts the number of

colors to 3 (see example below).

T-79.4101 Discrete Models and Search

Spring 2015

26/333

Example: Graph coloring cont.

◮ 3-coloring can be encoded as a set of Boolean constraints as

follows:

◮ For each vertex v ∈ V , introduce three Boolean variables v1,v2,v3

(intuition: vi is true iff vertex v is colored with color i).
◮ For each vertex v ∈ V introduce the constraints

v1∨ v2∨ v3

(v1→¬v2)∧ (v1→¬v3)∧ (v2→¬v3)

◮ For each edge (v ,u) ∈ E introduce the constraint

(v1→¬u1)∧ (v2→¬u2)∧ (v3→¬u3)

◮ Now 3-colorings of a graph (V ,E) and solutions to the Boolean

constraints (satisfying truth assignments) correspond:

vertex v colored with color i iff vi assigned true in the solution.

T-79.4101 Discrete Models and Search

Spring 2015

27/333

Lecture 2: Combinatorial search problems

Outline

◮ Computational problems and their properties

◮ decision problem
◮ search problem
◮ optimization problem
◮ counting problem

◮ Examples of computational problems

◮ Reductions between problems from an algorithmic point-of-view

Goal for today: Learn to recognize and formulate different types of

computational problems; learn how to use reductions between

problems as an algorithmic technique for their solution.

T-79.4101 Discrete Models and Search

Spring 2015

28/333

Computational problems

◮ A (computational) problem: an infinite set of possible instances

with a question.

◮ A decision problem: a question with a yes/no answer

Example

REACHABILITY

INSTANCE: A graph (V ,E) and nodes v ,u ∈ V .

QUESTION: Is there a path in the graph from v to u?

T-79.4101 Discrete Models and Search

Spring 2015

29/333

Computational problems

Often more complicated questions are of interest:

◮ Search (function) problem: given an instance find a solution

(object satisfying certain properties).

◮ Optimization problem: given an instance find a best solution

according to some cost criterion.

Typically this is formalized by specifying

◮ what are feasible solutions for an instance and
◮ a cost function which assigns a cost (typically a integer/real

number) to each feasible solution.

Now a solution to an optimization problem instance is a feasible

solution that has the minimal (or maximal) cost.

◮ Counting problem: given an instance count the number of

solutions.

T-79.4101 Discrete Models and Search

Spring 2015

30/333

Examples

◮ PATH (Search Problem)

INSTANCE: A graph (V ,E) and nodes v ,u ∈ V .

QUESTION: Find a path from v to u.

◮ SHORTEST PATH (Optimization Problem)

INSTANCE: A graph (V ,E) and nodes v ,u ∈ V .

QUESTION: Find a shortest path from v to u.

◮ #PATH (Counting Problem)

INSTANCE: A graph (V ,E) and nodes v ,u ∈ V .

QUESTION: Count the number of simple paths from v to u.

T-79.4101 Discrete Models and Search

Spring 2015

31/333

Easy and hard problems

◮ Many problems are computationally easy: there is a polynomial

time algorithm for the problem, i.e. there is an algorithm solving

the problem whose run time increases polynomially w.r.t. the size

of the input instance. Consider, e.g., REACHABILITY.

◮ Some problems are not computationally easy: there is no known

guaranteed polynomial time algorithm for the problem, i.e. for any

known algorithm there is an infinite collection of instances for

which the run time increases super-polynomially w.r.t. the size of

the instance.

◮ This course focuses on methods for solving such problems in

practice.

T-79.4101 Discrete Models and Search

Spring 2015

32/333

Examples of hard problems

SAT (Boolean Satisfiability Problem)

INSTANCE: a propositional formula in conjunctive normal form

QUESTION:

(D) Is the formula satisfiable?

(S) Find a satisfiable truth assignment for the formula.

(O) Find a truth assignment satisfying the most clauses in the formula.

Propositional formulas consist of literals (variables and their

negations), conjunctions (“and” ∧) and disjunctions (“or” ∨).

Conjunctive normal form: conjunction of disjunctions (=clauses)

x1∧ (x2∨¬x2)

T-79.4101 Discrete Models and Search

Spring 2015

33/333

Example Consider an instance of the SAT problem

F(x1,x2) := (x1∨¬x2)∧ (¬x1∨ x2)∧ (x1∨ x2)

x1 x2 F(x1,x2)

false false false

false true false

true false false

true true true

This is satisfiable as the formula is satisfied by a truth assignment T1

where T1(x1) = true,T1(x2) = true.

If we add a new conjunct (¬x1∨¬x2), the instance turns unsatisfiable.

For the SAT(O) problem consider the instance

F ′(x1,x2) := (x1∨¬x2)∧ (¬x1∨ x2)∧ (x1∨ x2)∧ (¬x1∨¬x2)∧¬x2.

The assignment T1 is not optimal but T2(x1) = false,T2(x2) = false is

(satisfying 4 clauses).

T-79.4101 Discrete Models and Search

Spring 2015

34/333

Examples of hard problems (II)

◮ GRAPH COLORING

INSTANCE: A graph (V ,E) and a positive integer k

QUESTION:

(D) Is there a k-coloring of the graph, i.e. an assignment of one of

the k colors to each vertex such that vertices connected with an

edge do not have the same color?

(S) Find a k-coloring.

(O) Find an l-coloring with the smallest number l of colors.

◮ CLIQUE

INSTANCE: A graph (V ,E) and a positive integer k

QUESTION:

(D) Is there a k-clique in the graph, i.e. a set of k nodes such that

there is an edge between every pair of vertices from the set.

(S) Find a k-clique.

(O) Find an l-clique with the largest number l of vertices.

T-79.4101 Discrete Models and Search

Spring 2015

35/333

Examples of hard problems (III)

SET COVER

INSTANCE: A family of sets F = {S1, . . . ,Sn} of subsets of a finite set

U and a positive integer k .

QUESTION:

(D) Is there k-cover of U, i.e., a set of k sets from F whose union is U.

(S) Find a k-cover of U.

(O) Find a set l-cover of U with the smallest number l of sets.

Example

Consider the family of sets: F = {S1,S2,S3} where

S1 = {1,2},S2 = {2,3},S3 = {3,4} and U = {1, . . . ,4}

Now {S1,S2,S3} is a 3-cover of U, {S1,S3} is a 2-cover of U but

there are no 1-covers.

T-79.4101 Discrete Models and Search

Spring 2015

36/333

Examples of hard problems (IV)

TSP (TRAVELING SALESPERSON)

INSTANCE: n cities 1, . . . ,n and a nonnegative integer distance dij

between any two cities i and j (such that dij = dji) and a positive

integer B.

QUESTION:

(D) Is there a tour of length at most B, i.e. a permutation π of the cities

such that the length n

∑
i=1

dπ(i)π(i+1)

is at most B (where π(n+1) = π(1))?
(S) Find a tour of length at most B.

(O) Find the shortest tour of the cities.

T-79.4101 Discrete Models and Search

Spring 2015

37/333

Relationship between problems

◮ Let us consider decision problems A and B.

◮ B reduces to A (B ⊑ A) if there is a transformation R for which

every input instance x of B produces an equivalent input instance

R(x) of A.

◮ Here equivalent means that the answer (yes/no) for R(x)
considered as the input of A is the correct answer to x as an input

of B.

◮ For a reduction R to be useful it needs to be relatively easy to

compute (compared to the problems A and B).

◮ Typically it is assumed that the reduction can be computed in

polynomial time.

T-79.4101 Discrete Models and Search

Spring 2015

38/333

Example: 3-COL ⊑ SAT

◮ 3-COL

INSTANCE: a graph (V ,E).
QUESTION: is there a 3-coloring of the graph.

◮ Reduction from 3-COL to SAT

Clauses for vertex v ∈ V :

vb∨ vr ∨ vg

¬vb∨¬vr

¬vb∨¬vg

¬vr ∨¬vg

Clauses for edge (v ,u) ∈ E :

¬vb∨¬ub

¬vr ∨¬ur

¬vg ∨¬ug

◮ This is a reduction because

(i) it can be computed efficiently and

(ii) it produces from an instance of 3-COL an equivalent instance

of SAT: the graph has a 3-coloring iff the set of clauses is

satisfiable.

T-79.4101 Discrete Models and Search

Spring 2015

39/333

Reduction

Reduction from B to A (B ⊑ A) can be exploited in two ways.

◮ An algorithm for B can be built on top of an algorithm for A.

◮ Used extensively in this course.

input x =⇒

Algorithm for B:

Reduction

R

R(x)
=⇒

Algorithm

for A
=⇒ Answer

◮ Reduction implies that A is computationally at least as hard as B.

◮ Used in computational complexity theory (T-79.5103) to classify

computational problems; B ⊑ A orders problems by difficulty.

T-79.4101 Discrete Models and Search

Spring 2015

40/333

Example: INDEPENDENT SET ⊑ CLIQUE

◮ INDEPENDENT SET

INSTANCE: A graph G = (V ,E) and an integer K .

QUESTION: Is there an independent set I ⊆ V with |I|= K .

(A set I ⊆ V is independent if i, j ∈ I implies that there is no edge

between i and j).

◮ Reduction from INDEPENDENT SET to CLIQUE: Given a

G = (V ,E) and an integer K , take the complement graph

G′ = (V ,{(v ,u) | v ,u ∈ V ,(v ,u) 6∈ E}. (Note: an independent

set of a graph is a clique of the complement graph.)

2

3 4

1

5

G

2

3 4

1

5

G’

T-79.4101 Discrete Models and Search

Spring 2015

41/333

Example: 3-SAT ⊑ INDEPENDENT SET

◮ Reduction from 3-SAT to INDEPENDENT SET:

Given a set φ of m clauses each with three literals, construct a

graph whose vertices are the occurrences of the literals in φ. Add

the following edges: a) a separate triangle for each clause b) an

edge between two vertices in different triangles corresponding to

complementary literals. Finally, set K = m.

(x1∨¬x2∨ x3)∧ (¬x1∨ x2∨¬x3)∧ (x1∨ x2∨ x3)

x1

x2 x2

x1

x3¬x2 x3 ¬x3

¬x1

T-79.4101 Discrete Models and Search

Spring 2015

42/333

Example: 3-SAT ⊑ INDEPENDENT SET—cont’d

◮ This is a reduction because φ is satisfiable iff there is an

independent set of size m for the graph.

(⇒) If φ has a satisfying truth assignment, then take one vertex from

each triangle for which the corresponding literal is true in the

assignment and this gives an independent set of size m.

(⇐) If there is an independent set of size m, then it contains exactly

one vertex from each triangle and no two vertices corresponding

to complementary literals. Hence, the set induces a truth

assignment for which each clause has a true literal implying that φ
is satisfiable.

T-79.4101 Discrete Models and Search

Spring 2015

43/333

Reductions—cont’d

◮ Reductions compose (are transitive):

3-SAT ⊑ INDEPENDENT SET and

INDEPENDENT SET ⊑ CLIQUE imply

3-SAT ⊑ CLIQUE

◮ Hence, using an algorithm for CLIQUE, we can solve

INDEPENDENT SET, 3-SAT, 3-COL using reductions.

T-79.4101 Discrete Models and Search

Spring 2015

44/333

Reductions for search problems

◮ Reductions for search problems need a translation of the result

back to the original problem.

◮ A reduction from a search problem B to A is a pair of mappings

(R,S) (both computable in polynomial time) such that for all x ,z:

if x is an instance of B, then R(x) is an instance of A and if z is a

correct output of R(x), then S(z) is a correct output of x .

◮ For optimization problems optimality needs to be preserved, too.

input x =⇒

Algorithm for B:

Red.

R

R(x)
=⇒

Algorithm

for A

z
=⇒

Red.

S

S(z)
=⇒ Answer

T-79.4101 Discrete Models and Search

Spring 2015

45/333

Size of the reductions

In practice not all polynomial time reductions are useful in building

algorithms on top of others but the size of the translation matters.

Example

◮ Consider a problem A for which we have a 2n/1000 algorithm.

Hence, an input of length n=20000 needs 220000/1000 ≈ 106 steps.

◮ We want to use this algorithm to solve a difficult problem B for

which we have a quadratic translation to A.

◮ Now the run time of the combined algorithm for B is

p(n)+2n2/1000 where p(n) is a polynomial giving the run time of

the translation from B to A.

◮ For an input of length n=20000 the run time is

p(20000)+2200002/1000 ≥ 2400000 ≥ 1010000 steps!

T-79.4101 Discrete Models and Search

Spring 2015

46/333

Relationship between different kinds of problems

Decision problems vs search problems

◮ A decision problem reduces to the corresponding search problem

trivially, i.e., if a search problem can be solved efficient so can the

corresponding decision problem.

◮ But also often a search problem reduces to the corresponding

decision problem.

T-79.4101 Discrete Models and Search

Spring 2015

47/333

SET COVER(D) vs SET COVER(S)

◮ Clearly, if SET COVER(S) can solved in polynomial time, then so

can SET COVER(D).

◮ Next we show that if SET COVER(D) can be solved in polynomial

time, then so can SET COVER(S).

◮ Assume that SET COVER(D) can be solved in polynomial time,

i.e., there is a procedure setcover(F ,U,k) such that given a

family F = {S1, . . . ,Sn} of subsets of U and a positive integer k ,

it decides in polynomial time whether F has a k-cover or not.

◮ Now using the procedure setcover(F ,U,k) a k-cover of F can be

found by calling the procedure at most once for each member Si

of the family of sets F = {S1, . . . ,Sn}.

◮ Hence, the run time remains polynomial.

T-79.4101 Discrete Models and Search

Spring 2015

48/333

A Procedure for Solving SET COVER(S)
if setcover(F , U, k) returns “no” then return “no”;

l := k−1; C := /0;

for all S ∈ {S1, . . . ,Sn} do

if setcover(F/S, U−S, l) returns “yes” then

C := C∪{S}; F := F/S; U := U−S;

l := l−1;

else

F := F −{S};
endfi

return C;

where C is the computed k-cover.

Note: F/S denotes F with the set S removed and all elements of S

deleted from other sets in the family F ; U−S denotes the set with

elements of U but elements also in S removed (“setminus”); similarly,

F −{S} is the remaining family of sets with S removed.

T-79.4101 Discrete Models and Search

Spring 2015

49/333

Decision vs optimization problems

Consider TSP(D) vs TSP(O)

◮ If TSP(O) can solved in polynomial time, then so can TSP(D).

◮ If TSP(D) can solved in polynomial time, then so can TSP(O).

◮ An optimal tour can be found using an algorithm which

1. finds the cost (=length) C of an optimal tour by binary search (with

a polynomial number of calls to the polynomial time algorithm for

TSP(D));

2. finds an optimal tour using C (with a polynomial number of calls to

the polynomial time algorithm for TSP(D)).

T-79.4101 Discrete Models and Search

Spring 2015

50/333

How to find C by binary search

upper

candidate candidate

upper

candidate

upper

YES!

?

NO!

?

?

Is there a...

Is there a tour of length at most

⌊ (upper+candidate)/ 2 ⌋?

T-79.4101 Discrete Models and Search

Spring 2015

51/333

TSP(D) vs TSP(O)
A TSP(O) algorithm using a TSP(D) algorithm as a subroutine:

/*Find the cost C of an optimal tour by binary search*/

C := 0; Cu := D; /* D is the sum of maximal distances from each city */

while (Cu > C) do

if there is a tour of cost ⌊(Cu +C)/2⌋ or less then

Cu := ⌊(Cu +C)/2⌋
else

C := ⌊(Cu +C)/2⌋+1;

endfi

/* Find an optimal tour given the cost C of an optimal tour */

For every intercity distance d(i, j) do

set the distance to C +1;

if there is a tour of cost C or less, freeze the distance to C+1

else restore the original distance and add (i, j) to the tour;

endfor

T-79.4101 Discrete Models and Search

Spring 2015

52/333

Different kinds of optimization problems

◮ Consider the traveling salesperson problem and two new variants:

EXACT TSP: Given a distance matrix and an integer B, is the

length of the shortest tour equal to B?

TSP COST: Given a distance matrix, compute the length of the

shortest tour.

◮ It can be shown that the four variants can be ordered in

“increasing complexity” by reductions:

TSP(D) ; EXACT TSP; TSP COST; TSP(O)

◮ All the four variants of TSP are polynomially equivalent: there is a

polynomial-time algorithm for one iff there is one for all four

(because TSP(D) and TSP(O) are).

T-79.4101 Discrete Models and Search

Spring 2015

53/333

Computational properties of problems

◮ The previous arguments indicate that the decision, search, and

optimization variants of problems are polynomially equivalent.

◮ This does not imply that they are equally easy to solve in practice.

◮ There are differences if no polynomial algorithm is known.

◮ For a decision problem the “yes” answer is often easy to verify.

◮ Typically, the question is about existence of a certain object

(witness/certificate), e.g., satisfying truth assignment, coloring, . . .

◮ If the witness is given, then the correctness of the “yes” answer

can be checked in polynomial time.

◮ However, the “no” answer is more challenging to verify because

there is no obvious witness/certificate for the answer, e.g., for the

lack of coloring.

T-79.4101 Discrete Models and Search

Spring 2015

54/333

Computational properties of problems (II)

◮ The same holds for search problems where the correctness of

the found object can typically be checked in polynomial time but

where the “no” answer is more challenging to verify.

◮ Notice that even if the verification of a solution is easy, this does

not imply that finding a solution is easy.

◮ Many engineering problems fall into this class of problems

◮ A typical problem is to construct a mathematical object satisfying

certain specifications (path, solution of equations, routing, VLSI

layout,. . .).

◮ The decision version of the problem is determine whether at least

one such an object exists for the input.

◮ The object is usually not very large compared to the input.

◮ The specifications of the object are usually simple enough to be

checkable in polynomial time.

T-79.4101 Discrete Models and Search

Spring 2015

55/333

Computational properties of problems (III)

◮ The decision versions of this class of problems form the problem

class NP, i.e., decision problems with polynomial size certificates

that are checkable in polynomial time.

◮ The hardest problems in this class (w.r.t. ⊑) are called

NP-complete problems and they include, for example, SAT,

GRAPH COLORING, CLIQUE, SET COVER, TSP, . . .

◮ To learn more, see computational complexity theory, for example,

course T-79.5103.

◮ For optimization problems it is hard even to verify a solution.

◮ Consider the traveling salesperson problem and a potential

solution π.
◮ There seems to be no obvious polynomial time test that could

establish that π is actually a tour that has minimum length.

◮ Counting problems are often even harder.

T-79.4101 Discrete Models and Search

Spring 2015

56/333

Algorithm design techniques for hard problems

◮ There are several approaches to developing efficient algorithms

for computationally challenging problems such as:

◮ identify special cases (using tools from complexity theory) and

develop special algorithms for these
◮ approximation algorithms
◮ randomized algorithms

◮ However, it typically requires a substantial amount of expertise

and resources to develop an efficient algorithm for a problem.

◮ For example, in practical applications it often happens that the

problem specification is not “mathematically clean” but includes a

number of “side conditions” and criteria which are fairly

complicated to integrate into an algorithm. Moreover, these “side

conditions” tend to change quite frequently.

◮ In this course we study search algorithms as a practical set of

tools to solve such problems.

T-79.4101 Discrete Models and Search

Spring 2015

57/333

Lecture 3: Intro to complete and local search methods
Outline

◮ Complete search

◮ Search spaces and objective functions
◮ Methods: backtrack, branch-and-bound

◮ Local search

◮ Search spaces and neighborhood structures
◮ Methods: hill climbing, simulated annealing, tabu search, etc.

Goal for today: For a given high-level description of a computational

problem (search or optimization), learn to

1. formulate a suitable search space for the problem and

2. devise

a) a complete search/optimization method based on the high-level

algorithms introduced today

b) a local search algorithm for solving the problem based on the

high-level methods introduced today

T-79.4101 Discrete Models and Search

Spring 2015

58/333

Search spaces and objective functions

◮ A combinatorial search or optimization problem Π determines a

search space X of candidate solutions for each of its instances I.

◮ The computational difficulty in such problems arises from the fact

that X is typically exponential in the size of I (= HUGE).

◮ In general, complete search methods have to be able to find

(generate) any solution in X .

◮ E.g. SAT(S):

Instance: F = propositional formula on n variables {x1, . . . ,xn}.
Search space: X = all truth assignments t : {x1, . . . ,xn} → {0,1}.
Goal: find t ∈ X that makes F true.

Size of X = 2n points (0/1-vectors).

T-79.4101 Discrete Models and Search

Spring 2015

59/333

Search spaces and objective functions—cont’d

Recall that since SAT formulas are required to be in conjunctive

normal form, it can also be viewed as an optimization problem:

SAT(O):

Instance: F = family of m clauses on n variables {x1, . . . ,xn}.
Search space: X = all truth assignments t : {x1, . . . ,xn} → {0,1}.
Objective function: c(t) = # clauses not satisfied by t .

Goal: minimize c(t).

Size of X = 2n points (0/1-vectors).

T-79.4101 Discrete Models and Search

Spring 2015

60/333

Search spaces and objective functions—cont’d

TSP(O):

Instance: An n×n matrix D of distances dij between n “cities”.

Search space: X = all permutations (“tours”) π of {1, . . . ,n}.

Objective function: d(π) = ∑
n−1
i=1 dπ(i)π(i+1) +dπ(n)π(1).

Goal: minimize d(π).

Note: Here |X |= n!. (More precisely: |X |= (n−1)!/2, if the starting

points and orientations of tours are ignored.)

T-79.4101 Discrete Models and Search

Spring 2015

61/333

Search spaces and objective functions—cont’d

MAX CUT(O):

Instance: A graph G = (V ,E) and a function c giving each edge

(u,v) ∈ E an integer capacity c(u,v).
Search space: X = all cuts in G, which are partitions of V into S and

V −S, where S ⊂ V and S 6= /0.

Objective function: c(S) = ∑(u,v)∈E ,u∈S,v /∈S c(u,v).

Goal: maximize c(S).

Note: Here |X |= 2n−2. (More precisely: |X |= 2n−1−1, since there

is no “direction” of a cut.)

T-79.4101 Discrete Models and Search

Spring 2015

62/333

Backtrack search

◮ Backtrack search is a systematic method to search for a

satisfying, or an optimal solution x in a search space X (the

pseudo-code below terminates when the first solution is found).

◮ Note: from here on onwards, x may be also a partial solution; but:

x ∈ X iff x is a complete solution!

function backtrack(I:instance; x :partialsol):

if x ∈ X (x is a complete solution) and feasible then

return x ;

else

for all extensions e1, . . .ek to x do

x ′← backtrack(I,x ⊕ei);

if x ′ ∈ X and feasible then return x ′

end for;

return fail

end if.

T-79.4101 Discrete Models and Search

Spring 2015

63/333

Backtrack search: VERTEX COVER

◮ Recall the (optimization variant) of the vertex cover problem.

VERTEX COVER(O):

Instance: A graph G = (V ,E).
Goal: minimize c(x) = |x | over all subsets x ⊆ V s.t. for all

(u,v) ∈ E , u ∈ x or v ∈ x (or both).

2

3 4

1

5

G

T-79.4101 Discrete Models and Search

Spring 2015

64/333

Backtrack search: VERTEX COVER—cont’d

◮ Let x∗ be the currently best known solution.

initially: x∗← V ; x ← /0;

function simpleBacktrackVC(G = (V ,E):instance; x ⊆ V :partialsol):

if x is a vertex cover then

if |x |< |x∗| (x is better than current best) then

x∗← x ;

else

for all v ∈ V \ x do

simpleBacktrackVC((V ,E), x ∪{v});
end for;

end if.

◮ Note: This is inefficient (repeats solutions!).

T-79.4101 Discrete Models and Search

Spring 2015

65/333

Branch-and-bound search (1/2)

◮ Pruning techniques can greatly improve the efficiency of

backtrack search in optimization problems.

◮ Example modification to the VC algorithm: only recurse by calling

simpleBacktrackVC((V ,E), x ∪{v}), if |x |< |x∗|−1.

◮ General idea: Assume for partial solution x we have a lower

bound l(x) on the cost of any complete solution that can be

constructed from x .

◮ If we know of a complete solution with cost c (which is an upper

bound on minimum cost), we can prune the search tree at x if

l(x)≥ c. (VC example: c = |x∗|), l(x) = |x |+1)

◮ Note: larger lower bounds are better than smaller ones! (more

effective pruning)

T-79.4101 Discrete Models and Search

Spring 2015

66/333

Branch-and-bound search (2/2)

initially: c← ∞; x∗← ();
function branch_and_bound(I:instance; x :partialsol):

if x is a complete (and feasible) solution then

if cost(x)< c then

c← cost(x); x∗← x ;

end if;

else

for all extensions e1, . . .ek to x do

x ′← x⊕ei ;

if l(x ′)< c then

branch_and_bound(I,x ′);
else // prune, do nothing

end if;

end for;

end if.

