A

Aalto University
School of Science

T-79.4101 Discrete Models and Search

Emilia Oikarinen

Department of Information and Computer Science, Aalto University

Spring 2015

Practical arrangements

Lecture 1: Overview of the course

Background: Propositional logic

Lecture 2: Combinatorial search problems

Lecture 3: Intro to complete and local search methods
Lecture 4: Constraint satisfaction problems

Lecture 5: Complete and local search methods for CSP’s
Lecture 6: Boolean circuits

Lecture 7: Complete and local search methods for SAT problems
Lecture 8: Modern SAT solvers

Lecture 9: Intro to linear and integer linear programming
Lecture 10: Linear relaxation and the simplex method
Lecture 11: Introduction to Convex Optimization

Lecture 12: Advanced topics

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
2/333

T-79.4101 Discrete Models and Search (5 ECTS)

At this course you will learn to represent combinatorial search
problems in terms of propositional satisfiability, constraint
programming, and integer programming formulations. You will obtain a
basic understanding of linear programming methodology and become
familiar with several types of local search techniques. Having
completed the course, you will be able to translate your problem into
an appropriate general formulation and use a generic problem solver
to solve the problem, or design a local search method tailored
specifically to your problem of interest.

The course material is based on material by Prof. llkka Niemel3,
Prof. Pekka Orponen, Dr. André Schumacher and Dr. Emilia Oikarinen.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
3/333

Why this course?

With the increase in computing power, continually new
computation-intensive application areas emerge (e.g. various
types of planning & scheduling, data mining, bioinformatics,. . .)

Many immediate problems in these areas are both
computationally demanding & mathematically weakly structured
(“Here is my messy objective function. Find a near-optimal
solution to it — quickly!”)

In such “quick-and-dirty” settings a search problem formulation is
often the most effective (if not the only) approach.

Moreover, the design and analysis of search algorithms is a
fascinating research topic in itself!

A

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

4/333

Practical arrangements

Lectures: Tue 10—12 T6, Emilia Oikarinen
Tutorials: Thu 16-18 T3, Laura Koponen (Starting Thu Jan. 15)
Registration: by WebOodi: https://oodi.aalto.fi/
Prerequisites: Basic knowledge of problem representations and logic,
facility in programming, data structures and algorithms;
T-79.4202 Principles of Algorithmic Techniques
recommended
Requirements: Examination (Apr. 8) and two programming
assignments (due Feb. 22 and Apr. 12)
Recall Aalto SCI policy: You MUST register to the
examinition beforehand!

Course home page: in Noppa:
https://noppa.tkk.fi/noppa/kurssi/t-79.4101/

Please: follow us in Noppal! (i.e., subscribe to the news)

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
5/333

https://oodi.aalto.fi/
https://noppa.tkk.fi/noppa/kurssi/t-79.4101/

Grading scheme

Exam: max 40 points
Programming: max 10 points
Extra assignments*): max 5 points
Tutorials: max 10 points

Note: The maximum number of points that can be obtained is 65.
(Note: we consider about half of the achievable points of programming
assignments and tutorials as well as the points from extra assignment

as bonus points)

The final grade is be computed as follows:
(see also the next slide for the requirements for passing the course!)

Total points

25

31

37

43

49

Grade

1

2

3

4

5

(*) Extra assignments are voluntary assignments related to some extra material and

involving independent work.

A

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015
6333

Grading scheme—cont’d

To pass the course you need to satisfy all the following requirements:

» Exam: > 20 points
» Total: > 25 points
» Both programming assignments completed successfully

For the programming assignments, a correctly functioning program,
returned on time with appropriate work description yields approx. half
the points available. The remaining points are allocated based on an
efficiency competition among the submitted programs and on the
quality of the report. Details of the grading scheme for programming
assignments will be introduced later.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
71333

Tutorial sessions

>

Two sets of problems each week: demonstration problems and
homework problems

Assistant presents the solutions for the demonstration problems.
Assistant is ready to answer questions

Homework problems (= 24 in total) to be solved until the following
week

Each problem one is ready to present at the whiteboard counts
for the tutorial points as follows:

Solved problems |2 |4 |6 |8 | 10|12 |14 |16 | 17 | 18

Points 112|345 6|7]|8]| 910

Even if you are not interested in tutorial points, come to the
session and participate actively (saves you time later when
studying for the exam)

Be active, ask questions!

A

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015

8/333

Programming assighments

» We will use automated system called Stratum for distributing,
submitting and checking the assignments

» Supported languages: Python and Java
» Start working early! (e.g., not on the day of the deadline)
» Read instructions carefully!

» |f something is unclear, please ask (preferably early) — helps you
and others

» Often main challenge: how fo model a problem
» Assignments are compulsory!

"https://puzzle.ics.hut.fi/

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

9/333

https://puzzle.ics.hut.fi/

Material

» No existing textbook: lectures cover a wide range of material from
several textbooks & current scientific literature.

» Course problems based on lecture slides.

» Examples of reference material:

>

Aarts & Lenstra (Eds.), Local Search in Combinatorial
Optimization. Wiley 1997.

Apt, Principles of Constraint Programming. Cambrigde University
Press, 2003.

T. Back, Evolutionary Algorithms in Theory and Practice. Oxford
University Press, 1996.

Hoos & Stiitzle, Stochastic Local Search: Foundations and
Applications. Morgan Kaufmann 2005.

Russell & Norvig, Artificial Intelligence: A Modern Approach,
Pearson Education, 2010.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

10/333

A Motivating Example

> Twelve slightly different types of items, numbered 1...12, arrive
for processing at a factory workshop.

» The workshop has four machines, numbered | .. .1V, and four
workers, named A ... D, who have different qualifications for
working on the items.

» To make things more complicated, there are also four specialized
tools, numbered o ... 3, that are needed for processing the
various items.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
11/333

The requirements of machines, tools, and workers for the items are
indicated in the following table:

Machine ‘ Tool Worker
. 1 5 9 a: 1 2 3| A 1 7 8
: 2 6 10 BZ 4 9 10| B: 2 3 4
im. 3 7 11 Y. 5 11 12 |C: 5 6 12
IV: 4 8 12| &: 6 7 8| D: 9 10 11

Let’s say processing each item by a combination of the appropriate
machine, tool & worker (e.g., the combination (/Il, o, B) to process
item 3), requires 1 hour. Any given machine, tool, or worker can only
work on one item at a time. Since there are 12 items and 4 machines
(as well as tools & workers), processing all the items requires at least
3 hours. Can it be done in this minimal time?

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring zgwi
12/333

How would you approach the preceding problem:

(a) By hand? (Design an appropriate schedule!)

(b) By computer, assuming that an arbitrary list of
requirements such as above would be given as input?
(The numbers of machines, tools, and workers do not
need to be the same: this is just a peculiarity of the
present example.)

A

Aalto University T-79.4101 Discrete Models and Search

School of Science

Spring 2015
13/333

Outline of this course (tentative schedule!)

Part I: Intro, search algorithms: complete & local search

Lecture 1 Introduction and general information (today)
Homework Study material on propositional logic!

Lecture 2 Computational problems and their properties;
reductions between problems from an algorithmic
point-of-view (13.1.)

Lecture 3 Complete search methods: search spaces, backtrack
and branch-and-bound search; local search methods
(hill climbing, simulated annealing, and tabu search)
(20.1.)

Assignment 1 Local search (DL: 22.2.)

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
14/333

Part II: CSP models and algorithms, Boolean circuits

Lecture 4 Constraints satisfaction problems (CSP): introduction &
modeling (27.1.)
Lecture 5 CSP algorithms: complete & local methods (3.2.)
Lecture 6 Boolean circuits: introduction & modeling (10.2.)
Lecture 7 Algorithms for circuit SAT: complete & local (24.2.)
Lecture 8 Modern SAT solvers (3.3.)
Part lll: LP and MIP models and algorithms
Lecture 9 Linear and integer linear programming: introduction &
modeling (10.3.)
Lecture 10 Algorithms for LP’s and MIP’s: branch-and-bound and
the simplex method (17.3.)
Assignment 2 MIP or SAT modeling problem (DL: 12.4.)
Lecture 11 Beyond MIP’s and LP’s (24.3.)
Part IV: Advanced topics
Lecture 12 Advanced topics, feedback, question session (31.3.)

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015

15/333

Background: Propositional logic

Outline

» Syntax: propositional formulas

v

Semantics

v

Logical equivalence

v

Normal form transformations

v

Example: 3-coloring of a graph

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
16/333

Propositional formulas

» Syntax based on:
Boolean variables (atoms) X = {xi, Xz, ...}
Boolean connectives V, A,

> The set of (propositional) formulas is the smallest set such that all
Boolean variables are formulas and if ¢; and ¢, are formulas, so
are _|¢1, ((|)1 /\(I)g), and ((|)1 \/(I)z).
For example, ((x1 V x2) A —x3) is a formula but ((x; V x2)—x3) is
not.

» A formula of the form x; or —x; is called a literal where x; is a
Boolean variable.

» We employ usual shorthands:
O1 — G2: =01 V 2
01 <> 021 (701 V P2) A (02 V ¢1)
01D P21 (01 A 02) V (91 A —d2)

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
17/333

Semantics

» Atomic propositions (Boolean variables) are either true or false
and this induces a truth value for any formula as follows.

» A truth assignment T is mapping from a finite subset X’ C X to
the set of truth values {true,false}.

» Consider a truth assignment T : X’ — {true, false} which is
appropriate to ¢, i.e., X(0) C X’ where X(¢) be the set of
Boolean variables appearing in .

» T = 0 (T satisfies) is defined inductively as follows:

If ¢ is a variable, then T = ¢ iff T(¢) = true.

If o = —q, then T = ¢ iff T |~ 04

|fq):q)1 /\q)g,then T):q)lff T’:¢1 and T):q)g
|f¢:(l)1 \/¢2,then T):(l)lff T':(l)1 or T':(l)g

Example Let T(xq) = true, T(x,) = false.
Then T |=x1 Vxo but T B (X1 V —x2) A (X1 A Xz2)

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
18/333

Representing Boolean Functions
» A propositional formula ¢ with variables x, ..., x, expresses a

n-ary Boolean function f if for any n-tuple of truth values
t=(t,...,t), f(t) =trueif T = ¢ and f(t) = false if T [~ ¢

where T(x;))=t,i=1,...,n.
Proposition. Any n-ary Boolean function f can be expressed as a
propositional formula ¢y involving variables x1, ..., X,.

» The idea: model each case of the function f Example.
having value true as a disjunction of X1 | x| f
conjunctions. 0ol0 lo

» Let F be the set of all n-tuples o l1 |1
t=(t,...,t,) with f(t) = true. 1 1o |1
For each t, let Dy be a conjunction of literals 111 1o
X; if t; = true and —x; if t; = false. q)f —

> Let Or = Vier Dy (—x1 Ax2) V

Note that 0y is big in the worst case: O(n2"). (X1 A —x2)

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
19/333

Logical Equivalence

Definition
Formulas ¢1 and ¢» are equivalent (¢1 = ¢») iff for all truth

assignments T appropriate to both of them, T |= 01 iff T = ¢o.

Properties:

» Commutativity

(01 V 02) = (92 V ¢1)
(01 A 02) = (02A 1)

» Associativity

(91 V) V3) = (01 V(02V 03))
(91 A 92) Ad3) = (01 A (021 03))
» Distributivity
((01V 02) Ad3) = ((91 A d3) V (92 A 03))

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015

20/333

Properties of logical Equivalence continued

» De Morgan’s law > ldentity
=01V 02) = (=01 A —02) (91 V false) = ¢
(01 A 02) = (—01 V —02) (01 Atrue) = ¢
» Laws of absorption > Nullity
(01 V1) =04 (01 Vtrue) = true
(01 A1) =04 (01 A false) = false
» Double negation » Complement
== (01 V—01) =true

(01 A —0q) = false

Notational shorthand

VL, @; stands for @1V ---V @, and AL, @, stands for @; A--- A @,

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
21/333

Normal Forms

» Many solvers for Boolean constraints require that the constraints
are represented in a normal form (typically in conjunctive normal
form).

Proposition. Every propositional formula is equivalent to one in
conjunctive (respectively, disjunctive) normal form.

CNF: (/11 \/"'\//1n1)/\"'/\(/m1 \/"'\//mnm)

DNF: (h1 A== Ahp)V NV (lmt A+ Almn,,)

where each J; is a literal (Boolean variable or its negation).

» Adisjunction iV ---V I, is called a clause.
» A conjunction lj A--- Al is called an implicant.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
22/333

Normal Form Transformations
CNF/DNF transformation:

1. remove <> and —:
a—=pB ~ —avp (1)
osp o~ (CaVBA(-BVa) (2
2. Push negations in front of Boolean variables:
—0 ~ o (3)
(aVB) ~ —an-B ()
~(@AB) ~ —av-B (5)

3. CNF: move A connectives outside V connectives:

aVv(PBAY) ~ (aVvB)A(avy) (6)
(aAB)VY ~ (avy)A(BVvy) (7)

DNF: move V connectives outside A connectives:

aA(PBVy) ~ (aAB)V(aAy) (8)
(aVB)AY ~ (aAy)V(BAY) (9)

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015
23/333

Example

Transform (AV B) — (B <+ C) to CNF.

(AVB) — (B<+ C) (1,2)
=(AVB)V((-BVC)A(=CVB)) (4
(mAAN=B)V ((wBV C)A(=CVB)) (7)

(mAV ((=BV C)A(=CVB)))A(=BV((—-BV C)A(—CV B))) (6)
((mAV (=BVC))A(—AV (=CVB)))A(—BV ((—BV C)A(—CV B))) (6)
(FAV (=BV C))A(mAV (=CVB)))A((—BV (=BV C)) A(=BV (=CV B)))
(mAV =BV C)A(—AV-CV B)A(—~BV—-BV C)A(—BV-CV B)

» We can assume that normal forms do not have repeated
clauses/implicants or repeated literals in clauses/implicants
(for example (—BV —BV C) = (—=BV C)).

» In the worst case CNF/DNF form can be exponentially larger than
the original formula.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
24/333

Example: Graph coloring

» Consider the problem of finding a 3-coloring for a graph.

» Note: the graph coloring problem asks for an assignment of
colors to vertices such that no pair of adjacent vertices (vertices
that share an edge) have the same color.

» In the special case of 3-coloring one restricts the number of
colors to 3 (see example below).

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
25/333

Example: Graph coloring cont.

» 3-coloring can be encoded as a set of Boolean constraints as
follows:

» For each vertex v € V, introduce three Boolean variables vy, v», v3
(intuition: v; is true iff vertex v is colored with color /).
» For each vertex v € V introduce the constraints

ViVwVv
(V1 — —|V2)/\(V1 — —‘V3)/\(V2 — —|V3)

» For each edge (v,u) € E introduce the constraint
(v1 — —|u1)/\(V2 — ﬁuz)/\ (Vs — —'Us)

» Now 3-colorings of a graph (V, E) and solutions to the Boolean
constraints (satisfying truth assignments) correspond:
vertex v colored with color i iff v; assigned true in the solution.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
26/333

Lecture 2: Combinatorial search problems

Outline

» Computational problems and their properties

» decision problem
» search problem
» optimization problem
» counting problem

» Examples of computational problems

» Reductions between problems from an algorithmic point-of-view
Goal for today: Learn to recognize and formulate different types of
computational problems; learn how to use reductions between
problems as an algorithmic technique for their solution.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
27/333

Computational problems

» A (computational) problem: an infinite set of possible instances
with a question.

> A decision problem: a question with a yes/no answer

Example

REACHABILITY
INSTANCE: A graph (V,E) and nodes v,u € V.
QUESTION: Is there a path in the graph from v to u?

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
28/333

Computational problems

Often more complicated questions are of interest:

» Search (function) problem: given an instance find a solution
(object satisfying certain properties).
» Optimization problem: given an instance find a best solution
according to some cost criterion.
Typically this is formalized by specifying
» what are feasible solutions for an instance and
» a cost function which assigns a cost (typically a integer/real
number) to each feasible solution.
Now a solution to an optimization problem instance is a feasible
solution that has the minimal (or maximal) cost.

» Counting problem: given an instance count the number of
solutions.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
29/333

Examples

» PATH (Search Problem)
INSTANCE: A graph (V, E) and nodes v,u € V.
QUESTION: Find a path from v to u.

» SHORTEST PATH (Optimization Problem)
INSTANCE: A graph (V, E) and nodes v,u € V.
QUESTION: Find a shortest path from v to u.

» #PATH (Counting Problem)
INSTANCE: A graph (V, E) and nodes v,u € V.
QUESTION: Count the number of simple paths from v to u.

T79.4101 Discrete Models and Search

Aalto University : h
School of Science Spring 2015
30/333

Easy and hard problems

» Many problems are computationally easy: there is a polynomial
time algorithm for the problem, i.e. there is an algorithm solving
the problem whose run time increases polynomially w.r.t. the size
of the input instance. Consider, e.g., REACHABILITY.

» Some problems are not computationally easy: there is no known
guaranteed polynomial time algorithm for the problem, i.e. for any
known algorithm there is an infinite collection of instances for
which the run time increases super-polynomially w.r.t. the size of
the instance.

» This course focuses on methods for solving such problems in
practice.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
31333

Examples of hard problems

SAT (Boolean Satisfiability Problem)

INSTANCE: a propositional formula in conjunctive normal form
QUESTION:

(D) Is the formula satisfiable?

(S) Find a satisfiable truth assignment for the formula.

(O) Find a truth assignment satisfying the most clauses in the formula.
Propositional formulas consist of literals (variables and their
negations), conjunctions (“and” A) and disjunctions (“or” V).

Conjunctive normal form: conjunction of disjunctions (=clauses)

X1 N\ (Xg V _|X2)

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
32/333

Example Consider an instance of the SAT problem

F(X1 ,Xg) = (X1 \/_\Xg) AN (_|X1 \/Xg)/\ (X1 \/Xz)

X1 Xo ‘ F(X1 s Xg)
false false false
false true false

true false false
true true true

This is satisfiable as the formula is satisfied by a truth assignment T;
where Ty(x;) = true, Ty(x2) = true.
If we add a new conjunct (—xy VV —x2), the instance turns unsatisfiable.
For the SAT(O) problem consider the instance

F'(x1,%2) := (x4 V =x2) A (=x1 Vx2) A (X1 V x2) A (—x1 V =x2) A —xe.
The assignment T is not optimal but T,(x;) = false, T>(x,) = false is
(satisfying 4 clauses).

Aalto University T-79.4101 Discrete Models and Search
A School of Science S"""‘ilei

Examples of hard problems (ll)

» GRAPH COLORING
INSTANCE: A graph (V, E) and a positive integer k
QUESTION:
(D) Is there a k-coloring of the graph, i.e. an assignment of one of
the k colors to each vertex such that vertices connected with an
edge do not have the same color?
(S) Find a k-coloring.
(O) Find an /-coloring with the smallest number / of colors.

» CLIQUE
INSTANCE: A graph (V, E) and a positive integer k
QUESTION:
(D) Is there a k-clique in the graph, i.e. a set of k nodes such that
there is an edge between every pair of vertices from the set.
(S) Find a k-clique.
(O) Find an I-clique with the largest number / of vertices.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
34/333

Examples of hard problems (lll)

SET COVER

INSTANCE: A family of sets F = {Sy,..., S,} of subsets of a finite set
U and a positive integer k.

QUESTION:

(D) Is there k-cover of U, i.e., a set of k sets from F whose union is U.
(S) Find a k-cover of U.

(O) Find a set /-cover of U with the smallest number / of sets.

Example

Consider the family of sets: F = {S;, Sz, S3} where
S1={1,2},5={2,3},S3 = {3,4} and U={1,...,4}

Now {S;, S, Ss} is a 3-cover of U, {Sy, Sz} is a 2-cover of U but
there are no 1-covers.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
35/333

Examples of hard problems (1V)

TSP (TRAVELING SALESPERSON)
INSTANCE: ncities 1,...,n and a nonnegative integer distance dj
between any two cities / and j (such that d; = dj;) and a positive
integer B.
QUESTION:
(D) Is there a tour of length at most B, i.e. a permutation 7 of the cities
such that the length n

21, Or(iym(i+1)

i=

is at most B (where t(n+1) =m(1))?
(S) Find a tour of length at most B.
(O) Find the shortest tour of the cities.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
36/333

Relationship between problems

Let us consider decision problems A and B.

B reduces to A (B C A) if there is a transformation R for which
every input instance x of B produces an equivalent input instance
R(x) of A.
» Here equivalent means that the answer (yes/no) for R(x)
considered as the input of A is the correct answer to x as an input
of B.

For a reduction R to be useful it needs to be relatively easy to
compute (compared to the problems A and B).

Typically it is assumed that the reduction can be computed in
polynomial time.

A

T79.4101 Discrete Models and Search

Aalto University : h
School of Science Spring 2015
37/333

Example: 3-COL C SAT

» 3-COL
INSTANCE: a graph (V, E).
QUESTION: is there a 3-coloring of the graph.

» Reduction from 3-COL to SAT

Clauses for vertex v € V: Clauses for edge (v,u) € E:
VpV VvV Vg =Vp V —lp

WV v =,V oy

VeV Yy Vg V g

vV Vv,

» This is a reduction because
(i) it can be computed efficiently and
(ii) it produces from an instance of 3-COL an equivalent instance
of SAT: the graph has a 3-coloring iff the set of clauses is
satisfiable.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
38/333

Reduction

Reduction from B to A (B C A) can be exploited in two ways.

» An algorithm for B can be built on top of an algorithm for A.
» Used extensively in this course.

input x =

Algorithm for B:

Reduction
R

—

R(x
-

Algorithm
for A

— Answer

» Reduction implies that A is computationally at least as hard as B.

» Used in computational complexity theory (T-79.5103) to classify
computational problems; B C A orders problems by difficulty.

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015
39/333

Example: INDEPENDENT SET C CLIQUE

» INDEPENDENT SET
INSTANCE: A graph G = (V, E) and an integer K.
QUESTION: Is there an independent set / C V with |/| = K.
(A set I C Visindependent if i,j € | implies that there is no edge
between i and j).

» Reduction from INDEPENDENT SET to CLIQUE: Given a
G = (V,E) and an integer K, take the complement graph
G = (V. {(v,u) | v,ue V,(v,u) € E}. (Note: an independent
set of a graph is a clique of the complement graph.)

o 2. ®
G @ \(‘
g @@ s

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
40/333

Example: 3-SAT L INDEPENDENT SET

» Reduction from 3-SAT to INDEPENDENT SET:
Given a set ¢ of m clauses each with three literals, construct a
graph whose vertices are the occurrences of the literals in ¢. Add
the following edges: a) a separate triangle for each clause b) an
edge between two vertices in different triangles corresponding to
complementary literals. Finally, set K = m.

(X1 V —xo V X3) A (_\X1 V Xo V _|X3) A (X1 V X2 V X3)

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
41/333

Example: 3-SAT L INDEPENDENT SET—cont’d

» This is a reduction because ¢ is satisfiable iff there is an
independent set of size m for the graph.