T-79.4101 Discrete Models and Search

Spring 2015

67/333

Branch-and-bound search: TSP
Consider e.g. the TSP(O) problem and choose:

Partial solution: A set of edges (links) chosen either to be included or

excluded from the complete solution tour (here: set of all candidate

edges = N×N, N = {1, . . . ,n}).
Bounding heuristic: Let the TSP instance under consideration be given

by distance matrix D = dij (where dij = dji). Then the following

inequality holds for any complete tour π:

d(π) =
1

2
∑

j

{(dij +djk) | at city j tour π uses links ij and jk}

≥
1

2
∑

j

min
i,k :i 6=k

(dij +djk).

Intuition: even the (globally) optimal tour needs to enter and leave

each city and thus cannot achieve a shorter length than the locally

best way to do so.

T-79.4101 Discrete Models and Search

Spring 2015

68/333

TSP bounding heuristic (1/2)

a b c

d

2

2

3 1

42

Say, the edges a-b and a-c have been chosen as part of the solution.

The bounding heuristic then results in the following:

1
2
(dab +dac +mini,k :i 6=k (dib +dbk)+mini,k :i 6=k(dic +dck)

+ mini,k :i 6=k(did +ddk))

= 1
2
(5+(1+2)+ (1+2)+ (2+2))

= 15
2

T-79.4101 Discrete Models and Search

Spring 2015

69/333

TSP bounding heuristic (2/2)

a b c

d

2

2

3 1

42

However, we can do better: since we need to be able to complete the

partial solution to a complete tour, we can exclude certain edges from

the bound and force the inclusion of others.

Example: Including a-b and a-c leads to excluding c-b (incomplete

tour).

1
2
(dab +dac +(dab +dbd)+ (dbd +ddc)+ (ddc +dca))

= 11

Special case of constraint propagation, which we discuss later in

detail.

T-79.4101 Discrete Models and Search

Spring 2015

70/333

Example for TSP

Consider the following small TSP instance:

d

c

ba

e

6

56

8

47

2

3

3

4

T-79.4101 Discrete Models and Search

Spring 2015

71/333

TSP example cont’d

We introduce a modified version of the branch-and-bound algorithm,

using the following procedures:

◮ find_initial_tour(D): Always choose the link with the smallest cost

from the current node to an unvisited node. Once all the nodes

have been visited, a tour is found.

For the example, when starting from node a this simple heuristics

returns a complete tour “adcbea” with cost

dad +ddc +dcb +dbe +dea = 2+5+4+3+7 = 21.

◮ propagate(π): exclude/include edges to the (partial) tour π in

case their exclusion/inclusion is necessary in order to complete

tour (as described on slide 69)

Using the lower-bounding heuristic and the modified

branch-and-bound algorithm, the search tree for the minimum tour on

this instance can be pruned as presented on slide 73.

T-79.4101 Discrete Models and Search

Spring 2015

72/333

Modified Branch-and-bound search for TSP example

initially: π∗← find_initial_tour(D); c← cost(π∗);
function branch_and_bound_TSP(D: distance matrix; π: partial tour):

if π is a complete tour then

if cost(π)< c then

c← cost(π); π∗← π;

end if;

else

for all extensions e1, . . .ek to π do

π′← π⊕ei ; π′← propagate(π′);
if l(π′)< c then

branch_and_bound(D,π′);
else // prune, do nothing

end if;

end for;

end if.

T-79.4101 Discrete Models and Search

Spring 2015

73/333

acebdaabecdaabceda
tour tour tourtour

acbeda

be bebc

no constr.

ab ab

ac ac

bc

C = 19C = 21C = 23 C = 23

ac
ad
ae

ad
ae ae

ad ad
ae

ad
ae

ac
ad

aeC > 18

C > 18 C > 18,5

C > 18,5

C > 17,5

C > 17,5

C > 18,5

C > 23 C > 23,5

C > 20,5 C > 21

MINIMUM

1
2 ((2+3)+(3+3)+(4+4)+(2+5)+(3+6))

a cb d e

prune

prune

pruneprune

T-79.4101 Discrete Models and Search

Spring 2015

74/333

Final remarks on Branch-and-bound search
Branch-and-bound search and SAT:

◮ Most naturally, the partial solutions are chosen to correspond to

partial truth assignments t : {x1, . . . ,xi} → {0,1}.

◮ Each partial assignment has two possible extension e0 and e1: e0

assigns value 0 to variable xi+1 and e1 assigns value 1.

◮ DPLL (Davis-Putnam-Logemann-Loveland) procedure, a

backtrack search method for testing satisfiability of a set of

clauses will be introduced in detail later during the course.

Maximization problems:

◮ For maximization problems “orientation” of bounds is reversed:

one prunes if u(x)≤ p, where u(x) is an upper bound on the

objective value of any complete solution that can be constructed

from x and p is the objective value of the best complete solution

known so far.

T-79.4101 Discrete Models and Search

Spring 2015

75/333

Local search techniques

◮ For realistic problems, complete search trees can be extremely

large and difficult to prune effectively.

◮ Often, it is more important to get a reasonably good solution fast,

rather than the globally optimal one after a long wait.

◮ Therefore, local search methods provide an interesting

alternative.

Assume that the search space X has some neighborhood structure N,

whereby for each solution x ∈ X , a set of “structurally close” solutions

N(x)⊆ X can be easily generated from x by local transformations.

Note: here x are complete solutions (cmp. partial solutions for

complete search methods) although possibly infeasible.

T-79.4101 Discrete Models and Search

Spring 2015

76/333

Examples

For instance, in the case of SAT(O) one could have:

N(x) = {truth assignments x ′ that differ from x at exactly one variable},

. . . in the case of MAX CUT(O):

N(x) = {cuts x ′ that result from x by moving one vertex to the other side

of the cut},

and for the case of GRAPH COLORING(O):

N(x) = {colorings x that result from x by changing the color of a single

node}.

T-79.4101 Discrete Models and Search

Spring 2015

77/333

Hill climbing
The hill climbing (simple local search, iterative improvement) method

works by iteratively improving a given solution by neighborhood

transformations, as long as possible:

function simple_LS (X , N, c):

choose arbitrary initial solution x ∈ X ;

repeat

find some x ′ ∈ N(x) such that c(x ′)< c(x);
x ← x ′;

until no such x ′ can be found;

return x .

loc.
opt.

global
optimum

local
optimum

loc.
opt.

cost of
solution

initial soln.

local transf.

T-79.4101 Discrete Models and Search

Spring 2015

78/333

Hill climbing—cont’d

◮ Simple hill climbing just picks any better solution in the

neighborhood.

◮ Steepest descent (or ascent for maximization problems) picks the

best solution (the one that achieves the largest improvement)

among all neighbors.

◮ Very simple technique, can be combined with random restarts.

◮ Obvious problem: search gets trapped in local optima, although

random restarts may improve the best solution found.

T-79.4101 Discrete Models and Search

Spring 2015

79/333

Example: Hill climbing for TSP

◮ Consider a hill climbing method for TSP: candidate solutions x

are a sequence of edges forming a cycle in the TSP instance.

◮ Principle of Lin-Kernighan k-opt neighborhoods: solutions x and

x ′ are neighbors, if x can be transformed into x ′ by replacing k

edges that are in the tour x with k other edges not in x .

◮ More generally, the LK algorithm considers different values for k

during a run (k = 2, k = 3, etc.) to improve the current solution.

◮ The resulting method has been experimentally shown to produce

quite good results for the TSP, sometimes only a few % longer

than optimum.

◮ For implementations and more information, e.g., see

http://www.akira.ruc.dk/~keld/research/LKH/

http://www.akira.ruc.dk/~keld/research/LKH/

T-79.4101 Discrete Models and Search

Spring 2015

80/333

2-opt and 3-opt moves
2-opt move: Replace {(a,b),(c,d)} by {(a,c),(b,d)}

a b

d c

x

a b

d c

x’

3-opt move: Replace {(a,b),(c,d),(e, f)} by {(a,d),(e,c),(b, f)}

a

b

d

c

f
e

x

a

b

d

c

f
e

x’

T-79.4101 Discrete Models and Search

Spring 2015

81/333

A 2-Opt descent to local optimum for TSP

T-79.4101 Discrete Models and Search

Spring 2015

82/333

Simulated annealing: basic idea

◮ Local (nonglobal) minima are a problem for deterministic local

search, and many heuristics have been developed for escaping

from them.

◮ One of the most widely used is simulated annealing (Kirkpatrick,

Gelatt & Vecchi 1983, Černy 1985).

◮ Generate random neighbor of current solution (not necessarily

with uniform probability).

◮ Always move to new solution if move improves objective value

◮ Sometimes move to worse solutions to escape local optima.

◮ Probability of accepting a worse solution varies over runtime

(monotonically decreasing over iterations).

◮ Analogy in metallurgy: heating and controlled cooling of material

to reduce defects in its crystal structure.

T-79.4101 Discrete Models and Search

Spring 2015

83/333

Simulated annealing: implementation

◮ Assume again a minimization problem.

◮ Amount of stochasticity is regulated by a computational

temperature parameter T .

◮ Value of T during the search is decreased from some large initial

value Tinit ≫ 0 to some final value Tfinal ≈ 0.

◮ Search is allowed to proceed for several iterations with the same

temperature (called sweep).

◮ Proposed move from a solution x to a worse solution x ′ is

accepted with probability e−∆c/T , where ∆c > 0 is the cost

difference of the solutions.

T-79.4101 Discrete Models and Search

Spring 2015

84/333

function SA(X , N, c):

T ← Tinit ;

x ← xinit ; x∗← x ;

while T > Tfinal do

L← sweep(T);

for L times do

choose x ′ ∈ N(x) uniformly at random;

∆c← c(x ′)− c(x);
if ∆c ≤ 0 then x← x ′ else

choose r ∈ [0,1) uniformly at random;

if r ≤ exp(−∆c/T) then x ← x ′;

if c(x)< c(x∗) then x∗← x ;

end for;

T ← lower(T);

end while;

return x∗.

T-79.4101 Discrete Models and Search

Spring 2015

85/333

Cooling schedules

◮ An important question in applying SA is how to choose

appropriate functions lower(T) and sweep(T), i.e. what is a good

“cooling schedule” 〈T0,L0〉,〈T1,L1〉, . . .

◮ Theoretical results (Markov chain theory) guarantee that if the

cooling is “sufficiently slow”, then the algorithm almost surely

converges to globally optimal solutions. Unfortunately these

theoretical cooling schedules are astronomically slow.

◮ In practice, one normally just starts from some “high” temperature

T0, and after each “sufficiently long” sweep L decrease the

temperature by some “cooling factor” α≈ 0.8 . . .0.99, i.e. to set

Tk+1 = αTk .

◮ Theoretically this is much too fast, but often seems to work well

enough. (No one really understands why.)

T-79.4101 Discrete Models and Search

Spring 2015

86/333

Convergence of simulated annealing

◮ View the search space X with neighborhood structure N as a

graph (X ,N). Assume that this graph is undirected, connected,

and of degree r . (Each node=solution has exactly r neighbors.)

◮ Denote by X ∗ ⊆ X the set of globally optimal solutions. The

following result was proved by Geman & Geman (1984) and

Mitra, Romeo & Sangiovanni-Vincentelli (1986):

T-79.4101 Discrete Models and Search

Spring 2015

87/333

Convergence of simulated annealing cont.

Theorem. Consider a simulated annealing computation on structure

(X ,N,c). Assume the neighborhood graph (X ,N) is connected and

regular of degree r . Denote:

∆= max{c(x ′)− c(x) | x ∈ X ,x ′ ∈ N(x)}.

Choose

L≥ min
x∗∈X∗

max
x /∈X∗

dist(x ,x∗),

where dist(x ,x∗) is the shortest-path distance in graph (X ,N) from

node x to node x∗. Suppose the cooling schedule used is of the form

〈T0,L〉,〈T1,L〉,〈T2,L〉, . . ., where for each cooling stage ℓ≥ 2:

Tℓ ≥
L∆

lnℓ
(but Tℓ −−−→

ℓ→∞
0).

T-79.4101 Discrete Models and Search

Spring 2015

88/333

Convergence of simulated annealing cont.
Then the distribution of states visited by the computation converges in

the limit to π∗, where

π∗x =

{
0, if x ∈ X \X ∗,
1/|X ∗|, if x ∈ X ∗.

X∗
X \X∗

L≥ min
x∗∈X∗

max
x /∈X∗

dist(x ,x∗)

T-79.4101 Discrete Models and Search

Spring 2015

89/333

Tabu search (Glover 1986)
Idea: Prevent a local search algorithm from getting stuck at a local

minimum, or cycling through equally good solutions, by recording

recently visited solutions (tabu list) and excluding moves to these.

Sometimes finite convergence to an optimal solution can be shown

(Hanafi 2001).

function TABU(c, tt):

x ← xinit ; x∗← x ; initialize TL to {x};
while moves < max_moves do

remove from TL solutions entered there more than tt moves ago;

choose an x ′ ∈ N(x)\TL of minimum cost;

x ← x ′;

add x to TL;

if c(x)< c(x∗) then x∗← x ;

end while;

return x∗;

T-79.4101 Discrete Models and Search

Spring 2015

90/333

Tabu search: practical considerations

◮ To save tabu list memory and access time, it may be worthwhile

not to store complete solutions in the list, but just the recent

moves (local transformations).

◮ Potential problem: a move may be tabu at time t (in the context of

some earlier solution xt ′ , t ′ < t), whereas it would lead to an

interesting new solution in the context of solution xt .

◮ To resolve this issue, heuristics for overriding the tabu rule

(so-called aspiration rules) have been introduced, such as

“always accept objective-improving moves” (i.e. such that

c(x ′)< c(x)).

T-79.4101 Discrete Models and Search

Spring 2015

91/333

Tabu search applied to SAT(O)

Given propositional formula F on n variables {x1, . . . ,xn} in

conjunctive normal form, choose:

◮ Feasible solutions: truth assignments t : {x1, . . . ,xn} → {0,1}.

◮ Objective function: c(t) = number of clauses unsatisfied by t .

◮ Neighborhood structure: N(t) = truth assignments t ′ that differ

from t in exactly one variable.

◮ Full tabu list: recently visited truth assignments.

◮ Abbreviated tabu list: recently flipped variables.

T-79.4101 Discrete Models and Search

Spring 2015

92/333

Other paradigms

A large number of other local search paradigms have been discussed

in the literature, making use of dynamically changing neighborhood

structures, adaptive evaluation functions etc.

Classification by Hoos & Stützle (2005):

Iterative improvement (II), Randomized iterative improvement (RII),

Variable neighborhood descent (VND), Variable depth search (VDS),

Simulated annealing (SA), Tabu search (TS), Dynamic local search

(DLS), Iterated local search (ILS), Greedy randomized ’adaptive’

search (GRASP), Adaptive iterated construction scheme (AICS), Ant

colony optimization (ACO), and Memetic algorithm (MA).

See http://www.sls-book.net/Sample-Pages/glossary.pdf or

also http://cs.gmu.edu/~sean/book/metaheuristics/.

http://www.sls-book.net/Sample-Pages/glossary.pdf
http://cs.gmu.edu/~sean/book/metaheuristics/

T-79.4101 Discrete Models and Search

Spring 2015

93/333

Lecture 4: Constraint satisfaction problems

Outline

◮ Constraint satisfaction problems (CSP’s) and constrained

optimization problems (COP’s), concepts and models

◮ Example encodings of several computational problems

◮ Alternative encodings and potential benefits they offer

Goals for today: Learn to recognize and formulate CSP’s and COP’s;

when given a high-level description of a computational problem

(search or optimization), learn to

a) encode the problem into a CSP/COP

b) evaluate the benefit when choosing one of different encodings of

the same problem

T-79.4101 Discrete Models and Search

Spring 2015

94/333

Constraint satisfaction: motivation

◮ When solving a search problem the most efficient solution

methods are typically based on special purpose algorithms.

◮ In previous lectures important approaches to developing such

algorithms have been discussed.

◮ However, developing a special purpose algorithm for a given

problem requires typically a substantial amount of expertise and

considerable resources.

◮ Another approach is to exploit an efficient algorithm already

developed for some problem through reductions (introduced in

Lecture 2).

T-79.4101 Discrete Models and Search

Spring 2015

95/333

Recall: exploiting reductions

◮ Given an (efficient) algorithm for a problem A we can solve a

problem B by developing a (efficient) reduction from B to A and

translating the solution of A back to a solution to B.

input x =⇒

Algorithm for B:

Red.

R

R(x)
=⇒

Algorithm

for A

z
=⇒

Red.

S

S(z)
=⇒ Answer

◮ Constraint satisfaction problems (CSP’s) offer attractive target

problems for reductions (CSP=Problem A).

T-79.4101 Discrete Models and Search

Spring 2015

96/333

Reduction to CSP’s

1. Encode the computational problem as a CSP (i.e., compute the

reduction R).

2. Solve the CSP via a complete or local search methods (see next

lecture).

3. Extract from a solution to the CSP encoding a solution to the

original problem (i.e., compute the reduction S).

◮ Constraint programming offers tools to build efficient algorithms

for solving CSP’s for a wide range of constraints.

◮ Constraint programming differs from, e.g., imperative

programming, in the property that one does not specify

instructions to be executed but properties of solutions to be found.

◮ There are efficient software packages that can be directly used

for solving interesting classes of constraints.

T-79.4101 Discrete Models and Search

Spring 2015

97/333

Constraint Programming: toy example

◮ Consider the following problem of finding a course schedule for

the ICS department.

◮ Assume there are three courses all taught in spring: DMS, Logic

and Combinatorics.

◮ Say, at each time there are two lecture rooms available: lecture

halls T1 and T2.

◮ Each day, there are time slots 10−12 and 14−16 available.

◮ Assume (unrealistically), every course has a lecture at every day

of the week.

◮ Find time slots and rooms for each course on a given day!

T-79.4101 Discrete Models and Search

Spring 2015

98/333

Constraint Programming: toy example—cont’d

◮ For each course, its time and assigned room are variables.

◮ With each variable, we associate a set of potential values, which

is its domain.

◮ Here, each room-choice variable has the domain {T1,T2} and the

domain for the time-choice variables is {(10−12),(14−16)}.

◮ Domains are typically finite and (usually) discrete.

◮ Constraints limit the possible assignments of values.

◮ Here there is only one type of constraint: if two courses have

been assigned the same time, they must be lectured in different

rooms.

◮ Question: how to represent constraints?

T-79.4101 Discrete Models and Search

Spring 2015

99/333

Constraint Programming: toy example—cont’d

◮ Answer: constraints are formalized as subsets of the Cartesian

product (product set) of the domains of the affected variables.

◮ Consider the constraint

C := if DMS and Combinatorics have been assigned the same

time, they must be lectured in different rooms.

which can be formalized as the set of tuples of values that satisfy

the constraint:

C :={((10− 12),(10− 12),T1,T2),((10− 12),(10− 12),T2,T1),

((14− 16),(14− 16),T1,T2),((14− 16),(14− 16),T2,T1),

((10− 12),(14− 16),T1,T1),((14− 16),(10− 12),T1,T1),

((10− 12),(14− 16),T2,T2),((14− 16),(10− 12),T2,T2)}

((10− 12),(14− 16),T1,T2),((14− 16),(10− 12),T1,T2),

((10− 12),(14− 16),T2,T1),((14− 16),(10− 12),T2,T1)}

⊆ {(10− 12),(14− 16)}×{(10−12),(14−16)}×{T1,T2}×{T1,T2}.

T-79.4101 Discrete Models and Search

Spring 2015

100/333

Constraints: formal model

◮ Consider some variables x1, . . . ,xk and their domains D1, . . .Dk .

◮ Formally, a constraint C on variables x1, . . . ,xk is a subset of

D1×·· ·×Dk .

◮ The number of affected variables k is the arity of the constraint.

◮ If k = 1, the constraint is called unary and if k = 2, binary.

Example. Consider variables x1,x2 both having the domain

Di = {0,1,2}. Then the set

{(0,1),(0,2),(1,0), (1,2),(2,0),(2,1)} ⊆ D1×D2

can be taken as a binary constraint on x1,x2 and then we denote it by

NotEq(x1,x2).

T-79.4101 Discrete Models and Search

Spring 2015

101/333

Constraints: formal model—cont’d

◮ From now on we use a shorthand notation for constraints by

giving directly the condition on the variables when it is clear how

to interpret the condition on the domain elements.

◮ Hence, cond(x1, . . . ,xk) on variables x1, . . . ,xk with domains

D1, . . .Dk denotes the constraint

{(d1, . . . ,dk) | di ∈Di for i = 1, . . . ,k and cond(d1, . . . ,dk) holds }.

◮ Note: If there are in total n variables, then each constraint

cond(x1, . . . ,xk) is defined with respect to an ordered subset of

the set of all variables {x1,x2, . . . ,xn}.

T-79.4101 Discrete Models and Search

Spring 2015

102/333

Constraints—cont’d

Example

The condition x1 6= x2 on variables x1,x2 with domains D1,D2 denotes

the constraint

{(d1,d2) | d1 ∈ D1,d2 ∈ D2,d1 6= d2}.

So if x1,x2 both have the domain {0,1,2}, then x1 6= x2 denotes the

constraint NotEq(x1,x2) above.

Example

The condition x1 ≤
x2

2
+ 1

4
on x1,x2 both having the domain {0,1,2}

denotes the constraint

{(d1,d2) | d1,d2 ∈{0,1,2},d1 ≤
d2

2
+

1

4
}= {(0,0),(0,1),(0,2), (1,2)}.

T-79.4101 Discrete Models and Search

Spring 2015

103/333

Constraint Satisfaction Problems (CSP’s)

◮ Given variables x1, . . . ,xn and domains D1, . . .Dn,

a constraint satisfaction problem (CSP):

〈C;x1 ∈ D1, . . . ,xn ∈ Dn〉

where C is a set of constraints each defined on an ordered

subset of {x1, . . . ,xn}.

Example

〈{NotEq(x1,x2),NotEq(x1,x3),NotEq(x2,x3)},
x1 ∈ {0,1,2},x2 ∈ {0,1,2},x3 ∈ {0,1,2}〉

is a CSP. We often use shorthands for the constrains and write

〈{x1 6= x2,x1 6= x3,x2 6= x3},x1 ∈ {0,1,2},x2 ∈ {0,1,2},x3 ∈ {0,1,2}〉

T-79.4101 Discrete Models and Search

Spring 2015

104/333

CSP’s: Value assignment

◮ For a CSP 〈C;x1 ∈ D1, . . . ,xn ∈ Dn〉 a potential solution is given

by a value assignment which is a mapping T from {x1, . . . ,xn} to

D1∪ ·· ·∪Dn such that for each variable xi , T (xi) ∈ Di .

◮ A value assignment T satisfies a constraint C on variables

xi1 , . . . ,xim if (T (xi1), . . . ,T (xim)) ∈ C.

Example

A value assignment T = {x1 7→ 1,x2 7→ 2, . . . ,xn 7→ n} satisfies the

constraint NotEq on x1,x2 because

(T (x1),T (x2)) = (1,2) ∈ NotEq(x1,x2)

but T ′ = {x1 7→ 1,x2 7→ 1, . . . ,xn 7→ 1} does not as

(T ′(x1),T
′(x2)) = (1,1) 6∈ NotEq(x1,x2).

T-79.4101 Discrete Models and Search

Spring 2015

105/333

CSP’s: Solution

◮ A solution to a CSP 〈C,x1 ∈ D1, . . . ,xn ∈ Dn〉 is a value

assignment that satisfies every constraint C ∈ C.

Example

Consider a CSP

〈{x1 6= x2,x1 6= x3,x2 6= x3},x1 ∈ {0,1,2},x2 ∈ {0,1,2},x3 ∈ {0,1,2}〉

The assignment {x1 7→ 0,x2 7→ 1,x3 7→ 2} is a solution to the CSP as

it satisfies all the constraints but {x1 7→ 0,x2 7→ 1,x3 7→ 1} is not as it

does not satisfy the constraint x2 6= x3 (NotEq(x2,x3)).