(=) If 0 has a satisfying truth assignment, then take one vertex from
each triangle for which the corresponding literal is true in the
assignment and this gives an independent set of size m.

(«=) If there is an independent set of size m, then it contains exactly
one vertex from each triangle and no two vertices corresponding
to complementary literals. Hence, the set induces a truth
assignment for which each clause has a true literal implying that ¢
is satisfiable.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
42/333

Reductions—cont’d

» Reductions compose (are transitive):
3-SAT C INDEPENDENT SET and
INDEPENDENT SET C CLIQUE imply
3-SAT C CLIQUE

» Hence, using an algorithm for CLIQUE, we can solve

INDEPENDENT SET, 3-SAT, 3-COL using reductions.

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015
43/333

Reductions for search problems

» Reductions for search problems need a translation of the result
back to the original problem.

» A reduction from a search problem B to A is a pair of mappings
(R, S) (both computable in polynomial time) such that for all x, z:
if x is an instance of B, then R(x) is an instance of Aand if z is a
correct output of R(x), then S(z) is a correct output of x.

» For optimization problems optimality needs to be preserved, too.

Algorithm for B:

inout X — Red. R:(Xg Algorithm N Red. s:(ngnw
P R for A 5 Swer

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
44/333

Size of the reductions
In practice not all polynomial time reductions are useful in building
algorithms on top of others but the size of the translation matters.

Example

» Consider a problem A for which we have a 2"/19% algorithm.
Hence, an input of length n=20000 needs 220000/1000 , 106 gteps.

» We want to use this algorithm to solve a difficult problem B for
which we have a quadratic translation to A.

» Now the run time of the combined algorithm for B is
p(n) +27/1000 where p(n) is a polynomial giving the run time of
the translation from B to A.

» For an input of length n=20000 the run time is
p(20000) + 2200002/1000 Z 2400000 Z 1010000 StepS!

School of Science Spring 2015
45/333

A Aalto University T-79.4101 Discrete Models and Search

Relationship between different kinds of problems

Decision problems vs search problems

» A decision problem reduces to the corresponding search problem
trivially, i.e., if a search problem can be solved efficient so can the
corresponding decision problem.

» But also often a search problem reduces to the corresponding
decision problem.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
46/333

SET COVER(D) vs SET COVER(S)

>

Clearly, if SET COVER(S) can solved in polynomial time, then so
can SET COVER(D).

Next we show that if SET COVER(D) can be solved in polynomial
time, then so can SET COVER(S).

Assume that SET COVER(D) can be solved in polynomial time,
i.e., there is a procedure setcover(F, U, k) such that given a
family F = {Sy,..., Sy} of subsets of U and a positive integer k,
it decides in polynomial time whether F has a k-cover or not.

Now using the procedure setcover(F, U, k) a k-cover of F can be
found by calling the procedure at most once for each member S;
of the family of sets F = {Sy,..., Sy}

Hence, the run time remains polynomial.

School of Science Spring 2015

A Aalto University T-79.4101 Discrete Models and Search

47/333

A Procedure for Solving SET COVER(S)
if setcover(F, U, k) returns “no” then return “no”;
I'=k—1;C:=0;
forall S€{S,...,S,} do

if setcover(F/S, U— S, I) returns “yes” then
C:=CU{S};,F=F/S;U:=U-S;
[i=1-1;
else
F:=F—{S};
endfi
return C;

where C is the computed k-cover.

Note: F/S denotes F with the set S removed and all elements of S
deleted from other sets in the family F; U — S denotes the set with
elements of U but elements also in S removed (“setminus”); similarly,
F — {S} is the remaining family of sets with S removed.

Aalto University T-79.4101 Discrete Models and Search
School of Science

Spring 2015
48/333

Decision vs optimization problems

Consider TSP(D) vs TSP(O)

» |f TSP(O) can solved in polynomial time, then so can TSP(D).

» If TSP(D) can solved in polynomial time, then so can TSP(O).

» An optimal tour can be found using an algorithm which
1. finds the cost (=length) C of an optimal tour by binary search (with
a polynomial number of calls to the polynomial time algorithm for
TSP(D));
2. finds an optimal tour using C (with a polynomial number of calls to
the polynomial time algorithm for TSP(D)).

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
49/333

How to find C by binary search
A A A

upper{ + +

Is there a tour of length at mgst

| (upper+candidate)/ 2 |? ?2+ upper + upper+
YES!
T + candidate + -
T Is there a.. .
NO!
candidate + candidate- -

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
501333

TSP(D) vs TSP(O)
A TSP(O) algorithm using a TSP(D) algorithm as a subroutine:

/*Find the cost C of an optimal tour by binary search®/
C:=0; C, :=D; /" Dis the sum of maximal distances from each city */
while (C, > C) do
if there is a tour of cost | (C, + C)/2] or less then
Cy:=[(Cut+C)/2]
else
C:=[(Cu+0C)/2] +1;
endfi
/* Find an optimal tour given the cost C of an optimal tour */
For every intercity distance d(/,j) do
set the distance to C+ 1;
if there is a tour of cost C or less, freeze the distance to C+ 1
else restore the original distance and add (/,) to the tour;
endfor

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
51/333

Different kinds of optimization problems

» Consider the traveling salesperson problem and two new variants:
EXACT TSP: Given a distance matrix and an integer B, is the
length of the shortest tour equal to B?

TSP COST: Given a distance matrix, compute the length of the
shortest tour.

» It can be shown that the four variants can be ordered in
“increasing complexity” by reductions:
TSP(D) ; EXACT TSP; TSP COST; TSP(O)

» All the four variants of TSP are polynomially equivalent: there is a
polynomial-time algorithm for one iff there is one for all four
(because TSP(D) and TSP(O) are).

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
52/333

Computational properties of problems

» The previous arguments indicate that the decision, search, and
optimization variants of problems are polynomially equivalent.

» This does not imply that they are equally easy to solve in practice.

» There are differences if no polynomial algorithm is known.

» For a decision problem the “yes” answer is often easy to verify.

» Typically, the question is about existence of a certain object
(witness/certificate), e.g., satisfying truth assignment, coloring, ...

» If the witness is given, then the correctness of the “yes” answer
can be checked in polynomial time.

» However, the “no” answer is more challenging to verify because
there is no obvious witness/certificate for the answer, e.g., for the
lack of coloring.

School of Science Spring 2015
53/333

A Aalto University T-79.4101 Discrete Models and Search

Computational properties of problems (ll)

» The same holds for search problems where the correctness of
the found object can typically be checked in polynomial time but
where the “no” answer is more challenging to verify.

» Notice that even if the verification of a solution is easy, this does
not imply that finding a solution is easy.

» Many engineering problems fall into this class of problems

» A typical problem is to construct a mathematical object satisfying
certain specifications (path, solution of equations, routing, VLSI
layout,.. .).

» The decision version of the problem is determine whether at least
one such an object exists for the input.

» The object is usually not very large compared to the input.

» The specifications of the object are usually simple enough to be
checkable in polynomial time.

A Aalto University T-79.4101 Discrete Models and Search

School of Science Spring 2015

54/333

Computational properties of problems (lll)

» The decision versions of this class of problems form the problem
class NP, i.e., decision problems with polynomial size certificates
that are checkable in polynomial time.

» The hardest problems in this class (w.r.t. C) are called
NP-complete problems and they include, for example, SAT,
GRAPH COLORING, CLIQUE, SET COVER, TSP, ...

» To learn more, see computational complexity theory, for example,
course T-79.5108.

» For optimization problems it is hard even to verify a solution.

» Consider the traveling salesperson problem and a potential
solution 7.

» There seems to be no obvious polynomial time test that could
establish that 7 is actually a tour that has minimum length.

» Counting problems are often even harder.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
55/333

Algorithm design techniques for hard problems

» There are several approaches to developing efficient algorithms
for computationally challenging problems such as:

» identify special cases (using tools from complexity theory) and
develop special algorithms for these
» approximation algorithms
» randomized algorithms
» However, it typically requires a substantial amount of expertise
and resources to develop an efficient algorithm for a problem.

» For example, in practical applications it often happens that the
problem specification is not “mathematically clean” but includes a
number of “side conditions” and criteria which are fairly
complicated to integrate into an algorithm. Moreover, these “side
conditions” tend to change quite frequently.

» In this course we study search algorithms as a practical set of
tools to solve such problems.

School of Science Spring 2015
56/333

A Aalto University T-79.4101 Discrete Models and Search

Lecture 3: Intro to complete and local search methods
Outline

» Complete search
» Search spaces and objective functions
» Methods: backtrack, branch-and-bound
» Local search

» Search spaces and neighborhood structures
» Methods: hill climbing, simulated annealing, tabu search, etc.

Goal for today: For a given high-level description of a computational
problem (search or optimization), learn to

1. formulate a suitable search space for the problem and
2. devise
a) acomplete search/optimization method based on the high-level
algorithms introduced today
b) a local search algorithm for solving the problem based on the
high-level methods introduced today

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
57/333

Search spaces and objective functions

» A combinatorial search or optimization problem [l determines a
search space X of candidate solutions for each of its instances /.

» The computational difficulty in such problems arises from the fact
that X is typically exponential in the size of | (= HUGE).

» In general, complete search methods have to be able to find
(generate) any solution in X.

» E.g. SAT(S):
Instance: F = propositional formula on n variables {x1,..., X}
Search space: X = all truth assignments ¢ : {x1,...,x,} — {0,1}.
Goal: find t € X that makes F true.

Size of X = 2" points (0/1-vectors).

T79.4101 Discrete Models and Search

Aalto University
School of Science Splln?;gg

Search spaces and objective functions—cont’d

Recall that since SAT formulas are required to be in conjunctive
normal form, it can also be viewed as an optimization problem:

SAT(O):

Instance: F = family of m clauses on n variables {x1,...,X,}.
Search space: X = all truth assignments ¢ : {x1,...,x,} — {0,1}.
Objective function: c(t) = # clauses not satisfied by t.

Goal: minimize ¢(t).

Size of X = 2" points (0/1-vectors).

T-79.4101 Discrete Models and Search
Spring 2015

Aalto University
School of Science
59/333

Search spaces and objective functions—cont’d

TSP(O):

Instance: An nx nmatrix D of distances dj; between n “cities”.
Search space: X = all permutations (“tours”) m of {1,...,n}.
Objective function: d(1) = Y= du(iyn(i+1) + Gu(nyr(1)-

Goal: minimize d(m).

Note: Here | X| = n!. (More precisely: | X| = (n—1)!/2, if the starting
points and orientations of tours are ignored.)

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

60/333

Search spaces and objective functions—cont’d

MAX CUT(O):
Instance: A graph G = (V,E) and a function ¢ giving each edge
(u,v) € E an integer capacity c(u, v).
Search space: X = all cuts in G, which are partitions of V into S and

V—S,where SC Vand S#0.
Objective function: ¢(S) = ¥.(y.v)cE ucs,ve¢s €U, V).
Goal: maximize c(S).

Note: Here |X| = 2" — 2. (More precisely: |X| = 2" — 1, since there
is no “direction” of a cut.)

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

61/333

Backtrack search
» Backirack search is a systematic method to search for a
satisfying, or an optimal solution x in a search space X (the
pseudo-code below terminates when the first solution is found).
» Note: from here on onwards, x may be also a partial solution; but
x € X iff x is a complete solution!

function backirack(/:instance; x:partialsol):
if x € X (x is a complete solution) and feasible then
return x;
else
for all extensions ey,... e to x do
x' < backtrack(/,x ® e;);
if X' € X and feasible then return x’
end for;
return fail
end if.

T79.4101 Discrete Models and Search

Aalto University
School of Science

Spring 2015
62/333

Backtrack search: VERTEX COVER

» Recall the (optimization variant) of the vertex cover problem.

VERTEX COVER(O):

Instance: A graph G= (V,E).
Goal: minimize c¢(x) = |x| over all subsets x C V s.t. for all
(u,v) € E,u€ xorv e x (or both).

—@
G

(@5

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

63/333

Backtrack search: VERTEX COVER—cont’d

» Let x* be the currently best known solution.

initially: x* < V; x < 0;
function simpleBacktrackVC(G = (V, E):instance; x C V:partialsol):
if x is a vertex cover then
if | x| < |x*| (x is better than current best) then
X* 4 X;
else
forallve V\xdo
simpleBacktrackVC((V, E), x U{v});
end for;
end if.

» Note: This is inefficient (repeats solutions!).

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
64/333

Branch-and-bound search (1/2)

>

Pruning techniques can greatly improve the efficiency of
backtrack search in optimization problems.

Example modification to the VC algorithm: only recurse by calling
simpleBacktrackVC((V, E), xU{v}), if |x| < |x*| — 1.

General idea: Assume for partial solution x we have a lower
bound /(x) on the cost of any complete solution that can be
constructed from x.

If we know of a complete solution with cost ¢ (which is an upper
bound on minimum cost), we can prune the search tree at x if
I(x) > c. (VC example: ¢ = |x*|),/(x) = |x|+1)

Note: larger lower bounds are better than smaller ones! (more
effective pruning)

A

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015
65/333

Branch-and-bound search (2/2)

initially: ¢ < oo; x* < ();
function branch_and_bound(/:instance; x:partialsol):
if x is a complete (and feasible) solution then
if cost(x) < c then
¢ < cost(x); x* < x;

end if;
else
for all extensions ey, ... e to x do
X' —xDe;
if /(x") < cthen
branch_and_bound(/, x);
else // prune, do nothing
end if;
end for;
end if.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
66/333

Branch-and-bound search: TSP
Consider e.g. the TSP(O) problem and choose:

Partial solution: A set of edges (links) chosen either to be included or
excluded from the complete solution tour (here: set of all candidate
edges = Nx N, N={1,...,n}).

Bounding heuristic: Let the TSP instance under consideration be given
by distance matrix D = dj (where dj = dj;). Then the following
inequality holds for any complete tour 7:

1
d(n) = EZ{(d,‘/‘ + dj) | at city j tour T uses links jj and jk}
J

1

> - min (dj + di)-
- 2 ;Lk:i;ﬁk(i /k)

Intuition: even the (globally) optimal tour needs to enter and leave

each city and thus cannot achieve a shorter length than the locally

best way to do so.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
67/333

TSP bounding heuristic (1/2)

Say, the edges a-b and a-c have been chosen as part of the solution.
The bounding heuristic then results in the following:

3 (dap + dac + Min; ejzi (dip + Aoic) + Min; iz (Vi + dok)
+ min; x.iz(dig + dok)

=1(5+(1+2)+(1+2)+(2+2))

=15
— 2

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
68/333

TSP bounding heuristic (2/2)

However, we can do better: since we need to be able to complete the
partial solution to a complete tour, we can exclude certain edges from
the bound and force the inclusion of others.

Example: Including a-b and a-c leads to excluding c-b (incomplete
tour).

% (dab + dac + (dab + dbd) + (dbd + ddc) + (ddc + dca))
=11
Special case of constraint propagation, which we discuss later in
detail.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
69/333

Example for TSP

Consider the following small TSP instance:

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
70333

TSP example cont’d

We introduce a modified version of the branch-and-bound algorithm,
using the following procedures:

» find_initial_tour(D): Always choose the link with the smallest cost
from the current node to an unvisited node. Once all the nodes
have been visited, a tour is found.

For the example, when starting from node a this simple heuristics
returns a complete tour “adcbea” with cost
Oag +dgc+dop+Ape+deg =2+5+4+3+7=21.

» propagate(m): exclude/include edges to the (partial) tour T in
case their exclusion/inclusion is necessary in order to complete
tour (as described on slide 69)

Using the lower-bounding heuristic and the modified
branch-and-bound algorithm, the search tree for the minimum tour on
this instance can be pruned as presented on slide 73.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
71/333

Modified Branch-and-bound search for TSP example

initially: * <— find_initial_tour(D); ¢ <— cost(n*);
function branch_and_bound_TSP(D: distance matrix; 7t: partial tour):
if T is a complete tour then
if cost(m) < c then
¢ < cost(m); T + m;
end if;
else
for all extensions ey,...ec to T do
T+ nd e; '+ propagate(n’);
if /(n) < c then
branch_and_bound(D,T');
else // prune, do nothing
end if;
end for;
end if.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
72/333

1
2 ((2;3)+(3-63)+(424)+(2+[-’5)+(3;6))

C >185
prune prune
ac ac ‘ ‘ ac ac
ad ad
= c>18 ‘ ‘ C >185 e
C >205 prune | C>21
prune
ad ad ad ad
ae ae ae ae
‘ C>18 ‘ Cc>23 ‘ ‘0218,5‘ C,>23.5‘
bc bc be be
tour tour tour tour
abceda abecda acbeda acebda
‘ C=23 ‘ ‘ Cc=21 ‘ ‘ c=19 ‘ ‘ C=23 ‘
ﬂ MINIMUM

Aalto University

T-79.4101 Discrete Models and Search
School of Science

Spring 2015
73/333

Final remarks on Branch-and-bound search
Branch-and-bound search and SAT:

» Most naturally, the partial solutions are chosen to correspond to
partial truth assignments t: {xy,...,x;} — {0,1}.

» Each partial assignment has two possible extension ey and e;: g
assigns value 0 to variable x;+¢ and e; assigns value 1.

» DPLL (Davis-Putham-Logemann-Loveland) procedure, a
backtrack search method for testing satisfiability of a set of
clauses will be introduced in detail later during the course.

Maximization problems:

» For maximization problems “orientation” of bounds is reversed:
one prunes if u(x) < p, where u(x) is an upper bound on the
objective value of any complete solution that can be constructed
from x and p is the objective value of the best complete solution
known so far.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
74/333

Local search techniques

» For realistic problems, complete search trees can be extremely
large and difficult to prune effectively.

» Often, it is more important to get a reasonably good solution fast,
rather than the globally optimal one after a long wait.

» Therefore, local search methods provide an interesting
alternative.

Assume that the search space X has some neighborhood structure N,
whereby for each solution x € X, a set of “structurally close” solutions
N(x) C X can be easily generated from x by local transformations.

Note: here x are complete solutions (cmp. partial solutions for
complete search methods) although possibly infeasible.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
75/333

Examples

For instance, in the case of SAT(O) one could have:
N(x) = {truth assignments x’ that differ from x at exactly one variable},

... in the case of MAX CUT(O):

N(x) = {cuts x’ that result from x by moving one vertex to the other side
of the cut},
and for the case of GRAPH COLORING(O):
N(x) = {colorings x that result from x by changing the color of a single
node}.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
76/333

Hill climbing
The hill climbing (simple local search, iterative improvement) method
works by iteratively improving a given solution by neighborhood
transformations, as long as possible:

function simple_LS (X, N, ¢):
choose arbitrary initial solution x € X;;
repeat
find some x" € N(x) such that ¢(x’) < ¢(x);
X+ x'";
until no such x’ can be found;
return x.

initial soln. cost of

local transf.

local
optimum

optimum
Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
77/333

Hill climbing—cont’d

» Simple hill climbing just picks any better solution in the
neighborhood.

» Steepest descent (or ascent for maximization problems) picks the
best solution (the one that achieves the largest improvement)
among all neighbors.

» Very simple technique, can be combined with random restarts.

» Obvious problem: search gets trapped in local optima, although
random restarts may improve the best solution found.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
78/333

Example: Hill climbing for TSP

>

Consider a hill climbing method for TSP: candidate solutions x
are a sequence of edges forming a cycle in the TSP instance.

Principle of Lin-Kernighan k-opt neighborhoods: solutions x and
x" are neighbors, if x can be transformed into x’ by replacing k
edges that are in the tour x with k other edges not in x.

More generally, the LK algorithm considers different values for k
during a run (k =2, k = 3, etc.) to improve the current solution.

The resulting method has been experimentally shown to produce
quite good results for the TSP, sometimes only a few % longer
than optimum.

For implementations and more information, e.g., see
http://www.akira.ruc.dk/~keld/research/LKH/

A

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

79/333

http://www.akira.ruc.dk/~keld/research/LKH/

2-opt and 3-opt moves
2-opt move: Replace {(a,b),(c,d)} by {(a,c),(b,d)}

3-opt move: Replace{ a, b) c,d),(ef)} by{ ,(b,f)}
b
C
&
f
e

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
80/333

A 2-Opt descent to local optimum for TSP

N

" 5

3
4 Local optimum
$ (i1 £act also global}
2
6

A Aalto University T-79.4101 Discrete Models and Search

School of Science Spring 2015
81/333

Simulated annealing: basic idea

» Local (nonglobal) minima are a problem for deterministic local
search, and many heuristics have been developed for escaping
from them.

» One of the most widely used is simulated annealing (Kirkpatrick,
Gelatt & Vecchi 1983, Cerny 1985).

» Generate random neighbor of current solution (not necessarily
with uniform probability).

» Always move to new solution if move improves objective value
» Sometimes move to worse solutions to escape local optima.

» Probability of accepting a worse solution varies over runtime
(monotonically decreasing over iterations).

> Analogy in metallurgy: heating and controlled cooling of material
to reduce defects in its crystal structure.

School of Science Spring 2015
82/333

A Aalto University T-79.4101 Discrete Models and Search

Simulated annealing: implementation

Assume again a minimization problem.

Amount of stochasticity is regulated by a computational
temperature parameter T.

Value of T during the search is decreased from some large initial
value Tjn; > 0 to some final value Tyjpy = 0.

Search is allowed to proceed for several iterations with the same
temperature (called sweep).

Proposed move from a solution x to a worse solution x’ is
accepted with probability e 2¢/T where Ac > 0 is the cost
difference of the solutions.

A

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

83/333

function SA(X, N, ¢):
T < Tinit;
X = Xipit; X* 4= X;
while T > Ty, do
L < sweep(T);
for L times do
choose x” € N(x) uniformly at random;
Ac + ¢(x') — c(x);
if Ac <0 then x + X’ else
choose r € [0, 1) uniformly at random;
if r <exp(—Ac/T) then x < x’;
if ¢(x) < c(x*) then x* < x;
end for;
T < lower(T);
end while;
return x*.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
84/333

Cooling schedules

» An important question in applying SA is how to choose
appropriate functions lower(T) and sweep(T), i.e. what is a good
“cooling schedule” (Ty, Lo),(T1,L1),...

» Theoretical results (Markov chain theory) guarantee that if the
cooling is “sufficiently slow”, then the algorithm almost surely
converges to globally optimal solutions. Unfortunately these
theoretical cooling schedules are astronomically slow.

» In practice, one normally just starts from some “high” temperature
To, and after each “sufficiently long” sweep L decrease the
temperature by some “cooling factor” ot ~ 0.8...0.99, i.e. to set
Tk+1 =oT.

» Theoretically this is much too fast, but often seems to work well
enough. (No one really understands why.)

School of Science Spring 2015
85/333

A Aalto University T-79.4101 Discrete Models and Search

Convergence of simulated annealing

> View the search space X with neighborhood structure N as a
graph (X, N). Assume that this graph is undirected, connected,
and of degree r. (Each node=solution has exactly r neighbors.)