T-79.4101 Discrete Models and Search

Spring 2015

106/333

Example: Graph k -Coloring Problem

Given a graph G, the coloring problem can be encoded as a CSP:

◮ For each node vi in the graph introduce a variable Vi with the

domain {1, . . . ,k} where k is the number of available colors.

◮ For each edge (vi ,vj) in the graph introduce a constraint Vi 6= Vj .

◮ This is a reduction of the k-coloring problem to a CSP because

the solutions to the CSP correspond exactly to the solutions of

the coloring problem:

a value assignment {V1 7→ t1, . . . ,Vn 7→ tn} satisfying all the

constraints gives a valid coloring of the graph where node vi is

colored with color ti .

T-79.4101 Discrete Models and Search

Spring 2015

107/333

Example: SEND + MORE = MONEY

◮ Replace each letter by a different digit so that

SEND

+ MORE

MONEY

9567

+ 1085

10652

is a correct sum. The unique solution.

◮ Variables: S, E, N, D, M, O, R and Y.

◮ Domains: {1,. . . ,9} for S, M and {0,. . . ,9} for E, N, D, O, R, Y.

◮ Constraints: 1000 ·S +100 ·E +10 ·N +D

+1000 ·M +100 ·O+10 ·R+E

= 10000 ·M +1000 ·O +100 ·N +10 ·E +Y

and x 6= y for every variable pair x ,y in {S, E, N, D, M, O, R, Y}.

◮ It is easy to check that the value assignment

{S 7→ 9,E 7→ 5,N 7→ 6,D 7→ 7,M 7→ 1,O 7→ 0,R 7→ 8,Y 7→ 2}
satisfies the constraints, i.e., is a solution to the problem.

T-79.4101 Discrete Models and Search

Spring 2015

108/333

N Queens
Problem: Place n queens on a n×n chess board so that they do not

attack each other.

◮ Variables: x1, . . . ,xn (xi gives the row-position of the queen on the

i-th column)

◮ Domains: {1, . . . ,n} for each xi , i = 1, . . . ,n
◮ Constraints: for i ∈ {1, . . . ,n−1} and j ∈ {i +1, . . . ,n}:

n

1

row: xi 6= xj

x1 xnxjxi

SW-NE: xi −xj 6= i− j

NW-SE: xi −xj 6= j− i

T-79.4101 Discrete Models and Search

Spring 2015

109/333

Constrained Optimization Problems

◮ Given: a CSP P := 〈C;x1 ∈ D1, . . . ,xn ∈ Dn〉 and a function obj

which maps solutions of the CSP to real numbers.

◮ (P,obj) is a constrained optimization problem (COP) where the

task is to find a solution T to P for which the value obj(T) is

optimal.

◮ Both versions, minimization and maximization, of the objective

function are possible, of course.

◮ Note1: in practice, instead of considering obj to be a function of

T , one usually formulates it as a function of the product set of the

domains, i.e., obj : D1×D2× . . .Dn 7→ R.

◮ Note2: in some sense the CSP is the search-problem version of

the COP, which asks for the best feasible solution.

T-79.4101 Discrete Models and Search

Spring 2015

110/333

Constrained Optimization Problems—cont’d

◮ Example. KNAPSACK: a knapsack of a fixed volume and n

objects, each with a volume and a value. Find a collection of

these objects with maximum total value that fits in the knapsack.

◮ Representation as a COP:

Given: knapsack volume v and n objects with volumes a1, . . . ,an

and values b1, . . . ,bn.

Variables: x1, . . . ,xn (Idea: xi has value 1 iff item i is included

Domains: {0,1} in the collection of items.)

Constraint: ∑n
i=1 ai · xi ≤ v ,

Objective function: ∑n
i=1 bi · xi .

T-79.4101 Discrete Models and Search

Spring 2015

111/333

More examples

Examples of problems encountered in practice:

◮ Scheduling / timetabling problems: production panning, plant

refueling, course timetabling, vehicle routing, car sequencing, etc.

◮ Rostering: airline crews, hospital staff, etc.

◮ Network optimization: routing, capacity provisioning, transmission

scheduling, etc.

Applications typically fall into the domain of operations research.

T-79.4101 Discrete Models and Search

Spring 2015

112/333

Solving CSP’s

◮ Different encodings of a problem as a CSP utilizing different sets

of constraints can have substantial different computational

properties.

◮ However, it is not obvious which encodings lead to the best

computational performance.

◮ In the course we consider more carefully two classes of

constraints: Boolean constraints (Lecture 6) and linear

constraints (Lecture 9).

◮ Linear constraints are an example of a class of constraints which

has efficient special purpose algorithms.

◮ For others general methods consisting of constraint propagation

algorithms and search methods are available (Lecture 5).

T-79.4101 Discrete Models and Search

Spring 2015

113/333

General remarks on CSP encoding
Not all models are equal! Sometimes, the following guidelines are

worth considering.

◮ Try to avoid high-arity constraints, unless explicitly supported by

an available constraint solver.

◮ Constraints involving a large number of variables may cause

trouble for solvers that rely on constraint propagation techniques,

which frequently evaluate the effect of changes of variable values

on constraint satisfiability depending on the remaining variables.

◮ One solution: replace a single constraint involving many variables

by a few with only a small number of variables.

◮ Recall SEND + MORE = MONEY example:

SEND

+ MORE

MONEY

9567

+ 1085

10652

T-79.4101 Discrete Models and Search

Spring 2015

114/333

Alternative formulation

◮ Old constraint:

1000 ·S +100 ·E +10 ·N +D

+1000 ·M +100 ·O +10 ·R+E

= 10000 ·M +1000 ·O +100 ·N +10 ·E +Y

◮ New variables C1, C2, C3, C4, C5 with domains {0,1} and

replacement constraints

D+E = Y +C1 ·10

C1 +N +R = E +C2 ·10

C2 +E +O = N +C3 ·10

C3 +S+M = O +C4 ·10

C4 = M

◮ Advantage? Maximum arity 5 (incl. 2 binary variables) compared

to 8 in the original (translates to 4 ·103 vs 108).

T-79.4101 Discrete Models and Search

Spring 2015

115/333

General remarks on CSP encoding—cont’d

◮ Prefer a few variables with large domains over many variables

with small domains.

◮ Recall N Queens: n variables x1, . . . ,xn, each with domain

{1, . . . ,n}, corresponding to the row-position of the queen on the

i-th column.

◮ Consider replacing these with Boolean variables

xij =

{

1, if and only if there is a queen in column i , row j ,

0, otherwise.

◮ The search space increased from nn to 2n2

!

◮ Additionally n new constraints queen i is assigned to one row

exactly, which were satisfied implicitly earlier!

T-79.4101 Discrete Models and Search

Spring 2015

116/333

General remarks on CSP encoding—cont’d

◮ Try to avoid symmetry in solutions.

◮ Example: if two tasks in a scheduling problem can be

interchanged with no effects on constraints and cost, introduce

artificial pairwise order constraints.

◮ Intuitive explanation: symmetries may fool complete methods into

performing unnecessary computation by exploring branches of

the search-tree that may not lead to better solutions than

currently known ones.

◮ For more and an introduction to CSP’s in general see the review

by Brailsford, Potts and Smith ’99 (see Noppa, additional-reading

page, voluntary but encouraged).

T-79.4101 Discrete Models and Search

Spring 2015

117/333

CSP’s in practice

◮ Interesting invited talk by Laurent Perron (Google) from 2011:

http://www.dmi.unipg.it/cp2011/invited.html;

some quotes about solving COP’s/CSP’s in practice:

1. Getting the right problem with the right people is hard.

2. Getting clean data is hard.

3. Solving the problem is easy.

4. Reporting the result/explaining the implications is hard.

◮ Time spent is 50 / 25 / 5 / 20 %.

http://www.dmi.unipg.it/cp2011/invited.html

T-79.4101 Discrete Models and Search

Spring 2015

118/333

Lecture 5: Complete and local search methods for CSP’s

Outline

◮ Algorithms for solving constraint satisfaction and constrained

optimization problems

◮ Complete algorithms and local search methods

◮ Constraint propagation: concept and methods

Goal for today: When faced with a given class of constraint

satisfaction/optimization problems, learn to devise a complete/local

search method for finding solutions by employing some of the

techniques discussed today.

T-79.4101 Discrete Models and Search

Spring 2015

119/333

Constraint satisfaction: Algorithms

◮ For some classes of constraints there are efficient special

purpose algorithms (domain specific methods/constraint solvers).

◮ But now we consider general methods consisting of constraint

propagation techniques and search methods.

◮ Note: to simplify presentation we use CSP’s for the discussion,

although the algorithms naturally extend to COP’s.

◮ Recall: Given variables x1, . . . ,xn and domains D1, . . .Dn,

a constraint satisfaction problem (CSP) is formulated as:

〈C;x1 ∈ D1, . . . ,xn ∈ Dn〉

where C is a set of constraints each defined on an ordered

subset of {x1, . . . ,xn}.

◮ Example:

〈{x1 6= x2,x1 6= x3,x2 6= x3},x1 ∈{0,1,2},x2 ∈{0,1,2},x3 ∈{0,1,2}〉

T-79.4101 Discrete Models and Search

Spring 2015

120/333

Solve

◮ The first method (here called Solve) is very similar to complete

search methods seen in Lecture 3, such as backtrack search.

◮ The procedure Solve takes as input a constraint satisfaction

problem (CSP) and transforms it until it is solved.

◮ It employs a number of subprocedures: Happy, Preprocess,

Constraint Propagation, Atomic, Split, Proceed by Cases;

(Principles of Constraint Programming, Krzysztop R. Apt, 1999).

Happy, Atomic check of termination condition

Preprocess, Constraint

Propagation

transformation of CSP to another one that is

equivalent to it

Split division of CSP into two or more CSP’s whose

union is equivalent to the CSP

Proceed by Cases specifies what search techniques are used to

process the CSP’s generated by Split

T-79.4101 Discrete Models and Search

Spring 2015

121/333

Constraint Programming: Basic Framework

procedure Solve(CSP/COP P):

P← Preprocess(P);

P← Constraint_Propagation(P);

if not Happy(P) then

if Atomic(P) then

return; /* impossible to split */

else

(P1,P2, . . .)← Split(P);

Proceed_by_Cases(P1 ,P2, . . .); /* may lead to recursive calls */

end

end

T-79.4101 Discrete Models and Search

Spring 2015

122/333

Equivalence of CSP’s

◮ To understand Solve we need the notion of equivalence of CSP’s.

◮ Informally, CSP’s P1 and P2 are equivalent if they have the same

set of solutions (satisfying assignments of values to variables).

◮ However, transformations can add new variables to a CSP and

then equivalence is understood w.r.t. the original variables.

◮ Recall: For a CSP 〈C;x1 ∈ D1, . . . ,xn ∈ Dn〉 a value assignment

(a.k.a. potential solution) is a mapping T from {x1, . . . ,xn} to

D1∪ ·· ·∪Dn such that for each variable xi , T (xi) ∈ Di .

◮ We say that two value assignments T and T ′ agree on a set of

variables X iff T (x) = T ′(x) for all x ∈ X .

◮ Then define equivalence w.r.t. variables in set X based on

solutions to the CSP’s that agree on X as follows.

T-79.4101 Discrete Models and Search

Spring 2015

123/333

Equivalence of CSP’s—cont’d

We say that two CSP’s P1 and P2 are equivalent w.r.t. a set of

variables X iff

◮ for every solution T1 of P1 there exists a solution T2 of P2 such

that T1 and T2 agree on variables X and

◮ for every solution T2 of P2 there exists a solution T1 of P1 such

that T2 and T1 agree on variables X .

T-79.4101 Discrete Models and Search

Spring 2015

124/333

Equivalence of CSP’s – Example

Consider the following two CSP’s that are equivalent on X = {x1,x2}:
P1 = 〈{x1 < x2};x1 ∈ {1,3},x2 ∈ {1,3}〉
P2 = 〈{x1 < x3,x3 ≤ x2};x1 ∈ {1,3},x2 ∈ {1,3},x3 ∈ {1,2,3}〉

◮ for the unique solution T1 = {x1 7→ 1,x2 7→ 3} of P1 there is a

corresponding solution T21 = {x1 7→ 1,x2 7→ 3,x3 7→ 3} of P2

such that T1 and T21 agree on variables X and . . .

◮ for the solutions T21 and T22 = {x1 7→ 1,x2 7→ 3,x3 7→ 2} of P2,

T1 is a corresponding solution of P1 agreeing on X .

T-79.4101 Discrete Models and Search

Spring 2015

125/333

Equivalence of CSP’s cont’d

We extend the notion of equivalence to several CSP’s as follows:

A union of CSP’s P1, . . . ,Pm is equivalent to a CSP P0 w.r.t. X iff

◮ for every solution T0 of P0 there exists a solution Ti of Pi for some

1≤ i ≤m such that T0 and Ti agree on variables X and

◮ for each 1≤ i ≤m and for every solution Ti of Pi there exists a

solution T0 of P0 such that Ti and T0 agree on variables X .

For instance, CSP

P0 = 〈{x1 < x2};x1 ∈ {1, . . . ,10},x2 ∈ {1, . . . ,10}〉

is equivalent w.r.t. {x1,x2} to the union of the two CSP’s

P01 = 〈{x1 < x2};x1 ∈ {1, . . . ,5},x2 ∈ {1, . . . ,10}〉

P02 = 〈{x1 < x2};x1 ∈ {6, . . . ,10},x2 ∈ {1, . . . ,10}〉

T-79.4101 Discrete Models and Search

Spring 2015

126/333

Solved and Failed CSP’s

◮ For termination one needs to define when a CSP has been

solved and when it is failed.

◮ Let C be a constraint on variables y1, . . . ,yk with domains

D1, . . . ,Dk (C ⊆ D1×·· ·×Dk).

◮ C is solved if C = D1×·· ·×Dk and C 6= /0.

◮ A CSP is solved if

a) all its constraints are solved and

b) none of the domains is empty.

◮ A CSP is failed if

a) it contains the empty (false) constraint ⊥ or

b) one of its domains is empty.

T-79.4101 Discrete Models and Search

Spring 2015

127/333

Happy

test applied to the current CSP to see whether the goal conditions set

for the original CSP have been achieved. Typical conditions include:

◮ a solution has been found,

◮ all solutions have been found,

◮ a solved form has been reached from which one can generate all

solutions,

◮ it is determined that no solution exists (the CSP is failed),

◮ an optimal solution w.r.t. some objective function has been found,

◮ all optimal solutions have been found.

Example For a CSP 〈{x1 + x2 = x3,x1− x2 = 0};xi ∈ Di〉
the solved form could be, for example, 〈{x1 = x2,x3 = 2x2};xi ∈ Di〉.

T-79.4101 Discrete Models and Search

Spring 2015

128/333

Transformations

◮ In the following we represent transformations of CSP’s by means

of proof rules.

◮ A rule
P0

P1

transforms the CSP P0 to the CSP P1.

◮ A rule
P0

P1 | · · · | Pn

transforms the CSP P0 to the set of CSP’s P1, . . . ,Pn.

T-79.4101 Discrete Models and Search

Spring 2015

129/333

Preprocess

◮ The aim is to bring constraints to a desired syntactic form.

◮ Example: Constraints on reals.

Desired syntactic form: no inequalities in more than one variable

x + y ≥ 5

x + y− z = 5,z ≥ 0

(Notice that a new variable is introduced.)

T-79.4101 Discrete Models and Search

Spring 2015

130/333

Atomic

◮ This is a test applied to the current CSP to see whether the CSP

is available for splitting.

◮ Typically a CSP is considered atomic if the domains of the

variables are either singletons or empty.

◮ But a CSP can be viewed as atomic also if it is clear that search

‘under’ this CSP is not needed.

For example, this could be the case when the CSP is “solved” or

an optimal solution can be computed directly from the CSP.

T-79.4101 Discrete Models and Search

Spring 2015

131/333

Split

◮ After Constraint Propagation, Split is called when the test Happy

fails but the CSP is not yet Atomic.

◮ A call to Split replaces the current CSP P0 by CSP’s P1, . . . ,Pn

such that the union of P1, . . . ,Pn is equivalent to P0, i.e., the rule

P0

P1 | · · · | Pn

is applied.

◮ A split can be implemented by splitting domains or constraints.

◮ For efficiency an important issue is the splitting heuristics, i.e.,

which split to apply and in which order to consider the resulting

CSP’s.

T-79.4101 Discrete Models and Search

Spring 2015

132/333

Split — a domain

◮ D finite (Enumeration) :
x ∈ D

x ∈ {a} | x ∈ D \{a}

◮ D finite (Labeling) :
x ∈ {a1, . . . ,ak}

x ∈ {a1} | . . . | x ∈ {ak}

◮ D interval of reals (Bisection) :
x ∈ [a,b]

x ∈ [a, a+b
2
] | x ∈ (a+b

2
,b]

T-79.4101 Discrete Models and Search

Spring 2015

133/333

Split — a constraint

◮ Disjunctive constraints like

Start[task1] + Duration[task1] ≤ Start[task2] ∨
Start[task2] + Duration[task2] ≤ Start[task1]

can be split using the rule:
C1∨C2

C1 | C2

◮ Constraints in "compound" form:

|x + y |= a

x + y = a | x + y =−a

T-79.4101 Discrete Models and Search

Spring 2015

134/333

Heuristics

Which

◮ variable to choose,

◮ value to choose,

◮ constraint to split.

Examples:

(i) Select a variable that appears in the largest number of constraints

(most constrained variable).

(ii) For a domain being an integer interval: select the middle value.

T-79.4101 Discrete Models and Search

Spring 2015

135/333

Proceed by Cases

◮ Various search techniques can be applied.

◮ A typical solution is to use

◮ backtracking or

◮ branch and bound

◮ and combine these with

◮ efficient constraint propagation and

◮ intelligent backtracking (e.g., conflict directed backjumping)

◮ As the search trees are often very big, you tend to avoid

techniques where much more than the current branch of the

search tree needs to be stored.

T-79.4101 Discrete Models and Search

Spring 2015

136/333

Constraint Propagation

◮ Intuition: Replace a CSP by an equivalent one that is "simpler".

◮ Basic idea: exploit dependence of variables and constraints to

reduce ("shrink") domains of some variables and/or constraints

◮ By constraint propagation we mean applying repeatedly reduction

steps.

◮ Efficient constraint propagation enabling substantial reductions is

a key issue for overall performance.

◮ Note: the following examples use integer interval notation:

[5..10] = {5,6,7,8,9,10}

T-79.4101 Discrete Models and Search

Spring 2015

137/333

Constraint Propagation—cont’d

Domain Reduction

◮ Linear inequalities on integers:

〈x < y ;x ∈ [lx ..hx],y ∈ [ly ..hy]〉

〈x < y ;x ∈ [lx ..h
′
x],y ∈ [l ′y ..hy]〉

where h′x = min(hx ,hy −1), l ′y = max(ly , lx +1)

Example:

〈x < y ;x ∈ [50..200],y ∈ [0..100]〉

〈x < y ;x ∈ [50..99],y ∈ [51..100]〉

Constraint Reduction

Usually by introducing new constraints.

◮ Transitivity of <:
〈x < y ,y < z;x ∈ Dx ,y ∈ Dy ,z ∈ Dz〉

〈x < y ,y < z,x < z;x ∈ Dx ,y ∈ Dy ,z ∈ Dz〉
This rule introduces new constraint, x < z .

T-79.4101 Discrete Models and Search

Spring 2015

138/333

Repeated Domain Reduction: Example

◮ Consider 〈x < y ,y < z;x ∈ [50..200],y ∈ [0..100],z ∈ [0..100]〉

◮ Apply the rule from previous slide to x < y :

〈x < y ,y < z;x ∈ [50..99],y ∈ [51..100],z ∈ [0..100]〉.

◮ Apply it now to y < z:

〈x < y ,y < z;x ∈ [50..99],y ∈ [51..99],z ∈ [52..100]〉

◮ Apply it again to x < y :

〈x < y ,y < z;x ∈ [50..98],y ∈ [51..99],z ∈ [52..100]〉

T-79.4101 Discrete Models and Search

Spring 2015

139/333

Constraint Propagation Algorithms

◮ The efficient scheduling of atomic reduction steps quickly

becomes nontrivial.

◮ Constraint propagation algorithms perform reduction steps with

the goal of achieving local consistency; depending on the class of

constraints there are different notions of local consistency.

◮ The projection rule is a widely applicable and efficient general

reduction rule.

◮ Note: to simplify implementation the rule is formulated as an

update rule for the domains and keeps constraints unchanged.

Projection rule:

Take a constraint C on variables x1, . . . ,xk . From these

variables, choose a variable xi with domain Di . Remove

from Di each value d for which there is no

(d1, . . . ,di , . . . ,dk) ∈ D1×·· ·×Dk such that

(d1, . . . ,di , . . . ,dk) ∈ C and di = d.

T-79.4101 Discrete Models and Search

Spring 2015

140/333

CSP: 〈C1(x ,y ,z),C2(x ,z);x ∈ {1,2,3},y ∈ {1,2,3},z ∈ {1,2,3}〉

where C1 = {(1,1,2),(1,2,1),(2,3,3)}, C2 = {(1,1),(2,2),(3,3)}.

◮ Applying Projection rule to C1(x ,y ,z) and variables x ,y ,z yields

〈C1(x ,y ,z),C2(x ,z);x ∈ {1,2},y ∈ {1,2,3},z ∈ {1,2,3}〉

◮ Applying Projection rule to C2(x ,z) yields

〈C1(x ,y ,z),C2(x ,z);x ∈ {1,2},y ∈ {1,2,3},z ∈ {1,2}〉

◮ Applying Projection rule to C1(x ,y ,z) yields

〈C1(x ,y ,z),C2(x ,z);x ∈ {1},y ∈ {1,2},z ∈ {1,2}〉

◮ Applying Projection rule to C2(x ,z) yields

〈C1(x ,y ,z),C2(x ,z);x ∈ {1},y ∈ {1,2},z ∈ {1}〉

◮ Applying Projection rule to C1(x ,y ,z) yields

〈C1(x ,y ,z),C2(x ,z);x ∈ {1},y ∈ {2},z ∈ {1}〉
(This CSP is hyper-arc consistent and happens to be solved).

T-79.4101 Discrete Models and Search

Spring 2015

141/333

Hyper-Arc Consistency
If the projection rule is the only atomic reduction step and it is applied

as long as new reductions can be made, then the constraint

propagation algorithm achieves a local consistency notion called

hyper-arc consistency:

A CSP is hyper-arc consistent if for every constraint C on

variables x1, . . .xk and every xi with domain Di , for each

d ∈ Di , there is some (d1, . . . ,di , . . . ,dk) ∈ D1×·· ·×Dk

such that (d1, . . . ,di , . . . ,dk) ∈ C and di = d.

More formally: A CSP is hyper-arc consistent if

∀C(x1, . . . ,xk) ∈ C

(

∀xi ∈ {x1, . . . ,xk}
(
d ∈ Di →

∃(d1, . . . ,di , . . . ,dk) ∈ C(x1, . . . ,xk)
⋂

(D1×·· ·×Dk) such that di = d
))

Note: after one application of the projection rule the CSP satisfies the

condition for one (constraint, variable in that constraint) pair.

T-79.4101 Discrete Models and Search

Spring 2015

142/333

Example

Consider the Solve procedure and a CSP

〈C;x1 ∈ {1,2,3},x2 ∈ {1,2,3}}〉

given as its input where

C = {x1 6= x2,x1 ≥ x2}

Below the behaviour of Solve is given when (i) the goal is to find one

solution (Happy), (ii) no Preprocessing is done, (iii) Constraint

Propagation is based on the Projection rule, (iv) Splitting is based on

enumeration and (v) search (Proceed by Cases) on depth first

backtracking search.

T-79.4101 Discrete Models and Search

Spring 2015

143/333

Example—cont’d

(Here: C = {x1 6= x2,x1 ≥ x2})

〈C;x1 ∈ {1,2,3},x2 ∈ {1,2,3}〉
Constraint Propagation

(does not give any simplifications)

Split by Enumeration

��✠ ❅❅❘
〈C;x1 ∈ {1},x2 ∈ {1,2,3}〉

Constraint Propagation

〈C;x1 ∈ {1},x2 ∈ {}〉
Failed

〈C;x1 ∈ {2,3},x2 ∈ {1,2,3}〉
Constraint Propagation

(does not give any simplifications)

Split by Enumeration

��✠ ❅❅❘
〈C;x1 ∈ {2},x2 ∈ {1,2,3}〉

Constraint Propagation

〈C;x1 ∈ {2},x2 ∈ {1}〉
Solved

〈C;x1 ∈ {3},x2 ∈ {1,2,3}〉

T-79.4101 Discrete Models and Search

Spring 2015

144/333

Global Constraints

◮ Constraint programming systems often offer constraints with

special purpose constraint propagation (filtering) algorithms.