» Denote by X* C X the set of globally optimal solutions. The
following result was proved by Geman & Geman (1984) and
Mitra, Romeo & Sangiovanni-Vincentelli (1986):

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
86/333

Convergence of simulated annealing cont.

Theorem. Consider a simulated annealing computation on structure
(X,N,c). Assume the neighborhood graph (X, N) is connected and
regular of degree r. Denote:

A =max{c(x")—c(x) | x € X,x" € N(x)}.

Choose
L > min maxdist(x,x"),
X*EX* x¢ X*
where dist(x, x*) is the shortest-path distance in graph (X, N) from
node x to node x*. Suppose the cooling schedule used is of the form
(To,L),(Ty,L),(T2,L),..., where for each cooling stage ¢ > 2:

LA
Tr>— (but T, .
"2y 0T 0)

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
87/333

Convergence of simulated annealing cont.
Then the distribution of states visited by the computation converges in
the limit to ", where

_{ 0, if x € X\ X,

L

x —

1/|X], if x € X*.

L > min maxdist(x,x")
XEX" xg X*

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
88/333

Tabu search (Glover 1986)
Idea: Prevent a local search algorithm from getting stuck at a local
minimum, or cycling through equally good solutions, by recording
recently visited solutions (fabu list) and excluding moves to these.
Sometimes finite convergence to an optimal solution can be shown
(Hanafi 2001).

function TABU(c, ff):

X < Xinit; X* < x; initialize TL to {x};

while moves < max_moves do
remove from TL solutions entered there more than tt moves ago;
choose an x’ € N(x)\ TL of minimum cost;
X+ x';
add x to TL;
if ¢(x) < c(x*) then x* < x;

end while;

return x*;

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
89/333

Tabu search: practical considerations

> To save tabu list memory and access time, it may be worthwhile
not to store complete solutions in the list, but just the recent
moves (local transformations).

» Potential problem: a move may be tabu at time ¢ (in the context of
some earlier solution xy, t' < t), whereas it would lead to an
interesting new solution in the context of solution x;.

> To resolve this issue, heuristics for overriding the tabu rule
(so-called aspiration rules) have been introduced, such as
“always accept objective-improving moves” (i.e. such that
c(x') < ¢(x)).

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
90/333

Tabu search applied to SAT(O)

Given propositional formula F on n variables {x1,...,X,} in
conjunctive normal form, choose:

» Feasible solutions: truth assignments t : {xy,...,x,} — {0,1}.

v

Objective function: ¢(t) = number of clauses unsatisfied by t.

v

Neighborhood structure: N(t) = truth assignments t' that differ
from t in exactly one variable.

v

Full tabu list: recently visited truth assignments.

v

Abbreviated tabu list: recently flipped variables.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
91/333

Other paradigms

A large number of other local search paradigms have been discussed
in the literature, making use of dynamically changing neighborhood
structures, adaptive evaluation functions etc.

Classification by Hoos & Stitzle (2005):

Iterative improvement (II), Randomized iterative improvement (RIl),
Variable neighborhood descent (VND), Variable depth search (VDS),
Simulated annealing (SA), Tabu search (TS), Dynamic local search
(DLS), lterated local search (ILS), Greedy randomized 'adaptive’
search (GRASP), Adaptive iterated construction scheme (AICS), Ant
colony optimization (ACO), and Memetic algorithm (MA).

See http://www.sls-book.net/Sample-Pages/glossary.pdf or
also http://cs.gmu.edu/~sean/book/metaheuristics/.

School of Science Spring 2015
92/333

A Aalto University T-79.4101 Discrete Models and Search

http://www.sls-book.net/Sample-Pages/glossary.pdf
http://cs.gmu.edu/~sean/book/metaheuristics/

Lecture 4: Constraint satisfaction problems

Outline

» Constraint satisfaction problems (CSP’s) and constrained

optimization problems (COP’s), concepts and models

» Example encodings of several computational problems

» Alternative encodings and potential benefits they offer
Goals for today: Learn to recognize and formulate CSP’s and COP’s;
when given a high-level description of a computational problem
(search or optimization), learn to

a) encode the problem into a CSP/COP

b) evaluate the benefit when choosing one of different encodings of
the same problem

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
93/333

Constraint satisfaction: motivation

» When solving a search problem the most efficient solution
methods are typically based on special purpose algorithms.

» In previous lectures important approaches to developing such
algorithms have been discussed.

» However, developing a special purpose algorithm for a given
problem requires typically a substantial amount of expertise and
considerable resources.

» Another approach is to exploit an efficient algorithm already
developed for some problem through reductions (introduced in
Lecture 2).

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
94/333

Recall: exploiting reductions

» Given an (efficient) algorithm for a problem A we can solve a
problem B by developing a (efficient) reduction from B to A and
translating the solution of A back to a solution to B.

Algorithm for B:

inout X — Red. R:(x> Algorithm N Red. s:(ngnswer
Pu R for A S

—

» Constraint satisfaction problems (CSP’s) offer attractive target
problems for reductions (CSP=Problem A).

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
95/333

Reduction to CSP’s

1.

Encode the computational problem as a CSP (i.e., compute the
reduction R).

Solve the CSP via a complete or local search methods (see next
lecture).

Extract from a solution to the CSP encoding a solution to the
original problem (i.e., compute the reduction S).

Constraint programming offers tools to build efficient algorithms
for solving CSP’s for a wide range of constraints.

Constraint programming differs from, e.g., imperative
programming, in the property that one does not specify
instructions to be executed but properties of solutions to be found.

There are efficient software packages that can be directly used
for solving interesting classes of constraints.

A

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015

96/333

Constraint Programming: toy example

» Consider the following problem of finding a course schedule for
the ICS department.

» Assume there are three courses all taught in spring: DMS, Logic
and Combinatorics.

» Say, at each time there are two lecture rooms available: lecture
halls T; and T5.

» Each day, there are time slots 10 — 12 and 14 — 16 available.

» Assume (unrealistically), every course has a lecture at every day
of the week.

» Find time slots and rooms for each course on a given day!

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
97/333

Constraint Programming: toy example—cont’d

>

>

For each course, its time and assigned room are variables.

With each variable, we associate a set of potential values, which
is its domain.

Here, each room-choice variable has the domain {71, T2} and the
domain for the time-choice variables is {(10 —12),(14 — 16)}.

Domains are typically finite and (usually) discrete.
Constraints limit the possible assignments of values.

Here there is only one type of constraint: if two courses have
been assigned the same time, they must be lectured in different
rooms.

Question: how to represent constraints?

A

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

98/333

Constraint Programming: toy example—cont’d

» Answer: constraints are formalized as subsets of the Cartesian
product (product set) of the domains of the affected variables.

» Consider the constraint
C := if DMS and Combinatorics have been assigned the same
time, they must be lectured in different rooms.

which can be formalized as the set of tuples of values that satisfy
the constraint:

C:={((10—12),(10 - 12), T4, T), ((10 — 12),(10 — 12), T, T+),
((14—16),(14 —16), T4, T2), (14 — 16),(14 — 16), To, T1),
((10—12),(14—16), T4, T1),((14 — 16),(10 = 12), T4, T3),

(10 —12),(14 — 16), To, T2), (14 — 16),(10 — 12), To, T2)}
(10 —12),(14 — 16), T4, T2), (14 — 16),(10 — 12), T4, T»),
((10—12) (14 —16), Ta, T1),((14—16),(10—12) To,T)}
C{(10-12),(14—16)} x {(10—12),(14 - 16)} x {Ty, Ta} x {Ty, To}.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
99/333

Constraints: formal model

» Consider some variables xi,..., X, and their domains D, ... Dy.
» Formally, a constraint C on variables xi,..., Xk is a subset of
Dy X -+ X Dy.

» The number of affected variables k is the arity of the constraint.
» If k =1, the constraint is called unary and if k = 2, binary.

Example. Consider variables xy, xo both having the domain
D; = {0,1,2}. Then the set

{(0,1),(0,2),(1,0),(1,2),(2,0),(2,1)} C Dy x D>

can be taken as a binary constraint on xy, x» and then we denote it by
NotEq(x1, x2).

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
1001333

Constraints: formal model—cont’d

» From now on we use a shorthand notation for constraints by
giving directly the condition on the variables when it is clear how
to interpret the condition on the domain elements.

» Hence, cond(xq,...,Xx) on variables xi,...,xx with domains
Dy, ... Dy denotes the constraint

{(dh,...,dk)|d;eDjfori=1,...,k and cond(d,...,d) holds }.

» Note: If there are in total n variables, then each constraint
cond(xq,...,Xx) is defined with respect to an ordered subset of
the set of all variables {x1, X2, ..., X, }.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
101/333

Constraints—cont’d
Example

The condition x; # Xz on variables x;, xo with domains Dy, D> denotes
the constraint

{(dy,db) | dy € Dy, 0o € Do, 0y # db}.

So if 1, X2 both have the domain {0, 1,2}, then x; # x, denotes the
constraint NotEq(xy, X2) above.

Example
The condition x; < 2 —Hz on x, X both having the domain {0,1,2}
denotes the constraint

a>

((dy,cb) | dhi,cb € {0,1,2),d < E+%}:{(o,o),(o,1),(o,2),(1,2)}.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
102/333

Constraint Satisfaction Problems (CSP’s)

» Given variables xy,...,Xx, and domains Dy,... Dy,
a constraint satisfaction problem (CSP):

(C;x1 € Dy,...,x, € Dp)

where C is a set of constraints each defined on an ordered
subset of {xy,..., X}
Example
<{NOtEQ(X1 ,Xg), NOtECI(X1 ,X3), NOtEQ(Xg, X3)},
x1 € {0,1,2},x> € {0,1,2},x3 € {0,1,2})

is a CSP. We often use shorthands for the constrains and write

({x1 # X2, X1 # X3,X2 # X3}, x1 € {0,1,2}, % € {0,1,2},x3 € {0,1,2})

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
1031333

CSP’s: Value assignment

» ForaCSP (C;x; € Dy,...,xn € Dp) a potential solution is given
by a value assignment which is a mapping T from {x1,...,x,} to
Dy U---U Dy such that for each variable x;, T(x;) € D;.

» A value assignment T satisfies a constraint C on variables
Xiyy ooy Xiy if (T(X,'1),.. . T(X,'m)) e C.

Example

A value assignment T = {x; — 1,x2 — 2,..., X, — n} satisfies the
constraint NotEq on x4, Xo because

(T(x1),T(x2)) = (1,2) € NotEq(x1,x2)

but 7' ={xy —1,x2—1,...,x, — 1} does not as

(T'(x1), T'(x2)) = (1,1) & NotEq(x1,x2).

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
104/333

CSP’s: Solution

» A solution to a CSP (C,x; € Dy,...,X, € Dy) is a value
assignment that satisfies every constraint C € C.

Example

Consider a CSP
<{X1 #X27X1 #X37X2 #X3}7X1 S {07172}7)(2 S {07172}7)(3 S {07172}>

The assignment {x; — 0, X — 1,x3 — 2} is a solution to the CSP as
it satisfies all the constraints but {x; — 0, X + 1,x3 — 1} is not as it
does not satisfy the constraint x» # x3 (NotEq(xz, X3)).

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
105333

Example: Graph k-Coloring Problem

Given a graph G, the coloring problem can be encoded as a CSP:

» For each node v; in the graph introduce a variable V; with the
domain {1,...,k} where k is the number of available colors.

» For each edge (v;, ;) in the graph introduce a constraint V; # V.

» This is a reduction of the k-coloring problem to a CSP because
the solutions to the CSP correspond exactly to the solutions of
the coloring problem:

a value assignment {V; — t,..., V, — t,} satisfying all the
constraints gives a valid coloring of the graph where node v; is
colored with color f;.

A

T-79.4101 Discrete Models and Search
Spring 2015
106/333

Aalto University
School of Science

Example: SEND + MORE = MONEY

» Replace each letter by a different digit so that

SEND 9567
+ MORE + 1085
MONEY 10652
is a correct sum. The unigque solution.
Variables: S, E, N, D, M, O, Rand Y.
Domains: {1,...,9} for S, M and {0,...,9} forE, N, D, O, R, Y.
Constraints: 1000-S+100-E+10-N+D

+1000- M+100-O+10-R+E
=10000-M+1000-O+100-N+10-E+ Y
and x # y for every variable pair x,y in {S, E, N, D, M, O, R, Y}.
It is easy to check that the value assignment
{§—9,E—~5N—6,D—7,M—1,0—0,R—8,Y+— 2}
satisfies the constraints, i.e., is a solution to the problem.

A

Aalto University T-79.4101 Discrete Models and Search
School of Science

Spring 2015
107/333

N Queens

Problem: Place n queens on a n x n chess board so that they do not
attack each other.

» Variables: xy,...,x, (X; gives the row-position of the queen on the
i-th column)

» Domains: {1,...,n} foreach x;,i=1,...,n

» Constraints: fori€ {1,...,n—1}andje {i+1,...,n}:

n 71 SW-NE: x;i —xj £ i —
//
/|
7/
7
A //
N 7/
. L
N 7
7
—----’\----““‘ TOW: X 7 X;
4 N
7
v \\
1L N NW-SE: x; —xj # j—i
Xq Xj Xj Xn

Aalto University T-79.4101 Discrete Models and Search
A School of Science

Spring 2015
108/333

Constrained Optimization Problems

>

Given: a CSP P := (C;x; € Dy,...,x, € D,) and a function obj
which maps solutions of the CSP to real numbers.

(P, obj) is a constrained optimization problem (COP) where the
task is to find a solution T to P for which the value obj(T) is
optimal.

Both versions, minimization and maximization, of the objective
function are possible, of course.

Note1: in practice, instead of considering obj to be a function of
T, one usually formulates it as a function of the product set of the
domains, i.e., 0bj : Dy X Do X ... Dy — R,

Note2: in some sense the CSP is the search-problem version of
the COP, which asks for the best feasible solution.

Aalto University T-79.4101 Discrete Models and Search
A School of Science

Spring 2015
109/333

Constrained Optimization Problems—cont’d

» Example. KNAPSACK: a knapsack of a fixed volume and n

objects, each with a volume and a value. Find a collection of
these objects with maximum total value that fits in the knapsack.

Representation as a COP:

Given: knapsack volume v and n objects with volumes ay, ..., a,
and values by,..., b,.

Variables: xy,..., X, (Idea: x; has value 1 iff item i is included
Domains: {0,1} in the collection of items.)

Constraint: Y7 ; a;- x; < v,
Objective function: ¥/ b; - X;.

A

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015
110333

More examples

Examples of problems encountered in practice:

» Scheduling / timetabling problems: production panning, plant
refueling, course timetabling, vehicle routing, car sequencing, etc.

» Rostering: airline crews, hospital staff, etc.

» Network optimization: routing, capacity provisioning, transmission
scheduling, etc.

Applications typically fall into the domain of operations research.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
111/333

Solving CSP’s

>

Different encodings of a problem as a CSP utilizing different sets
of constraints can have substantial different computational
properties.

However, it is not obvious which encodings lead to the best
computational performance.

In the course we consider more carefully two classes of
constraints: Boolean constraints (Lecture 6) and linear
constraints (Lecture 9).

Linear constraints are an example of a class of constraints which
has efficient special purpose algorithms.

For others general methods consisting of constraint propagation
algorithms and search methods are available (Lecture 5).

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015

1121333

General remarks on CSP encoding
Not all models are equal! Sometimes, the following guidelines are
worth considering.
» Try to avoid high-arity constraints, unless explicitly supported by
an available constraint solver.

» Constraints involving a large number of variables may cause
trouble for solvers that rely on constraint propagation techniques,
which frequently evaluate the effect of changes of variable values
on constraint satisfiability depending on the remaining variables.

» One solution: replace a single constraint involving many variables
by a few with only a small number of variables.

» Recall SEND + MORE = MONEY example:

SEND 9567
+ MORE + 1085
MONEY 10652

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
113/333

Alternative formulation
» Old constraint:

1000-S+100-£410-N+4D
+1000-M+100-O+10-R+E
=10000-M+1000-O+100-N+410-E+4 Y

» New variables Cy, Cp, C3, C4, Cs with domains {0,1} and
replacement constraints
D+E=Y+C;-10
Ci+N+R=E+C5-10
Co+E4+O=N+C5-10
C3+S+M=0+C4-10
Cy =M
» Advantage? Maximum arity 5 (incl. 2 binary variables) compared
to 8 in the original (translates to 4 - 10% vs 108).

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
1141333

General remarks on CSP encoding—cont’d

>

Prefer a few variables with large domains over many variables
with small domains.

Recall N Queens: n variables x,..., X,, each with domain
{1,...,n}, corresponding to the row-position of the queen on the
i-th column.

Consider replacing these with Boolean variables
1, if and only if there is a queen in column i, row j,
Xj =
! 0, otherwise.
The search space increased from n” to 2

Additionally n new constraints queen i is assigned to one row
exactly, which were satisfied implicitly earlier!

Aalto University T-79.4101 Discrete Models and Search
A School of Science

Spring 2015
115/333

General remarks on CSP encoding—cont’d

v

Try to avoid symmetry in solutions.

v

Example: if two tasks in a scheduling problem can be
interchanged with no effects on constraints and cost, introduce
artificial pairwise order constraints.

» Intuitive explanation: symmetries may fool complete methods into
performing unnecessary computation by exploring branches of
the search-tree that may not lead to better solutions than
currently known ones.

» For more and an introduction to CSP’s in general see the review
by Brailsford, Potts and Smith '99 (see Noppa, additional-reading
page, voluntary but encouraged).

School of Science Spring 2015
116/333

A Aalto University T-79.4101 Discrete Models and Search

CSP’s in practice

» Interesting invited talk by Laurent Perron (Google) from 2011:
http://www.dmi.unipg.it/cp2011/invited.html;
some quotes about solving COP’s/CSP’s in practice:

1. Getting the right problem with the right people is hard.
Getting clean data is hard.

Solving the problem is easy.

A 0D

Reporting the result/explaining the implications is hard.

» Time spentis 50/25/5/20 %.

A

Aalto University T-79.4101 Discrete Models and Search

School of Science Spring 2015
117/333

http://www.dmi.unipg.it/cp2011/invited.html

Lecture 5: Complete and local search methods for CSP’s

Outline
» Algorithms for solving constraint satisfaction and constrained
optimization problems
» Complete algorithms and local search methods
» Constraint propagation: concept and methods
Goal for today: When faced with a given class of constraint
satisfaction/optimization problems, learn to devise a complete/local

search method for finding solutions by employing some of the
techniques discussed today.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
118/333

Constraint satisfaction: Algorithms

>

For some classes of constraints there are efficient special
purpose algorithms (domain specific methods/constraint solvers).

But now we consider general methods consisting of constraint
propagation techniques and search methods.

Note: to simplify presentation we use CSP’s for the discussion,
although the algorithms naturally extend to COP'’s.

Recall: Given variables xi,...,Xx, and domains Dy, ... D,,
a constraint satisfaction problem (CSP) is formulated as:

(C;x1 € Dy,...,x, € Dp)

where C is a set of constraints each defined on an ordered
subset of {xy,...,xp}.

Example:
<{X1 #X27X1 #X37X2 #X3}7X1 S {07172}7)(2 S {07172}7)(3 S {07172}>

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015
119/333

Solve

» The first method (here called Solve) is very similar to complete
search methods seen in Lecture 3, such as backtrack search.

» The procedure Solve takes as input a constraint satisfaction
problem (CSP) and transforms it until it is solved.

» It employs a number of subprocedures: Happy, Preprocess,
Constraint Propagation, Atomic, Split, Proceed by Cases;
(Principles of Constraint Programming, Krzysztop R. Apt, 1999).

Happy, Atomic

check of termination condition

Preprocess, Constraint
Propagation

transformation of CSP to another one that is
equivalent to it

Split

division of CSP into two or more CSP’s whose
union is equivalent to the CSP

Proceed by Cases

specifies what search techniques are used to
process the CSP’s generated by Split

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015
120/333

Constraint Programming: Basic Framework

procedure Solve(CSP/COP P):
P < Preprocess(P);
P + Constraint_Propagation(P);
if not Happy(P) then

if Atomic(P) then
return; /* impossible to split */
else

(P1,Pa,...) < Split(P);
Proceed by Cases(Pi,P»,...); /* may lead to recursive calls */
end
end

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

121/333

Equivalence of CSP’s

>

>

To understand Solve we need the notion of equivalence of CSP’s.

Informally, CSP’s Py and P, are equivalent if they have the same
set of solutions (satisfying assignments of values to variables).

However, transformations can add new variables to a CSP and
then equivalence is understood w.r.t. the original variables.

Recall: For a CSP (C; xy € Dy,...,x, € Dp) a value assignment
(a.k.a. potential solution) is a mapping T from {x1,...,X,} to
Dy U---U Dy such that for each variable x;, T(x;) € D;.

We say that two value assignments T and T’ agree on a set of
variables X iff T(x) = T'(x) for all x € X.

Then define equivalence w.r.t. variables in set X based on
solutions to the CSP’s that agree on X as follows.

A

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

1221333

Equivalence of CSP’s—cont’d

We say that two CSP’s Py and P, are equivalent w.r.t. a set of
variables X iff

» for every solution T; of Py there exists a solution T, of P, such
that 77 and T, agree on variables X and

» for every solution T, of P, there exists a solution T; of Py such
that T, and Ty agree on variables X.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
1231333

Equivalence of CSP’s — Example

Consider the following two CSP’s that are equivalent on X = {x1, X2 }:
Py = <{X1 < Xg};X1 S {1,3},X2 S {1,3}>
P> = ({X1 < X3,X3 < Xg};X1 € {1,3},X2 € {1,3},X3 S {1,2,3}>

» for the unique solution Ty = {x; — 1,x > 3} of P; there is a
corresponding solution Tp1 = {x; +— 1,x2 — 3,x3 — 3} of P>
such that Ty and T,1 agree on variables X and ...

» for the solutions T4 and Too = {X1 — 1, X — 3,Xx3 — 2} of Po,
T is a corresponding solution of Py agreeing on X.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
124/333

Equivalence of CSP’s cont'd

We extend the notion of equivalence to several CSP’s as follows:
A union of CSP’s P4,...,P, is equivalent to a CSP Py w.r.t. X iff

» for every solution T, of Py there exists a solution T; of P; for some
1 < i< msuchthat Ty and T; agree on variables X and

» for each 1 < i < mand for every solution T; of P; there exists a
solution Ty of Py such that T; and T, agree on variables X.
For instance, CSP
Po=({x1 <xo};x € {1,...,10},x2 € {1,...,10})
is equivalent w.r.t. {xy,x2} to the union of the two CSP’s
Por = ({x1 <xo};x1 € {1,...,5},x2 € {1,...,10})
Pox = ({x1 < x2};x1 € {6,...,10},x2 € {1,...,10})

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
125/333

Solved and Failed CSP’s

For termination one needs to define when a CSP has been
solved and when it is failed.