Such a constraint can typically be seen as an encapsulation of a

set of simpler constraints and is called a global constraint.

◮ A global constraint is an expressive and concise condition

involving a non-fixed number of variables. (see Global Constraint

Catalog)

◮ A representative example is the alldiff constraint:

alldiff(x1, . . . ,xn) = {(d1, . . . ,dn) | di 6= dj , for i 6= j}

Example. A value assignment {x1 7→ a,x2 7→ b,x3 7→ c} satisfies

alldiff(x1,x2,x3) but {x1 7→ a,x2 7→ b,x3 7→ a} does not.

◮ alldiff(x1, . . . ,xn) can be seen as an encapsulation of a set of

binary constraints xi 6= xj , 1≤ i < j ≤ n.

T-79.4101 Discrete Models and Search

Spring 2015

145/333

Global Constraints: alldiff

Global constraints enable compact encodings of problems.

Recall the N Queens problem:

Example. Place n queens on a n×n chess board so that they do not

attack each other.

◮ Variables: x1, . . . ,xn (xi gives the row-position of the queen on the

i-th column)

◮ Domains: {1,. . . ,n}

◮ Constraints: for i ∈ {1, . . . ,n−1} and j ∈ {i +1. . . . ,n}:
(i) alldiff(x1, . . . ,xn) (rows)

(ii) xi − xj 6= i− j (SW-NE diagonals)

(iii) xi − xj 6= j− i (NW-SE diagonals)

T-79.4101 Discrete Models and Search

Spring 2015

146/333

Global Constraints: Propagation

◮ In addition to compactness global constraints often provide more

powerful propagation than the same condition expressed as the

set of corresponding simpler constraints.

◮ Consider variables x1,x2,x3 with domains

D1 = {a,b,c},D2 = {a,b},D3 = {a,b}.

◮ Now alldiff(x1,x2,x3) is not hyper-arc consistent and the

projection rule removes values a,b from the domain of x1.

◮ However, the corresponding set of constraints

x1 6= x2,x1 6= x3,x2 6= x3 is hyper-arc consistent and the

projection rule is not able to remove any values.

◮ There is a wide range of such global constraints (e.g., see the

Global Constraint Catalog

http://www.emn.fr/x-info/sdemasse/gccat/).

◮ For some special-purpose algorithms exist (e.g., for alldiff).

http://www.emn.fr/x-info/sdemasse/gccat/

T-79.4101 Discrete Models and Search

Spring 2015

147/333

Local Search for CSP/COP

Many of the methods of Lecture 3 can be adapted to CSP’s and

COP’s. As a different example we consider Min Conflict Heuristic

(MCH) algorithm (Minton et al, 1990). Given a CSP instance C:

◮ Initialize each variable by selecting a value uniformly at random

from its domain.

◮ In each local step select a variable xi uniformly at random from

the conflict set, which is the set of variables appearing in a

constraint that is unsatisfied under the current assignment.

◮ A new value v for xi is selected from the domain of xi such that by

assigning v to xi the number of conflicting constraints is

minimized.

◮ If there is more than one new value with that property, one of the

minimizing values is chosen uniformly at random.

T-79.4101 Discrete Models and Search

Spring 2015

148/333

Example
Consider a run of MCH on a CSP

〈{x1 ≤ x2,x2 ≤ x3,x3 ≤ x1},x1 ∈ {1,2,3},x2 ∈ {1,2,3},x3 ∈ {1,2,3}〉

◮ First a value is selected for each variable uniformly at random

from its domain, say {x1 7→ 1,x2 7→ 2,x3 7→ 3}.
◮ For this assignment, the conflict set is {x1,x3} from which, say, x1

is randomly selected.

◮ Each possible assignment x1 7→ 1/x1 7→ 2/x1 7→ 3 leaves one

conflict and, hence, one of them is randomly selected, say

x1 7→ 2.

◮ For the resulting assignment {x1 7→ 2,x2 7→ 2,x3 7→ 3}, the

conflict set is {x1,x3}, from which x3 is randomly selected.

◮ Now assignments x3 7→ 1/x3 7→ 3 leave one conflict but x3 7→ 2

leaves none.

◮ Hence, x3 7→ 2 is selected leading to a solution

{x1 7→ 2,x2 7→ 2,x3 7→ 2}.

T-79.4101 Discrete Models and Search

Spring 2015

149/333

MCH—cont’d
Sometimes MCH appears to be too greedy and gets stuck quickly.

Ways to mitigate this problem (see, e.g., Wallace and Freuder, 1995):

◮ A noise parameter p is introduced.

◮ Then in each local step: with probability p a new value for the

variable from the conflict set is chosen randomly and with

probability 1−p the normal min conflict heuristics is followed.

MCH can also be extended with a tabu search mechanism (Steinmann

et al. 1997):

◮ After each search step where the value of a variable xi has

changed from v to v ′, the assignment xi 7→ v is declared tabu for

the next tt steps.

◮ While xi 7→ v is tabu, value v is excluded from the selection of

values for xi except if assigning v to xi leads to an improvement in

the evaluation function over the current assignment (aspiration

criterion).

T-79.4101 Discrete Models and Search

Spring 2015

150/333

CSP: Tabu Search—cont’d

◮ A similar algorithm modifies MCH to choose over all non-tabu

(variable, value) pairs the best move.

◮ TS-GH algorithm (Galinier and Hao, 1997):
◮ In each local step: consider all non-tabu variable-value

assignments x 7→ v , where x appears in a currently unsatisfied

constraint and v is in the domain of x .

◮ Choose the assignment that leads to the maximal decrease in the

number of violated constraints.

◮ If there are multiple such assignments, one of them is chosen

uniformly at random.

◮ After changing the assignment of x from v to v ′, the assignment

x 7→ v is declared tabu for tt steps (except when leading to an

improvement).

◮ For competitive performance, the evaluation function for x 7→ v

moves should use caching and incremental update techniques.

T-79.4101 Discrete Models and Search

Spring 2015

151/333

Example
Consider a local step of TS-GH on a CSP

〈{x1 ≤ x2,x2 ≤ x3,x3 ≤ x1},x1 ∈ {1,2,3},x2 ∈ {1,2,3},x3 ∈ {1,2,3}〉

where the current assignment is {x1 7→ 2,x2 7→ 2,x3 7→ 3}

◮ Variables x1,x3 appear in an unsatisfiable constraint (x3 ≤ x1).

◮ In MCH one of these would be randomly selected but in TS-GH

we consider all assignments

x1 7→ 1/x1 7→ 2/x1 7→ 3/x3 7→ 1/x3 7→ 2/x3 7→ 3

and select an assignment leading to the maximal decrease in the

number of violated constraints.

◮ Assignment x3 7→ 2 leaves no violated constraints but other

assignments leave a violated constraint.

◮ Hence, x3 7→ 2 is selected leading to a solution

{x1 7→ 2,x2 7→ 2,x3 7→ 2}.

T-79.4101 Discrete Models and Search

Spring 2015

152/333

Tools for CSP

◮ Constraint programming systems offer a rich set of supported

constraint types with efficient propagation algorithms and

primitives for implementing search.

◮ See, for example,

http://4c.ucc.ie/web/archive/solver.jsp and also

http://en.wikipedia.org/wiki/Constraint_programming

for solvers and libraries. Some examples:

CLAIRE, ECLiPse, GNU Prolog, Oz,

Sicstus Prolog, ILOG Solver, ...

http://4c.ucc.ie/web/archive/solver.jsp
http://en.wikipedia.org/wiki/Constraint_programming

T-79.4101 Discrete Models and Search

Spring 2015

153/333

Lecture 6: Boolean circuits

Outline

◮ Boolean circuits and circuit satisfiability

◮ Concepts and model, example circuits

◮ Tseitin’s translation for BC’s to CNF

Goals for today: Learn to represent propositional formulas as

Boolean circuits and how to convert between Boolean circuits and

propositional formulas in CNF.

T-79.4101 Discrete Models and Search

Spring 2015

154/333

Review

◮ In the last two lectures we discussed CSP’s and COP’s as targets

for reductions of computational problems.

◮ Sometimes the expressivity of CSP’s is not necessary.

◮ Instead one can consider special cases (e.g., Boolean variables

and constraints, i.e., SAT) that enable special purpose algorithmic

solutions that typically perform well in practice.
◮ Despite the simplicity of SAT, it provides a highly efficient

approach for solving various hard computational problems
◮ This is due to very efficient algorithms and solvers available
◮ In addition more general constraints can be reduced to SAT

◮ In this lecture we discuss Boolean circuits as a viable method for

propositional satisfiability.

◮ In the next lecture we consider complete and local search

methods for finding solutions to SAT.

T-79.4101 Discrete Models and Search

Spring 2015

155/333

Recall: Representing Boolean Functions
◮ Consider an n-ary Boolean function

f : {true, false}n 7→ {true, false} with Boolean variables

x1, . . . ,xn.

◮ Denote its Boolean inverse (negation) as f̄ := ¬f .

Example.

x1 x2 f ¬f

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1

◮ Disjunctive Normal Form (DNF):

f = (¬x1∧ x2)∨ (x1∧¬x2)

◮ Conjunctive Normal Form (CNF):

f = ¬¬f = ¬((¬x1∧¬x2)∨ (x1∧ x2))

= (x1∨ x2)∧ (¬x1∨¬x2)

◮ Note: The f in this example is the xor (exclusive or) function and f̄

correspondingly the xnor (sometimes called equiv for equivalent)

function.

T-79.4101 Discrete Models and Search

Spring 2015

156/333

Boolean Circuits

◮ CNF/DNF normal forms are often quite an unnatural way of

encoding problems and it is more convenient to use full

propositional logic.

◮ In many applications the encoding is of considerable size and

different parts of the encoding have a substantial amount of

common substructure.

◮ Boolean circuits offer an attractive formalism for representing the

required Boolean functions where compactness is enhanced by

sharing common substructure.

◮ Note: here we talk about the computational model of Boolean

circuits, which is different from (although related to) actual real-life

digital circuits that for example form the basis of today’s

computing technologies.

T-79.4101 Discrete Models and Search

Spring 2015

157/333

Boolean Circuits

◮ A Boolean circuit C is a triple (V ,E ,s).

◮ Here, (V ,E) is a finite directed acyclic graph whose nodes are

called gates. The nodes are divided into three categories.

◮ Note: for every node v ∈ V , one calls the number of incoming

(outgoing) edges the indegree (outdegree) of v .

◮ Similarly, the set of nodes {u ∈ V | (u,v) ∈ E} is the set of

incoming neighbors; the set of outgoing neighbors is defined

analogously.

◮ Output gates can have any indegree but have outdegree 0.

◮ Intermediate gates can have any indegree and outdegree larger

than 0.

◮ Input gates can have any outdegree but have indegree 0.

T-79.4101 Discrete Models and Search

Spring 2015

158/333

Boolean Circuits—cont’d

◮ The function s : V 7→ {true, false}{true,false}|V | assigns a Boolean

function s(g) to each intermediate and output gate g of

appropriate arity corresponding to the indegree of the gate.

◮ Typical Boolean functions used in the gates are:

and/n (n-input AND function), or/n,not/1,equiv/2,xor/2, . . .

For example:

x1 x2 equiv/2 xor/2

0 0 1 0

0 1 0 1

1 0 0 1

1 1 1 0

T-79.4101 Discrete Models and Search

Spring 2015

159/333

Example: Boolean Circuit

s(v1) = and/2

s(v2) = or/3

s(v3) = equiv/2

v1 is the output gate of the circuit

v4,v5,v6 are the input gates

T-79.4101 Discrete Models and Search

Spring 2015

160/333

Boolean Circuits—Semantics

◮ Consider first the graph (V ,E). We can order its nodes (C’s

gates) topologically, such that for every edge from u to v node u

appears before v in the ordering; this is always possible because

the graph (circuit) is acyclic.

◮ Note: in this sequence all gates appear after their input gates.

◮ For a given circuit C = (V ,E ,s) a truth assignment

T : X(C)−→ {true, false} assigns a truth value to each gate in

X(C), where X(C) is the set of input gates of C.

◮ The truth value T ′(g) for gate v is then determined inductively:

T ′(g)=







T (g), if g ∈ X(C), else

f (T ′(g1), . . . ,T
′(gn)) where the gi are the incoming neighbors of g

and f = s(g) is the function associated with g.

T-79.4101 Discrete Models and Search

Spring 2015

161/333

Boolean Circuits—Semantics cont’d

Example

For the previous example circuit C, X(C) = {v4,v5,v6}, and a valid

topological ordering would be the sequence v4,v5,v6,v3,v2,v1.

Consider a truth assignment T (v4) = T (v5) = T (v6) = false and the

values it induces:

◮ T (v3) = equiv(T (v5),T (v6)) =
equiv(false, false) = true,

◮ T (v2) = or(T (v4),T (v5),T (v6)) = false, and

◮ T (v1) = and(T (v2),T (v3)) = false.

T-79.4101 Discrete Models and Search

Spring 2015

162/333

Circuit Satisfiability Problem
◮ An interesting computational (search) problem related to circuits

is the circuit satisfiability problem.

◮ A constrained Boolean circuit is a pair (C,α) with a circuit C and

constraints α assigning truth values for some gates.

◮ Given a constrained Boolean circuit (C,α) a truth assignment T

satisfies (C,α) if it satisfies the constraints α, i.e., for each gate g

for which α gives a truth value, α(g) = T (g) holds.

◮ CIRCUIT SAT problem: Given a constrained Boolean circuit find

a truth assignment T that satisfies it.

Example. Consider the circuit with constraints

α(v4) = false, α(v1) = true.

This circuit has a satisfying truth assignment

T (v4) = false,T (v5) = T (v6) = true.

If the constraints are α(v2) = false, α(v1) =
true, the circuit is unsatisfiable.

T-79.4101 Discrete Models and Search

Spring 2015

163/333

Example—cont’d

◮ There are solvers available for solving constrained circuit

satisfiability problems.

◮ One example: bczchaff (Junttila and Niemelä, 2000) based on

the SAT solver zchaff (Zhang et al.).

Input:

BC1.0

v_4;

v_5;

v_6;

v_2 := OR(v_4, v_5, v_6);

v_3 := EQUIV(v_5, v_6);

v_1 := AND(v_2, v_3);

ASSIGN v_1, ~v_4;

Output:

./bczchaff test.txt

v_5 v_6 v_2 v_3 v_1 ~v_4

Satisfiable

◮ http://users.ics.aalto.fi/tjunttil/bcsat/ (bczchaff),

http://www.princeton.edu/~chaff/zchaff.html (zchaff).

http://users.ics.aalto.fi/tjunttil/bcsat/
http://www.princeton.edu/~chaff/zchaff.html

T-79.4101 Discrete Models and Search

Spring 2015

164/333

Boolean Circuits vs. Propositional Formulas

◮ For each propositional formula φ, there is a corresponding

Boolean circuit Cφ such that for any T appropriate for both,

T (gφ) = true iff T |= φ for an output gate gφ of Cφ .

Idea: just introduce a new gate for each subexpression.

(a∨b)∧ (¬a∨b)∧
(a∨¬b)∧ (¬a∨¬b)

or or or

and

or

not not

ba
c d

fe g h

v

◮ For each Boolean circuit C, there is a corresponding formula φC .

◮ Notice that Boolean circuits allow shared subexpressions but

formulas do not.

For instance, in the circuit above gates a,b,c,d .

T-79.4101 Discrete Models and Search

Spring 2015

165/333

Circuits Compute Boolean Functions

◮ A Boolean circuit with output gate g and input gates

(corresponding to variables) x1, . . . ,xn computes an n-ary

Boolean function f if for any n-tuple of truth values t = (t1, . . . , tn),
f (t) = T (g) where T (xi) = ti , i = 1, . . . ,n.

◮ Any n-ary Boolean function f can be computed by a Boolean

circuit involving variables x1, . . . ,xn.

◮ Not every Boolean function can be computed using a concise

circuit.

Theorem

For any n ≥ 2 there is an n-ary Boolean function f such that no

Boolean circuit with 2n

2n
or fewer gates can compute it.

T-79.4101 Discrete Models and Search

Spring 2015

166/333

Boolean Circuits as Equation Systems

A Boolean circuit can be written as a system of equations.

or or or

and

or

not not

ba
c d

fe g h

v
v = and(e, f ,g,h)
e = or(a,b)
f = or(b,c)
g = or(a,d)
h = or(c,d)
c = not(a)
d = not(b)

T-79.4101 Discrete Models and Search

Spring 2015

167/333

Boolean Modelling

◮ Propositional formulas/Boolean circuits offer a natural way of

modelling many interesting Boolean functions.

◮ Example. IF-THEN-ELSE ite(a,b,c) (if a then b else c.).

As a formula:

ite(a,b,c) ≡ (a∧b)∨ (¬a∧ c)
As a circuit:
ite = or(i1, i2)
i1 = and(a,b)
i2 = and(a1,c)
a1 = not(a)

◮ Given gates a,b,c, ite(a,b,c) can be thought as a shorthand for

a subcircuit given above.

T-79.4101 Discrete Models and Search

Spring 2015

168/333

Example

Binary adder. Given input bits a[i], b[i] and c[i]
compute output bits s[i] and c[i +1] (c: carry bit).

c[i−1]

a[i] b[i]

s[i]

a[i+1] b[i+1]

s[i+1]

a[i−1] b[i−1]

s[i−1]

c[i]c[i+1]

As a formula:

s[i]≡ ((a[i]⊕b[i])⊕ c[i])
c[i +1]≡ (a[i]∧b[i])∨ (c[i]∧ (a[i]⊕b[i]))

As a circuit:
s[i] = xor(x ,c[i])
c[i +1] = or(l, r)
l = and(a[i],b[i])
r = and(c[i],x)
x = xor(a[i],b[i])

T-79.4101 Discrete Models and Search

Spring 2015

169/333

Encoding Problems Using Circuits

◮ Circuits can be used to encode problems in a structured way.

◮ Example. Given three bits a,b,c find their values such that

if at least two of them are ones then either a or b is one else a or

c is one (note: first or is exclusive, second or is inclusive) .

◮ We use IF-THEN-ELSE and adder circuits to encode this as a

CIRCUIT SAT problem (replacing a[i]← a, b[i]← b, c[i]← c):

p = ite(c[i +1],x ,p1)
p1 = or(a,c)
% full adder; sum output gate omitted

c[i +1] = or(l, r)
l = and(a,b)
r = and(c,x)
x = xor(a,b)

◮ Now each satisfying truth assignment for the circuit with

constraint α(p) = true gives a solution to the problem.

T-79.4101 Discrete Models and Search

Spring 2015

170/333

Example: Reachability

Given a graph G = (V = {1, . . . ,n},E), construct a circuit R(G) such

that R(G) is satisfiable iff there is a (simple) path from 1 to n in G.

◮ Basic idea very similar to dynamic programming solution:

introduce Boolean variables for triples of nodes (i, j,k) that

indicate whether node k is larger or equal to any node on a path

from i to j (disregarding endpoints of the paths).

◮ The gates of R(G) are of the form

gijk with 1≤ i, j ≤ n and 0≤ k ≤ n

hijk with 1≤ i, j,k ≤ n

◮ gijk is true: there is a path in G from i to j where the largest

intermediate node is k or smaller.

◮ hijk is true: there is a path in G from i to j for which k is the

largest intermediate node.

T-79.4101 Discrete Models and Search

Spring 2015

171/333

Example—cont’d

R(G) is the following circuit:

◮ For k = 0, gijk is an input gate.

◮ For k = 1,2, . . . ,n:

hijk = and(gik(k−1),gkj(k−1))
gijk = or(gij(k−1),hijk)

◮ g1nn is the output gate of R(G).

◮ Constraints α:

For the output gate: α(g1nn) = true

For the input gates: α(gij0) = true if i = j or (i, j) is an edge in G

else α(gij0) = false.

T-79.4101 Discrete Models and Search

Spring 2015

172/333

Example—cont’d

◮ Because of the constraints α on input gates there is at most one

possible truth assignment T .

◮ It can be shown by induction on k = 0,1, . . . ,n that in this

assignment the truth values of the gates correspond to their given

intuitive readings.

◮ From this follows:

R(G) is satisfiable iff T (g1nn) = true in the truth assignment iff

there is a (simple) path from 1 to n in G without any intermediate

nodes bigger than n iff there is a path from 1 to n in G.

T-79.4101 Discrete Models and Search

Spring 2015

173/333

From Circuits to CNF

◮ Translating Boolean Circuits to an equivalent CNF formula can

lead to exponential blow-up in the size of the formula.

◮ Often exact equivalence is not necessary but auxiliary variables

can be used as long as at least satisfiability is preserved.

◮ Then a linear size CNF representation can be obtained, e.g.,

using the so-called Tseitin’s translation.

T-79.4101 Discrete Models and Search

Spring 2015

174/333

From Circuits to CNF—cont’d

◮ Given a Boolean circuit C the corresponding CNF formula is

obtained as follows.

◮ For each gate of the circuit a new variable is introduced.

◮ Clauses are formed by the gate equations (taken as an

equivalences) written in clausal form for each intermediate and

output gate.

◮ For each constraint α(g) = t , the corresponding literal for g is

added.

◮ This transformation preserves satisfiability and even truth

assignments in the following sense:

If C is a Boolean circuit and Σ its Tseitin translation, then for

every truth assignment T of C satisfying α, there is a satisfying

truth assignment T ′ of Σ which agrees with T and vice versa.

T-79.4101 Discrete Models and Search

Spring 2015

175/333

Example—cont’d
Example 1.

◮ Assume we are given a simple circuit with input gates v3,v4,v5,

intermediate gate v2 and output gate v1.

◮ Further assume the circuit is unconstrained and contains the

following gates: v1 = and(v2,v5) and v2 = or(v3,v4)
◮ We obtain for the first gate the clauses

v1↔ (v2∧ v5)≡ (v1→ (v2∧ v5))∧ ((v2∧ v5)→ v1)

≡ (¬v1∨ (v2∧ v5))∧ (¬v2∨¬v5∨ v1)

≡ (¬v1∨ v2)∧ (¬v1∨ v5)∧ (¬v2∨¬v5∨ v1).

◮ For the second gate we then obtain the clauses

v2↔ (v3∨ v4)≡ (v2→ (v3∨ v4))∧ ((v3∨ v4)→ v2)

≡ (¬v2∨ v3∨ v4)∧ ((¬v3∧¬v4)∨ v2)

≡ (¬v2∨ v3∨ v4)∧ (¬v3∨ v2)∧ (¬v4∨ v2).

T-79.4101 Discrete Models and Search

Spring 2015

176/333

Example—cont’d
Example 2.

Consider the circuit with constraints

α(v1) = true,α(v4) = false.

Gate equations (taken as

equivalences) for non-input gates:

v1↔ (v2∧ v3)
v2↔ (v4∨ v5∨ v6)
v3↔ (v5↔ v6)

The resulting CNF for the translation:

(¬v1∨ v2)∧ (¬v1∨ v3)∧ (v1∨¬v2∨¬v3)∧
(v2∨¬v4)∧ (v2∨¬v5)∧ (v2∨¬v6)∧ (¬v2∨ v4∨ v5∨ v6)∧

(v3∨v5∨v6)∧ (v3∨¬v5∨¬v6)∧ (¬v3∨v5∨¬v6)∧ (¬v3∨¬v5∨v6)∧
v1∧¬v4 [for constraints]

T-79.4101 Discrete Models and Search

Spring 2015

177/333

Outlook

◮ There is plenty of literature on the topic of circuit complexity,

which is a subfield of computational complexity theory.

◮ Circuit complexity theory involves the study and classification of

Boolean functions according to their computability with Boolean

circuits of fixed size or depth (length of longest path from input to

output).

◮ Next week we discuss local and complete methods for solving

satisfiability problems.

◮ Some of these can be considered special cases of algorithms for

constraint satisfaction problems.

T-79.4101 Discrete Models and Search

Spring 2015

178/333

Lecture 7: Complete and local search methods for SAT

Outline

◮ Algorithms for solving Boolean satisfiability problems

◮ Complete algorithms and local search methods

Goal for today: Understand how constraint propagation techniques

give rise to efficient complete methods for Boolean satisfiability. Learn

how to apply local search methods to SAT.

T-79.4101 Discrete Models and Search

Spring 2015

179/333

SAT

◮ Recall: SAT (Boolean Satisfiability Problem)

INSTANCE: a propositional formula in conjunctive normal form

QUESTION:

(D) Is the formula satisfiable?

(S) Find a satisfiable truth assignment for the formula.

(O) Find a truth assignment satisfying the most clauses in the

formula.

◮ SAT(O) also called MAX-SAT.

◮ In this lecture we first discuss complete methods for SAT(S), then

outline some local search algorithms.

◮ Note: an instance of SAT is essentially a CSP with Boolean

variables and clauses as constraints.

T-79.4101 Discrete Models and Search

Spring 2015

180/333

Recall: equivalence of CSP’s

Recall: CSPs P1 and P2 are equivalent w.r.t. a set of variables X iff

◮ for every solution T1 of P1 there is a solution T2 of P2 such that T1

and T2 agree on variables X and

◮ for every solution T2 of P2 there is a solution T1 of P1 such that T2

and T1 agree on variables X .

Complete search methods make use of Boolean constraint

propagation techniques that transform a given SAT instance (set of

clauses) into (a simpler) one that is equivalent to the original.

T-79.4101 Discrete Models and Search

Spring 2015

181/333

Recall: the basic framework for solving CSP’s

procedure Solve(CSP/COP P):

P← Preprocess(P);

P← Constraint_Propagation(P);

if not Happy(P) then

if Atomic(P) then

return; /* impossible to split */

else

(P1,P2, . . .)← Split(P);

Proceed_by_Cases(P1 ,P2, . . .); /* may lead to recursive calls */

end

end

T-79.4101 Discrete Models and Search

Spring 2015

182/333

Solving Boolean Constraints

Applying the general method to SAT:

◮ Preprocess: remove satisfied clauses, remove variables that only

appear as the same literal in all clauses (together with their

clauses).

Example.

C1 = {¬x1∨¬x2}, C2 = {¬x1∨ x2∨¬x3}, C3 = {¬x2∨ x3}
gets processed as follows: {C1,C2,C3} → {C3} → /0.

◮ Happy: a satisfying truth assignment has been found (SAT) or it

was determined that no truth assignment can satisfy more

clauses than a previously found one (MAX-SAT).

◮ Atomic: No more undecided variables to choose from, or empty

clause was found.

T-79.4101 Discrete Models and Search

Spring 2015

183/333

Propagation for Boolean Constraints

A basic reduction step is the so-called unit clause rule:

S∪{l}

S′
,

where S is a set of clauses, l is a unit clause (a literal) and S′ is

obtained from S by removing

(i) every clause that contains l and

(ii) the complement of l from every remaining clause.

(The complement of a literal: v = ¬v and ¬v = v .)

Intuition: a satisfying assignment must satisfy all clauses, hence also

the unit clause, which can only be satisfied by l evaluating to true.

Example.

{¬v1,v1∨¬v2,v2∨ v3,¬v3∨ v1,¬v1∨ v4}❀ {¬v2,v2∨ v3,¬v3}

T-79.4101 Discrete Models and Search

Spring 2015

184/333

Propagation for Boolean Constraints—cont’d

Unit propagation (UP) (aka Boolean Constraint Propagation (BCP)):

Apply the unit clause rule until

◮ a conflict (empty clause; denoted by ⊥) is obtained

◮ or no new unit clauses are available.

Compare: consistency condition for constraint propagation

Example.

{¬v2,v2∨ v3,¬v3}❀ {v3,¬v3}❀ {⊥} (conflict)

Using an efficient variable→clauses lookup table, one can implement

unit propagation in linear time (in the total number of literals in the set

of clauses).

T-79.4101 Discrete Models and Search

Spring 2015

185/333

Boolean Constraints—cont’d

◮ Split:

Apply the enumeration rule:

x ∈ {0,1}

x ∈ {0} | x ∈ {1}

There exists a wide variety of heuristics for choosing the split

variables, some popular ones:

random choice, choice based on the number of unsatisfied

clauses it appears in, based on their size, based on the

occurrence of positive and negative literals, etc.

◮ Proceed by cases: backtrack with unit propagation

◮ This gives the DPLL-algorithm

(Davis-Putnam-Loveland-Logemann, 1962) which is the basis of

most of the state-of-the-art complete SAT solvers.

T-79.4101 Discrete Models and Search

Spring 2015

186/333

Input: S: a set of clauses; M : a set of literals

Output: If there is an assignment satisfying the clauses S, then a set

of literals describing such an assignment is returned otherwise

’UNSAT’ is returned.

DPLL(S,M)
〈S′,M ′〉 := simplify(S,M);
if S′ = /0 then return M ′

else if ⊥ ∈ S′ then return ’UNSAT’

else

L := choose(S′,M ′);
M ′′ := DPLL(S′∪{L},M ′∪{L});
if M ′′ = ’UNSAT’ then return DPLL(S′∪{L},M ′∪{L})
else return M ′′

end if

end if

Initial call: DPLL(S,{})

T-79.4101 Discrete Models and Search

Spring 2015

187/333

Basic DPLL

DPLL uses two subprocedures:

◮ The call to simplify(S,M) returns 〈S′,M ′〉 where S′ is the set of

clauses obtained by applying unit propagation to S and M ′ is M

extended with unit literals found in the process.

◮ choose(S′,M ′) implements the search heuristics, i.e., decides for

which variable the splitting rule is applied and which of the

branches is considered first.

◮ The performance of the procedure depends crucially on the

constraint propagation techniques and search heuristics.

T-79.4101 Discrete Models and Search

Spring 2015

188/333

Example

We use DPLL to decide whether a set of clauses S = {c1, . . . ,c8},
where

c1 : ¬a∨b∨ c

c2 : a∨ c∨d

c3 : a∨ c∨¬d

c4 : a∨¬c∨d

c5 : a∨¬c∨¬d

c6 : ¬b∨¬c∨¬d

c7 : ¬a∨b∨¬c

c8 : ¬a∨¬b∨ c

is satisfiable. We illustrate the behavior of DPLL by giving a possible

DPLL search tree for S.

A DPLL search tree can be taken as a tree where nodes are literals

obtained by unit propagation or by the splitting rule. For literals derived

by unit propagation we give the clause and the literals earlier in the

branch of the search tree by which it is obtained and mark with

“CONFLICT” the branches with a conflict. (NB: the picture assumes that

no Preprocess step as on slide 182 is performed, only unit propagation.)

T-79.4101 Discrete Models and Search

Spring 2015

189/333

Example—cont’d. A DPPL search tree for the set of clauses S:

c1 : ¬a∨b∨ c

c2 : a∨ c∨d

c3 : a∨ c∨¬d

c4 : a∨¬c∨d

c5 : a∨¬c∨¬d

c6 : ¬b∨¬c∨¬d

c7 : ¬a∨b∨¬c

c8 : ¬a∨¬b∨ c

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

����
����
����

����
����
����

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

3. −c

6. CONFLICT
5. −d(c3, 1, 3)
4. d(c2, 1, 3)

1. −a

2. −b

7. c

10. CONFLICT
9. −d(c5, 1, 7)
8. d(c4, 1, 7)

11. b

16. c

19. CONFLICT
18. −d(c5, 1, 16)
17. d(c4, 1, 16)

12. −c

15. CONFLICT
14. −d(c3, 1, 12)
13. d(c2, 1, 12)

20. a

21. −b

24. CONFLICT
23. −c(c7, 20, 21)
22. c(c1, 20, 21)

25. b

27. −d(c6, 25, 26)
26. c(c8, 20, 25)

For example: Node 1 is obtained by the splitting rule and node 4 by unit propagation.

When detecting a conflict (6.) DPLL backtracks to the next untried alternative (7. c).

The set S is satisfiable as the last branch (ending with 27.) does not have a conflict

and S is satisfied in a truth assignment with literals a,b,c,¬d true.

T-79.4101 Discrete Models and Search

Spring 2015

190/333

Local search for SAT

◮ Very large SAT instances (or particularly “difficult” ones) are out

of reach of complete methods, which justifies the investigation of

local search methods.

◮ However, standard local search methods have the fundamental

limitation of only being applicable for finding satisfying truth

assignments for satisfiable instances.

◮ For this task they still outperform complete search methods,

particularly for very large instances and also those that are

generated randomly.

◮ Recently, also local search methods employing techniques from

complete algorithms (e.g., clause learning) have been developed

and some work on local search for unsatisfiability has been

published (see, e.g., Audemard and Simon, 2007).

T-79.4101 Discrete Models and Search

Spring 2015

191/333

GSAT (Selman et al. 1992)

◮ The algorithm is essentially the steepest descent variant of the

simple local search method (see slides 77, 78) applied to SAT.

◮ Idea: Candidate solutions are truth assignments t ; the algorithm

aims to minimize c(t), which is defined as the number of

unsatisfied clauses under the truth assignment t .

◮ The set of neighboring solutions of t are the truth assignments

that differ from t in one variable (“one variable flipped”).

◮ Further extensions include: restart rules, tabu list, etc.

T-79.4101 Discrete Models and Search

Spring 2015

192/333

GSAT (Selman et al. 1992)—cont’d
Input: propositional formula F in CNF

function GSAT(F):

t← initial truth assignment;

while flips < max_flips do

if t satisfies F then return t

else

find a variable x whose flipping in t causes

largest decrease in c(t) (if no decrease is

possible, then smallest increase);

t← (t with variable x flipped)

end while;

return t .

(Note that the algorithm requires some rule for breaking ties in the

case that multiple variables qualify for being flipped. One option would

be to pick any of these at random with equal probability.)

T-79.4101 Discrete Models and Search

Spring 2015

193/333

NoisyGSAT (Selman et al. ∼ 1996)
Idea: Augment GSAT by a fraction p of random walk moves.

Input: propositional formula F in CNF, parameter p

function NoisyGSAT(F ,p):

t ← initial truth assignment;

while flips < max_flips do

if t satisfies F then return t

else

with probability p, pick any variable x

uniformly at random;

with probability (1− p), do basic GSAT move:

find a variable x whose flipping causes

largest decrease in c(t) (if no decrease is

possible, then smallest increase);

t ← (t with variable x flipped)

end while;

return t .

T-79.4101 Discrete Models and Search

Spring 2015

194/333

WalkSAT (Selman et al. 1996)
Idea: modified NoisyGSAT that focuses on unsatisfied clauses.

Input: propositional formula F in CNF, parameter p

function WalkSAT(F ,p):

t ← initial truth assignment;

while flips < max_flips do

if t satisfies F then return t else

choose a random unsatisfied clause C in F ;

if some variables in C can be flipped without

breaking any presently satisfied clauses,

then pick one such variable x at random; else:

with probability p, pick a variable x in C unif. at random;

with probability (1− p), do basic GSAT move:

find a variable x in C whose flipping causes

largest decrease in c(t);
t ← (t with variable x flipped)

end while;

return t .

T-79.4101 Discrete Models and Search

Spring 2015

195/333

WalkSAT vs. NoisyGSAT

◮ The focusing seems to be important: in the (unsystematic)

experiments in Selman et al. (1996), WalkSAT outperforms

NoisyGSAT by several orders of magnitude. Later experimental

evidence by other authors supports this.

◮ Good values for the “noise” parameter p seem to be about

p ≈ 0.5. For instance, for large randomly generated 3-SAT

formulas with clauses-to-variables ratio α near the “satisfiability

threshold” α = 4.267, the optimal value of p seems to be about

p = 0.57.

◮ In experiments by Seitz, Alava & Orponen (2005), a focused

variant of a different local search method is competitive with

WalkSAT on large randomly generated 3-SAT instances. What

about other focused local search algorithms (e.g. focused tabu

search)?

T-79.4101 Discrete Models and Search

Spring 2015

196/333

Adaptive local search for SAT

◮ Local search methods have difficulties with structured problem

instances.

◮ For good performance parameter tuning is essential.

(For example in WalkSAT: the noise parameter p and the

max_flips parameter.)

◮ Finding good parameter values is a non-trivial problem which

typically requires substantial experimentation and experience.

◮ One minor extension that is usually performed: introduce restarts

that let the solver run multiple times (typically from different,

randomly generated initial solutions).

◮ Algorithms (e.g., WalkSAT) can be also made greedier using a

history-based variable selection mechanism, biasing the selection

of variables to flip on those that have been flipped least-recently

(least recently=furthest in the past).

T-79.4101 Discrete Models and Search

Spring 2015

197/333

Novelty (McAllester et al. 1997)

After choosing an unsatisfiable clause as done in WalkSAT, the

variable to be flipped is selected from the variables in this clause as

follows:

◮ Sort variables according to decrease in the number of unsatisfied

clauses, breaking ties by placing least-recently flipped ones

before others with the same number.

◮ If the first variable in that order is not the one most (!) recently

flipped, it is always selected.

◮ Else it is only selected with probability 1−p, where p is a

parameter called noise setting.

◮ Otherwise the variable on the second position is selected.

T-79.4101 Discrete Models and Search

Spring 2015

198/333

Adaptive WalkSat and Adaptive Novelty+

◮ In Novelty+ (Hoos 1998) a random walk step (with probability wp)

is added: with probability 1−wp the variable to be flipped is

selected according to the Novelty mechanism and in the other

case it is randomly selected from the chosen unsatisfied clause.

◮ A suitable value for the noise parameter p (and wp for Novelty+) is

crucial for competitive performance of WalkSAT and its variants.

◮ Too low noise settings lead to stagnation behavior and too high

settings to long running times.

◮ Instead of a static setting, a dynamically changing noise

parameter can be computed by the following method. (see Hoos,

2002)

T-79.4101 Discrete Models and Search

Spring 2015

199/333

Adaptive WalkSat and Adaptive Novelty+
Two parameters θ and 0≤ φ≤ 1 are given

◮ At the beginning the search is maximally greedy (p = 0).

◮ There is a search stagnation if no improvement in the evaluation

function value has been observed over the last mθ search steps

where m is the number of clauses in the instance.

◮ In this situation the noise value is increased by p := p+(1−p)φ.

◮ If there is an improvement in the evaluation function value, then

the noise value is decreased by p := p−pφ/2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

p+(1-p)*0.2
p=p-p*0.1

T-79.4101 Discrete Models and Search

Spring 2015

200/333

Adaptive WalkSat and Adaptive Novelty+

◮ Notice the asymmetry between increases and decreases in the

noise setting.

◮ Stagnation is more difficult to detect compared to improvement;

also, there is empirical evidence that approaching the "optimal"

noise setting from above yields better performance.

◮ When this mechanism of adapting the noise level is applied to

WalkSat and Novelty+, we obtain Adaptive WalkSat and Adaptive

Novelty+ (Hoos, 2002).

◮ The performance of the adaptive versions is more robust w.r.t. the

settings of θ and φ than the performance of the non-adaptive

versions w.r.t. to the settings of p.

◮ For example, for Adaptive Novelty+ setting θ = 1/6 and φ = 0.2
seem to lead to robust overall performance (while there appears

to be no such setting for p in the non-adaptive case).

T-79.4101 Discrete Models and Search

Spring 2015

201/333

Tools for SAT

◮ The development of SAT solvers is strongly driven by SAT

competitions (http://www.satcompetition.org/)

◮ There is a large number of solvers available in the public domain.

◮ Solvers that ranked well in previous SAT competitions:

SAT 2005:

SatELiteGTI, MiniSAT 1.13, zChaff_rand, HaifaSAT

SAT COMPETITION 2009:

PrecoSAT, SATzilla, glucose, clasp, TNM, March_hi, ...

SAT Competition 2011: (p)lingeling, ppfolio,

glucose, clasp, ...

SAT Competition 2013:

(p)lingeling aqw, glucose 2.3, Riss3g cert,

BreakIDGlucose 1, probSAT SC13, CSHC, ...

http://www.satcompetition.org/

T-79.4101 Discrete Models and Search

Spring 2015

202/333

Lecture 8: Modern SAT solvers

Outline

◮ Conflict-driven clause learning solver

◮ Lazy data structures

◮ Restarts

Goal for today: Understand some of the main techniques and data

structures used in a modern conflict-driven clause learning SAT solver.

T-79.4101 Discrete Models and Search

Spring 2015

203/333

Key contributions to CDCL solvers

◮ Conflict clauses; Grasp (Marques-Silva & Sakallah, 1996).

◮ Restart strategies (Gomes et.al 1997, Luby et al. 1993)

◮ 2-watch pointers and VSIDS; zChaff (Moskewicz et al. 2001)

◮ Efficient (open source) implementation; Minisat (Een &

Sörensson, 2003)

◮ Phase-saving; Rsat (Pipatsrisawat & Darwiche, 2007)

◮ Conclict-clause minimization (Sörensson & Biere, 2009)

◮ . . . combined with pre- and in-processing techniques

T-79.4101 Discrete Models and Search

Spring 2015

204/333

Overall conflict-driven clause learning algorithm

procedure CDCL(CNF F):

F := simplify(F)

while true do

ld := getDecisionLiteral()

if no ld exists then return SAT /* All variables assigned */

F := simplify(F(ld ← 1))
while F contains Cfalsified do

Cconflict ← analyzeConflict(Cfalsified)

if Cconflict = /0 then return UNSAT

backtrack(Cconflict)

F := simplify(F ∪{Cconflict})
endwhile

endwhile

T-79.4101 Discrete Models and Search

Spring 2015

205/333

Conflict-driven clause learning

◮ Basic idea: maintain implication graph that contains

variable-value assignments and edges between them if one was

implied by the other in the propagation.

◮ Whenever a conflict occurs, one adds a clause that corresponds

to the variable-value assignments that caused the conflict.

◮ Same procedure allows non-chronological backtracking, since the

implication graph also keeps track of the level in the search tree

at which the assignment values were decided.

◮ This type of backtracking essentially prunes the search space,

similarly to the bounding heuristic for branch&bound search.

T-79.4101 Discrete Models and Search

Spring 2015

206/333

Recall the DPPL search tree for the set of clauses S from last lecture:

c1 : ¬a∨b∨ c

c2 : a∨ c∨d

c3 : a∨ c∨¬d

c4 : a∨¬c∨d

c5 : a∨¬c∨¬d

c6 : ¬b∨¬c∨¬d

c7 : ¬a∨b∨¬c

c8 : ¬a∨¬b∨ c

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

����
����
����
����

����
����
����
����

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

3. −c

6. CONFLICT
5. −d(c3, 1, 3)
4. d(c2, 1, 3)

1. −a

2. −b

7. c

10. CONFLICT
9. −d(c5, 1, 7)
8. d(c4, 1, 7)

11. b

16. c

19. CONFLICT
18. −d(c5, 1, 16)
17. d(c4, 1, 16)

12. −c

15. CONFLICT
14. −d(c3, 1, 12)
13. d(c2, 1, 12)

20. a

21. −b

24. CONFLICT
23. −c(c7, 20, 21)
22. c(c1, 20, 21)

25. b

27. −d(c6, 25, 26)
26. c(c8, 20, 25)

T-79.4101 Discrete Models and Search

Spring 2015

207/333

Conflict driven clause learning

Consider the first conflict of the search tree:

���
���
���
���

���
���
���
���

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

3. −c

6. CONFLICT
5. −d(c3, 1, 3)
4. d(c2, 1, 3)

1. −a

2. −b
a=0 @ 1

c=0 @ 3

d=1 @ 3

d=0 @ 3
CONFLICT

Notation: VAR=VAL @ TreeDepth

c3

c2

c2 c3

Learned first conflict clause: l1 : ¬(¬a∧¬c)≡ a∨ c

T-79.4101 Discrete Models and Search

Spring 2015

208/333

Conflict driven clause learning—cont’d
. . . and now the second conflict:

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

���
���
���
���

���
���
���
���

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

3. −c

6. CONFLICT
5. −d(c3, 1, 3)
4. d(c2, 1, 3)

a=0 @ 1

Notation: VAR=VAL @ TreeDepth

Non−Chronological Backjump!

c4

c5

1. −a

2. −b

10. CONFLICT
9. −d(c5, 1, 7)
8. d(c4, 1, 7)

11. b

7. c (l1, 1)

c=1 @ 1l1

c4

c5

CONFLICT
d=1 @ 1

d=0 @ 1

Learned second conflict clause: l2 : ¬¬a≡ a

T-79.4101 Discrete Models and Search

Spring 2015

209/333

How to learn a clause

◮ Use a cut in the implication graph

◮ How to choose the cut?

◮ Many different alternatives (conflict nodes on one side of the cut,

reason nodes on the other side)
◮ Short learned clauses are better than long ones
◮ Conflict clause should be fast (=linear time) to compute
◮ 1-UIP cut is shown to be optimal in terms of backtrack level

compared to the other possible UIPs [Audemard et al. 2008]

T-79.4101 Discrete Models and Search

Spring 2015

210/333

Unique implication point

◮ A unique implication point (UIP) is any node at the current

decision level such that any path from the decision variable to the

conflict node must pass through it.

◮ 1-UIP is a UIP that is closest to the conflict node

x2=1@4

x1=0@4

x8=0@2

x3=1@4

x7=0@1

x4=1@4

x6=1@4

x5=0@4

x9=0@3

Notation: VAR=VAL @ TreeDepth

x5=1@4

CONFLICT
2−UIP

1−UIP

T-79.4101 Discrete Models and Search

Spring 2015

211/333

UIP and conflict clause

x2=1@4

x1=0@4

x8=0@2

x3=1@4

x7=0@1

x4=1@4

x6=1@4

x5=0@4

x9=0@3

Notation: VAR=VAL @ TreeDepth

x5=1@4

CONFLICT
2−UIP

1−UIP

◮ 1-UIP: conflict clause ¬x4∨ x8∨ x9

◮ 2-UIP: conflict clause x1∨ x7∨ x8∨ x9

◮ Backtrack level is determined by analyzing the conflict clause C:

max{TreeDepth(x) | x ∈ C \ {l}, l ∈ C is assigned at conflict level}

T-79.4101 Discrete Models and Search

Spring 2015

212/333

Example revisited

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

����
����
����

����
����
����

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

3. −c

6. CONFLICT
5. −d(c3, 1, 3)
4. d(c2, 1, 3)

1. −a

2. −b 8. b

7. c

Notation: VAR=VAL @ TreeDepth

Non−Chronological Backjump!

◮ Learned conflict clause: l1 : ¬(¬a∧¬c)≡ a∨ c

◮ Backtrack to TreeDepth=1

◮ Note: Assignment of c = 0 is not discarded

T-79.4101 Discrete Models and Search

Spring 2015

213/333

Efficient data structures

◮ During search SAT solver spends time on...

◮ variable selection ≈ 10%
◮ unit propagation≈ 80%
◮ conflict analysis ≈ 10%

◮ Thus, it is highly important to optimize unit propagation!

◮ In unit propagation one needs to detect unit clauses and

conflicting clauses

◮ No need to detect that all clauses are true!