Let C be a constraint on variables yi,.. ., yx with domains
Dy,...,Dg (CQ Dy x - -+ X Dy).

Cis solvedif C =Dy x --- x Dx and C # 0.

A CSP is solved if
a) all its constraints are solved and
b) none of the domains is empty.

A CSP is failed if
a) it contains the empty (false) constraint L or
b) one of its domains is empty.

A

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015
126/333

Happy

test applied to the current CSP to see whether the goal conditions set
for the original CSP have been achieved. Typical conditions include:
» a solution has been found,
» all solutions have been found,

» a solved form has been reached from which one can generate all
solutions,

» it is determined that no solution exists (the CSP is failed),
> an optimal solution w.r.t. some objective function has been found,
» all optimal solutions have been found.

Example Fora CSP ({x; + X2 = x3,x1 — X2 =0}, x; € D))
the solved form could be, for example, ({x1 = X2, X3 = 2x2}; x; € D;).

School of Science Spring 2015
127/333

A Aalto University T-79.4101 Discrete Models and Search

Transformations

» In the following we represent transformations of CSP’s by means
of proof rules.

» Arule
Po
Pi

transforms the CSP P, to the CSP P;.

» Arule
Py

Pi|---|P,
transforms the CSP Py to the set of CSP’s P4,...,P,.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
1281333

Preprocess

» The aim is to bring constraints to a desired syntactic form.

» Example: Constraints on reals.
Desired syntactic form: no inequalities in more than one variable

X+y=>35
X+y—z=52z>0

(Notice that a new variable is introduced.)

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015

129/333

Atomic

» This is a test applied to the current CSP to see whether the CSP
is available for splitting.

» Typically a CSP is considered atomic if the domains of the
variables are either singletons or empty.

» But a CSP can be viewed as atomic also if it is clear that search
‘under’ this CSP is not needed.
For example, this could be the case when the CSP is “solved” or
an optimal solution can be computed directly from the CSP.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
130/333

Split

After Constraint Propagation, Split is called when the test Happy
fails but the CSP is not yet Atomic.

A call to Split replaces the current CSP Py by CSP’s P4, ..., P,
such that the union of Py,...,P, is equivalent to Py, i.e., the rule

_Po
Pi|--|P,

is applied.
A split can be implemented by splitting domains or constraints.

For efficiency an important issue is the splitting heuristics, i.e.,
which split to apply and in which order to consider the resulting
CSPrs.

School of Science Spring 2015

A Aalto University T-79.4101 Discrete Models and Search

131/333

Split — a domain

xeD
xe{a} | xeD\{a}

» D finite (Enumeration) :

xef{ay,...,ax}
xe{a}|...|xe{a}

» D finite (Labeling) :

x € [a,b]
Xe a0 | x e (0.

» D interval of reals (Bisection) :

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
132333

Split — a constraint

» Disjunctive constraints like
Start[task1] + Duration[task1] < Start[task2] V
Start[task2] + Duration[task2] < Start[task1]
can be split using the rule: M
ci1]|c2
» Constraints in "compound" form:
x+yl=a
x+y=al|lx+y=-a

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
1331333

Heuristics

Which

» variable to choose,
» value to choose,

» constraint to split.

Examples:

(i) Select a variable that appears in the largest number of constraints
(most constrained variable).

(if) For a domain being an integer interval: select the middle value.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
134/333

Proceed by Cases

» Various search techniques can be applied.

v

A typical solution is to use
» backtracking or
» branch and bound

v

and combine these with
» efficient constraint propagation and
» intelligent backtracking (e.g., conflict directed backjumping)

v

As the search trees are often very big, you tend to avoid
techniques where much more than the current branch of the
search tree needs to be stored.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
135/333

Constraint Propagation

» Intuition: Replace a CSP by an equivalent one that is "simpler".

» Basic idea: exploit dependence of variables and constraints to
reduce ("shrink") domains of some variables and/or constraints

» By constraint propagation we mean applying repeatedly reduction
steps.

» Efficient constraint propagation enabling substantial reductions is
a key issue for overall performance.

» Note: the following examples use integer interval notation:
[5..10] = {5,6,7,8,9,10}

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
1361333

Constraint Propagation—cont’d
Domain Reduction

» Linear inequalities on integers:
(x <y;x €[l..hl,y €ly..h])
(x<yixel-hly€ll,.h])
where H, = min(hy, h, —1),1, = max(ly, l,+1)

Example:
(x < y;x € [50..200],y € [0..100])
(x < y;x €[50..99],y € [51..100])

Constraint Reduction

Usually by introducing new constraints.

(x<y,y<z;x€Dy,y€Dy,zeDy)

(x<y,y<zx<z;xeDyyeD,zeD)
This rule introduces new constraint, x < z.

» Transitivity of <:

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

137/333

Repeated Domain Reduction: Example

v

Consider (x < y,y < z;x € [50..200],y € [0..100], z € [0..100])

v

Apply the rule from previous slide to x < y:
(x <y,y <z;x€[50..99],y € [51..100], z € [0..100]).

v

Apply it now to y < z:
(x <y,y <z;x€[50..99],y € [51..99],z € [52..100])

v

Apply it again to x < y:
(x <y,y <zx€[50..98],y € [51..99],z € [52..100])

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
1381333

Constraint Propagation Algorithms

» The efficient scheduling of atomic reduction steps quickly
becomes nontrivial.

» Constraint propagation algorithms perform reduction steps with
the goal of achieving local consistency; depending on the class of
constraints there are different notions of local consistency.

» The projection rule is a widely applicable and efficient general
reduction rule.

» Note: to simplify implementation the rule is formulated as an
update rule for the domains and keeps constraints unchanged.

Projection rule:
Take a constraint C on variables x1, ..., xx. From these
variables, choose a variable x; with domain D;. Remove
from D; each value d for which there is no
(diy...,d;,...,dk) € Dy x -+ X Dy such that
(di,....d.....dx) € Candd; =d.

A Aalto University T-79.4101 Discrete Models and Search

School of Science Spring 2015
139/333

CSP: (Cy(x,y,2),Ca(x,2);x € {1,2,3},y € {1,2,3},z € {1,2,3})
where Cy = {(1,1,2),(1,2,1),(2,3,3)}, Co = {(1,1),(2,2),(3,3)}.

» Applying Projection rule to Ci(x,y,z) and variables x, y, z yields
<C1 (X,y,Z),Cg(X,Z);X S {1;2}7}/ € {17273}72 € {17273}>

v

Applying Projection rule to Cx(x, z) yields
<C1 (X,y,Z),Cg(X,Z);X € {1;2}7}/ € {17273}72 € {172}>

v

Applying Projection rule to Cy(x, y, z) yields
(Ci(x,y,2),Ca(x,2);x € {1}y € {1,2},z € {1,2})

v

Applying Projection rule to Cy(x, z) yields
(Ci(x.y,2),Ca(x,2)ix e {1}y €{1,2},z € {1})

v

Applying Projection rule to Cy(x, y, z) yields
(Ci(x.y,2),Ca(x,2);x {1}y € {2}, z € {1})
(This CSP is hyper-arc consistent and happens to be solved).

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spllmjnzuli
140/333

Hyper-Arc Consistency
If the projection rule is the only atomic reduction step and it is applied
as long as new reductions can be made, then the constraint
propagation algorithm achieves a local consistency notion called
hyper-arc consistency:

A CSP is hyper-arc consistent if for every constraint C on
variables xi, ... x, and every x; with domain D;, for each
d € D;, there is some (dy,...,d;,...,dx) € Dy X -+ X Dy
such that (di,...,d;,...,dk) € Cand d; =d.

More formally: A CSP is hyper-arc consistent if
VC(x1,...,x) € C(Vx,- € {x1,...,xk}(d cD;—

3(hs- Gy) € Clxt, - i) ()(D1 X - ka)suchthatd,-:d))

Note: after one application of the projection rule the CSP satisfies the
condition for one (constraint, variable in that constraint) pair.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
141/333

Example

Consider the Solve procedure and a CSP
(C;xy €{1,2,3},x € {1,2,3}})
given as its input where
C={x1#x2,X1 > X2}

Below the behaviour of Solve is given when (i) the goal is to find one
solution (Happy), (ii) no Preprocessing is done, (iii) Constraint
Propagation is based on the Projection rule, (iv) Splitting is based on
enumeration and (v) search (Proceed by Cases) on depth first
backtracking search.

A

Aalto University T-79.4101 Discrete Models and Search

School of Science

Spring 2015
142/333

Example—cont’d

(Here: € = {x1 # X2,X1 > Xa2})

(Cix1 € {1,2,3},x2 € {1,2,3})
Constraint Propagation
(does not give any simplifications)
Split by Enumeration
) (

<C;X1 6{1}7)(26{17273} C;X‘] 6{2,3},X2€{1,2,3}>

Constraint Propagation Constraint Propagation
Cxre{1t,xee{}) (does not give any simplifications)
Failed Split by Enymeration

(C;x1 € {2},x2 €{1,2,3}) (C;x1 € {3}, %2 €{1,2,3})
Constraint Propagation
(Cix1 €{2},x2 € {1})
Solved

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
143/333

Global Constraints

» Constraint programming systems often offer constraints with
special purpose constraint propagation (filtering) algorithms.
Such a constraint can typically be seen as an encapsulation of a
set of simpler constraints and is called a global constraint.

» A global constraint is an expressive and concise condition
involving a non-fixed number of variables. (see Global Constraint
Catalog)

» A representative example is the alldiff constraint:
alldiff(x1,...,x,) = {(di,...,dn) | o # dj,for i # j}
Example. A value assignment {x; — a, x> — b, x3 — c} satisfies
alldiff(xy, x2, X3) but {x; — a, xo — b, X3 — a} does not.

» alldiff(xq,...,x,) can be seen as an encapsulation of a set of
binary constraints x; # x;, 1 < i <j<n.

School of Science Spring 2015
144/333

A Aalto University T-79.4101 Discrete Models and Search

Global Constraints: alldiff

Global constraints enable compact encodings of problems.
Recall the N Queens problem:

Example. Place n queens on a n x nchess board so that they do not
attack each other.

» Variables: xy,...,x, (X; gives the row-position of the queen on the
i-th column)

» Domains: {1,...,n}

» Constraints: forie {1,...,n—1}andje {i+1....,n}:
(i) alldiff(xq, ..., xn) (rows)
(i) x; — x; # i — j (SW-NE diagonals)
(iii) x; — x; # j — i (NW-SE diagonals)

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
145333

Global Constraints: Propagation

>

>

In addition to compactness global constraints often provide more
powerful propagation than the same condition expressed as the
set of corresponding simpler constraints.

Consider variables xq, xo, X3 with domains

Dy ={a,b,c},D, = {a,b},D; = {a,b}.

Now alldiff(xy, X2, x3) is not hyper-arc consistent and the
projection rule removes values a, b from the domain of x;.

However, the corresponding set of constraints
X1 # Xo, X1 7 X3,Xo # X3 is hyper-arc consistent and the
projection rule is not able to remove any values.

There is a wide range of such global constraints (e.g., see the
Global Constraint Catalog
http://www.emn.fr/x-info/sdemasse/gccat/).

For some special-purpose algorithms exist (e.g., for alldiff).

A

Aalto University

School of Science

T79.4101 Discrete Models and Search

Spring 2015
146/333

http://www.emn.fr/x-info/sdemasse/gccat/

Local Search for CSP/COP

Many of the methods of Lecture 3 can be adapted to CSP’s and
COP’s. As a different example we consider Min Conflict Heuristic
(MCH) algorithm (Minton et al, 1990). Given a CSP instance C:

» Initialize each variable by selecting a value uniformly at random
from its domain.

» In each local step select a variable x; uniformly at random from
the conflict set, which is the set of variables appearing in a
constraint that is unsatisfied under the current assignment.

> A new value v for x; is selected from the domain of x; such that by
assigning v to x; the number of conflicting constraints is
minimized.

» [f there is more than one new value with that property, one of the
minimizing values is chosen uniformly at random.

School of Science Spring 2015
147/333

A Aalto University T-79.4101 Discrete Models and Search

Example
Consider a run of MCH on a CSP
<{X1 S X2, X2 S X3,X3 S X1}7X1 S {17273}7)(2 S {17273}7)(3 S {17273}>

v

First a value is selected for each variable uniformly at random

from its domain, say {x; — 1,x2 — 2, x3 — 3}.

» For this assignment, the conflict set is {x1, x5} from which, say, x;
is randomly selected.

» Each possible assignment x; — 1/x; — 2/x; — 3 leaves one
conflict and, hence, one of them is randomly selected, say
Xy 2.

» For the resulting assignment {x; — 2, x> — 2, x3 — 3}, the
conflict set is {xy, X3}, from which x3 is randomly selected.

» Now assignments x3 — 1/x3 — 3 leave one conflict but x5 — 2
leaves none.

» Hence, x3 — 2 is selected leading to a solution

{X1 — 2,X2 — 2,X3 — 2}

School of Science Splln(erD;i
148/333

A Aalto University T-79.4101 Discrete Models and Search

MCH—cont'd

Sometimes MCH appears to be too greedy and gets stuck quickly.
Ways to mitigate this problem (see, e.g., Wallace and Freuder, 1995):

» A noise parameter p is introduced.

» Then in each local step: with probability p a new value for the
variable from the conflict set is chosen randomly and with
probability 1 — p the normal min conflict heuristics is followed.

MCH can also be extended with a tabu search mechanism (Steinmann
et al. 1997):

» After each search step where the value of a variable x; has
changed from v to v/, the assignment x; — v is declared tabu for
the next tt steps.

» While x; — v is tabu, value v is excluded from the selection of
values for x; except if assigning v to x; leads to an improvement in
the evaluation function over the current assignment (aspiration
criterion).

A

Aalto University T-79.4101 Discrete Models and Search

School of Science Spr

ing 2015

149/333

CSP: Tabu Search—cont’d

» A similar algorithm modifies MCH to choose over all non-tabu
(variable, value) pairs the best move.

» TS-GH algorithm (Galinier and Hao, 1997):

» In each local step: consider all non-tabu variable-value
assignments x — v, where x appears in a currently unsatisfied
constraint and v is in the domain of x.

» Choose the assignment that leads to the maximal decrease in the
number of violated constraints.

» If there are multiple such assignments, one of them is chosen
uniformly at random.

» After changing the assignment of x from v to v/, the assignment
Xx — v is declared tabu for tt steps (except when leading to an
improvement).

» For competitive performance, the evaluation function for x — v
moves should use caching and incremental update techniques.

School of Science Spring 2015
150/333

A Aalto University T-79.4101 Discrete Models and Search

Example
Consider a local step of TS-GH on a CSP
<{X1 < Xo,Xo < X3,X3 < X1},X1 S {1,2,3},X2 S {1,2,3},X3 S {1,2,3}>
where the current assignment is {x; — 2, x2 — 2, x3 — 3}

» Variables xq, x3 appear in an unsatisfiable constraint (x3 < x3).

» In MCH one of these would be randomly selected but in TS-GH
we consider all assignments

Xq l—>1/X1 i—>2/X1 i—>3/X3l—>1/X3l—>2/X3i—>3

and select an assignment leading to the maximal decrease in the
number of violated constraints.

» Assignment x3 — 2 leaves no violated constraints but other
assignments leave a violated constraint.

» Hence, x3 — 2 is selected leading to a solution
{X1 — 2,X2 — 2,X3 — 2}

School of Science Spring 2015
151/333

A Aalto University T-79.4101 Discrete Models and Search

Tools for CSP

» Constraint programming systems offer a rich set of supported
constraint types with efficient propagation algorithms and
primitives for implementing search.

» See, for example,
http://4c.ucc.ie/web/archive/solver. jsp and also
http://en.wikipedia.org/wiki/Constraint_programming
for solvers and libraries. Some examples:

CLAIRE, ECLiPse, GNU Prolog, Oz,
Sicstus Prolog, ILOG Solver,

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
152/333

http://4c.ucc.ie/web/archive/solver.jsp
http://en.wikipedia.org/wiki/Constraint_programming

Lecture 6: Boolean circuits

Outline

» Boolean circuits and circuit satisfiability
» Concepts and model, example circuits
» Tseitin’s translation for BC’s to CNF
Goals for today: Learn to represent propositional formulas as

Boolean circuits and how to convert between Boolean circuits and
propositional formulas in CNF.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
153/333

Review

» In the last two lectures we discussed CSP’s and COP’s as targets
for reductions of computational problems.

» Sometimes the expressivity of CSP’s is not necessary.

» Instead one can consider special cases (e.g., Boolean variables
and constraints, i.e., SAT) that enable special purpose algorithmic
solutions that typically perform well in practice.

» Despite the simplicity of SAT, it provides a highly efficient
approach for solving various hard computational problems

» This is due to very efficient algorithms and solvers available

> In addition more general constraints can be reduced to SAT

» In this lecture we discuss Boolean circuits as a viable method for
propositional satisfiability.

» In the next lecture we consider complete and local search
methods for finding solutions to SAT.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spungfuli
154/333

Recall: Representing Boolean Functions
» Consider an n-ary Boolean function

f: {true,false}"” — {true,false} with Boolean variables
X1y...,Xn-

» Denote its Boolean inverse (negation) as f := —f.

» Disjunctive Normal Form (DNF):

Example.
X % oS f= (_|X1 VAN Xg) V (X1 VAN _|X2)
0 00 1 » Conjunctive Normal Form (CNF):
0 111 0
1 0 1 0 f:_\ﬁf:_!((_\X1 /\“Xg)\/(X1 /\Xg))
1 110 1 = (X1 \/Xg)/\(_!X1 V_\Xg)

» Note: The f in this example is the xor (exclusive or) function and f

correspondingly the xnor (sometimes called equiv for equivalent)
function.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

155/333

Boolean Circuits

» CNF/DNF normal forms are often quite an unnatural way of
encoding problems and it is more convenient to use full
propositional logic.

» In many applications the encoding is of considerable size and
different parts of the encoding have a substantial amount of
common substructure.

» Boolean circuits offer an attractive formalism for representing the
required Boolean functions where compactness is enhanced by
sharing common substructure.

» Note: here we talk about the computational model of Boolean
circuits, which is different from (although related to) actual real-life
digital circuits that for example form the basis of today’s
computing technologies.

School of Science Spllmirzuli
156/333

A Aalto University T-79.4101 Discrete Models and Search

Boolean Circuits

» A Boolean circuit C'is a triple (V, E, s).

» Here, (V, E) is a finite directed acyclic graph whose nodes are
called gates. The nodes are divided into three categories.

» Note: for every node v € V, one calls the number of incoming
(outgoing) edges the indegree (outdegree) of v.

» Similarly, the set of nodes {u € V| (u,v) € E} is the set of
incoming neighbors; the set of outgoing neighbors is defined
analogously.

» Output gates can have any indegree but have outdegree 0.

» Intermediate gates can have any indegree and outdegree larger
than 0.

» Input gates can have any outdegree but have indegree 0.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
1571333

Boolean Circuits—cont’d

> The function s: V — {true, false }{treefaise}'" asigns a Boolean
function s(g) to each intermediate and output gate g of
appropriate arity corresponding to the indegree of the gate.

» Typical Boolean functions used in the gates are:
and/n (n-input AND function), or/n, not/1, equiv/2,xor/2, ...

For example:

X1 | X2 | equiv/2 | xor/2
0|0 1 0
0|1 0 1
110 0 1
111 1 0

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015

158/333

Example: Boolean Circuit

()
s(vi) = and/2

s(vo) =or/3
s(vs) = equiv/2

o(e))
v1 is the output gate of the circuit

V4, Vs, Vg are the input gates

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
1591333

Boolean Circuits—Semantics

» Consider first the graph (V, E). We can order its nodes (C's
gates) topologically, such that for every edge from v to v node u
appears before v in the ordering; this is always possible because
the graph (circuit) is acyclic.

» Note: in this sequence all gates appear after their input gates.

» For a given circuit C = (V, E,s) a truth assignment
T : X(C) — {true,false} assigns a truth value to each gate in
X(C), where X(C) is the set of input gates of C.

» The truth value T'(g) for gate v is then determined inductively:

T(9), if g € X(C), else
T'(9)=< f(T'(91),...,T'(9n)) where the g; are the incoming neighbors of g
and f = s(g) is the function associated with g.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015

160/333

Boolean Circuits—Semantics cont’d

Example

For the previous example circuit C, X(C) = {4, vs, v }, and a valid
topological ordering would be the sequence vy, vs, Vg, V3, Vo, V1.
Consider a truth assignment T(v4) = T(vs) = T(vs) = false and the
values it induces:

Ul » T(v3) = equiv(T(vs), T(vs)) =
i i equiv(false, false) = true,
% 8 C e T(w) = or(T(va), T(vs), T(v)) = false, and

Aalto University
School of Science Spring 2015
161/333

s » T(vy)=and(T(w), T(vs)) = false.

Circuit Satisfiability Problem

» An interesting computational (search) problem related to circuits
is the circuit satisfiability problem.

» A constrained Boolean circuitis a pair (C, o) with a circuit C and
constraints oL assigning truth values for some gates.

» Given a constrained Boolean circuit (C,) a truth assignment T
satisfies (C,) if it satisfies the constraints o, i.e., for each gate g
for which o gives a truth value, a(g) = T(g) holds.

» CIRCUIT SAT problem: Given a constrained Boolean circuit find
a truth assignment T that satisfies it.

Example. Consider the circuit with constraints L,l
o(v4) = false, o(vy) = true.

This circuit has a satisfying truth assignment { \
T(v4) = false, T(vs) = T(v) = true. @
If the constraints are ov;) = false, a(vq) = C{% %
true, the circuit is unsatisfiable. o '

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
162/333

Vg

Example—cont’d

» There are solvers available for solving constrained circuit
satisfiability problems.

» One example: bczchaff (Junttila and Niemel&, 2000) based on
the SAT solver zchaff (Zhang et al.).

Output:

2; ./bczchaff test.txt

V.2 := OR(v_4, v.5, vV_6); v.5v_6v_2v.3v_.l1~v_4

3 i= EQUIV(V.S, v_6); Satisfiable

1 := AND(v_2, v_3);

SIGN v_1, ~v_4;

> http://users.ics.aalto.fi/tjunttil/besat/ (bczchaff),
http://www.princeton.edu/~chaff/zchaff.html (zchaff).

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
163/333

http://users.ics.aalto.fi/tjunttil/bcsat/
http://www.princeton.edu/~chaff/zchaff.html

Boolean Circuits vs. Propositional Formulas

» For each propositional formula ¢, there is a corresponding
Boolean circuit Cy such that for any T appropriate for both,
T(9gy) = true iff T |= ¢ for an output gate gy of C; .

Idea: just introduce a new gate for each subexpression.

(aVb)A(—aVb)A
(aV—b)A(—aV —b)

» For each Boolean circuit C, there is a corresponding formula 0.

» Notice that Boolean circuits allow shared subexpressions but
formulas do not.
For instance, in the circuit above gates a, b, c,d.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
164/333

Circuits Compute Boolean Functions

» A Boolean circuit with output gate g and input gates
(corresponding to variables) xy, ..., X, computes an n-ary
Boolean function f if for any n-tuple of truth values t = (t,...,),
f(t) = T(g) where T(x;))=t;, i=1,...,n.

» Any n-ary Boolean function f can be computed by a Boolean
circuit involving variables xq,.. ., X,.

» Not every Boolean function can be computed using a concise
circuit.

Theorem

For any n > 2 there is an n-ary Boolean function f such that no
Boolean circuit with g—; or fewer gates can compute it.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
165/333

Boolean Circuits as Equation Systems

A Boolean circuit can be written as a system of equations.

v =and(e,f,g,h)

e=or(a,b)
f=or(b,c)
g=or(a,d)
h=or(c,d)
¢ =not(a)
d = not(b)

Aalto University
School of Science

T79.4101 Discrete Models and Search

Spring 2015
166/333

Boolean Modelling

» Propositional formulas/Boolean circuits offer a natural way of
modelling many interesting Boolean functions.

» Example. IF-THEN-ELSE ite(a, b, c) (if athen b else c.).
As a formula:
ite(a,b,c) = (aAb)V(—-aAc)
As a circuit:
ite = or(i1 s I2)
iy = and(a, b)
i = and(ay,c)
a; = not(a)

» Given gates a, b, ¢, ite(a, b, ¢) can be thought as a shorthand for
a subcircuit given above.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
167/333

Example

Binary adder. Given input bits a[i], b[i] and c[i]
compute output bits s[i] and c[i+ 1] (c: carry bit).

afi+1] b[i+1] afi] bl afi-1] b[i-1]
o c[i+1] cfi] <cl—l] o
s[i+1] s[i] s[i-1]
As a circuit:

As a formula:
sli] = ((ali] ® b[i]) & c[i])
cli+1] = (alilAb[i]) Vv (c[i] A (a[i] ® b[i]))

s[i] = xor(x, cli])
cli+1]=or(l,r)
I =and(a[i], b[i])
r =and(c[i],x)

x = xor(a[i], b[])

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

168/333

Encoding Problems Using Circuits
» Circuits can be used to encode problems in a structured way.

» Example. Given three bits a, b, ¢ find their values such that
if at least two of them are ones then either a or b is one else a or
c is one (note: first oris exclusive, second oris inclusive) .

» We use IF-THEN-ELSE and adder circuits to encode this as a
CIRCUIT SAT problem (replacing a[i] < a, b[i] < b, c[i] < ¢):
p=ite(c[i+1],x,p1)
p1 =or(a,c)

% full adder; sum output gate omitted
cli+1]=or(l,r)

| =and(a,b)
r =and(c, x)
x = xor(a,b)

» Now each satisfying truth assignment for the circuit with
constraint ay(p) = true gives a solution to the problem.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
169/333

Example: Reachability

Given a graph G = (V = {1,...,n}, E), construct a circuit R(G) such
that R(G) is satisfiable iff there is a (simple) path from 1 to nin G.

» Basic idea very similar to dynamic programming solution:
introduce Boolean variables for triples of nodes (/,/, k) that
indicate whether node k is larger or equal to any node on a path
from i to j (disregarding endpoints of the paths).

» The gates of R(G) are of the form
gix with 1 <i,j<nand0< k<n
hijix with 1 < i,j,k < n

> gik is true: there is a path in G from j to j where the largest
intermediate node is k or smaller.

> hjy is true: there is a path in G from j to j for which k is the
largest intermediate node.

School of Science

A Aalto University T-79.4101 Discrete Models and Search

Spring 2015
170/333

Example—cont’d

R(G) is the following circuit:

» For k =0, gj« is an input gate.

» Fork=1,2,....n:
hix = and(Gix(k—1)> Ikj(k—1))
Gik = or(gij(k—1), Nik)

> ginn is the output gate of R(G).

» Constraints o
For the output gate: al(g1nn) = true
For the input gates: a/(gjo) = true if i = j or (/,j) is an edge in G
else a(gjo) = false.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
171/333

Example—cont’d

» Because of the constraints o on input gates there is at most one
possible truth assignment T.

» |t can be shown by induction on k =0,1,...,nthat in this
assignment the truth values of the gates correspond to their given
intuitive readings.

» From this follows:
R(G) is satisfiable iff T(gy,n) = true in the truth assignment iff
there is a (simple) path from 1 to nin G without any intermediate
nodes bigger than n iff there is a path from 1 to nin G.

School of Science Spring 2015
172/333

A Aalto University T-79.4101 Discrete Models and Search

From Circuits to CNF

» Translating Boolean Circuits to an equivalent CNF formula can
lead to exponential blow-up in the size of the formula.

» Often exact equivalence is not necessary but auxiliary variables
can be used as long as at least satisfiability is preserved.

» Then a linear size CNF representation can be obtained, e.g.,
using the so-called Tseitin’s translation.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
173/333

From Circuits to CNF—cont’d

Given a Boolean circuit C the corresponding CNF formula is
obtained as follows.

For each gate of the circuit a new variable is introduced.

Clauses are formed by the gate equations (taken as an
equivalences) written in clausal form for each intermediate and
output gate.

For each constraint a(g) = t, the corresponding literal for g is
added.

This transformation preserves satisfiability and even truth
assignments in the following sense:

If Cis a Boolean circuit and X its Tseitin translation, then for
every truth assignment T of C satisfying ., there is a satisfying
truth assignment T’ of ¥ which agrees with T and vice versa.

A

Aalto University
School of Science

T79.4101 Discrete Models and Search

Spring 2015
174/333

Example—cont’d
Example 1.

» Assume we are given a simple circuit with input gates v, v4, vs,
intermediate gate v» and output gate v;.

» Further assume the circuit is unconstrained and contains the
following gates: v; = and(vz, vs) and v» = or(vs, v4)

» We obtain for the first gate the clauses
vi o (Avs)=(vy = (e Avs))A((va A vs) — vy)
=(wv V(v A)A(—vaVvsVvy)
= (_\V1 V Vg) A (_\V1 V V5) AN (_|V2 V -avsV V1).

» For the second gate we then obtain the clauses
o> (V) =(vo = (vaVw))A((vaV) =)
= (v Vs V) A((mvaA—vg) V in)
= (_\Vg VgV V4) A (_\V3 V Vg) AN (_|V4 vV Vg).

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
175/333

Example—cont’d
Example 2.

vy Consider the circuit with constraints

o(vy) = true, o(v4) = false.
Gate equations (taken as
Vo ° @ s equivalences) for non-input gates:
Vi &> (Vg VAN V3)
Vo < (V4V VsV Ve)
Uy Us Vs V3 < (V5 AN VG)

The resulting CNF for the translation:

(—|V1 V Vg)/\ (—|V1 V V3)/\ (V1 \/"Vg\/_'Vs)/\
(V2 \/—|V4) VAN (Vg\/—|V5)/\ (Vg\/_'Vs)/\ ("Vg\/ V4V vV Ve)/\
(va VsV g)A(vaV sV —vg) A(—va VsV —vg) A (Vs V —vs V vg)A
vi A —vy [for constraints]

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

176/333

Outlook

» There is plenty of literature on the topic of circuit complexity,
which is a subfield of computational complexity theory.

» Circuit complexity theory involves the study and classification of
Boolean functions according to their computability with Boolean
circuits of fixed size or depth (length of longest path from input to
output).

> Next week we discuss local and complete methods for solving
satisfiability problems.

» Some of these can be considered special cases of algorithms for
constraint satisfaction problems.

School of Science Spring 2015
177/333

A Aalto University T-79.4101 Discrete Models and Search

Lecture 7: Complete and local search methods for SAT

Outline

» Algorithms for solving Boolean satisfiability problems
» Complete algorithms and local search methods
Goal for today: Understand how constraint propagation techniques

give rise to efficient complete methods for Boolean satisfiability. Learn
how to apply local search methods to SAT.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
1781333

SAT

» Recall: SAT (Boolean Satisfiability Problem)
INSTANCE: a propositional formula in conjunctive normal form
QUESTION:
(D) Is the formula satisfiable?
(S) Find a satisfiable truth assignment for the formula.
(O) Find a truth assignment satisfying the most clauses in the
formula.

» SAT(O) also called MAX-SAT.

» In this lecture we first discuss complete methods for SAT(S), then
outline some local search algorithms.

» Note: an instance of SAT is essentially a CSP with Boolean
variables and clauses as constraints.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

1791333

Recall: equivalence of CSP’s

Recall: CSPs Py and P, are equivalent w.r.t. a set of variables X iff

» for every solution T; of P; there is a solution T, of P> such that T;
and T, agree on variables X and

» for every solution T, of P, there is a solution Ty of Py such that T,
and Ty agree on variables X.

Complete search methods make use of Boolean constraint
propagation techniques that transform a given SAT instance (set of
clauses) into (a simpler) one that is equivalent to the original.

School of Science Spring 2015
180/333

A Aalto University T-79.4101 Discrete Models and Search

Recall: the basic framework for solving CSP’s

procedure Solve(CSP/COP P):
P < Preprocess(P);
P <+ Constraint_Propagation(P);
if not Happy(P) then

if Atomic(P) then
return; /* impossible to split */
else

(P1,Pa,...) < Split(P);
Proceed by Cases(P;,P.,...); /*may lead to recursive calls */
end
end

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

181/333

Solving Boolean Constraints

Applying the general method to SAT:

» Preprocess: remove satisfied clauses, remove variables that only

appear as the same literal in all clauses (together with their
clauses).

Example.

Cy = {_'X1 \% _'Xg}, Co = {_|X1 VXV —|X3}, Cs = {—|X2 \/X3}
gets processed as follows: {Cy,C,,C3} — {C3} — 0.

Happy: a satisfying truth assignment has been found (SAT) or it
was determined that no truth assignment can satisfy more
clauses than a previously found one (MAX-SAT).

Atomic: No more undecided variables to choose from, or empty
clause was found.

A

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015
182/333

Propagation for Boolean Constraints

A basic reduction step is the so-called unit clause rule:

suU{l}
g

where S is a set of clauses, / is a unit clause (a literal) and S’ is
obtained from S by removing
(i) every clause that contains / and

(i) the complement of / from every remaining clause.

(The complement of a literal: v=—-vand =v=v.)

Intuition: a satisfying assignment must satisfy all clauses, hence also
the unit clause, which can only be satisfied by / evaluating to true.
Example.

{=vi,vi Vavo, vo Vg, =V V ve, v Vgt~ { =, vo V v, v)

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
183/333

Propagation for Boolean Constraints—cont’d

Unit propagation (UP) (aka Boolean Constraint Propagation (BCP)):
Apply the unit clause rule until

» a conflict (empty clause; denoted by 1) is obtained

» Or no new unit clauses are available.

Compare: consistency condition for constraint propagation

Example.

{=vo, 2V v3,7v3} ~> {v3,~v3} ~ { L} (conflict)

Using an efficient variable—clauses lookup table, one can implement

unit propagation in linear time (in the total number of literals in the set
of clauses).

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
1841333

Boolean Constraints—cont’d

> Split:
Apply the enumeration rule:

x € {0,1}
xe{0}|xe {1}
There exists a wide variety of heuristics for choosing the split
variables, some popular ones:
random choice, choice based on the number of unsatisfied
clauses it appears in, based on their size, based on the
occurrence of positive and negative literals, etc.

» Proceed by cases: backtrack with unit propagation

» This gives the DPLL-algorithm
(Davis-Putnam-Loveland-Logemann, 1962) which is the basis of
most of the state-of-the-art complete SAT solvers.

School of Science Spring 2015
185/333

A Aalto University T-79.4101 Discrete Models and Search

Input: S: a set of clauses; M: a set of literals

Output: If there is an assignment satisfying the clauses S, then a set
of literals describing such an assignment is returned otherwise

'UNSAT’ is returned.

DPLL(S, M)
(S',M') := simplify(S, M);
if S = 0 then return M’
else if | € S’ then return 'UNSAT’
else
L := choose(S',M');
M" :=DPLL(S'U{L},M U{L});
if M" = UNSAT’ then return DPLL(S' U {L}, M U{L})
else return M”
end if
end if

Initial call: DPLL(S, {})

A

Aalto University
School of Science

T79.4101 DI

iscrete Models and Search
Spring 2015
186/333

Basic DPLL

DPLL uses two subprocedures:

» The call to simplify(S, M) returns (S’,M’) where S’ is the set of
clauses obtained by applying unit propagation to S and M’ is M
extended with unit literals found in the process.

» choose(S’, M') implements the search heuristics, i.e., decides for
which variable the spilitting rule is applied and which of the
branches is considered first.

» The performance of the procedure depends crucially on the
constraint propagation technigues and search heuristics.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spllngfu;i
187/333

Example

We use DPLL to decide whether a set of clauses S = {c1,...,c8},

where

cl:
c2:
c3:
c4 .

—aVbVvce
avevd

avceV-d
av-cvd

c5:
c6:
c7:
c8:

av-cV-d
-bV -cV-d
—aVvbV-c
—aV-bVece

is satisfiable. We illustrate the behavior of DPLL by giving a possible
DPLL search tree for S.

A DPLL search tree can be taken as a tree where nodes are literals
obtained by unit propagation or by the splitting rule. For literals derived
by unit propagation we give the clause and the literals earlier in the
branch of the search tree by which it is obtained and mark with
“CONFLICT” the branches with a conflict. (NB: the picture assumes that
no Preprocess step as on slide 182 is performed, only unit propagation.)

A

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015
188/333

Example—cont'd. A DPPL search tree for the set of clauses S:
cl: —-avbVvcec c¢5: av-cV-d
c2: avevd c6: —bV-cV-d
c3: avev—-d c¢7: —aVbV-c
cd: av—-cvd c¢8: —aV-bVce

/\

/1'_&1\ /zoa\
21.-b 25.b
/\ /\ 22. c¢(c1, 20, 21)26. c(c8, 20, 25)
23. —c(c7, 20, 2137. —d(c6, 25, 26
16. ¢ 24. CONFLICT
.d(cz 1,3) 8. d(c4, 1,7) 13. d(c2, 1,12) 17.d(c4, 1, 16)

.-d(c3,1,3) 9.-d(c5 1,7) 14.-d(c3,1,12)18. -d(c5, 1, 16)
.CONFLICT 10. CONFLICT 15. CONFLICT 19. CONFLICT

ouUlhw

For example: Node 1 is obtained by the splitting rule and node 4 by unit propagation.
When detecting a conflict (6.) DPLL backtracks to the next untried alternative (7. c).
The set S is satisfiable as the last branch (ending with 27.) does not have a conflict
and S is satisfied in a truth assignment with literals a, b, ¢, ~d true.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
189/333

Local search for SAT

Very large SAT instances (or particularly “difficult” ones) are out
of reach of complete methods, which justifies the investigation of
local search methods.

However, standard local search methods have the fundamental
limitation of only being applicable for finding satisfying truth
assignments for satisfiable instances.

For this task they still outperform complete search methods,
particularly for very large instances and also those that are
generated randomly.

Recently, also local search methods employing techniques from
complete algorithms (e.g., clause learning) have been developed
and some work on local search for unsatisfiability has been
published (see, e.g., Audemard and Simon, 2007).

A

Aalto University
School of Science

T79.4101 Discrete Models and Search

Spring 2015
190/333

GSAT (Selman et al. 1992)

» The algorithm is essentially the steepest descent variant of the
simple local search method (see slides 77, 78) applied to SAT.

» [dea: Candidate solutions are truth assignments t; the algorithm
aims to minimize c(t), which is defined as the number of
unsatisfied clauses under the truth assignment t.

» The set of neighboring solutions of t are the truth assignments
that differ from t in one variable (“one variable flipped”).

» Further extensions include: restart rules, tabu list, etc.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
191/333

GSAT (Selman et al. 1992)—cont'd

Input: propositional formula F in CNF

function GSAT(F):
t < initial truth assignment;
while flips < max_flips do
if ¢ satisfies F then return t
else
find a variable x whose flipping in t causes
largest decrease in ¢(t) (if no decrease is
possible, then smallest increase);
t + (t with variable x flipped)
end while;
return ¢.

(Note that the algorithm requires some rule for breaking ties in the
case that multiple variables qualify for being flipped. One option would
be to pick any of these at random with equal probability.)

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015

1921333

NoisyGSAT (Selman et al. ~ 1996)

Idea: Augment GSAT by a fraction p of random walk moves.
Input: propositional formula F in CNF, parameter p

function NoisyGSAT (F,p):
t < initial truth assignment;
while flips < max_flips do
if t satisfies F then return ¢
else
with probability p, pick any variable x
uniformly at random;
with probability (1 — p), do basic GSAT move:
find a variable x whose flipping causes
largest decrease in ¢(t) (if no decrease is
possible, then smallest increase);
t + (t with variable x flipped)
end while;
return t.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
193/333

WalkSAT (Selman et al. 1996)

Idea: modified NoisyGSAT that focuses on unsatisfied clauses.
Input: propositional formula F in CNF, parameter p

function WalkSAT(F,p):
t + initial truth assignment;
while flips < max_flips do
if t satisfies F then return ¢ else
choose a random unsatisfied clause C in F;
if some variables in C can be flipped without
breaking any presently satisfied clauses,
then pick one such variable x at random; else:
with probability p, pick a variable x in C unif. at random;
with probability (1 — p), do basic GSAT move:
find a variable x in C whose flipping causes
largest decrease in ¢(t);
t + (t with variable x flipped)
end while;
return t.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
1941333

WalkSAT vs. NoisyGSAT

» The focusing seems to be important: in the (unsystematic)

experiments in Selman et al. (1996), WalkSAT outperforms
NoisyGSAT by several orders of magnitude. Later experimental
evidence by other authors supports this.

Good values for the “noise” parameter p seem to be about

p ~ 0.5. For instance, for large randomly generated 3-SAT
formulas with clauses-to-variables ratio o near the “satisfiability
threshold” o = 4.267, the optimal value of p seems to be about
p=0.57.

In experiments by Seitz, Alava & Orponen (2005), a focused
variant of a different local search method is competitive with
WalkSAT on large randomly generated 3-SAT instances. What
about other focused local search algorithms (e.g. focused tabu
search)?

A

Aalto University
School of Science

T79.4101 Discrete Models and Search

Spring 2015
195/333

Adaptive local search for SAT

>

Local search methods have difficulties with structured problem
instances.

For good performance parameter tuning is essential.
(For example in WalkSAT: the noise parameter p and the
max_flips parameter.)

Finding good parameter values is a non-trivial problem which
typically requires substantial experimentation and experience.

One minor extension that is usually performed: introduce restarts
that let the solver run multiple times (typically from different,
randomly generated initial solutions).

Algorithms (e.g., WalkSAT) can be also made greedier using a
history-based variable selection mechanism, biasing the selection
of variables to flip on those that have been flipped least-recently
(least recently=furthest in the past).

A

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015

196/333

Novelty (McAllester et al. 1997)

After choosing an unsatisfiable clause as done in WalkSAT, the
variable to be flipped is selected from the variables in this clause as
follows:

» Sort variables according to decrease in the number of unsatisfied
clauses, breaking ties by placing least-recently flipped ones
before others with the same number.

» [f the first variable in that order is not the one most (!) recently
flipped, it is always selected.

» Else it is only selected with probability 1 — p, where pis a
parameter called noise setting.

» Otherwise the variable on the second position is selected.

School of Science Spring 2015

A Aalto University T-79.4101 Discrete Models and Search

197/333

Adaptive WalkSat and Adaptive Novelty+

> In Novelty+ (Hoos 1998) a random walk step (with probability wp)
is added: with probability 1 — wp the variable to be flipped is
selected according to the Novelty mechanism and in the other
case it is randomly selected from the chosen unsatisfied clause.

» A suitable value for the noise parameter p (and wp for Novelty+) is
crucial for competitive performance of WalkSAT and its variants.

» Too low noise settings lead to stagnation behavior and too high
settings to long running times.

» Instead of a static setting, a dynamically changing noise
parameter can be computed by the following method. (see Hoos,
2002)

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
198/333

Adaptive WalkSat and Adaptive Novelty+

Two parameters 6 and 0 < ¢ < 1 are given

» At the beginning the search is maximally greedy (p = 0).

» There is a search stagnation if no improvement in the evaluation
function value has been observed over the last m0 search steps
where mis the number of clauses in the instance.

» In this situation the noise value is increased by p := p+ (1 — p)o.

» |f there is an improvement in the evaluation function value, then
the noise value is decreased by p := p— pd/2.

o sy
o8 b & p=p-p*0.1 i
’ +
N
0.6 | + —
+
04t _
0.2 + 1
1 1 1 1 1 1 i ' 1

nl:’lﬁ1l:’7n’ﬁ’)n’)“\/ﬂ:l:ﬁ

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
199333

Adaptive WalkSat and Adaptive Novelty+

>

Notice the asymmetry between increases and decreases in the
noise setting.

Stagnation is more difficult to detect compared to improvement;
also, there is empirical evidence that approaching the "optimal"
noise setting from above yields better performance.

When this mechanism of adapting the noise level is applied to
WalkSat and Novelty+, we obtain Adaptive WalkSat and Adaptive
Novelty+ (Hoos, 2002).

The performance of the adaptive versions is more robust w.r.t. the
settings of © and ¢ than the performance of the non-adaptive
versions w.r.t. to the settings of p.

For example, for Adaptive Novelty+ setting 6 = 1/6 and ¢ = 0.2
seem to lead to robust overall performance (while there appears
to be no such setting for p in the non-adaptive case).

A

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015

200/333

Tools for SAT

>

>

>

The development of SAT solvers is strongly driven by SAT
competitions (http://www.satcompetition.org/)

There is a large number of solvers available in the public domain.

Solvers that ranked well in previous SAT competitions:

SAT 2005:

SatELiteGTI, MiniSAT 1.13, zChaff_rand, HaifaSAT
SAT COMPETITION 2009:

PrecoSAT, SATzilla, glucose, clasp, TNM, March_hi,
SAT Competition 2011: (p) lingeling, ppfolio,

glucose, clasp,

SAT Competition 2013:

(p) lingeling agw, glucose 2.3, Riss3g cert,
BreakIDGlucose 1, probSAT SC13, CSHC,

A

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

201/333

http://www.satcompetition.org/

Lecture 8: Modern SAT solvers

Outline

» Conflict-driven clause learning solver
» Lazy data structures
> Restarts

Goal for today: Understand some of the main techniques and data
structures used in a modern conflict-driven clause learning SAT solver.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
202333

Key contributions to CDCL solvers

» Conflict clauses; Grasp (Marques-Silva & Sakallah, 1996).
» Restart strategies (Gomes et.al 1997, Luby et al. 1993)
» 2-watch pointers and VSIDS; zChaff (Moskewicz et al. 2001)

» Efficient (open source) implementation; Minisat (Een &
Soérensson, 2003)

» Phase-saving; Rsat (Pipatsrisawat & Darwiche, 2007)
» Conclict-clause minimization (Sérensson & Biere, 2009)
» ...combined with pre- and in-processing techniques

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
2031333

Overall conflict-driven clause learning algorithm

procedure CDCL(CNF F):
F = simplify(F)
while true do
lg := getDecisionLiteral()
if no Iy exists then return SAT /* All variables assigned */
F := simplify(F(ly < 1))
while F contains Cfa/siﬁed do
Ceontiict <— analyzeGonflict(Crasifiea)
if Cconnict = 0 then return UNSAT
backt raCk(Cconflict)
F := simplify(F U { Coonfiict })
endwhile
endwhile

A Aalto University T-79.4101 Discrete Models and Search

School of Science

Spring 2015
204/333

Conflict-driven clause learning

» Basic idea: maintain implication graph that contains
variable-value assignments and edges between them if one was
implied by the other in the propagation.