◮ No traversing the whole set of clauses, instead:

◮ for each literal, store the clauses in which it appears
◮ when literal l is added to assignment, only clauses in which l̄

appears need to be visited

T-79.4101 Discrete Models and Search

Spring 2015

214/333

Efficient data structures: Watch pointers

◮ Unit clause / conflict detection can be based on two watched

literals per clause

◮ A clause with two non-false literals cannot be unit clause or

conflicting clause

◮ Clause needs to be visited only when its watched literal becomes

false – clauses are visited less frequently

◮ When backtracking, nothing needs to be done (just unassign

variables)

◮ Very effective on long clauses

◮ Not used for binary clauses (special data structures)

T-79.4101 Discrete Models and Search

Spring 2015

215/333

Watched literals — Example

ψ = {x1 = u,x2 = u,x3 = u,x4 = u,x5 = u,x6 = u}

x6

¬x5

¬x3 ¬x5

¬x6

¬x1 x2

x1 ¬x3 x4

x5 = 1
x6

¬x5

¬x5

¬x6

¬x1 x2

x1 ¬x3 x4

x6

¬x5

¬x5

¬x6

¬x1 x2

x1

x6

¬x5

¬x5

¬x6

x2

x1 ¬x3 x4

¬x3

¬x1 ¬x3

x4 ¬x3

¬x3

x3 = 1

T-79.4101 Discrete Models and Search

Spring 2015

216/333

Watched literals — Example cont’d

ψ = {x1 = u,x2 = u,x3 = 1,x4 = u,x5 = 1,x6 = u}

x6¬x5

¬x6

¬x1 x2 x6

¬x5

¬x5

¬x6

¬x1 x2

x1

¬x5

¬x3 ¬x5

¬x6

x2

¬x5

¬x5

¬x6

x2

¬x3

¬x5x1 x4 x4

x1 x4 x1 x4

¬x3

¬x3

¬x3 ¬x3

¬x3¬x3

x1 = 1

¬x1 ¬x1x6 x6

x4 = 0

T-79.4101 Discrete Models and Search

Spring 2015

217/333

Watched literals — Example cont’d

ψ = {x1 = 1,x2 = u,x3 = 1,x4 = 0,x5 = 1,x6 = u}

¬x5

¬x5

¬x6

x2

x1 x4

¬x3

¬x3

¬x1x6

¬x5

¬x6

x2

x4 ¬x3

¬x1x6

x2 = 0

¬x5

¬x5

¬x6

x2

x1 x4

¬x3

¬x3

¬x1x6

¬x3

x1 ¬x5

SAT (complete assignment)

ψ = {x1 = 1,x2 = 0,x3 = 1,x4 = 0,x5 = 1,x6 = 1}

T-79.4101 Discrete Models and Search

Spring 2015

218/333

Choosing variable — VSIDS

Variable state independent decaying sum (VSIDS):

◮ Each literal has score

◮ Score based on the number of occurrences of the literals in the

CNF

◮ Score updated when a new clause is learned

◮ Pick the unassigned literal with the highest score (break ties

uniformly at random)

◮ Updating:

◮ zChaff: every 256 conflicts divide scores by a constant factor 2
◮ Minisat: for each conflict, increase the score of involved variables

by δ and increase δ := 1.05δ

◮ Compatible with the lazy data structure

T-79.4101 Discrete Models and Search

Spring 2015

219/333

Restarting

◮ Runtimes of SAT solver can experince heavy tail phenomenon

◮ In rare cases, the solver can get trapped on a very long run while

most of the time the run times could be short

◮ Restarts are introduced to avoid this behaviour

◮ At restart: unassign all variables but keep the (dynamic) heuristics

and learned clauses

◮ In order to guarantee completeness, restart strategy with

increasing cutoff needed, e.g.

◮ Geometrical restart: 100, 150, 225, 333, 500, 750, . . .
◮ Luby sequence: 100, 100, 200, 100, 100, 200, 400 , . . .

T-79.4101 Discrete Models and Search

Spring 2015

220/333

DPLL vs. CDCL solver

◮ The success of CDCL is not only due to advances in

implementation and clever data structures

◮ Fundamental reason for better performance of CDCL is that it is a

stronger proof system than DPLL

◮ There exists an infinite family of CNFs Fn (n = 1,2, . . .) such that

the length of shortest proof (of unsatisfiability) using DPLL is

exponentially larger than the length of shortest proof using CDCL
◮ For the other direction, “DPLL proof is always a CDCL proof”

◮ CDCL with restarts is as strong as general resolution

T-79.4101 Discrete Models and Search

Spring 2015

221/333

Other techniques

There are many more techniques that efficient CDCL SAT solvers

implement:

◮ Preprocessing

◮ Inprocessing

◮ Clause forgetting

◮ Conflict-clause minimization

◮ Phase saving

◮ . . .

T-79.4101 Discrete Models and Search

Spring 2015

222/333

Lecture 9: Intro to linear and integer linear programming

Outline

◮ Introduction to linear and integer linear programs

◮ Examples of constraints and problems modeled as mixed integer

linear programs (MIP’s)

Goal for today: Learn to recognize and formulate LP’s and MIP’s; for

a given computational problem, learn to

a) encode different types of constraints as an LP/MIP

b) transform one form of a problem into another

T-79.4101 Discrete Models and Search

Spring 2015

223/333

Review

◮ Previously, you have learned how to represent computational

problems via reductions to CSP and SAT instances.

◮ Both types of models allow for complete and local search

methods for their solutions.

◮ SAT solvers exploit the binary domains of variables to obtain

efficient constraint propagation techniques (unit propagation) and

even learn new instance-specific constraints during execution.

◮ Now we consider linear programs (LP’s) for the representation of

computational search and optimization problems.

◮ Theoretically, there is a fundamental difference in the

computational complexity of mixed integer linear programs

(MIP’s), which may contain integer variables, and LP’s whose

variables take real numbers as values.

T-79.4101 Discrete Models and Search

Spring 2015

224/333

Introduction

◮ Today we focus on the modeling aspects of linear programming,

while next week we address algorithms.

◮ Although LP’s in general are very versatile from a modeling

perspective, some types of constraints are formulated more

naturally than others.

◮ The examples we discuss today involve some of the more

frequently encountered types of constraints.

◮ Note: although theoretically (and practically) there are important

differences between MIP’s and LP’s, we simply consider LP’s to

be a special case of MIP’s, where no variable is constrained to

take integral values.

T-79.4101 Discrete Models and Search

Spring 2015

225/333

General Linear Programs

In a general linear program

min f (x1, . . . ,xn) :=
n

∑
j=1

cjxj such that (s.t.)

gi(x1, . . . ,xn) :=
n

∑
j=1

aijxj = bi , i = 1, . . . ,m

lj ≤ xj ≤ uj

inequalities with ≤ or ≥ can occur in addition to equalities (=),

maximization can be used instead of minimization, and some of the

variables can be unrestricted (do not have bounds).

Note that the xj are variables, while the lj , uj , aij , cj and bi are all given

constants. Further, we will always specify explicitly if some (or all) of

the xj are required to take integer values.

T-79.4101 Discrete Models and Search

Spring 2015

226/333

Standard and Canonical Forms

◮ A general LP can be transformed to an equivalent (w.r.t. the set of

original variables) but simpler form, for instance, to a canonical or

standard form (introduced below).

◮ Two forms are equivalent (w.r.t. a set of variables) if they have the

same set of optimal solutions (w.r.t. the set of variables) or are

both infeasible or both unbounded.

An LP is in canonical form when

◮ the objective function is minimized,

◮ all constraints are inequalities of the form ∑n
j=1 aijxj ≥ bi , and

◮ all variables are non-negative, i.e., bounded by the constraint

xj ≥ 0.

T-79.4101 Discrete Models and Search

Spring 2015

227/333

Standard and Canonical Forms—cont’d

Thus, an LP in canonical form is formulated as

min
n

∑
j=1

cjxj s.t.

n

∑
j=1

aijxj ≥ bi , i = 1, . . . ,m

xj ≥ 0, j = 1, . . . ,n

The standard form is similar but all constraints (different from bounds)

are of the form ∑n
j=1 aijxj=bi .

T-79.4101 Discrete Models and Search

Spring 2015

228/333

Standard and Canonical Forms—cont’d
An LP can be converted to standard or canonical form using the

following transformations:

◮ Maximization of a function is equivalent to minimization of its

negation, since max f (x1, . . . ,xn) =− min−f (x1, . . . ,xn)

◮ An equality can be transformed to a pair of inequalities

n

∑
j=1

aijxj = bi ⇔

{

∑n
j=1 aijxj ≥ bi

∑n
j=1−aijxj ≥−bi

◮ An inequality can be transformed into an equality by adding a

slack (subtracting a surplus) variable

n

∑
j=1

aij xj≤bi ⇔

{

∑n
j=1 aij xj+s =bi

s ≥ 0

n

∑
j=1

aijxj≥bi ⇔

{

∑n
j=1 aij xj−s =bi

s ≥ 0

T-79.4101 Discrete Models and Search

Spring 2015

229/333

Transformations—cont’d

◮ An unrestricted variable xj (a variable that can take positive and

negative values) can be eliminated by introducing two

non-negative variables x+
j ,x−j as follows: replace every

occurrence of xj with x+
j − x−j and add the constraints

x+
j ≥ 0,x−j ≥ 0.

◮ Non-positivity constraints can be expressed as non-negativity

constraints: to express xj ≤ 0, replace xj everywhere with −yj

and impose yj ≥ 0.

◮ These transformations are sometimes needed when modeling if

the tool used does not support a feature exploited in the LP

model, for example, non-positive or unrestricted variables.

T-79.4101 Discrete Models and Search

Spring 2015

230/333

Example

◮ Consider the problem of transforming

the LP on the right to standard form.

We illustrate the transformation in two

steps.

max x2− x1 s.t.

3x1− x2 ≥ 0

x1 + x2 ≤ 6

−2≤ x1 ≤ 0

◮ First:

turn maximization to minimization,

turn the unrestricted variable x2 to a

pair of non-negative variables and

treat bounds as constraints

to obtain:

min −(x+
2 − x−2)+ x1 s.t.

3x1− (x+
2 − x−2)≥ 0

x1 +(x+
2 − x−2)≤ 6

x1 ≥−2

x1 ≤ 0

x+
2 ≥ 0,x−2 ≥ 0

T-79.4101 Discrete Models and Search

Spring 2015

231/333

Example—cont’d

◮ Second:

eliminate non-positivity constraints

and transform inequalities to equali-

ties with slack and surplus variables

to obtain:

min −x+
2 + x−2 − y1 s.t.

−3y1− x+
2 + x−2 − s1 = 0

−y1 + x+
2 − x−2 + s2 = 6

−y1− s3 =−2

y1 ≥ 0

x+
2 ≥ 0,x−2 ≥ 0

s1 ≥ 0,s2 ≥ 0,s3 ≥ 0

T-79.4101 Discrete Models and Search

Spring 2015

232/333

Modeling

The diet problem: (a typical problem suitable for linear programming)

◮ We are given the following constants

aij : amount of the i-th nutrient in a unit of the j-th food item

ri : yearly requirement of the i-th nutrient

cj : cost per unit of the j-th food item

◮ Build a yearly diet (decide yearly consumption of n food items)

such that it satisfies the minimal nutritional requirements for m

nutrients and is as inexpensive as possible.

◮ LP solution: take variables xj to represent yearly consumption of

the j-th food item
min ∑j cj xj s.t.

∑j aij xj ≥ ri , ∀i

T-79.4101 Discrete Models and Search

Spring 2015

233/333

Knapsack

(a typical problem suitable for (0-1) integer programming)

◮ Given: a knapsack of a fixed volume v and n objects, each with a

volume aj and a value bj .

◮ Find a collection of these objects with maximal total value that fits

in the knapsack.

◮ IP solution: for each item j take a binary variable xj to model

whether item j is included (xj = 1) or not (xj = 0)

max∑j bj xj s.t.

∑j aj xj ≤ v

0≤ xj ≤ 1, ∀j
xj is integer ∀j

T-79.4101 Discrete Models and Search

Spring 2015

234/333

Facility Location Problem

(A slightly more complicated 0-1 IP problem)

◮ There is a set of n customers who need to be assigned to one of

the m potential facility locations.

◮ Customers can only be assigned to an open facility, with there

being a cost of cj for opening facility j .

◮ An open facility can serve an arbitrary number of customers

(assigning customer i to facility j incurs a cost of dij).

◮ Choose a set of facility locations that minimizes the overall costs

of serving all the n customers.

◮ IP solution: introduce binary variables

xj representing the decision to open facility j

yij representing the decision to assign customer i to facility j

T-79.4101 Discrete Models and Search

Spring 2015

235/333

Facility Location Problem—cont’d

◮ Objective function to minimize:

m

∑
j=1

cjxj +
n

∑
i=1

m

∑
j=1

dijyij

◮ Customers are assigned to exactly one facility:

m

∑
j=1

yij = 1 for all i = 1, . . . ,n

◮ Customers can be assigned only to an open facility.

Two approaches:
◮ If a facility is open, it can serve all n customers:

n

∑
i=1

yij ≤ n · xj for all j = 1, . . . ,m

◮ If a customer i is assigned to facility j , it must be open:

yij ≤ xj for all j = 1, . . . ,m and i = 1, . . . ,n

T-79.4101 Discrete Models and Search

Spring 2015

236/333

Benefits of Optimal Solutions

◮ The previous example demonstrates that by making the (implicit)

assumption that a resulting solution will minimize the objective

value one can “weed out” undesired solutions.

◮ For example: the previous problem does not indicate whether a

solution which opens facilities without assigning customers to it is

considered feasible.

◮ Assume the problem formulation requires that an open facility

must have at least some customers assigned to it.

◮ Since a solution that opens a facility with no customers assigned

to it is clearly suboptimal (assuming cj > 0), this assumption is

satisfied implicitly.

T-79.4101 Discrete Models and Search

Spring 2015

237/333

Expressing Constraints in MIP’s

◮ Some constraints cannot be represented straightforwardly using

linear constraints.

◮ An implication is a typical example which can sometimes be

encoded by introducing an additional variable and a new large

constant.

◮ Example. Consider a binary variable y and the constraint “if

y = 1 then ∑n
j=1 xj ≥ bi ” where each xj is non-negative.

Using a large constant M this can be expressed as follows:

n

∑
j=1

xj ≥ bi −M(1− y)

Notice that here if y = 1, then ∑n
j=1 xj ≥ bi must hold but if y = 0,

then ∑n
j=1 xj ≥ bi −M imposes no constraint on variables

x1, . . . ,xn if we choose some M ≥ bi .

T-79.4101 Discrete Models and Search

Spring 2015

238/333

Expressing Constraints—cont’d

◮ A frequently occurring situation involves combining constraints

“disjunctively”.

◮ Example. Consider a disjunctive constraint “x ≥ 5 or y ≤ 6”

where x and y are non-negative and y ≤ 1000 due to other

constraints.

This constraint can be encoded by introducing a new binary

variable b and constants M1,M2 as follows

x +M1b ≥ 5

y−M2(1−b)≤ 6

where we choose the constants M1 ≥ 5 and M2 ≥ 994.

T-79.4101 Discrete Models and Search

Spring 2015

239/333

Example—cont’d

Let us choose M1 = 5 and M2 = 994.

x +5 b ≥ 5

y−994 (1−b) ≤ 6

Consider the two possible cases, depending on the value of b:

◮ If b = 0, we have constraints x ≥ 5 and y−994≤ 6↔ y ≤ 1000

where the latter is satisfied by every (relevant) value of y , since

y ≤ 1000 by definition of the problem.

◮ If b = 1, we have constraints x +5≥ 5↔ x ≥ 0 and y ≤ 6 where

the former is satisfied by every (relevant) value of x .

These techniques for expressing disjunctions are are not general and

choosing values for the constants is often non-trivial.

T-79.4101 Discrete Models and Search

Spring 2015

240/333

Example: Scheduling Constraints

◮ In a scheduling application typically following types of variables

are used:

sj : starting time for job j

xij : binary variable representing whether job i occurs before job j

◮ Consider now a typical constraint:

“If job 1 occurs before job 2, then job 2 starts at least 10 time

units after the end of job 1”

◮ This is an implication that can be represented by introducing a

suitably large constant M (d1 is the duration of job 1):

s2 ≥ s1 +d1 +10−M(1− x12)

◮ If x12 = 1: we get s2 ≥ s1 + d1 + 10 as required.
◮ If x12 = 0: we get s2 ≥ s1 + d1 + 10−M, which implies no

restriction on s2 if M is sufficiently large.

T-79.4101 Discrete Models and Search

Spring 2015

241/333

Example: Scheduling Constraints—cont’d

◮ Disjunctive constraints on binary variables can be expressed

straightforwardly.
◮ For example, to enforce that the values of the variables xij in the

previous example are assigned consistently according to their

intuitive meaning following constraints need to be added.
◮ “Either i occurs before j or the reverse but not both”

This is an exclusive-or constraint which can be encoded directly:

xij + xji = 1 (i 6= j)

◮ “If i occurs before j and j before k , then i occurs before k .”

This can be seen as a disjunction ¬xij ∨¬xjk ∨ xik of binary

variables xij ,xjk ,xik (equivalent to (xij ∧ xjk)→ xik):

(1− xij)+ (1− xjk)+ xik ≥ 1 (or equivalently xij + xjk − xik ≤ 1)

(A potential problem: O(n3) constraints are needed where n is the

number of jobs.)

T-79.4101 Discrete Models and Search

Spring 2015

242/333

Joint Replenishment Problem

◮ Consider the problem of scheduling the production of N types of

products in a factory to satisfy the demands (orders) of customers

that arrive over time periods 1,2, . . .T .

◮ Producing any amount of product i , 1≤ i ≤ N, incurs a fixed

production cost of ci , in addition to a joint shipping cost c0

(production is assumed to be instantaneous).

◮ Note that by aggregating products one can save shipping cost!

◮ A demand d = (td , id ,qd) arrives at time td and asks for qd units

of product id .

◮ In the make-to-order variant products are produced after

demands for them have been communicated to the factory.

◮ Note that this means that if a demand d is satisfied by a

production event at time t , then it must be that t ≥ td .

T-79.4101 Discrete Models and Search

Spring 2015

243/333

Joint Replenishment Problem–cont’d

◮ In addition to the cost incurred due to the production of some

types of products over time, unfulfilled demands collect a penalty

that we call delay cost.

◮ More precisely, delaying a demand d from its arrival time td for

some time units δ, incurs a cost equal to δ ·qd , which is

proportional to the quantity of product requested by the demand.

◮ So the problem becomes how to balance delay and

production/shipping costs.

◮ Note that here we assume that all cost factors ci and all quantities

qd are positive.

◮ Without loss of generality, we consider only candidate production

times that are integers in the set {1, . . . ,T}.

T-79.4101 Discrete Models and Search

Spring 2015

244/333

Joint Replenishment Problem–cont’d

We begin by introducing the following variables:

◮ xt : binary variable that when having value 1 indicates that there is

a shipment taking place at time period t .

◮ yit : binary variable that when having value 1 indicates that there

is a production of type i in time period t .

◮ zdt : binary variable that when having value 1 indicates that

demand d was delayed from time t until (at least) time t +1.

We then formulate the objective function to minimize as follows:

T

∑
t=1

(

c0xt +∑
i

ciyit

)

+∑
d

∑
t≥td

qd zdt

T-79.4101 Discrete Models and Search

Spring 2015

245/333

Joint Replenishment Problem–cont’d

The first type of constraint couples the decision to delay an order to

the production timepoints:

◮ Demands are delayed until they are eventually satisfied

(
s

∑
t=td

yid t

)

+ zds ≥ 1 for all d , td ≤ s ≤ T −1

The second type of constraint couples the production and the shipping

decision variables:

◮ Whenever some product is produced, there is a shipment taking

place:

yit ≤ xt for all i = 1, . . . ,N and t = 1, . . . ,T

T-79.4101 Discrete Models and Search

Spring 2015

246/333

Routing Constraints
(An example of a problem where finding a compact MIP encoding is

challenging).

◮ Consider the Hamiltonian cycle problem:

INSTANCE: An undirected graph (V ,E).
QUESTION: Is there a cycle visiting all nodes of the graph exactly

once?

◮ Note that also the optimization variant is possible, which asks for

the shortest (smallest total length) Hamiltonian cycle in the given

graph.

◮ Variations of this problem are frequently encountered in practice

(e.g., passenger transportation, parcel delivery, flight routing, . . .).

◮ The optimization variant can be also considered a generalization

of the TSP problem, which assumes a complete graph.

◮ Let us model the search variant of the Hamiltonian cycle problem.

T-79.4101 Discrete Models and Search

Spring 2015

247/333

Hamiltonian Cycle

◮ For simplicity of presentation, we treat the edges as being

directed (introduce edges (i, j) and (j, i) for each {i, j}).

◮ Introduce a binary variable xij for each edge (i, j) ∈ E indicating

whether the edge is included in the cycle (xij = 1) or not (xij = 0).

◮ Constraints:

◮ The cycle leaves each node i through exactly one edge:

for each node i : ∑
(i,j)∈E

xij = 1

◮ The cycle enters each node i through exactly one edge:

for each node i : ∑
(j,i)∈E

xji = 1

T-79.4101 Discrete Models and Search

Spring 2015

248/333

Hamiltonian Cycle—cont’d

◮ However, the constraints above are not sufficient.

◮ Consider, for example, a graph with 6 nodes such that variables

x1,2,x2,3,x3,1,x4,5,x5,6,x6,4 are set to 1 and all others to 0.

This solution satisfies the constraints but does not represent a

Hamiltonian cycle (two separate cycles).

1

2
3

4

5
6

◮ Enforcing a single cycle is non-trivial.

T-79.4101 Discrete Models and Search

Spring 2015

249/333

Hamiltonian Cycle–cont’d

◮ A solution for small graphs is to require that the cycle leaves

every proper subset of the nodes, that is, to have a constraint

∑
(i,j)∈E ,i∈s,j 6∈S

xij ≥ 1

for every proper subset S ⊂ V of the nodes V (note: S 6= V ,

since proper subset).

s={1,2,3}

2
3

4

5
6

1

◮ A potential problem for bigger graphs: O(2n) constraints needed

where n is the number of nodes.

T-79.4101 Discrete Models and Search

Spring 2015

250/333

Hamiltonian Cycle–cont’d

◮ Another approach, where the number of constraints remains

polynomial, is to introduce an integer variable pi for each node

i = 1, . . . ,n in the graph to represent the position of the node i in

the cycle, that is, pi = k means that node i is k th node visited in

the cycle.

◮ In order to enforce a single cycle we need the following

conditions.

◮ Each pi has a value in {1, . . . ,n}: 1≤ pi ≤ n

◮ This value is unique, that is, for all pairs of nodes i and j with

i 6= j , pj 6= pi holds.

T-79.4101 Discrete Models and Search

Spring 2015

251/333

Hamiltonian Cycle–cont’d

◮ For all pairs of nodes i and j if node j is the next node after i there

must be an edge (i, j) ∈ E , that is,

◮ (pj = pi + 1)→ (i, j) ∈ E ≡ for all (i, j) /∈ E , i 6= j : pj 6= pi + 1
◮ (pi = n∧pj = 1)→ (i, j) ∈ E

≡ for all (i, j) /∈ E , i 6= j : pi = n→ pj ≥ 2

◮ For condition ‘if pi = n, then pj ≥ 2” we can use the technique for

implications:

pj ≥ 2− (n−pi)

Notice that

◮ if pi = n, then we get pj ≥ 2 and
◮ if pi < n, then the constraint is satisfied for all value of pj

(1≤ pj ≤ n).

◮ To complete the encoding in IP we need to express disequality

(6=).

T-79.4101 Discrete Models and Search

Spring 2015

252/333

Expressing Disequality

◮ For expressing an arbitrary disequality x 6= y of two bounded

integer variables x and y we reformulate the disequality as “x > y

or y > x” or equivalently “x− y ≥ 1 or x− y ≤−1”.

◮ Now we can model the disjunction using a binary variable b and

constants M1,M2 and the constraints

x− y ≥ 1−M1b

x− y ≤M2(1−b)−1

Notice that

◮ if b = 0, then we get x− y ≥ 1,x− y ≤M2− 1 and
◮ if b = 1, then we get x− y ≥ 1−M1,x− y ≤−1

where the constraints involving M1,M2 are satisfied by all values

of x ,y given large enough M1,M2 w.r.t. to the bounds on the

values of x ,y .

T-79.4101 Discrete Models and Search

Spring 2015

253/333

MIP Tools

◮ There are several efficient commercial MIP solvers.

◮ Also a large variety of public domain systems exist.

◮ Different MIP encodings typically lead to different solver runtimes.

◮ See, for example, http://www.neos-guide.org/lp-faq

for MIP systems and other information and frequently asked

questions.

http://www.neos-guide.org/lp-faq

T-79.4101 Discrete Models and Search

Spring 2015

254/333

MIP Solvers

◮ A MIP solver can typically take its input via an input file and an

API.

◮ There a number of widely used input formats (like mps) and tool

specific formats (lp_solve, CPLEX, LINDO, GNU MathProg,

LPFML XML, . . .)

◮ Most MIP solvers do not require the input program to be in a

standard form and typically quite general MIP’s are allowed, that

is

◮ both minimization and maximization are supported and
◮ operators “=”, “≤”, and “≥” can all be used.
◮ Many solvers provide an API that allows the integration into

user-generated programs from various programming languages.

T-79.4101 Discrete Models and Search

Spring 2015

255/333

Lecture 10: Linear relaxation and the simplex method

Outline

◮ Algorithms for solving mixed integer linear programs (MIP’s):

branch-and-bound and linear relaxation

◮ Simplex method for solving linear relaxations

Goal for today: Learn how to apply the branch-and-bound method for

solving MIP’s and the simplex method for solving LP’s.

T-79.4101 Discrete Models and Search

Spring 2015

256/333

Review: Linear and Integer Programming

◮ Recall: in the previous lecture we modeled computational

problems in the form of linear programs, such as

min c(x) :=
n

∑
j=1

cjxj s.t.

n

∑
j=1

aijxj = bi , i = 1, . . . ,m

xj ≥ 0, j = 1, . . . ,n

◮ Every LP can be brought into this so-called standard form.