» Whenever a conflict occurs, one adds a clause that corresponds
to the variable-value assignments that caused the conflict.

» Same procedure allows non-chronological backtracking, since the
implication graph also keeps track of the level in the search tree
at which the assignment values were decided.

» This type of backiracking essentially prunes the search space,
similarly to the bounding heuristic for branch&bound search.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
205/333

Recall the DPPL search tree for the set of clauses S from last lecture:
cl: —avbve c¢5: av-cVvV—-d
c2: avevd c6: —bVvV-cV-d
c3: avev—-d c¢7: —-aVvVbVv-c
c4: av—-cvd c8: —-aVvV-bVc

/-\

s

.b

16.c

20.a

T

21. -b 25.b
22. ¢(c1, 20, 21)26. c(c8, 20, 25)
23. —c(c7, 20, 2137. —d(c6, 25, 26
24. CONFLICT

-d(c3,1,3) 9.-d(c5, 1,7) 14.-d(c3, 1, 12)18. -d(c5, 1, 16)
CONFLICT 10. CONFLICT 15. CONFLICT 19. CONFLICT

3. . .
4.d(c2,1,3) 8.d(c4, 1,7) 13.d(c2, 1, 12) 17.d(c4, 1, 16)
5.
6.

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015
206/333

Conflict driven clause learning

Consider the first conflict of the search tree:

/1. _a
2.-b
3 ¢ : CONFLIC
4.d(c2, 1, 3) .
5.-d(c3, 1, 3) I
6. CONFLICT Notation: VAR=VAL @ TreeDepth

Learned first conflict clause: /11: —(-aA-c)=aVe

T-79.4101 Discrete Models and Search
Spring 2015

Aalto University
School of Science
207/333

Conflict driven clause learning—cont’d
... and now the second conflict:

2.-b 11.b

/\ Non-Chronological Backjump!

-C 7.c(1,1)
.d(c2,1,3) 8.d(c4,1,7)
-d(c3,1,3) 9.-d(c5,1,7)

. CONFLICT 10. CONFLICT

ouhw

d=1 @

d=0

El

c5
Notation: VAR=VAL @ TreeDepth

Learned second conflict clause: [2: ———a=a

T79.4101 Discrete Models and Search

Aalto University
School of Science Spring 2015
208/333

How to learn a clause

» Use a cut in the implication graph
» How to choose the cut?

» Many different alternatives (conflict nodes on one side of the cut,
reason nodes on the other side)

» Short learned clauses are better than long ones

» Conflict clause should be fast (=linear time) to compute

» 1-UIP cutis shown to be optimal in terms of backtrack level
compared to the other possible UIPs [Audemard et al. 2008]

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
209333

Unique implication point

» A unique implication point (UIP) is any node at the current

decision level such that any path from the decision variable to the
conflict node must pass through it.

» 1-UIPis a UIP that is closest to the conflict node

X8=0@2
~ x5=1@4

T o

CONFLICT]

x1=0@4 @

x3=1@45;>;\/XE,=1@4

x7=0@1 X9=0@3. T
Notation: VAR=VAL @ TreeDepth

Aalto University T-79.4101 Discrete Models and Search
A School of Science

Spring 2015
210/333

UIP and conflict clause

x5=1@4
.\./
./ _%5=0@4
\ .
.\\/{XS:]_@4: /;);\/Xé=l@4

x7=0@1 X9=0@3, T
Notation: VAR=VAL @ TreeDepth

x1=0@4 @

» 1-UIP: conflict clause —x4 V xg V Xg
» 2-UIP: conflict clause x1 V x7 V xg V Xg

» Backtrack level is determined by analyzing the conflict clause C:
max{ TreeDepth(x) | x € C\ {/}, € C is assigned at conflict level}

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
211/333

Example revisited

1.—51/-
P |

- 7.c
.d(c2, 1, 3)

.-d(c3, 1, 3)
. CONFLICT Non-Chronological Backjump!

RGNS

Notation: VAR=VAL @ TreeDepth

» Learned conflict clause: /1: —(-aA-c)=aVce
» Backtrack to TreeDepth=1
» Note: Assignment of ¢ = 0 is not discarded

T-79.4101 Discrete Models and Search
Spring 2015

Aalto University
School of Science
212/333

Efficient data structures

» During search SAT solver spends time on...
» variable selection ~ 10%
» unit propagation ~ 80%
» conflict analysis ~ 10%
» Thus, it is highly important to optimize unit propagation!
» In unit propagation one needs to detect unit clauses and
conflicting clauses
» No need to detect that all clauses are true!
» No traversing the whole set of clauses, instead:

» for each literal, store the clauses in which it appears
» when literal / is added to assignment, only clauses in which /
appears need to be visited

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
213/333

Efficient data structures: Watch pointers

» Unit clause / conflict detection can be based on two watched
literals per clause

» A clause with two non-false literals cannot be unit clause or
conflicting clause

» Clause needs to be visited only when its watched literal becomes
false — clauses are visited less frequently

» When backtracking, nothing needs to be done (just unassign
variables)

» Very effective on long clauses
» Not used for binary clauses (special data structures)

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
214/333

Watched literals — Example

Y= {X1 =U,Xo=U,X3 = U,X4 = U, X5 = U, Xeg = U}

Xy | Xo |[TX3 (| T X5 | Xp X | Xo || TX3 | X || Xp
X5 =1
—_—

X1 |[7X3 || Xa | X5 |—Xp X1 |[TX3 || Xg || X5 (—Xg
X3 Z/

X1 | Xo | X3 X5 Xp X1 | Xo | X3 || X5 | Xg
rEN —

X1 |7 X3 || Xa | X5 [—Xp Xy | Xa || 5X3 || X5 | —xg

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
2151333

Watched literals — Example cont’d

yv={xy=uxo=ux3=1,X=UXxs=1,X = U}

X | Xo || X3 || X5 | Xp
X1 [X4 X3 | X5 | —Xg
X6 Xo || T X3 [X5 || X4
X1 | Xa || TX3 || T X5 ||—Xp

Xy =1

4/\

—Xq

X2

—X3

—Xs5

X6

X4

X4

—X3

—Xs5

—|X6

X

X2

—X3

—Xs5

—X4

X4

Xa

—X3

X5

—Xg

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015
216/333

Watched literals — Example cont’d

y={xy=1,x%=ux3=1,x4=0,xs =1,xs = u}

X

Xo=0

X4

X4 H—‘Xa H—'X5H—|x5‘ ’x1 X4 H—\xe, H—'xsu—.xe‘

/

’Xe H e H % H % H _'X1‘ SAT (complete assignment)

\II:{X1 :1,X2:0,X3:1,X4:0,X5:1,X6:1}

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
217/333

Choosing variable — VSIDS

Variable state independent decaying sum (VSIDS):

>

>

Each literal has score
Score based on the number of occurrences of the literals in the
CNF
Score updated when a new clause is learned
Pick the unassigned literal with the highest score (break ties
uniformly at random)
Updating:
» zChaff: every 256 conflicts divide scores by a constant factor 2

» Minisat: for each conflict, increase the score of involved variables
by & and increase & := 1.050

Compatible with the lazy data structure

A

Aalto University T-79.4101 Discrete Models and Search

School of Science

Spring 2015
218/333

Restarting

» Runtimes of SAT solver can experince heavy tail phenomenon
> In rare cases, the solver can get trapped on a very long run while
most of the time the run times could be short
» Restarts are introduced to avoid this behaviour
> At restart: unassign all variables but keep the (dynamic) heuristics
and learned clauses
» In order to guarantee completeness, restart strategy with
increasing cutoff needed, e.g.

» Geometrical restart: 100, 150, 225, 333, 500, 750, ...
» Luby sequence: 100, 100, 200, 100, 100, 200, 400, ...

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
219/333

DPLL vs. CDCL solver

» The success of CDCL is not only due to advances in
implementation and clever data structures

» Fundamental reason for better performance of CDCL is that itis a
stronger proof system than DPLL

» There exists an infinite family of CNFs F, (n=1,2,...) such that
the length of shortest proof (of unsatisfiability) using DPLL is
exponentially larger than the length of shortest proof using CDCL

» For the other direction, “DPLL proof is always a CDCL proof”

» CDCL with restarts is as strong as general resolution

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
220/333

Other techniques

There are many more techniques that efficient CDCL SAT solvers
implement:

» Preprocessing

> Inprocessing

v

Clause forgetting
Conflict-clause minimization

v

v

Phase saving

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
2211333

Lecture 9: Intro to linear and integer linear programming

Outline

» Introduction to linear and integer linear programs
» Examples of constraints and problems modeled as mixed integer
linear programs (MIP’s)
Goal for today: Learn to recognize and formulate LP’s and MIP’s; for
a given computational problem, learn to
a) encode different types of constraints as an LP/MIP

b) transform one form of a problem into another

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
222/333

Review

> Previously, you have learned how to represent computational
problems via reductions to CSP and SAT instances.

» Both types of models allow for complete and local search
methods for their solutions.

» SAT solvers exploit the binary domains of variables to obtain
efficient constraint propagation techniques (unit propagation) and
even learn new instance-specific constraints during execution.

» Now we consider linear programs (LP’s) for the representation of
computational search and optimization problems.

» Theoretically, there is a fundamental difference in the
computational complexity of mixed integer linear programs
(MIP’s), which may contain integer variables, and LP’s whose
variables take real numbers as values.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015

223/333

Introduction

» Today we focus on the modeling aspects of linear programming,
while next week we address algorithms.

» Although LP’s in general are very versatile from a modeling
perspective, some types of constraints are formulated more
naturally than others.

» The examples we discuss today involve some of the more
frequently encountered types of constraints.

» Note: although theoretically (and practically) there are important
differences between MIP’s and LP’s, we simply consider LP’s to
be a special case of MIP’s, where no variable is constrained to
take integral values.

School of Science Spring 2015
224/333

A Aalto University T-79.4101 Discrete Models and Search

General Linear Programs

In a general linear program

n
min f(xy,...,x,) := Y G suchthat (s.t.)
=
n
g,'(X1,...,Xn) ::Za,-jxj:b,-, i:1,...,m
=

i=x<uy

inequalities with < or > can occur in addition to equalities (=),
maximization can be used instead of minimization, and some of the
variables can be unrestricted (do not have bounds).

Note that the x; are variables, while the /;, u;, aj, ¢; and b; are all given
constants. Further, we will always specify explicitly if some (or all) of
the x; are required to take integer values.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
225/333

Standard and Canonical Forms

» A general LP can be transformed to an equivalent (w.r.t. the set of
original variables) but simpler form, for instance, to a canonical or
standard form (introduced below).

» Two forms are equivalent (w.r.t. a set of variables) if they have the
same set of optimal solutions (w.r.t. the set of variables) or are
both infeasible or both unbounded.

An LP is in canonical form when
» the objective function is minimized,
> all constraints are inequalities of the form Y7, a;x; > b;, and

» all variables are non-negative, i.e., bounded by the constraint
x; > 0.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
226/333

Standard and Canonical Forms—cont’d

Thus, an LP in canonical form is formulated as

n
min chxj s.t.
j=1

j
x>0, j=1,...,n

n
a,-,-x,-Zb,-, i=1,....m
=1

The standard form is similar but all constraints (different from bounds)
are of the form Y./, a;x;=b;.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
227/333

Standard and Canonical Forms—cont’d
An LP can be converted to standard or canonical form using the
following transformations:

» Maximization of a function is equivalent to minimization of its
negation, since maxf(xy,...,X,) = — min—f(xy,...,X,)
> An equality can be transformed to a pair of inequalities

L o 21(1:1 ajxj > bj
=1 Y1 —ajX = —b;

» An inequality can be transformed into an equality by adding a
Slack (subtracting a surplus) variable

4 27:1 a,-,-X,-+s =b;
- s>0

)

n n
Lj—18jX—S =b;

a,'ijSb,' <~ {
1

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
2281333

Transformations—cont’d

» An unrestricted variable x; (a variable that can take positive and

negative values) can be eliminated by introducing two

non-negative variables x/-Jr x; as follows: replace every

7
occurrence of x; with x/-Jr — x; and add the constraints
X" >0, >0.

Non-positivity constraints can be expressed as non-negativity
constraints: to express x; < 0, replace x; everywhere with —y;
and impose y; > 0.

These transformations are sometimes needed when modeling if
the tool used does not support a feature exploited in the LP
model, for example, non-positive or unrestricted variables.

A

Aalto University
School of Science

T79.4101 Discrete Models and Search

Spring 2015
220/333

Example

» Consider the problem of transforming
the LP on the right to standard form.
We illustrate the transformation in two
steps.

> First:
turn maximization to minimization,
turn the unrestricted variable x, to a
pair of non-negative variables and
treat bounds as constraints
to obtain:

max x» — xy S.t.
33Xy —x2 >0

X1 +x <6
—2§X1 <0

min —(x" — X,)+ x1 s.t.
3x1— (x5 —x) >0
xi+ (g —x)<6
X1Z—2

x1 <0

X3 >0,x >0

A

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015
230/333

Example—cont’d

» Second:
eliminate non-positivity constraints
and transform inequalities to equali-
ties with slack and surplus variables
to obtain:

min —x," + X, — y1 sit.
—3y1 —xj—l—xz_—& =0
—Yi+X —X, +5=6
—Yy1—S3=—2

=0

X >0,x >0
$1>0,8,>0,55>0

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015
231/333

Modeling

The diet problem: (a typical problem suitable for linear programming)

» We are given the following constants
a;: amount of the /j-th nutrient in a unit of the j-th food item
r: yearly requirement of the i-th nutrient
cj: cost per unit of the j-th food item

» Build a yearly diet (decide yearly consumption of n food items)
such that it satisfies the minimal nutritional requirements for m
nutrients and is as inexpensive as possible.

» LP solution: take variables x; to represent yearly consumption of

the j-th food item .
min Y, ¢ x; s.t.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
232/333

Knapsack

(a typical problem suitable for (0-1) integer programming)

» Given: a knapsack of a fixed volume v and n objects, each with a
volume a; and a value by.

» Find a collection of these objects with maximal total value that fits

in the knapsack.

» |P solution: for each item j take a binary variable x; to model
whether item j is included (x; = 1) or not (x; = 0)

max} ;b x; s.t.
Yjax<v
0<x <1, V
x; is integer Vj

A

Aalto University
School of Science

T79.4101 Discrete Models and Search

Spring 2015
233/333

Facility Location Problem

(A slightly more complicated 0-1 IP problem)

>

There is a set of n customers who need to be assigned to one of
the m potential facility locations.

Customers can only be assigned to an open facility, with there
being a cost of ¢; for opening facility ;.
An open facility can serve an arbitrary number of customers

(assigning customer | to facility j incurs a cost of dj).

Choose a set of facility locations that minimizes the overall costs
of serving all the n customers.

IP solution: introduce binary variables
x; representing the decision to open facility j
yij representing the decision to assign customer | to facility j

School of Science Spring 2015

A Aalto University T-79.4101 Discrete Models and Search

234/333

Facility Location Problem—cont’d
» Objective function to minimize:
Z o+ Y Z diy;
i=1j=

» Customers are assigned to exactly one facility:

m

Zy,-,-:1 foralli=1,...,n

j=1
» Customers can be assigned only to an open facility.

Two approaches:
» If a facility is open, it can serve all n customers:

n
Zy,-,-gn-xj forallj=1,....m
i=1

» If a customer i is assigned to facility j, it must be open:

yi<x; forallj=1,....mandi=1,...,n

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
2351333

Benefits of Optimal Solutions

» The previous example demonstrates that by making the (implicit)
assumption that a resulting solution will minimize the objective
value one can “weed out” undesired solutions.

» For example: the previous problem does not indicate whether a
solution which opens facilities without assigning customers to it is
considered feasible.

» Assume the problem formulation requires that an open facility
must have at least some customers assigned to it.

» Since a solution that opens a facility with no customers assigned
to it is clearly suboptimal (assuming ¢; > 0), this assumption is
satisfied implicitly.

School of Science Spring 2015
236/333

A Aalto University T-79.4101 Discrete Models and Search

Expressing Constraints in MIP’s

» Some constraints cannot be represented straightforwardly using

linear constraints.

An implication is a typical example which can sometimes be
encoded by introducing an additional variable and a new large
constant.

Example. Consider a binary variable y and the constraint “if
y =1 then Z}’:1 Xj > b;” where each x; is non-negative.

Using a large constant M this can be expressed as follows:

n
Y x>b—M1—y)
=

Notice that here if y = 1, then Z/’-’:1 X; = b; must hold but if y =0,
then Z}’:1 X; = bj — M imposes no constraint on variables
X1,...,Xn if we choose some M > b;.

A

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

237/333

Expressing Constraints—cont’d

» A frequently occurring situation involves combining constraints
“disjunctively”.

» Example. Consider a disjunctive constraint “x > 5or y <6”
where x and y are non-negative and y < 1000 due to other
constraints.

This constraint can be encoded by introducing a new binary
variable b and constants My, M, as follows

X+M1b25
y—My(1—b) <6

where we choose the constants M; > 5 and M, > 994.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
2381333

Example—cont’d

Let us choose My =5 and M, = 994.
x+5b>5
y—994(1—b) <6
Consider the two possible cases, depending on the value of b:

» If b= 0, we have constraints x >5and y —994 <6 « y < 1000
where the latter is satisfied by every (relevant) value of y, since
y <1000 by definition of the problem.

» If b=1, we have constraints x+5 > 5+ x > 0 and y < 6 where
the former is satisfied by every (relevant) value of x.

These techniques for expressing disjunctions are are not general and
choosing values for the constants is often non-trivial.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
239/333

Example: Scheduling Constraints

» In a scheduling application typically following types of variables
are used:
s;: starting time for job j
Xji: binary variable representing whether job / occurs before job j
» Consider now a typical constraint:
“If job 1 occurs before job 2, then job 2 starts at least 10 time
units after the end of job 1”
» This is an implication that can be represented by introducing a
suitably large constant M (d; is the duration of job 1):

So 231 +d1 +10—M(1 —X12)
> If xj2 = 1: we get sp > sy + dy + 10 as required.

> If x;o = 0: we get s > sy + di + 10 — M, which implies no
restriction on s if M is sufficiently large.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
240/333

Example: Scheduling Constraints—cont’d

» Disjunctive constraints on binary variables can be expressed
straightforwardly.

» For example, to enforce that the values of the variables x; in the
previous example are assigned consistently according to their
intuitive meaning following constraints need to be added.

» “Either j occurs before j or the reverse but not both”
This is an exclusive-or constraint which can be encoded directly:

Xj+xi=1 (i #])

» “If i occurs before j and j before k, then i occurs before k.’
This can be seen as a disjunction —x;; V —xj V xj of binary
variables Xj, Xk, Xik (equivalent to (xj A Xjx) — Xi):

(1 —x3) + (1 — xi) + xi > 1 (or equivalently xj + xjx — xix < 1)

(A potential problem: O(n3) constraints are needed where n is the
number of jobs.)

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015

241/333

Joint Replenishment Problem

>

Consider the problem of scheduling the production of N types of
products in a factory to satisfy the demands (orders) of customers
that arrive over time periods 1,2,... T.

Producing any amount of product /i, 1 < i < N, incurs a fixed
production cost of ¢;, in addition to a joint shipping cost ¢y
(production is assumed to be instantaneous).

Note that by aggregating products one can save shipping cost!

A demand d = (ty,iy,qy) arrives at time ty and asks for gy units
of product iy.

In the make-to-order variant products are produced after
demands for them have been communicated to the factory.

Note that this means that if a demand d is satisfied by a
production event at time t, then it must be that t > 5.

A

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

2421333

Joint Replenishment Problem-cont’d

» In addition to the cost incurred due to the production of some
types of products over time, unfulfiled demands collect a penalty
that we call delay cost.

» More precisely, delaying a demand d from its arrival time {4 for
some time units 8, incurs a cost equal to 8- gy, Which is
proportional to the quantity of product requested by the demand.

» So the problem becomes how to balance delay and
production/shipping costs.

» Note that here we assume that all cost factors ¢; and all quantities
Qg are positive.

» Without loss of generality, we consider only candidate production
times that are integers in the set {1,..., T}.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

243/333

Joint Replenishment Problem-cont’d

We begin by introducing the following variables:

> Xx;: binary variable that when having value 1 indicates that there is
a shipment taking place at time period t.

> y;: binary variable that when having value 1 indicates that there
is a production of type i in time period t.

» zy4: binary variable that when having value 1 indicates that
demand d was delayed from time ¢ until (at least) time {4 1.

We then formulate the objective function to minimize as follows:

;
Z (COXt+ZCIyIt> +Z Z QaZat
t=1 d t>ty

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
244/333

Joint Replenishment Problem-cont’d

The first type of constraint couples the decision to delay an order to
the production timepoints:

» Demands are delayed until they are eventually satisfied

S
(Z y/dr) +z4o>1 foralld, ty<s<T-—1

t=ty

The second type of constraint couples the production and the shipping
decision variables:

» Whenever some product is produced, there is a shipment taking
place:

Yi<x; forali=1,... Nandt=1,...,T

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
245/333

Routing Constraints
(An example of a problem where finding a compact MIP encoding is
challenging).

» Consider the Hamiltonian cycle problem:
INSTANCE: An undirected graph (V, E).
QUESTION: Is there a cycle visiting all nodes of the graph exactly
once?

» Note that also the optimization variant is possible, which asks for
the shortest (smallest total length) Hamiltonian cycle in the given
graph.

» Variations of this problem are frequently encountered in practice
(e.g., passenger transportation, parcel delivery, flight routing, ...).

» The optimization variant can be also considered a generalization
of the TSP problem, which assumes a complete graph.

» Let us model the search variant of the Hamiltonian cycle problem.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

246/333

Hamiltonian Cycle
» For simplicity of presentation, we treat the edges as being
directed (introduce edges (i,j) and (j,/) for each {i,j}).

» Introduce a binary variable x; for each edge (/,j) € E indicating
whether the edge is included in the cycle (x; = 1) or not (x; = 0).

» Constraints:
» The cycle leaves each node i through exactly one edge:

for each node i: Z Xxj =1
(ij)€eE

» The cycle enters each node i through exactly one edge:

for each node i) x; =1
(. eE

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
247/333

Hamiltonian Cycle—cont’d
» However, the constraints above are not sufficient.
» Consider, for example, a graph with 6 nodes such that variables
X1,2,X23,X3,1,X45,X56,X5,4 Ar€ set to 1 and all others to 0.
This solution satisfies the constraints but does not represent a
Hamiltonian cycle (two separate cycles).