◮ In mixed-integer linear programs some subset of variables

I⊆ {x1, . . . ,xn} is required to take integer values.

◮ Finding optimal solutions to LP’s can be done in polynomial time

(e.g., ellipsoid method), whereas solving integer linear programs

is NP-complete.

T-79.4101 Discrete Models and Search

Spring 2015

257/333

An Example MIP

min x1 +2x2 s.t.

x1 + x2 ≥ 4

−2x1 + x2 ≥−4

2≤ x1

x2 ≤ 4

x2 is integer

(8/3,4/3)

(2,2)

x1

x2

x1 + x2 ≥ 4

x1 ≥ 2

x2 ≤ 4

−2x1 + x2 ≥−4

Note that 8
3
+24

3
= 16

3
< 2+2∗2 = 6 but the first values do not satisfy

the integrality constraint for x2.

T-79.4101 Discrete Models and Search

Spring 2015

258/333

Solving MIP’s

◮ A typical approach is use branch and bound search with a

suitable relaxation.

◮ A relaxation of a problem removes constraints in order to obtain a

problem that is “easier” to solve.

◮ Branch and bound search was introduced in Lecture 3 and is

readily applicable to solving MIP’s (no special-purpose bounding

heuristic required).

◮ Instead of employing a custom bounding heuristic, at each stage

of the search the relaxed version of a subproblem of the original

problem is solved, which is an LP version of a corresponding MIP.

T-79.4101 Discrete Models and Search

Spring 2015

259/333

Problem relaxations: intuition

◮ A relaxation R(P) of a problem P has strictly less restrictive

constraints but the same objective function.

◮ Hence, an optimal solution to R(P) can not be worse than an

optimal solution for P.

◮ Example: problem P: Find cheapest flight from HEL to LYS s.t.

1. Departure date 2.11. departure after 6pm

2. Direct flight or connecting flights but not via CDG

3. Airline either Finnair, Air France, or Lufthansa

Consider now a relaxed version of P, denoted by R(P):
1. Departure date 2.11. departure at any time

2. Airline either Finnair, Air France, or Lufthansa

◮ Clearly, when comparing the objective value of optimal solutions

to P and R(P): OPT (R(P))≤ OPT (P).

◮ If an optimal solution to R(P) is feasible for P, then it is also

optimal for P. However, if R(P) is infeasible, so is P.

T-79.4101 Discrete Models and Search

Spring 2015

260/333

Linear relaxation

◮ For a given MIP P, in order to apply branch and bound search, its

relaxation R(P) should be a problem satisfying the very same

three conditions (for a minimization problem P):

R1: OPT (P)≥ OPT (R(P)).

R2: If the optimal solution to R(P) is feasible to P, it is optimal for P.

R3: If R(P) is infeasible, then so is P.

◮ A useful relaxation of a MIP P satisfying these condition is the

linear relaxation of P which is obtained by removing the integrality

constraints from P.

T-79.4101 Discrete Models and Search

Spring 2015

261/333

Linear relaxation—cont’d
Problem P Problem LR(P)

min x1 +2x2 s.t.

x1 + x2 ≥ 4

−2x1 + x2 ≥−4

2≤ x1

x2 ≤ 4

x2 is integer

min x1 +2x2 s.t.

x1 + x2 ≥ 4

−2x1 + x2 ≥−4

2≤ x1

x2 ≤ 4

◮ The linear relaxation satisfies conditions R1–R3 because feasible

solutions of LR(P) include all feasible solutions of P.

◮ It is also computationally interesting because it is a strong

relaxation which provides a global view on the constraints.

T-79.4101 Discrete Models and Search

Spring 2015

262/333

Branch and bound for MIP

◮ Note: from now on, R(P) := LR(P).

◮ Applying branch and bound search for solving MIP’s is very

similar to the CSP case: given a problem P, the branching

operation creates new subproblems P1, . . . ,Pk , whose union is

equivalent to P.

◮ The new subproblems, however, are based on an optimal solution

x∗ to R(P) that is not feasible to P and neither to any of

R(P1), . . . ,R(Pk).

◮ Given optimal solution x∗ to R(P), x∗ is not feasible to P iff there

is a integer variable xj in P that has a fractional value x∗j in x∗.

◮ For such a variable xj with a fractional value x∗j , we can create

two subproblems (here: k = 2):
◮ P−, which has the additional constraint xj ≤ ⌊x

∗
j ⌋;

◮ P+, which has the additional constraint xj ≥ ⌊x
∗
j ⌋+ 1.

T-79.4101 Discrete Models and Search

Spring 2015

263/333

Branch and bound for MIP—cont’d

◮ The bounding heuristic is replaced by a solver for the linear

relaxation of each of the problems encountered in the search.

◮ Let c be the cost of a known feasible solution to the original MIP

(possibly suboptimal).

◮ Then whenever we encounter a (sub)problem P whose relaxation

R(P) has the optimal solution value OPT (R(P))≥ c, we prune

the search.

◮ This is because by R1 OPT (P)≥ OPT (R(P)) and, hence, it is

not possible to find a solution with a smaller objective value than

c among the feasible solutions “below” P inside the search tree.

T-79.4101 Discrete Models and Search

Spring 2015

264/333

Branch and bound for MIP—cont’d
initially: c← ∞;

procedure MIP_Branch&Bound(MIP P):

if R(P) is infeasible then

return;

else

Solve R(P) to get an optimal relaxation solution x∗;

if x∗ is feasible and thus optimal for P then

if OPT (P) := c(x∗)< c then

c← c(x∗);
else

if OPT (R(P)) := c(x∗)< c then

split P into P1, . . . ,Pk by applying branching rules;

for all 1≤ p ≤ k do

MIP_Branch&Bound(Pp);

end

end

end

end

T-79.4101 Discrete Models and Search

Spring 2015

265/333

Branch and bound for MIP—cont’d

◮ One can show that if the set of feasible solutions of R(P) is

bounded, the algorithm terminates in finite time.

◮ Note that in this case P has only a finite number of feasible

solutions (if any) if all variables are required to take integer values

in P.

◮ If the set of feasible solutions R(P) is not known to be bounded,

one can replace P by a more constrained P ′ (for which this holds)

that has an optimal solution not worse than the original P.

T-79.4101 Discrete Models and Search

Spring 2015

266/333

Example. Branch and Bound search using linear relaxation

Consider the integer program P:

min −8x1−11x2−6x3−4x4 s.t.

5x1 +7x2 +4x3 +3x4 ≤ 14

0≤ xi ≤ 1

xi is integer, i = 1, . . . ,4

Each node P1,P2, . . . gives the new

problem after branching and an opti-

mal solution of the corresponding re-

laxed problem. The optimal solution to

problem P is obtained from P6.

Note (*): For P2 the optimal solu-

tion satisfies OPT(R(P2)) ≥ −21.67

but because in the objective function

all coefficients are integers, OPT(P2)

has also an integer value and, thus,

OPT(P2)≥ ⌈OPT(R(P2))⌉=−21.

P0 : P

OPT(R(P)) =−22,c = ∞

x1 = 1;x2 = 1;x3 = 0.5;x4 = 0

Not feasible

❅❅❘��✠
P2 : P0−
x3 ≤ 0

OPT(R(P2)) =−21.67,c =−21

x1 = 1;x2 = 1;x3 = 0;x4 = 0.67

Not feasible

Bounding by OPT(P6) =−21 (*)

P1 : P0+
x3 ≥ 1

OPT(R(P1)) =−21.86,c = ∞

x1 = 1;x2 = 0.71;x3 = 1;x4 = 0

Not feasible

❅❅❘��✠
P4 : P1−
x3 ≥ 1;x2 ≤ 0

OPT(R(P4)) =−18,c =−21

x1 = 1;x2 = 0;x3 = 1;x4 = 1

Feasible

P3 : P1+
x3 ≥ 1;x2 ≥ 1

OPT(R(P3)) =−21.8,c = ∞

x1 = 0.6;x2 = 1;x3 = 1;x4 = 0

Not feasible

❅❅❘��✠
P6 : P3−
x3 ≥ 1;x2 ≥ 1;x1 ≤ 0

OPT(R(P6)) = −21,c = ∞

x1 = 0;x2 = 1;x3 = 1;x4 = 1

Feasible

P5 : P3+
x3 ≥ 1;x2 ≥ 1;x1 ≥ 1

Infeasible relaxed problem

T-79.4101 Discrete Models and Search

Spring 2015

267/333

Improving Effectiveness

◮ Careful formulation

◮ Strong relaxations typically work well but are often bigger in size.
◮ Break symmetries.
◮ Multiple “big-M” values often lead to performance problems.
◮ Deciding which formulation works better needs often

experimentation.

◮ Special branching rules

In many systems, for example, Special Ordered Sets are

available.

◮ Cutting planes

These are constraints that are added to a relaxation to “cut off”

the optimal relaxation solution x∗. Often are problem specific but

there are also general techniques (e.g. Gomory cuts).

T-79.4101 Discrete Models and Search

Spring 2015

268/333

lp_solve

◮ lp_solve is a a public domain MIP solver, see

http://lpsolve.sourceforge.net/ for latest version.

◮ lp_solve accepts a number of input formats

◮ Example. lp_solve native format

min: x1 + x2 + 3x3;

x1 - x2 <= 1;

2x2 - 2.5x3 >= 1;

-7x3 + x2 = 3;

> lp_solve < example

Value of objective function: 3

Actual values of the variables:

x1 0

x2 3

x3 0

http://lpsolve.sourceforge.net/

T-79.4101 Discrete Models and Search

Spring 2015

269/333

Solving Linear Relaxations

◮ Linear Relaxation of a MIP gives a linear program (LP).

◮ There are a number of well-known techniques for solving LPs

◮ Simplex method

The oldest and most widely used method with very mature

implementation techniques.

Worst-case time complexity exponential but seems to work fairly

well in practice.

◮ Interior point methods

A newer approach; polynomial time worst case time complexity;

implementation techniques advancing

◮ Next, the Simplex method is reviewed as an example.

T-79.4101 Discrete Models and Search

Spring 2015

270/333

Solving LP’s

min x1 +2x2 s.t.

x1 + x2 ≥ 4

−2x1 + x2 ≥−4

2≤ x1

x2 ≤ 4

(8/3,4/3)

(2,2)

x1

x2

x1 + x2 ≥ 4

x1 ≥ 2

x2 ≤ 4

−2x1 + x2 ≥−4

One can show that an optimal solution occurs at an extreme points

(“corner point”) of the feasible region of the LP. Considering all of these

in turn, one can thus find an optimal solution.

T-79.4101 Discrete Models and Search

Spring 2015

271/333

Simplex Method

◮ Assumes that the linear program is in standard form:

min
n

∑
j=1

cjxj s.t.

n

∑
j=1

aijxj = bi , i = 1, . . . ,m

xj ≥ 0, j = 1, . . . ,n

◮ Extreme points of its feasible region correspond to so-called

basic feasible solutions.

◮ The basic idea: start from a basic solution and look at the

adjacent ones. If an improvement in cost is possible by moving to

an adjacent solution, we do so. An optimal solution has been

found if no improvement is possible.

T-79.4101 Discrete Models and Search

Spring 2015

272/333

Basic Feasible Solutions

◮ Assume an LP in standard form with m linear equations and n

variables x1, . . . ,xn, m < n, and that the columns of the constraint

matrix A = (aij) are linearly independent.

◮ A basic solution satisfies the following conditions:

◮ n−m variables are set to 0 and

◮ the assignment for the other m variables (the basis) gives a

unique solution to the resulting set of m linear equations.

◮ This means that a basic solution is obtained by choosing m

variable as the basis, setting the other n−m variables to zero

and solving the resulting set of equations for the basic variables.

If there is a unique solution, this is gives a basic solution.

◮ A basic feasible solution (bfs) is a basic solution such that every

variable is assigned a value ≥ 0.

T-79.4101 Discrete Models and Search

Spring 2015

273/333

Example

◮ Consider the LP

min 2x2 + x4 +5x7

x1 + x2 + x3 + x4 = 4

x1 + x5 = 2

x3 + x6 = 3

3x2 + x3 + x7 = 6

x1, . . . ,x7 ≥ 0

◮ For example, the basis (x4,x5,x6,x7) gives a basic feasible

solution x0 = (0,0,0,4,2,3,6) because

x4 = 4,x5 = 2,x6 = 3,x7 = 6 is the unique solution to the

resulting set of equations:

0 + 0 + 0 + x4 = 4

0 + x5 = 2

0 + x6 = 3

3 ·0 + 0 + x7 = 6

T-79.4101 Discrete Models and Search

Spring 2015

274/333

Moving from bfs to bfs

◮ When moving from one bfs to another the idea is to remove one

variable from the basis and replace it with another. This is called

pivoting.

◮ In the Simplex algorithm, this is organized as a manipulation of a

tableau where, for instance, a set of equations

3x1 + 2x2 + x3 = 1

5x1 + x2 + x3 + x4 = 3

2x2 + 5x2 + x3 + x5 = 4

is represented as

x1 x2 x3 x4 x5

1 3 2 1 0 0

3 5 1 1 1 0

4 2 5 1 0 1

T-79.4101 Discrete Models and Search

Spring 2015

275/333

Tableaux

◮ Pivoting is handled by keeping the set of equations diagonalized

with respect to the basic variables.

◮ This can be achieved using elementary row operations (Gaussian

elimination): multiplying a row with a non-zero constant; adding a

row to another.

Example.

Consider the set of equations

x1 x2 x3 x4 x5

1 3 2 1 0 0

3 5 1 1 1 0

4 2 5 1 0 1

Given a basis B =(x3,x4,x5), we

can transform the tableau to a di-

agonalized form w.r.t. it by multi-

plying Row 1 with -1 and adding

it to Rows 2 and 3:

x1 x2 x3 x4 x5

1 3 2 1 0 0

2 2 −1 0 1 0

3 −1 3 0 0 1

T-79.4101 Discrete Models and Search

Spring 2015

276/333

Tableaux—cont’d

◮ We denote by xi,j the entry on the i th row and j th column in a

tableau.

◮ Notice that in the diagonalized form column 0 gives the values of

the basic variables in the bfs x0 in question:

x0B(i) = xi,0, i = 1, . . . ,m

where B(i) denotes the column of the i th basic variable.

◮ Example. Consider the set of equations:

x1 x2 x3 x4 x5

1 3 2 1 0 0

2 2 −1 0 1 0

3 −1 3 0 0 1

Given the basis B = (x3,x4,x5), B(1) = 3,B(2) = 4,B(3) = 5

and for its basic solution x0 holds: x03 = 1,x04 = 2,x05 = 3

T-79.4101 Discrete Models and Search

Spring 2015

277/333

Pivoting

◮ In pivoting a chosen variable xj enters the basis and another

variable xi leaves it.

◮ In the tableau this defines a pivot element xl,j where column j

corresponds to the entering variable xj and row l to the leaving

variable xi such that B(l) = i . We say that we pivot on xl,j .

Example

Consider the tableau

x1 x2 x3 x4 x5

1 3 2 1 0 0

2 2 −1 0 1 0

3 −1 3 0 0 1

and the case where x1 enters and x3 leaves the basis.

Now the pivot element is x1,1 as B(1) = 3.

T-79.4101 Discrete Models and Search

Spring 2015

278/333

Pivoting

◮ In pivoting the tableau is brought to the diagonalized form w.r.t.

the new basis using elementary row operations (Gaussian

elimination):

◮ for the pivot row l , all elements are divided by the pivot element

and, hence, the pivot element in the new tableau is 1;

◮ for other rows i , the resulting pivot row multiplied by xi,j is

subtracted from the row, and, hence all elements in column j

(except the pivot element) are 0 in the new tableau.

◮ This means that

x ′l,q =
xl,q

xl,j
q = 0, . . . ,n

x ′i,q = xi,q− xi,jx
′
l,q q = 0, . . . ,n, i = 1, . . . ,m; i 6= l,

where xi,j and x ′i,j are the old and new tableaux, respectively.

T-79.4101 Discrete Models and Search

Spring 2015

279/333

Example

◮ Consider the tableau below and the pivot element x1,1.

x1 x2 x3 x4 x5

1 3 2 1 0 0

2 2 −1 0 1 0

3 −1 3 0 0 1

◮ After pivoting we obtain a new tableau:

x1 x2 x3 x4 x5
1
3

1 2
3

1
3

0 0
4
3

0 − 7
3
− 2

3
1 0

10
3

0 11
3

1
3

0 1

For example: x2,1 = 2−2 ·1 = 0, x2,2 =−1−2 · 2
3
=− 7

3

x2,3 = 0−2 · 1
3
=− 2

3
and x3,2 = 3− (−1) · 2

3
= 11

3
.

◮ The new basis is (x1,x4,x5) and, hence,

B(1) = 1,B(2) = 4,B(3) = 5.

T-79.4101 Discrete Models and Search

Spring 2015

280/333

Cost Function in the Tableau
◮ A cost function z = ∑n

i=1 cixi

can be added as an extra

equation −z +∑n
i=1 cixi = 0 to

the tableau (no need to add a

column for z).

◮ To start, we need a bfs and to

make zero the cjs for the basic

variables.

◮ This can be done using

elementary row operations.

◮ Our running example and a

cost function

z = x1 + x2 + x3 + x4 + x5

lead to a tableau:

x1 x2 x3 x4 x5

0 1 1 1 1 1

1 3 2 1 0 0

3 5 1 1 1 0

4 2 5 1 0 1

◮ Consider the example with

x3,x4, and x5 as the basis.

◮ After transformation to the

diagonalized form, subtract the

resulting Rows 1, 2, 3 from

Row 0, to get the desired form.

x1 x2 x3 x4 x5

−6 −3 −3 0 0 0

1 3 2 1 0 0

2 2 −1 0 1 0

3 −1 3 0 0 1

T-79.4101 Discrete Models and Search

Spring 2015

281/333

Choosing a Profitable Column

◮ It turns out that the cost function can be improved if we move to a

bfs containing a non-basic variable xj where the corresponding

value cj in the tableau is negative.

◮ If no such cj exists, then an optimal solution has been found.

◮ Consider the previous example with the basis (x3,x4,x5). Now

the equation for the cost function is −z−3x1−3x2 =−6, i.e.,

z =−3x1−3x2 +6. Hence, we can improve (decrease) the value

of the cost function by increasing the value of x1 or x2 (because

c1 = c2 =−3 < 0) and, hence, the current bfs x0 = (0,0,1,2,3)
is not an optimal one.

◮ Hence, we could move to a new bfs with entering variable x1 or x2

to improve the cost function.

◮ But how to choose the leaving variable?

T-79.4101 Discrete Models and Search

Spring 2015

282/333

Choosing the Leaving Variable

◮ The idea is to move to an adjacent bfs containing the entering

variable xj .

◮ In order not to miss an adjacent bfs we need to choose a pivot

element xk ,j with the smallest positive ratio
xk ,0

xk ,j
, that is, a xk ,j such

that
xk ,0

xk ,j
= min

i

xi,j>0

(
xi,0

xi,j
)

◮ Then the leaving variable is B(k).

◮ Note that the rule for choosing the leaving variable is sufficient for

maintaining a feasible solution (all variables, including the basic

ones, stay non-negative).

T-79.4101 Discrete Models and Search

Spring 2015

283/333

Example

◮ Consider the tableau

x1 x2 x3 x4 x5

−6 −3 −3 0 0 0

1 3 2 1 0 0

2 2 −1 0 1 0

3 −1 3 0 0 1

◮ If x2 is the entering variable, the ratios are: i
xi,0

xi,2

1 1
2

2 − 2
1

3 3
3

◮ Then the pivot element is x1,2 because the smallest positive ratio
xi,0

xi,2
is 1

2
for i = 1 and the leaving variable is x3 as B(1) = 3.

T-79.4101 Discrete Models and Search

Spring 2015

284/333

Simplex algorithm

procedure Simplex

opt := “no”; unbounded := “no”;

while opt = “no” and unbounded = “no” do

if cj ≥ 0 for all j then opt := “yes”

else

choose any j such that cj < 0 ;

ifxi,j ≤ 0 for all i then unbounded := “yes”

else

find min
i

xi,j>0

(
xi,0

xi,j
) =

xk ,0

xk ,j

and pivot on xk ,j

end if

end if

end while.

T-79.4101 Discrete Models and Search

Spring 2015

285/333

Example

◮ Consider the tableau on the

right (above).

◮ Running Simplex on this

tableau, we notice that for

variables x1 and x2, cj < 0.

◮ If we choose c2, then we need

to pivot on x1,2 as argued in

the previous example.

◮ Then the new tableau is on the

right (below).

◮ Here all cjs are non-negative

and, hence, an optimal

solution (0, 1
2
,0, 5

2
, 3

2
) has

been found with cost 9
2

(−z =− 9
2
).

x1 x2 x3 x4 x5

−6 −3 −3 0 0 0

1 3 2 1 0 0

2 2 −1 0 1 0

3 −1 3 0 0 1

x1 x2 x3 x4 x5

− 9
2

3
2

0 3
2

0 0
1
2

3
2

1 1
2

0 0
5
2

7
2

0 1
2

1 0
3
2
− 11

2
0 − 3

2
0 1

T-79.4101 Discrete Models and Search

Spring 2015

286/333

Further Issues
Implementations of the Simplex methods also need to address:

◮ Finding the first bfs to start Simplex:

Implementations of the simplex method perform an initial phase

with artificial variables (one for each constraint) whose sum is to

be minimized to obtain a bfs for the original problem (or

determine infeasibility).

◮ Treating degenerate solutions (some basic variables have zero

value) which may lead to cycling:

Bland’s rule avoids cycling by using the variable index for

determining the entering variable and to break ties between

leaving variable candidates.

◮ How to choose the entering variable:

nonbasic gradient method (choosing the most negative cj),

greatest increment method, Bland’s rule . . .

T-79.4101 Discrete Models and Search

Spring 2015

287/333

Summary: Solving MIP’s

◮ Experiment with different formulations as well as different solvers

and parameters/methods to see which performs best.

◮ Avoid multiple “big-M” values.

◮ Try to break symmetries.

◮ Do not introduce unnecessary integer variables.

◮ Scale the coefficients in the constraints to values as small as

possible.

◮ Try to use sparse matrix representations if the problem is large

and memory consumption becomes an issue.

T-79.4101 Discrete Models and Search

Spring 2015

288/333

Lecture 11: Introduction to Convex Optimization

Outline

◮ Introduction to non-linear convex optimization

◮ Projected gradient method for problems with “box constraints”

◮ Newton’s method for unconstrained optimization

Goal for today: For a given suitable (convex) non-linear optimization

problem, learn to apply the projected gradient and Newton’s method

for obtaining an iterative solution method.

T-79.4101 Discrete Models and Search

Spring 2015

289/333

Review: MIP and LP

◮ In the last two lectures we discussed linear programming models

for combinatorial optimization problems and a general-purpose

method for solving these (branch-and-bound and linear

relaxation).

◮ Linear relaxations then lead to linear programs with no integer

variables, which can be solved, e.g., by the simplex method.

◮ Often one also encounters problems that have a non-linear

objective function and/or constraints.

◮ Examples for non-linear optimization problems with integer

variables: cross-layer network optimization, supply chain

optimization, some types of problems that involve random

variables (with known probability distribution).

T-79.4101 Discrete Models and Search

Spring 2015

290/333

General optimization problems

◮ Consider a general optimization problem with no integer

constraints

min f (x) s.t.

x ∈ X

where x = (x1, . . . ,xn)
T , f : Rn→ R and X ⊆ R

n.

◮ For example: X = {x ∈R
n | gi(x)≤ 0,∀i = 1 . . .m}, where

gi : R
n→ R.

◮ For f (x) = ∑n
j=1 cjxj and gi(x) = bi −∑n

j=1 aijxj we obtain the

special case of linear programming.

◮ Note that the formulation above may result from the relaxation of

a problem with integer variables and non-linear constraints and

objective function.

T-79.4101 Discrete Models and Search

Spring 2015

291/333

General optimization problems —cont’d

◮ In general it is hard to come up with (provably) good methods that

terminate in reasonable time.

◮ In fact, the worst-case complexity of current global optimization

methods is exponential in problem size.

◮ However, if the problem is “sufficiently small” and constraint and

objective functions are “nice behaving” one can sometimes obtain

methods that converge reasonably fast to good solutions.

◮ For example if the f and gi are convex and differentiable, one can

typically find good solutions in reasonable time (all local minima

of convex functions are global minima).

◮ The branch-and-bound method can be extended to these cases

when there are integer variables.

T-79.4101 Discrete Models and Search

Spring 2015

292/333

Notation and important concepts

◮ Recall the dot product (a.k.a. scalar product)

a ·b = ||a|| ||b|| cosθ = ∑
i

aibi = aT b,

where a,b ∈R
n are column vectors (given w.r.t. the standard

basis) and θ is the angle between them.

◮ For a differentiable function f : Rn→ R, its gradient ∇f (x) has as

entries the partial derivatives of f , i.e., ∇fj = ∂f/∂xj .

◮ For a fixed point x̂ , its first-order Taylor expansion at x̂ leads to an

approximation f (x)≈ f (x̂)+∇f (x̂) · (x− x̂).

◮ . . . and its second-order Taylor expansion at x̂

f (x)≈ f (x̂)+∇f (x̂) · (x− x̂)+
1

2
(x− x̂) ·∇f 2(x̂) · (x− x̂),

where ∇f 2(x̂) is the matrix containing the second-order partial

derivatives of f at x̂ , a.k.a. Hessian matrix.

T-79.4101 Discrete Models and Search

Spring 2015

293/333

Convex sets
Pictures: Wikipedia

Convex set Non-convex set

◮ A set X ⊆ R
n is said to be convex if, for all x ,y ∈ X and all

t ∈ [0,1] we have z ∈ X where z is the point

z := (1− t) x + t y .

◮ Note that this means that we can travel along a line segment from

one point in the set to any other point in the set without ever

leaving X .

T-79.4101 Discrete Models and Search

Spring 2015

294/333

Convex function

X = { z | z >= f(x)}

f(x)

x x

f(x)

f(y)

f(x)+∇f(x)T (y− x)

(x, f(x))

Necessary and sufficient condition for (differentiable) convex functions:

f (y)≥ f (x)+∇f (x)T (y− x),

where ∇f (x) is the gradient of f at x . Note that this implies that a local

optimum x∗ (with ∇f (x∗) = 0) is always a global optimum.

T-79.4101 Discrete Models and Search

Spring 2015

295/333

Euclidean projection

◮ We assume that X itself is a convex

non-empty set.

◮ In this context it also often useful to

consider the projection [x ′]+ of a

point x ′ ∈R
n onto X , which is the

closest point to x ′ that is in X .

◮ Assume for simplicity

X = {x | lj ≤ xj ≤ uj for all j} (“box

constraints”).
x

y

X

lx

ly

ux

uy

We can explicitly give the projection as

[x ′]+j =







lj if x ′j ≤ lj ,

uj if x ′j ≥ uj ,

x ′j otherwise.

T-79.4101 Discrete Models and Search

Spring 2015

296/333

Projected gradient method

◮ A popular and simple method that often serves as a first

candidate for problems with differentiable objective functions is

the projected gradient method (a.k.a. steepest descent).

◮ Basic idea: similar to local search methods for discrete

optimization, the method maintains a feasible current solution and

performs “small updates” in iterations.

◮ Search guided by the gradient of the objective function, which is a

good approximation within the close neighborhood of the current

solution.

◮ Note: the objective function f decreases along the direction of

−∇f .

◮ Particularly useful for “black box” or “ distributed optimization”.

T-79.4101 Discrete Models and Search

Spring 2015

297/333

Projected gradient method —cont’d

◮ Fix an initial feasible solution x(0) ∈ X and at each iteration

k = 1,2, . . . do

x(k +1) = [x(k)−δ(k)∇f (x(k))]+ ,

where [·]+ denotes the projection onto the set X , δ(k) is a small

step size and ∇f (x(k)) is the gradient of the objective at

x = x(k).

◮ It can be shown that if the gradient ∇f is Lipschitz continuous and

the step sizes are sufficiently small, then fixpoints of this update

rule are local optima (see Chapter 2.3 in Bertsekas 1999).

◮ The resulting method in some sense very similar to

steepest-descent local search.

T-79.4101 Discrete Models and Search

Spring 2015

298/333

Projected gradient method: example

◮ Simple example: let

f (x1,x2) = log(e2x1+1 +ex2)

and X = {(x1,x2) | x1,x2 ≥ 0}

◮ For the gradient we have

∇f (x1,x2) =
1

e2x1+1 +ex2

(
2 e2x1+1

ex2

)

◮ Fix step size δ(k) = δ, so the method for this case becomes:

x1(k +1) = [x1(k)−
δ

e2x1+1 +ex2
∗2 e2x1+1]+

x2(k +1) = [x2(k)−
δ

e2x1+1 +ex2
∗ex2]+

◮ Note: this function is convex and has a (global) minimum at

x∗ = (0,0) with f (x∗)≈ 1.3133.

T-79.4101 Discrete Models and Search

Spring 2015

299/333

Projected gradient method: example —cont’d

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200

||x(k)-x*||

◮ Plot shows distance to optimal over the number of iterations.

◮ Here we have chosen: x(0) = (2,1) and δ(k) = 0.05 for all k

(based on experimentation).

T-79.4101 Discrete Models and Search

Spring 2015

300/333

Step-size rules
There are quite a few rules for choosing step size, for example:

◮ constant step size: δ(k) = δ; simple but if set too large does not

allow convergence, when set to small leads to very slow

convergence.

◮ diminishing step size: choose step sizes so that

δ(k)→ 0,
∞

∑
k=0

δ(k) = ∞

may lead to slow convergence but offers good theoretical

convergence properties. Example: δ(k) = 1/k .

◮ minimization rule: minimize objective function along the chosen

direction,i.e., choose δ(k) such that

f (x(k)−δ(k)∇f (x(k))) = min
δ≥0

f (x(k)−δ∇f (x(k)).

T-79.4101 Discrete Models and Search

Spring 2015

301/333

Linesearch

◮ Some step-size rules may lead to slow convergence or even

divergence.

◮ The minimization rule (or restricted versions limiting the search to

some small interval) are good candidates. However, it may be

computationally intensive to solve this problem at each iteration.

◮ One popular alternative is the so-called backtracking linesearch.

◮ Its approach is based on the idea of starting at a large value (e.g.,

1) and decreasing the step-size until improvement is observed.

◮ Formulated more generally for any descent direction ∆x(k)
(note: earlier we had ∆x(k) :=−∇f (x(k))) that satisfies

∇f (x(k))T∆x(k)< 0.

T-79.4101 Discrete Models and Search

Spring 2015

302/333

Backtracking line search

procedure BacktrackingLS

choose descent direction ∆x(k) for f at x(k) ∈ X ;

choose α ∈ (0,0.5),β ∈ (0,1);
t := 1;

while f (x(k)+ t∆x(k))> f (x(k))+α t ∇f (x(k))T∆x(k) do

t← β t ;

end while.

Note: after termination of

BacktrackingLS we set

δ(k)← t,

where t is the final value for

the step size that satisfies

the termination condition.
-4

-2

 0

 2

 4

 6

tt=0

f(x + t Dx)
f(x) + t ∇ f(x) Dx

f(x) + α t ∇ f(x) Dx

T-79.4101 Discrete Models and Search

Spring 2015

303/333

Example —cont’d

◮ For α = 0.4 and β = 0.5, the projected gradient method applied

to the previous example converges within 12 iterations

◮ Note: here ∆x(k) :=−∇f (x(k))
◮ In practice, some fine tuning of these parameters are required

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200

constant 0.05 stepsize
backtrack LS

T-79.4101 Discrete Models and Search

Spring 2015

304/333

Slow convergence of projected gradient method

◮ In some cases the convergence can still be slow

◮ Intuition: the method is prone to exhibit “zig-zaging” behavior in

cases when the gradient is close to orthogonal to the direction

towards a (local) optimum

T-79.4101 Discrete Models and Search

Spring 2015

305/333

Newton’s method

◮ Another popular method that is typically even faster (in number of

iterations) than the previous one is Newton’s method

(a.k.a. Newton Raphson method)

◮ Basic idea: instead of using the original function, try to minimize a

local approximation of it (i.e., its second-order Taylor expansion)

f̂ (x(k)+ v) := f (x(k))+∇f (x(k))T v +
1

2
vT ∇2f (x(k))v ,

where v is a vector and ∇2f (x(k)) is the Hessian at x(k).

Comparison of gradient method (shown in

green) and Newton’s method (shown in

red).

Picture: Wikipedia

T-79.4101 Discrete Models and Search

Spring 2015

306/333

Newton’s method —cont’d

◮ Assume for now X = R
n, so no projection to X is required.

◮ Consider for a fixed x(k) the function f̂ , which is a quadratic

function in v :

f̂ (x(k)+ v) := f (x(k))+∇f (x(k))T v +
1

2
vT ∇2f (x(k))v .

◮ Determine the gradient w.r.t. v and solve for v , so one obtains

v =−∇2f (x(k))−1∇f (x(k)).

◮ Basic idea: move along direction v as determined above until

f (x(k))− f̂ (x(k)+ v)< ε,

where ε is a “small” positive number.

T-79.4101 Discrete Models and Search

Spring 2015

307/333

Newton’s method cont.

◮ Note: for every iteration k we compute the Newton step

v(k) =−∇2f (x(k))−1∇f (x(k)),

which includes computing the inverse of the Hessian for x = x(k).
◮ Additionally, to determine the step size δ(k), one typically

performs a line search as earlier shown for the projected gradient

method. Then one has the update rule

x(k +1) = x(k)+δ(k) v(k).

◮ Although matrix inversion is expensive, the additional effort of the

Newton method cmp. to gradient methods usually pays off in

faster convergence.

◮ Under some assumptions one can show strong convergence

results (super-linear) for the Newton method (see for example

Boyd and Vandenberghe 2004).

T-79.4101 Discrete Models and Search

Spring 2015

308/333

Example cont.

◮ Consider the objective function of the previous example

f (x1,x2) = log(e2x1+1 +ex2)

◮ We have for the gradient

∇f (x1,x2) =
1

e2x1+1 +ex2

(
2 e2x1+1

ex2

)

and for the Hessian

∇2f (x1,x2) =
2 e2x1+x2+1

(e2x1+1 +ex2)2

(
2 −1

−1 1

)

T-79.4101 Discrete Models and Search

Spring 2015

309/333

Example cont.

◮ We then obtain

∇2f (x(k))−1 =
(e2x1+1 +ex2)2

2 e2x1+x2+1

(
1 1

1 2

)

◮ So the Newton step becomes

v(k) =−∇2f (x(k))−1∇f (x(k))

=−
(e2x1+1 +ex2)2

2 e2x1+x2+1

(
1 1

1 2

)
1

e2x1+1 +ex2

(
2 e2x1+1

ex2

)

=−
e2x1+1 +ex2

2 e2x1+x2+1

(
2 e2x1+1 +ex2

2 e2x1+1 +2 ex2

)

T-79.4101 Discrete Models and Search

Spring 2015

310/333

Comments regarding Newton method

◮ Note that in unfortunate cases the Hessian is singular or close to

singular (i.e., cannot be inverted) and thus the Newton method

cannot be applied directly.

◮ One way to mitigate this is to consider the slightly modified matrix

∇2f (x)+ εID,

where ID is the identity matrix and ε is a small positive constant.

◮ Further, since matrix inversion is a relatively costly operation,

implementations use techniques to offset accuracy by

performance (e.g., approximate Hessian, only recompute now

and then).

T-79.4101 Discrete Models and Search

Spring 2015

311/333

Constrained optimization

◮ Typically, however, having no constraints (except simple variable

domains) is more of an exception.

◮ Newton’s method can be extended to handle equality constraints.

◮ One method for dealing with constraints is to eliminate them via

Langrangian relaxation.

◮ Interior point methods are also based on this approach.

T-79.4101 Discrete Models and Search

Spring 2015

312/333

Lecture 12: Advanced topics

Outline

◮ Introduction to genetic algorithms

Goal for today: For a given high-level description of a computational

optimization problem, learn to devise a genetic algorithm.

T-79.4101 Discrete Models and Search

Spring 2015

313/333

Genetic algorithms

◮ Belong to class of evolutionary algorithms, inspired by

evolutionary biology (inheritance, mutation, selection,..)

◮ Evolutionary algorithms more generally are examples of so-called

metaheuristics, which include local search as another special

case.

◮ GA’s are general-purpose “black-box” optimization methods

proposed by J. Holland (1975) and K. DeJong (1975).

◮ Method has attracted lots of interest, but theory is still incomplete

and the empirical results inconclusive.

◮ Main idea: encode solutions to an optimization problem and let

solutions evolve from one generation to the next.

T-79.4101 Discrete Models and Search

Spring 2015

314/333

The basic algorithm

◮ We consider the so called “simple genetic algorithm”; also many

other variations exist.

◮ Assume we wish to maximize a utility function c defined on n-bit

binary strings:

c : {0,1}n → R.

Other types of domains must be encoded into binary strings,

which is a nontrivial problem. (Examples later.)

◮ View each of the candidate solutions s ∈ {0,1}n as an individual

or chromosome.

◮ At each stage (generation) t the algorithm maintains a population

of individuals pt = (s1, . . . ,sm).

◮ The population may contain multiple copies of the same

individual.

T-79.4101 Discrete Models and Search

Spring 2015

315/333

The Basic Algorithm—cont’d

Three operations defined on populations:

◮ selection σ(p) (“survival of the fittest”)

◮ recombination ρ(p) (“mating”, “crossover”)

◮ mutation µ(p)

The Simple Genetic Algorithm:

function SGA(σ, ρ, µ):

p← random initial population;

while p “not converged” do

p′← σ(p);
p′′← ρ(p′);
p← µ(p′′)

end while;

return p (or “fittest individual” in p).

end.

T-79.4101 Discrete Models and Search

Spring 2015

316/333

Selection

◮ From the current generation, some individuals are selected to

form the basis for the next generation (sometimes called mating

pool); the same individual may be selected multiple times

◮ Let m be the size of the population.

◮ Denote by Ω= {0,1}n the set of all binary strings of length n.

◮ The selection operator σ : Ωm→ Ωm maps populations

probabilistically:

Given an individual s ∈ p, the expected number of

copies of s in σ(p) is proportional to the fitness of s in p.

The fitness is a function of the utility of s compared to the

utilities of other s′ ∈ p.

◮ This class of selection methods is also referred to as proportional

selection.

T-79.4101 Discrete Models and Search

Spring 2015

317/333

Selection—cont’d
Some possible fitness functions f (s,p):

◮ Relative utility (⇒ “canonical GA”):

f (s,p) =
c(s)

1

m
∑

s′∈p

c(s′)
,

c(s)

c̄
.

◮ Relative rank:

f (s,p) =
r(s)

1

m
∑

s′∈p

r(s′)
=

2

m+1
· r(s),

where r(s) is the rank of s in a worst-to-best ordering of p

according to c (worst sw has r(sw) = 1, best sb has r(sb) = m).

◮ Note: for both cases ∑s∈p f (s,p) = m.

T-79.4101 Discrete Models and Search

Spring 2015

318/333

Selection—cont’d

◮ There are many ways to perform selection based on fitness.

◮ A popular one: Roulette-wheel selection (“stochastic sampling

with replacement”)

◮ Assign to each individual s ∈ p a probability to

be selected in proportion to its fitness value

f (s,p). Select m individuals according to this

distribution.

◮ Pictorially: Divide a roulette wheel into m

sectors of width proportional to

f (s1,p), . . . , f (sm,p). Spin the wheel m times.

Picture: Betzaar / Wikipedia

T-79.4101 Discrete Models and Search

Spring 2015

319/333

Recombination

◮ Recall order of operations:

1. selection 2. recombination 3. mutation.

◮ Given a population p, choose two individuals s,s′ ∈ p uniformly at

random. With probability pρ, apply a crossover operator ρ(s,s′)
to produce two new offspring individuals t, t ′ that replace s,s′ in

the (new) population (with probability 1−pρ parents s,s′ remain).

◮ Repeat the operation m/2 times, so that on average each

individual participates once. Denote the total effect on the

population as p′ = ρ(p).

◮ Practical implementation: choose
pρ

2
·m random pairs from p and

apply crossover deterministically (and let the remaining

(1−pρ) ·m individuals stay unmodified).

◮ Typically pρ ≈ 0.7 . . .0.9.

T-79.4101 Discrete Models and Search

Spring 2015

320/333

Recombination—cont’d

Possible crossover operators:

◮ 1-point crossover:

0 1 1 0

1 1 0 1 0 0 1 1 0 0 1

1 0 1 1 0 1 1

0 1 1 0

1 1 0 1

0 0 1 1 0 0 1

1 0 1 1 0 1 1

◮ 2-point crossover:

1 0 1 1
0 1 0 0 11 1

0 11 0 1 0 1
1 11 0 1 0 1
0 10 1 0 0 11 0 1 1

1 0 0 1 1 0 0 1

◮ uniform crossover:

1 10 1 1 0 1 0 1 1 0 1 1

1 1 0 1 0 0 1 1 0 0 1 0 1011 0 10 10 1

1 1010 0 11 0

T-79.4101 Discrete Models and Search

Spring 2015

321/333

Mutation

◮ Recall order of operations:

1. selection 2. recombination 3. mutation.

◮ Given population p, consider each bit of each individual and flip it

with some small probability pµ. Denote the total effect on the

population as p′ = µ(p).

◮ Typically, pµ ≈ 0.001 . . .0.01. Apparently good choice: pµ = 1/n

for n-bit strings.

◮ Theoretically mutation is disruptive. Recombination and selection

should take care of optimization; mutation is needed only to

(re)introduce “lost alleles”, alternative values for bits that have the

same value in all current individuals.

◮ In practice mutation + selection = local search. Mutation, even

with quite high values of pµ, can be efficient and is often more

important than recombination.

T-79.4101 Discrete Models and Search

Spring 2015

322/333

Data Representations

General comments on coding:

◮ If the function to be optimized is not naturally defined on binary

strings, then the domain must be encoded. This is a nontrivial

task for GA’s, because the representation influences the

computation.

◮ Real numbers can be block-coded into sequences of integers.

◮ For integers, the Gray code should be considered as an

alternative to the standard binary representation.

◮ Advantage of Gray code: a transition from integer k to k +1

requires only one mutation in Gray code, but may require more in

the standard representation.

◮ Other encodings are possible, e.g., cycles/permutations, trees,

graphs . . .

T-79.4101 Discrete Models and Search

Spring 2015

323/333

Gray code conversion

integer standard Gray

(k) (a1a2a3) (b1b2b3)
0 000 000

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

6 110 101

7 111 100

◮ standard→ Gray conversion: bi =

{

ai , i = 1,

ai−1⊕ai , i > 1

◮ Gray→ standard conversion: ai =
⊕i

j=1 bj

T-79.4101 Discrete Models and Search

Spring 2015

324/333

Analysis of GA’s

Hyperplane sampling:

◮ A heuristic view of how a genetic algorithm works.

◮ A hyperplane (actually subcube) is a subset of Ω= {0,1}n ,

where the values of some bits are fixed and other are free to vary.

A hyperplane may be represented by a schema H ∈ {0,1,∗}n .

◮ E.g. schema ’0∗1∗∗’ represents the 3-dimensional hyperplane

(subcube) of {0,1}5 where bit 1 is fixed to 0, bit 3 is fixed to 1,

and bits 2, 4, and 5 vary.

◮ Individual s ∈ {0,1}n samples hyperplane H, or matches the

corresponding schema if the fixed bits of H match the

corresponding bits in s. (Denoted s ∈ H.)

◮ Note: given individual generally samples many hyperplanes

simultaneously, e.g. individual ’101’ samples ’10∗’, ’1∗1’, etc.

T-79.4101 Discrete Models and Search

Spring 2015

325/333

Hyperplane sampling
Consider e.g. the following utility function and partition of Ω into

hyperplanes (in this case, intervals) of order 3:

c(s)

010** W001** 011** 100** 101** 110** 111**000**

Here the current population of 21 individuals samples the hyperplanes

so that e.g. ’000∗∗’ and ’010∗∗’ are sampled by three individuals

each, and ’100∗∗’ and ’101∗∗’ by two individuals each. Hyperplane

’010∗∗’ has a rather low average fitness in this population, whereas

’111∗∗’ has a rather high average fitness.

T-79.4101 Discrete Models and Search

Spring 2015

326/333

Hyperplane sampling—cont’d

◮ order of hyperplane H:

o(H) = number of fixed bits in H = n−dim H

◮ m(H,p) =
number of individuals in population p that sample hyperplane H.

◮ average fitness of hyperplane H in population p:

f (H,p) =
1

m(H,p) ∑
s∈H∩p

f (s,p)

Heuristic claim: selection drives the search towards hyperplanes of

higher average fitness.

T-79.4101 Discrete Models and Search

Spring 2015

327/333

Holland’s schema theorem

◮ By making simplifying assumptions (very large population size)

one can make predictions on the short-term evolution of the

population (a.k.a. Holland’s schema theorem).

◮ The formula leads to so-called “Building Block Hypothesis”:

In a genetic search, short, above-average-fitness schemata

of low order (“building blocks”) receive an exponentially

increasing representation in the population.

◮ Please see more details on the schema theorem in the slides

(those marked with “(*)” are not exam relevant).

T-79.4101 Discrete Models and Search

Spring 2015

328/333

The effect of crossover on schemata (*)

◮ Consider a schema such as

H = ∗∗11∗∗01∗1
︸ ︷︷ ︸

∆(H)=7

∗∗

and assume that it is represented in the current population by

some s ∈ H.

◮ If s participates in a crossover operation and the crossover point

is located between bit positions 3 and 10, then with large

probability the offspring are no longer in H (H is disrupted).

◮ On the other hand, if the crossover point is elsewhere, then one

of the offspring stays in H (H is retained).

T-79.4101 Discrete Models and Search

Spring 2015

329/333

The effect of crossover on schemata—cont’d (*)

◮ Generally, the probability that in 1-point crossover a schema

H = {0,1,∗}n is retained, is (ignoring the possibility of “lucky

combinations”)

Pr(retain H)≈ 1−
∆(H)

n−1
,

where ∆(H) is the defining length of H, i.e. the distance between

the first and last fixed bit in H.

◮ More precisely, if H has m(H,p) representatives in population p

of total size m:

Pr(retain H)≥ 1−
∆(H)

n−1
Pdiff, Pdiff ≤ 1−

m(H,p)

m

T-79.4101 Discrete Models and Search

Spring 2015

330/333

The Schema “Theorem” (*)

Heuristic estimate of the changes in representation of a given schema

H from one generation to the next. Proposed by J. Holland (1975).

Denote:

m(H, t) =number of individuals in population at generation t

that sample H.

Then:

Recall: Selection→ Recombination→ Mutation

(i) Effect of selection:

m(H, t ′)≈m(H, t) · f (H)

T-79.4101 Discrete Models and Search

Spring 2015

331/333

The Schema “Theorem”—cont’d (*)

(ii) Effect of recombination:

m(H, t ′′)≈ (1−pρ)m(H, t ′)+pρ




m(H, t ′)Pr(retain H)+m ·Pr(luck)

︸ ︷︷ ︸

≥0






≥ (1−pρ)m(H, t ′)+pρm(H, t ′)

(

1−
∆(H)

n−1

(

1−
m(H, t ′)

m

))

= m(H, t ′)

(

1−pρ
∆(H)

n−1

(

1−
m(H, t ′)

m

))

(iii) Effect of mutation:

m(H, t +1)≈m(H, t ′′) · (1−pµ)
o(H)

T-79.4101 Discrete Models and Search

Spring 2015

332/333

The Schema “Theorem”—cont’d (*)

In summary, then:

m(H, t+1)&m(H, t) · f (H) ·

(

1−pρ
∆(H)

n−1

(

1−
m(H, t ′)

m

))

·(1−pµ)
o(H)

The formula leads to so called “Building Block Hypothesis”:

◮ In a genetic search, short, above-average fitness schemata of low

order (“building blocks”) receive an exponentially increasing

representation in the population.

T-79.4101 Discrete Models and Search

Spring 2015

333/333

The Schema “Theorem”: Criticisms (*)

◮ Many of the approximations used in deriving the “Schema

Theorem” implicitly assume that the population is very large. In

particular, it is assumed that all the relevant schemata are well

sampled. This is clearly not possible in practice, because there

are 3n schemata of length n.

◮ The result cannot be used to predict the development of the

population for much more than one generation:

1. the long-term development depends on the coevolution of the

schemata, and the “theorem” considers only one schema in

isolation;

2. an “exponential growth” cannot continue for long in a finite

population.

◮ Proper treatment: analyze the genetic search as a stochastic

process (Markov chain). This is unfortunately very difficult.