» Enforcing a single cycle is non-trivial.
-

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
248/333

Hamiltonian Cycle—cont’d

» A solution for small graphs is to require that the cycle leaves
every proper subset of the nodes, that is, to have a constraint

Xijj >1
(if)eE ies,j¢s

for every proper subset S C V of the nodes V (note: S# V,
since proper subset).

» A potential problem for bigger graphs: O(2") constraints needed
where nis the number of nodes.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
249/333

Hamiltonian Cycle—cont’d

» Another approach, where the number of constraints remains
polynomial, is to introduce an integer variable p; for each node

i=1,...,nin the graph to represent the position of the node i in
the cycle, that is, p; = k means that node i is kth node visited in
the cycle.

» In order to enforce a single cycle we need the following
conditions.

» Each p;hasavaluein {1,...,n}:1<p;<n

» This value is unique, that is, for all pairs of nodes i and j with
i #j, pj # pi holds.

School of Science Spring 2015
250/333

A Aalto University T-79.4101 Discrete Models and Search

Hamiltonian Cycle—cont’d

» For all pairs of nodes i and j if node j is the next node after i there
must be an edge (/,j) € E, that is,
> (p=pi+1)—> (i) E=forall (i,j) ¢ E,i#j: pj # pi+1
» (pi=nApj=1)—=(i,j)€E
=forall (i,j)¢ E,i#j:pi=n—p;>2
» For condition ‘if p; = n, then p; > 2” we can use the technique for
implications:
pi=2—(n—p)
Notice that
» if pj = n, then we get p; > 2 and
» if p; < n, then the constraint is satisfied for all value of p;
(1<p<n).
» To complete the encoding in IP we need to express disequality

(#)-

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
251/333

Expressing Disequality

» For expressing an arbitrary disequality x # y of two bounded
integer variables x and y we reformulate the disequality as “x > y
or y > x” orequivalently “x—y >1orx—y < —1"

» Now we can model the disjunction using a binary variable b and
constants My, M, and the constraints

XxX—y>1—Mb
x—y < M(1—b)—1

Notice that

» ifb=0,thenwegetx—y>1,x—y <M, —1and

» ifb=1,thenwegetx—y>1—-M;,x—y < -1
where the constraints involving M;, M, are satisfied by all values
of x, y given large enough M;, M, w.r.t. to the bounds on the
values of x, y.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015

2521333

MIP Tools

v

There are several efficient commercial MIP solvers.

v

Also a large variety of public domain systems exist.

v

Different MIP encodings typically lead to different solver runtimes.

v

See, for example, http://www.neos-guide.org/lp-faq
for MIP systems and other information and frequently asked
questions.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
253/333

http://www.neos-guide.org/lp-faq

MIP Solvers

» A MIP solver can typically take its input via an input file and an
APL.

» There a number of widely used input formats (like mps) and tool
specific formats (1p_solve, CPLEX, LINDO, GNU MathProg,
LPFML XML, ...)

» Most MIP solvers do not require the input program to be in a
standard form and typically quite general MIP’s are allowed, that
is

» both minimization and maximization are supported and

» operators “=", “<”, and “>" can all be used.

» Many solvers prowde an API that allows the integration into
user-generated programs from various programming languages.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
254/333

Lecture 10: Linear relaxation and the simplex method

Outline

» Algorithms for solving mixed integer linear programs (MIP’s):
branch-and-bound and linear relaxation
» Simplex method for solving linear relaxations

Goal for today: Learn how to apply the branch-and-bound method for
solving MIP’s and the simplex method for solving LP’s.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
255333

Review: Linear and Integer Programming

>

Recall: in the previous lecture we modeled computational
problems in the form of linear programs, such as

n
min ¢(x):=) ¢x st
=

n
Za,-,-x,-:b,-, i=1,....m
j=1

x>0, j=1,...,n

Every LP can be brought into this so-called standard form.

In mixed-integer linear programs some subset of variables
IC {x4,...,xn} is required to take integer values.

Finding optimal solutions to LP’s can be done in polynomial time
(e.g., ellipsoid method), whereas solving integer linear programs
is NP-complete.

Aalto University T-79.4101 Discrete Models and Search
A School of Science

Spring 2015
256/333

An Example MIP

Xo Xy >2 —2x1+Xx2 > —4
xo <4
min xq +2xo s.t. 1
X+ Xo > 4
—2X1 + X2 >—4 T @2
2 < x4 (8/3,4/3)
Xo < 4 T
Xo is integer
} } Xq
X1 +Xx2o >4

Note that § +23 = 12 < 2+2x2 = 6 but the first values do not satisfy

the integrality constraint for xo.

T79.4101 Discrete Models and Search

Aalto University
School of Science Spring 2015
2571333

Solving MIP’s

» A typical approach is use branch and bound search with a
suitable relaxation.

> A relaxation of a problem removes constraints in order to obtain a
problem that is “easier” to solve.

» Branch and bound search was introduced in Lecture 3 and is
readily applicable to solving MIP’s (no special-purpose bounding
heuristic required).

» Instead of employing a custom bounding heuristic, at each stage
of the search the relaxed version of a subproblem of the original
problem is solved, which is an LP version of a corresponding MIP.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
258/333

Problem relaxations: intuition

» A relaxation R(P) of a problem P has strictly less restrictive

constraints but the same objective function.

Hence, an optimal solution to R(P) can not be worse than an
optimal solution for P.

Example: problem P: Find cheapest flight from HEL to LYS s.t.
1. Departure date 2.11. departure after 6pm
2. Direct flight or connecting flights but not via CDG
3. Airline either Finnair, Air France, or Lufthansa
Consider now a relaxed version of P, denoted by R(P):
1. Departure date 2.11. departure at any time
2. Airline either Finnair, Air France, or Lufthansa

Clearly, when comparing the objective value of optimal solutions
to P and R(P): OPT(R(P)) < OPT(P).

If an optimal solution to R(P) is feasible for P, then it is also
optimal for P. However, if R(P) is infeasible, so is P.

A

Aalto University
School of Science

T79.4101 Discrete Models and Search

Spring 2015
259/333

Linear relaxation

» For a given MIP P, in order to apply branch and bound search, its
relaxation R(P) should be a problem satisfying the very same
three conditions (for a minimization problem P):

R1: OPT(P) > OPT(R(P)).
R2: If the optimal solution to R(P) is feasible to P, it is optimal for P.
R3: If R(P) is infeasible, then so is P.

» A useful relaxation of a MIP P satisfying these condition is the

linear relaxation of P which is obtained by removing the integrality
constraints from P.

T79.4101 Discrete Models and Search

Aalto University : h
School of Science Spring 2015
2601333

Linear relaxation—cont’d

Problem P Problem LR(P)
min X7 +2x2 s.t. min - X1 +2x2 s.t.
X1+ X2 > 4 X1+ X2 > 4
—2x1 + Xo >—4 —2X1 + Xo >—4
2 < Xxq 2 < Xxq
X2 < 4 X2 < 4
Xo is integer

» The linear relaxation satisfies conditions R1—R3 because feasible
solutions of LR(P) include all feasible solutions of P.

» |t is also computationally interesting because it is a strong
relaxation which provides a global view on the constraints.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
261/333

Branch and bound for MIP

>

>

Note: from now on, R(P) := LR(P).

Applying branch and bound search for solving MIP’s is very
similar to the CSP case: given a problem P, the branching
operation creates new subproblems Py, ..., Px, whose union is
equivalent to P.

The new subproblems, however, are based on an optimal solution
x* to R(P) that is not feasible to P and neither to any of
R(P1), ..., R(Px).

Given optimal solution x* to R(P), x* is not feasible to P iff there
is a integer variable x; in P that has a fractional value x/-* in x*.

For such a variable x; with a fractional value x;", we can create
two subproblems (here: k = 2):

> P—, which has the additional constraint x; < [/" |;

> P+, which has the additional constraint x; > | x| +1.

A

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

2621333

Branch and bound for MIP—cont’'d

» The bounding heuristic is replaced by a solver for the linear
relaxation of each of the problems encountered in the search.

> Let ¢ be the cost of a known feasible solution to the original MIP
(possibly suboptimal).

» Then whenever we encounter a (sub)problem P whose relaxation
R(P) has the optimal solution value OPT(R(P)) > ¢, we prune
the search.

» This is because by R1 OPT(P) > OPT(R(P)) and, hence, it is
not possible to find a solution with a smaller objective value than
¢ among the feasible solutions “below” P inside the search tree.

School of Science Spring 2015
263/333

A Aalto University T-79.4101 Discrete Models and Search

Branch and bound for MIP—cont’d
initially: ¢ < oo;
procedure MIP_Branch&Bound(MIP P):
if R(P) is infeasible then
return;
else
Solve R(P) to get an optimal relaxation solution x*;
if x* is feasible and thus optimal for P then
if OPT(P) := c¢(x*) < c then
¢+ c(x*);
else
if OPT(R(P)) := ¢(x*) < c then
split P into Ps,..., Pk by applying branching rules;
forall1 <p<kdo
MIP_Branch&Bound(Pp);
end
end
end
end

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
2641333

Branch and bound for MIP—cont’d

» One can show that if the set of feasible solutions of R(P) is
bounded, the algorithm terminates in finite time.

» Note that in this case P has only a finite number of feasible
solutions (if any) if all variables are required to take integer values
in P.

» If the set of feasible solutions R(P) is not known to be bounded,
one can replace P by a more constrained P’ (for which this holds)
that has an optimal solution not worse than the original P.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
265/333

Example. Branch and Bound search using linear relaxation

Consider the integer program P:

min —8x1 — 11x2 — 6x3 —4x4 S.t.

5x1 +7x0+4x3+3x4 < 14

0<x; <A1

Xj isinteger, i=1,...,4

Each node Pq,P»,... gives the new
problem after branching and an opti-
mal solution of the corresponding re-
laxed problem. The optimal solution to
problem P is obtained from Ps.

Note (*): For P> the optimal solu-
tion satisfies OPT(R(P.)) > —21.67
but because in the objective function
all coefficients are integers, OPT(Pz)
has also an integer value and, thus,
OPT(P2) = [OPT(R(P2))] = —

Py:P

OPT(R(P)) =

—22,c=o0

x1=1,%=1,x3=05;x =0

Not feasible

AN

Pi: Py+ Po: Py—
x3>1 x3 <0
OPT(R(P;)) = —21.86,c= = OPT(R(P2)) = —21.67,c= —21

x1=1,x%=071;x3=1,x4=0

x1 =1, =1,x3=0;x4 =0.67

Not feasible

Not feasible

/\ Bounding by OPT(Ps) = —21 ()

P3P+ TP
X3 =1 % >1 X3>1X2<0
OPT(R(P;)) = —218,c= OPT(R(F;)) = —18,c = —21

x1=06x0=1,x3=1,x4=0

X1 =1ix2=0;x3=1;,x =1

Feasible

Not feasible

Ps: P3+
x3=1ixp=>1x 21

X3>1 X2 >1;x¢ <0

y

Infeasible relaxed problem

OPT(R(Ps

))=—21,c=00

X1 =0;x =

1ix3=1;x4 =1

Feasible

Aalto University
School of Science

A

T-79.4101 Discrete Models and Search
Spring 2015
266/333

Improving Effectiveness

» Careful formulation

» Strong relaxations typically work well but are often bigger in size.
Break symmetries.
Multiple “big-M” values often lead to performance problems.
Deciding which formulation works better needs often
experimentation.

v vy

» Special branching rules
In many systems, for example, Special Ordered Sets are
available.

» Cutting planes
These are constraints that are added to a relaxation to “cut off”
the optimal relaxation solution x*. Often are problem specific but
there are also general techniques (e.g. Gomory cuts).

School of Science Spring 2015
267/333

A Aalto University T-79.4101 Discrete Models and Search

lp_solve

» 1p_solve is a a public domain MIP solver, see

http://lpsolve.sourceforge.net/ for latest version.
1p_solve accepts a number of input formats

Example. 1p_solve native format
min: x1 + x2 + 3x3;

xl - x2 <= 1;

2x2 - 2.5x3 >=1;

-7x3 + x2 = 3;
> lp_solve < example
Value of objective function: 3
Actual values of the variables:

x1 0
x2 3
x3 0

A

Aalto University T-79.4101 Discrete Models and Search
School of Science

Spring 2015
268/333

http://lpsolve.sourceforge.net/

Solving Linear Relaxations

» Linear Relaxation of a MIP gives a linear program (LP).

» There are a number of well-known techniques for solving LPs
» Simplex method
The oldest and most widely used method with very mature
implementation techniques.
Worst-case time complexity exponential but seems to work fairly
well in practice.

> Interior point methods
A newer approach; polynomial time worst case time complexity;
implementation techniques advancing

» Next, the Simplex method is reviewed as an example.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
269/333

Solving LP’s

X2 X1 >2 —2X1 + X > —4
X0 < 4
min x;+2x> s.t T
X1+ X2 > 4
—2x1+xo >—4 T @22
2 < x4 (8/3,413)
X2 S 4
f f r\ X1
X1 +x2 >4

One can show that an optimal solution occurs at an extreme points
(“corner point”) of the feasible region of the LP. Considering all of these
in turn, one can thus find an optimal solution.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

2701333

Simplex Method

» Assumes that the linear program is in standard form:
n
min Z X s.t.
j=1

n
Za,-,-x,-:b,-, i=1,....m
j=1

x>0, j=1,...,n

» Extreme points of its feasible region correspond to so-called
basic feasible solutions.

» The basic idea: start from a basic solution and look at the
adjacent ones. If an improvement in cost is possible by moving to
an adjacent solution, we do so. An optimal solution has been
found if no improvement is possible.

T79.4101 Discrete Models and Search

Aalto University
School of Science Spring 2015
271/333

Basic Feasible Solutions

» Assume an LP in standard form with m linear equations and n

variables xy,...,X,, m < n, and that the columns of the constraint
matrix A = (a;) are linearly independent.

A basic solution satisfies the following conditions:
» n— mvariables are set to 0 and

» the assignment for the other m variables (the basis) gives a
unique solution to the resulting set of m linear equations.

This means that a basic solution is obtained by choosing m
variable as the basis, setting the other n— m variables to zero
and solving the resulting set of equations for the basic variables.
If there is a unique solution, this is gives a basic solution.

A basic feasible solution (bfs) is a basic solution such that every
variable is assigned a value > 0.

A

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015

2721333

Example
» Consider the LP
min 2Xo + X4 + 5x7

Xy + X2 + X3 + Xa = 4
X + X5 = 2
X3 + X = 3
3x2 + X3 + x7 = 6
X1y...,X7 >0
» For example, the basis (xs, X5, Xs, X7) gives a basic feasible
solution x0 = (0,0,0,4,2,3,6) because
X4 =4, x5 = 2,Xg = 3,x7 = 6 is the unique solution to the
resulting set of equations:
0 + 0 + 0 + x4 = 4
0 + X5 = 2
0 + Xs = 3
3-0 + O + x; = 6

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
273/333

Moving from bfs to bfs

» When moving from one bfs to another the idea is to remove one
variable from the basis and replace it with another. This is called
pivoting.

» In the Simplex algorithm, this is organized as a manipulation of a
tableau where, for instance, a set of equations

3X1 + 2X2 + X3 = 1
5¢ + X2 + x3 + x4 = 3
2X0 4+ 5% 4+ x3 + x5 = 4

is represented as

X1 Xo X3 X4 Xs
113 2 1 0 O
3/]5 1 1 1 0
4,2 5 1 0 1

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
274/333

Tableaux

» Pivoting is handled by keeping the set of equations diagonalized
with respect to the basic variables.

» This can be achieved using elementary row operations (Gaussian
elimination): multiplying a row with a non-zero constant; adding a
row to another.

Given a basis B= (X3, X, X5), we
can transform the tableau to a di-
agonalized form w.r.t. it by multi-

Example.
Consider the set of equations

X1 Xo X3 X4 Xs plying Row 1 with -1 and adding
113 2 1 0 0 it to Rows 2 and 3:
3|5 1 1 1 0 R —
412 5 1 0 1 T3 2 1 0 o

2, 2 -1 0 1 0
3|—1 3 0 0 1

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015

275/333

Tableaux—cont’d

» We denote by x;; the entry on the ith row and jth column in a
tableau.

» Notice that in the diagonalized form column 0 gives the values of
the basic variables in the bfs x0 in question:

XOB(,-) :x,-’o,i:1,...,m

where B(i) denotes the column of the ith basic variable.
» Example. Consider the set of equations:

X1 Xo X3 X4 Xs
1 3 2 1 0 0
2 2 -1 0 1 O
3| —1 3 0 0 1

Given the basis B = (X3, Xs,Xs), B(1) =3,B(2) = 4,B(3) =5
and for its basic solution x0 holds: x03 =1,x04 =2,x05 = 3

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

276/333

Pivoting

» In pivoting a chosen variable x; enters the basis and another
variable x; leaves it.

> In the tableau this defines a pivot element x;; where column j
corresponds to the entering variable x; and row / to the leaving
variable x; such that B(/) = i. We say that we pivot on x;.

Example

Consider the tableau

Xq Xo X3 X4 Xs
1 3 2 1 0 O
2 2 -1 0 1 O
3|1 3 0 0 1

and the case where x; enters and x5 leaves the basis.
Now the pivot element is xq y as B(1) = 3.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015

277/333

Pivoting

> In pivoting the tableau is brought to the diagonalized form w.r.t.
the new basis using elementary row operations (Gaussian
elimination):

» for the pivot row /, all elements are divided by the pivot element
and, hence, the pivot element in the new tableau is 1;

» for other rows i, the resulting pivot row multiplied by X; ; is
subtracted from the row, and, hence all elements in column j
(except the pivot element) are 0 in the new tableau.

» This means that

! _ Xig _
Xlﬁq—m q—O,...,n

o / _ . »
Xiq = Xi,g — Xi,jX) g g=0,....nji=1,....mi#1,

where x;; and X/ jare the old and new tableaux, respectively.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015

2781333

Example

» Consider the tableau below and the pivot element xy 5.

Xq Xo X3 X4 Xs
1 3 2 1 0 O
2 2 -1 0 1 0
3| -1 3 0 0 1

> After pivoting we obtain a new tableau:

X X2 X3 X4 X5
o117
dlo 4 1 4 ;
3 3 3
Forexample:sz:2—2-1:0,x272:—1_2.§:_%
X3=0-2-3=—fandxe=3-(-1)-§=73.

» The new basis is (Xy, X4, Xs5) and, hence,
B(1) =1,B(2) = 4,B(3) =5.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

2791333

Cost Function in the Tableau

» A cost function z=Y" ; cix;

can be added as an extra
equation —z+ Y ,cx;=0to
the tableau (no need to add a
column for z).

To start, we need a bfs and to
make zero the ¢;s for the basic
variables.

This can be done using
elementary row operations.
Consider the example with

X3, X4, and x5 as the basis.

After transformation to the
diagonalized form, subtract the
resulting Rows 1, 2, 3 from
Row 0, to get the desired form.

» Our running example and a
cost function
Z=X1+ X2+ X3+ X4+ X5
lead to a tableau:

X1 Xo X3 X4 X
of1t+ 1 1 1 1
113 2 1 0 O
3|5 1 1 1 0
412 5 1 0 1
Xq Xo X3 X4 Xs
-6|-3 -3 0 0 O
1 3 2 1 0 O
2 2 -1 0 1 0
3| —1 3 0 0 1

A

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015

280/333

Choosing a Profitable Column

>

It turns out that the cost function can be improved if we move to a
bfs containing a non-basic variable x; where the corresponding
value ¢; in the tableau is negative.

If no such ¢; exists, then an optimal solution has been found.

Consider the previous example with the basis (X3, X4, X5). Now
the equation for the cost function is —z —3x; —3x> = —6, i.e.,

z = —3x1 —3x2+ 6. Hence, we can improve (decrease) the value
of the cost function by increasing the value of xy or xo (because
¢ = ¢ = —3 < 0) and, hence, the current bfs x0 = (0,0,1,2,3)
is not an optimal one.

Hence, we could move to a new bfs with entering variable x; or xo
to improve the cost function.

But how to choose the leaving variable?

School of Science Spring 2015

A Aalto University T-79.4101 Discrete Models and Search

281/333

Choosing the Leaving Variable

The idea is to move to an adjacent bfs containing the entering
variable x;.

In order not to miss an adjacent bfs we need to choose a pivot
element xi ; with the smallest positive ratio Xk—j’ that is, a xx; such

Xk
that

Xk,0 . Xi0
—= = min(—)
ki x>0

Then the leaving variable is B(k).
Note that the rule for choosing the leaving variable is sufficient for

maintaining a feasible solution (all variables, including the basic
ones, stay non-negative).

A

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

282333

Example

» Consider the tableau

Xq Xo X3 X4 Xs
—-6|-3 -3 0 0 O
1 3 2 1 0 O
2, 2 -1 0 1 O
3| —1 3 0 0
> If x> is the entering variable, the ratios are: i %
I
2|
3| 3

» Then the pivot element is x4 » because the smallest positive ratio

% is % for i = 1 and the leaving variable is x5 as B(1) = 3.

School of Science Spring 2015
283/333

A Aalto University T-79.4101 Discrete Models and Search

Simplex algorithm

procedure Simplex
opt := “no”; unbounded := “no”;
while opt = “no” and unbounded = “no” do
if ¢; > 0 for all j then opt := “yes”
else
choose any j such that ¢; <0 ;
ifx;; < 0 for all / then unbounded := “yes”

else
find min (2:2) = k0
x,-,j,>0 Xi'j Xk’j
and pivot on x
end if
end if
end while.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
284/333

Example

» Consider the tableau on the Xi Xo X3 Xa Xs
right (above). —6|—-3 -3 0 0 O

» Running Simplex on this 1 3 2 1 0 0
tableau, we notice that for 2 2 -1 0 1 0
variables x; and xz, ¢; < 0. 3| —1 3 0 0 1

» If we choose ¢,, then we need
to pivot on x4 » as argued in Xy Xo X3 X4 Xs
the previous example. —3 S0 2 0 0

» Then the new tableau is on the 3 51 7 0 o0
right (below). 21 £ 0 LI 1 0

» Here all ¢js are non-negative 2l-5 o -2 o 1

and, hence, an optimal
solution (0, 3,0, 2,32) has
been found with cost 3
(-z=-3).

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015

285/333

Further Issues
Implementations of the Simplex methods also need to address:

» Finding the first bfs to start Simplex:
Implementations of the simplex method perform an initial phase
with artificial variables (one for each constraint) whose sum is to
be minimized to obtain a bfs for the original problem (or
determine infeasibility).

» Treating degenerate solutions (some basic variables have zero
value) which may lead to cycling:
Bland’s rule avoids cycling by using the variable index for
determining the entering variable and to break ties between
leaving variable candidates.

» How to choose the entering variable:
nonbasic gradient method (choosing the most negative ¢;),
greatest increment method, Bland’s rule ...

School of Science Sm"ﬁrzgﬁ

A Aalto University T-79.4101 Discrete Models and Search

Summary: Solving MIP’s

» Experiment with different formulations as well as different solvers
and parameters/methods to see which performs best.

> Avoid multiple “big-M” values.
» Try to break symmetries.
» Do not introduce unnecessary integer variables.

» Scale the coefficients in the constraints to values as small as
possible.

» Try to use sparse matrix representations if the problem is large
and memory consumption becomes an issue.

School of Science Spring 2015
287/333

A Aalto University T-79.4101 Discrete Models and Search

Lecture 11: Introduction to Convex Optimization

Outline

» Introduction to non-linear convex optimization
» Projected gradient method for problems with “box constraints”
» Newton’s method for unconstrained optimization
Goal for today: For a given suitable (convex) non-linear optimization

problem, learn to apply the projected gradient and Newton’s method
for obtaining an iterative solution method.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
288333

Review: MIP and LP

> In the last two lectures we discussed linear programming models
for combinatorial optimization problems and a general-purpose
method for solving these (branch-and-bound and linear
relaxation).

» Linear relaxations then lead to linear programs with no integer
variables, which can be solved, e.g., by the simplex method.

» Often one also encounters problems that have a non-linear
objective function and/or constraints.

» Examples for non-linear optimization problems with integer
variables: cross-layer network optimization, supply chain
optimization, some types of problems that involve random
variables (with known probability distribution).

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015

289/333

General optimization problems

>

Consider a general optimization problem with no integer
constraints

min f(x) st

xeX

where x = (x1,...,x,)7, f: R" = R and X C R",

For example: X = {x € R" | gi(x) <0,Vi=1...m}, where

gi- R" — R.

For f(x) = ¥y ¢ix; and gi(x) = b; — Y[a;x; we obtain the
special case of linear programming.

Note that the formulation above may result from the relaxation of

a problem with integer variables and non-linear constraints and
objective function.

School of Science Spring 2015

A Aalto University T-79.4101 Discrete Models and Search

290/333

General optimization problems —cont’d

In general it is hard to come up with (provably) good methods that
terminate in reasonable time.

In fact, the worst-case complexity of current global optimization
methods is exponential in problem size.

However, if the problem is “sufficiently small” and constraint and
objective functions are “nice behaving” one can sometimes obtain
methods that converge reasonably fast to good solutions.

For example if the f and g; are convex and differentiable, one can
typically find good solutions in reasonable time (all local minima
of convex functions are global minima).

The branch-and-bound method can be extended to these cases
when there are integer variables.

A

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015

291/333

Notation and important concepts
» Recall the dot product (a.k.a. scalar product)
a-b=|a|| ||b]| cos6 =Y ab;=a’b,

where a,b € R" are column vectors (gi\'/en w.r.t. the standard
basis) and 6 is the angle between them.

» For a differentiable function f: R” — R, its gradient Vf(x) has as
entries the partial derivatives of f, i.e., Vf; = df /dx;.

» For a fixed point X, its first-order Taylor expansion at X leads to an
approximation£(x) ~ (%) + V(%) - (x — %).

» ... and its second-order Taylor expansion at X

F(x) ~ F(R) + VH(R) - (x— %) + %(x—)?)-sz()?) (x—%),

where V2(X) is the matrix containing the second-order partial
derivatives of f at X, a.k.a. Hessian matrix.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
2921333

Convex sets

Pictures: Wikipedia
Convex set Non-convex set

» Aset X CR"is said to be convex if, for all x,y € X and alll
t € [0,1] we have z € X where z is the point
z=(1—t)x+ty.
» Note that this means that we can travel along a line segment from
one point in the set to any other point in the set without ever
leaving X.

Aalto University T-79.4101 Discrete Models and Search
' School of Science Spring 2015
[]

293/333

Ccf:(r)wex function

£(x) + V()T (y = x)

(x,£(x))

X

Necessary and sufficient condition for (differentiable) convex functions:

f(y) = f(x)+Vi(x)"(y —x),

where V{(x) is the gradient of f at x. Note that this implies that a local
optimum x* (with Vf(x*) = 0) is always a global optimum.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
2941333

Euclidean projection

» We assume that X itself is a convex
non-empty set.

» In this context it also often useful to
consider the projection [x']* of a
point x’ € R" onto X, which is the
closest point to x’ that is in X.

» Assume for simplicity
X={x | [<x <uy;forallj} (“box
constraints”).

We can explicitly give the projection as

/ it <1
X1T=4 y x>y,

/

x. otherwise

Aalto University
School of Science

T79.4101 Discrete Models and Search

Projected gradient method

» A popular and simple method that often serves as a first
candidate for problems with differentiable objective functions is
the projected gradient method (a.k.a. steepest descent).

» Basic idea: similar to local search methods for discrete
optimization, the method maintains a feasible current solution and
performs “small updates” in iterations.

» Search guided by the gradient of the objective function, which is a
good approximation within the close neighborhood of the current
solution.

» Note: the objective function f decreases along the direction of
—VH.

» Particularly useful for “black box” or “ distributed optimization”.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
296/333

Projected gradient method —cont’d

» Fix an initial feasible solution x(0) € X and at each iteration
k=1,2,...do

x(k +1) = [x(k) = 8(k)VI(x (k)] .

where [-]" denotes the projection onto the set X, 8(k) is a small
step size and Vf(x(k)) is the gradient of the objective at
x = x(k).

> It can be shown that if the gradient Vf is Lipschitz continuous and
the step sizes are sufficiently small, then fixpoints of this update
rule are local optima (see Chapter 2.3 in Bertsekas 1999).

» The resulting method in some sense very similar to
steepest-descent local search.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
297/333

Projected gradient method: example
» Simple example: let
f(x1,x2) = log(e® ! + e*2)
and X = {(x1,%) | x1,x2 >0}

» For the gradient we have

1 2 g2t
Viba) = G an (o

» Fix step size §(k) = §, so the method for this case becomes:

X1(k+1) = [X1(k)—m*2 92X1+1]+

xo(k+1) = [x2(k) * e%2]t

B 62X1+1 + eXg

» Note: this function is convex and has a (global) minimum at
x* = (0,0) with f(x*) ~ 1.3133.

School of Science

A Aalto University T-79.4101 Discrete Models and Search

Spring 2015
298/333

Projected gradient method: example —cont’d

2.5

{x(k)-x*]
2 L
15 ¢
1 L
05 ¢
0 . . .
0 50 100 150 200

» Plot shows distance to optimal over the number of iterations.
» Here we have chosen: x(0) = (2,1) and §(k) = 0.05 for all k
(based on experimentation).

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
299333

Step-size rules
There are quite a few rules for choosing step size, for example:

» constant step size: §(k) = §; simple but if set too large does not
allow convergence, when set to small leads to very slow
convergence.

» diminishing step size: choose step sizes so that

8(k) — 0, ZS

may lead to slow convergence but offers good theoretical
convergence properties. Example: 8(k) = 1/k.

> minimization rule: minimize objective function along the chosen
direction,i.e., choose 8(k) such that

F(x(K) — 8(K)V(x(k))) = min f(x(k) — SVF(x(k)).

>0

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
3001333

Linesearch
» Some step-size rules may lead to slow convergence or even
divergence.

» The minimization rule (or restricted versions limiting the search to
some small interval) are good candidates. However, it may be
computationally intensive to solve this problem at each iteration.

» One popular alternative is the so-called backtracking linesearch.

> Its approach is based on the idea of starting at a large value (e.g.,
1) and decreasing the step-size until improvement is observed.

» Formulated more generally for any descent direction Ax(k)
(note: earlier we had Ax(k) := —Vf(x(k))) that satisfies

VH(x(k))" Ax(k) < 0.

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
301/333

Backtracking line search

procedure BackirackingLS

choose descent direction Ax(k) for f at x(k) € X;

choose o € (0,0.5),B € (0,1);

while f(x(k) + tAx(k)) > f(x(k)) + ot Vi(x(k))T Ax(k) do

t:=1;
t<— Bt
end while.

Note: after termination of
BacktrackingLS we set

3(k) « t,

where t is the final value for
the step size that satisfies
the termination condition.

f(x +1 x)
) +tOfK) x
f(x) + o t Of(X) x]

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015
302/333

Example —cont'd

» For a= 0.4 and 3 = 0.5, the projected gradient method applied
to the previous example converges within 12 iterations

» Note: here Ax(k) := —Vf(x(k))

» In practice, some fine tuning of these parameters are required

5 : : ‘
2 constant 0.05 stepsize

5k backtrack LS
15

1 L=
05

0

0 50 100 150 200

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
303/333

Slow convergence of projected gradient method

» In some cases the convergence can still be slow

> Intuition: the method is prone to exhibit “zig-zaging” behavior in
cases when the gradient is close to orthogonal to the direction
towards a (local) optimum

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
3041333

Newton’s method

» Another popular method that is typically even faster (in number of
iterations) than the previous one is Newton’s method
(a.k.a. Newton Raphson method)

» Basic idea: instead of using the original function, try to minimize a
local approximation of it (i.e., its second-order Taylor expansion)

F(x(k)+ v) == f(x(k)) + VF(x(k)) v + %vTvzf(x(k))v,

where v is a vector and V2f(x(k)) is the Hessian at x(k).

Comparison of gradient method (shown in
green) and Newton’s method (shown in
red).

Picture: Wikipedia

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

305/333

Newton’s method —cont’d

» Assume for now X = R", so no projection to X is required.

» Consider for a fixed x(k) the function f, which is a quadratic
function in v:

F(x(k)+ v) == f(x(k)) + VF(x(k)) v + %vTvzf(x(k))v.
» Determine the gradient w.r.t. v and solve for v, so one obtains
v =—V2f(x(k))'VF(x(k)).
» Basic idea: move along direction v as determined above until
f(x(k)) —f(x(k)+Vv) <&,

where € is a “small” positive number.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
3061333

Newton’s method cont.

> Note: for every iteration k we compute the Newton step
v(k) = —V2(x(k)) " VF(x(k)),

which includes computing the inverse of the Hessian for x = x(k).

» Additionally, to determine the step size d(k), one typically
performs a line search as earlier shown for the projected gradient
method. Then one has the update rule

x(k+1) = x(k)+8(k) v(k).

» Although matrix inversion is expensive, the additional effort of the
Newton method cmp. to gradient methods usually pays off in
faster convergence.

» Under some assumptions one can show strong convergence
results (super-linear) for the Newton method (see for example
Boyd and Vandenberghe 2004).

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
307/333

Example cont.

» Consider the objective function of the previous example
f(x1,%) = log(e® ! + %)

» We have for the gradient

1 2 e2X1+1
Vf(x1 7X2) = e2x1+1 + X < e*2

and for the Hessian

2 e2X1 +xo+1 2 1
2 —

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
308/333

Example cont.

» We then obtain

V2r(x(K)) " = (11" 4+ e)? < 11 >

2 @2x1+x2+1
» So the Newton step becomes
v(k) = —V2f(x(k)) "' VI(x(k))
(et +e%2)2 (1 1 1 2 g2t
= ——2 e2X1+xp+1 1 2 e2xi+1 4 gxe < e*2 >
62X1+1 + eXg 2 62X1+1 + eXz
= 2 @2x1+x2+1 < 2 g2x+1 1 2ex)

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
309/333

Comments regarding Newton method

» Note that in unfortunate cases the Hessian is singular or close to
singular (i.e., cannot be inverted) and thus the Newton method
cannot be applied directly.

» One way to mitigate this is to consider the slightly modified matrix
V2f(x) +¢lD,
where D is the identity matrix and € is a small positive constant.

» Further, since matrix inversion is a relatively costly operation,
implementations use techniques to offset accuracy by
performance (e.g., approximate Hessian, only recompute now
and then).

School of Science Spring 2015
310/333

A Aalto University T-79.4101 Discrete Models and Search

Constrained optimization

v

Typically, however, having no constraints (except simple variable
domains) is more of an exception.

v

Newton’s method can be extended to handle equality constraints.

v

One method for dealing with constraints is to eliminate them via
Langrangian relaxation.

v

Interior point methods are also based on this approach.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
3111333

Lecture 12: Advanced topics

Outline
» Introduction to genetic algorithms

Goal for today: For a given high-level description of a computational
optimization problem, learn to devise a genetic algorithm.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
3121333

Genetic algorithms

Belong to class of evolutionary algorithms, inspired by
evolutionary biology (inheritance, mutation, selection,..)

Evolutionary algorithms more generally are examples of so-called
metaheuristics, which include local search as another special
case.

GA’s are general-purpose “black-box” optimization methods
proposed by J. Holland (1975) and K. Dedong (1975).

Method has attracted lots of interest, but theory is still incomplete
and the empirical results inconclusive.

Main idea: encode solutions to an optimization problem and let
solutions evolve from one generation to the next.

A

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015

313/333

The basic algorithm

>

We consider the so called “simple genetic algorithm”; also many
other variations exist.

Assume we wish to maximize a utility function ¢ defined on n-bit
binary strings:

c:{0,1}" = R.
Other types of domains must be encoded into binary strings,
which is a nontrivial problem. (Examples later.)
View each of the candidate solutions s € {0,1}" as an individual
or chromosome.
At each stage (generation) t the algorithm maintains a population
of individuals p; = (s1,...,Sm)-
The population may contain multiple copies of the same
individual.

School of Science Spring 2015

A Aalto University T-79.4101 Discrete Models and Search

314/333

The Basic Algorithm—cont’d

Three operations defined on populations:
» selection 6(p) (“survival of the fittest”)

» recombination p(p) (“mating”, “crossover”)
» mutation u(p)

The Simple Genetic Algorithm:

function SGA(oc, p, u):
p < random initial population;
while p “not converged” do
p' < o(p);
P’ p(p);
p < u(p")
end while;
return p (or “fittest individual” in p).
end.

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015
315/333

Selection

From the current generation, some individuals are selected to
form the basis for the next generation (sometimes called mating
pool); the same individual may be selected multiple times

Let m be the size of the population.
Denote by 2 = {0,1}" the set of all binary strings of length n.

The selection operator 6 : Q" — Q™ maps populations
probabilistically:

Given an individual s € p, the expected number of
copies of s in 6(p) is proportional to the fitness of s in p.
The fitness is a function of the utility of s compared to the
utilities of other s’ € p.

This class of selection methods is also referred to as proportional

selection.

A

Aalto University
School of Science

T79.4101 Discrete Models and Search

Spring 2015
316/333

Selection—cont’'d
Some possible fitness functions f(s, p):

» Relative utility (= “canonical GA”):

o(s) s cls)

— Y c(s)
m sep
» Relative rank:
r(s) 2
f(S,,O): 1 :m+1'r(S),
— Y r(s)
m s'ep

where r(s) is the rank of s in a worst-to-best ordering of p
according to ¢ (worst s,, has r(s,) = 1, best sp, has r(sp) = m).

> Note: for both cases Y sc, f(s,p) = m.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
317/333

Selection—cont’d

» There are many ways to perform selection based on fitness.

» A popular one: Roulette-wheel selection (“stochastic sampling
with replacement”)

» Assign to each individual s € p a probability to
be selected in proportion to its fithess value
f(s,p). Select mindividuals according to this
distribution.

» Pictorially: Divide a roulette wheel into m
sectors of width proportional to
f(s1,p),...,f(sm,p). Spin the wheel m times.

Picture: Betzaar / Wikipedia

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015

318/333

Recombination

» Recall order of operations:

1. selection 2. recombination 3. mutation.

Given a population p, choose two individuals s, s’ € p uniformly at
random. With probability p,, apply a crossover operator p(s,s’)
to produce two new offspring individuals t,t’ that replace s, s’ in
the (new) population (with probability 1 — p, parents s, s’ remain).

Repeat the operation m/2 times, so that on average each
individual participates once. Denote the total effect on the
population as p’ = p(p).

Practical implementation: choose % -m random pairs from p and

apply crossover deterministically (and let the remaining
(1 —pp) - mindividuals stay unmodified).

Typically p, ~0.7...0.9.

A

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015

319/333

Recombination—cont’d

Possible crossover operators:

» 1-point crossover:
110110011001><011030011001
01101011011 110111011011
» 2-point crossover:

11010011001><11§101011001
01101011011 01010011011

O 0O=0 O

» uniform crossover:

11010011001><01011011001
01101011011 11100011011

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015
320/333

Mutation

>

Recall order of operations:
1. selection 2. recombination 3. mutation.

Given population p, consider each bit of each individual and flip it
with some small probability p,. Denote the total effect on the
population as p’ = u(p).

Typically, p, ~ 0.001...0.01. Apparently good choice: p, = 1/n
for n-bit strings.

Theoretically mutation is disruptive. Recombination and selection
should take care of optimization; mutation is needed only to
(re)introduce “lost alleles”, alternative values for bits that have the
same value in all current individuals.

In practice mutation + selection = local search. Mutation, even
with quite high values of p,, can be efficient and is often more
important than recombination.

A

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015

321/333

Data Representations

General comments on coding:

>

If the function to be optimized is not naturally defined on binary
strings, then the domain must be encoded. This is a nontrivial
task for GA’s, because the representation influences the
computation.

Real numbers can be block-coded into sequences of integers.

For integers, the Gray code should be considered as an
alternative to the standard binary representation.

Advantage of Gray code: a transition from integer k to kK + 1
requires only one mutation in Gray code, but may require more in
the standard representation.

Other encodings are possible, e.g., cycles/permutations, trees,
graphs ...

A

Aalto University
School of Science

T-79.4101 Discrete Models and Search
Spring 2015

3221333

Gray code conversion

integer standard Gray

(k) (arazas) (bibzbs)

0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

aj i=1
» standard — Gray conversion: b; =< , ’
ai—19a, i>1

» Gray — standard conversion: a; = @}:1 by

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
3231333

Analysis of GA’s
Hyperplane sampling:

> A heuristic view of how a genetic algorithm works.

» A hyperplane (actually subcube) is a subset of Q = {0,1}",
where the values of some bits are fixed and other are free to vary.
A hyperplane may be represented by a schema H € {0,1,%}".

» E.g. schema 01 xx’ represents the 3-dimensional hyperplane
(subcube) of {0,1}° where bit 1 is fixed to 0, bit 3 is fixed to 1,
and bits 2, 4, and 5 vary.

» Individual s € {0,1}" samples hyperplane H, or matches the
corresponding schema if the fixed bits of H match the
corresponding bits in s. (Denoted s € H.)

» Note: given individual generally samples many hyperplanes
simultaneously, e.g. individual 101’ samples 10", '1 x 1’, etc.

Aalto University T-79.4101 Discrete Models and Search
A School of Science Spring 2015
324/333

Hyperplane sampling
Consider e.g. the following utility function and partition of €2 into
hyperplanes (in this case, intervals) of order 3:

c(s)

Here the current population of 21 individuals samples the hyperplanes
so that e.g. '000 * %’ and ‘010 * %’ are sampled by three individuals
each, and '100 * x’ and *101 * %’ by two individuals each. Hyperplane
‘010« x" has a rather low average fitness in this population, whereas
111 %" has a rather high average fitness.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
325/333

Hyperplane sampling—cont’d

» order of hyperplane H:
o(H) = number of fixed bitsin H = n—dim H

» m(H,p) =
number of individuals in population p that sample hyperplane H.
> average fitness of hyperplane H in population p:

f(H?p) = # Z f(S,p)

m(H,p) seHNp

Heuristic claim: selection drives the search towards hyperplanes of
higher average fitness.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
3261333

Holland’s schema theorem

» By making simplifying assumptions (very large population size)
one can make predictions on the short-term evolution of the
population (a.k.a. Holland’s schema theorem).

» The formula leads to so-called “Building Block Hypothesis™:

In a genetic search, short, above-average-fitness schemata
of low order (“building blocks”) receive an exponentially
increasing representation in the population.

» Please see more details on the schema theorem in the slides
(those marked with “(*)” are not exam relevant).

School of Science Spring 2015

Aalto University T-79.4101 Discrete Models and Search
327/333

The effect of crossover on schemata (*)

» Consider a schema such as

H=%%x11%%x01%1 %%
N———
A(H)=7

and assume that it is represented in the current population by
some s € H.

> If s participates in a crossover operation and the crossover point
is located between bit positions 3 and 10, then with large
probability the offspring are no longer in H (H is disrupted).

» On the other hand, if the crossover point is elsewhere, then one
of the offspring stays in H (H is retained).

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
328/333

The effect of crossover on schemata—cont'd (*)

» Generally, the probability that in 1-point crossover a schema
H = {0,1,%}" is retained, is (ignoring the possibility of “lucky
combinations”)
A(H)
1
where A(H) is the defining length of H, i.e. the distance between
the first and last fixed bit in H.

» More precisely, if H has m(H, p) representatives in population p
of total size m:

Pr(retain H) ~ 1 —

A(H m(H,
Pr(retain H) > 1 — p 1) Puitt, Paitt <1 — %

School of Science Spring 2015

A Aalto University T-79.4101 Discrete Models and Search

320/333

The Schema “Theorem” (*)

Heuristic estimate of the changes in representation of a given schema
H from one generation to the next. Proposed by J. Holland (1975).

Denote:

m(H,t) =number of individuals in population at generation ¢
that sample H.

Then:
Recall: Selection — Recombination — Mutation
(i) Effect of selection:

m(H,t') ~ m(H,t)- f(H)

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
3301333

The Schema “Theorem”—cont’d (*)

(i) Effect of recombination:

m(H,t") ~ (1 —py)m(H,t") + p, | m(H,t")Pr(retain H) + m- Pr(luck)

j,o—/
- 5o 0y o, (1 200 (00
=m(H,?) <1 —Pp ﬁ(_HB <1 - m(l,:; tl)))

(iii) Effect of mutation:

m(H,t+1) ~ m(H,t")- (1 —p,)°*

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
3311333

The Schema “Theorem”—cont’d (*)

In summary, then:

m(H, t+1) 2 m(H, 1) F(H)- <1 g2t (1 - M)) (1= py)o™)

1 m

The formula leads to so called “Building Block Hypothesis™

> In a genetic search, short, above-average fitness schemata of low
order (“building blocks”) receive an exponentially increasing
representation in the population.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
3321333

The Schema “Theorem”: Criticisms (*)

» Many of the approximations used in deriving the “Schema
Theorem” implicitly assume that the population is very large. In
particular, it is assumed that all the relevant schemata are well
sampled. This is clearly not possible in practice, because there
are 3" schemata of length n.

» The result cannot be used to predict the development of the
population for much more than one generation:

1. the long-term development depends on the coevolution of the
schemata, and the “theorem” considers only one schema in
isolation;

2. an “exponential growth” cannot continue for long in a finite
population.

» Proper treatment: analyze the genetic search as a stochastic
process (Markov chain). This is unfortunately very difficult.

Aalto University T-79.4101 Discrete Models and Search
School of Science Spring 2015
333/333

