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Separation of complex valued signals is a frequently arising problem in signal processing. For example,
separation of convolutively mixed source signals involves computations on complex valued signals. In
this article, it is assumed that the original, complex valued source signals are mutually statistically
independent, and the problem is solved by the independent component analysis (ICA) model. ICA is a
statistical method for transforming an observed multidimensional random vector into components that
are mutually as independent as possible. In this article, a fast fixed-point type algorithm that is capable
of separating complex valued, linearly mixed source signals is presented and its computational efficiency
is shown by simulations. Also, the local consistency of the estimator given by the algorithm is proved.

1. Introduction

Separation of complex valued signals is a frequently

arising problem in signal processing: frequency-

domain implementations involving complex valued

signals have advantages over time-domain implemen-

tations. Especially in the separation of convolutive

mixtures it is a common practice to Fourier trans-

form the signals, which results in complex valued sig-

nals. In this article, we present an algorithm for the

separation of complex valued signals. Our framework

is Independent Component Analysis.

Independent component analysis (ICA)1,2 is a

statistical model where the observed data is ex-

pressed as a linear combination of underlying latent

variables. The latent variables are assumed non-

Gaussian and mutually independent. The task is to

find out both the latent variables and the mixing

process. The ICA model used in this article is

x = As (1)

where x = (x1, . . . , xm) is the vector of observed

random variables, s = (s1, . . . , sn) is the vector of

statistically independent latent variables called the

independent components, and A is an unknown con-

stant mixing matrix. The above model is identifi-

able under the following fundamental restrictions:1

at most one of the independent components sj may

be Gaussian, and the matrix A must be of full col-

umn rank. (The identifiability of the model is proved

in Ref. 1 in the case n = m.)

A fast fixed point algorithm (FastICA) for the

separation of linearly mixed independent source sig-

nals was presented by Hyvärinen and Oja.3,4 The

FastICA algorithm is a computationally efficient and

robust fixed-point type algorithm for independent

component analysis and blind source separation.

In this article, we show how the FastICA algo-

rithm can be extended to complex valued signals.

Both the independent component variables s and the

observed variables x in model (1) assume complex

1



2 E. Bingham & A. Hyvärinen

values. For simplicity, the number of independent

component variables is the same as the number of

observed linear mixtures, that is, n = m. The mix-

ing matrix A is of full rank and it may be complex as

well, but this is optional. A necessary preprocessing

of the data x is whitening, which can always be ac-

complished by e.g., Principal Component Analysis.1

We assume that the signals sj are zero-mean and

white, i.e., real and imaginary parts of sj are uncor-

related and their variances are equal; this is quite

realistic in practical problems.

Algorithms for independent component analysis

of complex valued signals are also presented in Refs. 5

and 6. Both of these algorithms are computationally

more intensive than our algorithm, and no proofs of

consistency are given in either of the references. In

contrast, we prove the local consistency of the es-

timator given by our algorithm, and show its com-

putational efficiency by simulations. Our algorithm

is also more robust against outliers than kurtosis-

based ICA algorithms (see Ref. 3 for a discussion

on robust estimators for ICA). Also, our algorithm

is capable of deflationary separation of the inde-

pendent component signals; it is possible to esti-

mate only one or some of the independent compo-

nents, which is useful if the exact number of inde-

pendent components is not known beforehand. In

deflationary separation the components tend to sep-

arate in the order of decreasing non-Gaussianity,

which often equals decreasing “importance” of

the components.

This paper is organized as follows. We first go

through some basic concepts of complex random

variables in Sec. 2. We then discuss the indetermi-

nacy that is inherent in estimating complex valued

independent components (Sec. 3). In Sec. 4, we mo-

tivate our approach of ICA estimation and discuss

the contrast function used in our algorithm. The

fast fixed-point algorithm is presented in Sec. 5, and

simulation results confirming the usefulness of the

algorithm are shown in Sec. 6. Section 7 discusses

connections to other ICA research. Finally, some

conclusions are drawn in Sec. 8.

2. Basic Concepts of Complex

Random Variables

A complex random variable may be represented as

y = u + iv where u and v are real-valued random

variables. The density of y is f(y) = f(u, v) ∈ R2.

The expectation of y is E{y} = E{u}+ iE{v}. Two

complex random variables y1 and y2 are uncorrelated

if E{y1y
∗
2} = E{y1}E{y∗2}, where y∗ designates the

complex conjugate of y. The covariance matrix of a

zero-mean complex random vector y = (y1, . . . , yn)

is

E{yyH} =


C11 · · · C1n

...
. . .

...

Cn1 · · · Cnn

 (2)

where Cjk = E{yjy∗k} and yH stands for the

Hermitian of y, that is, y transposed and conju-

gated. In our complex ICA model, all source signals

sj are zero-mean and they have unit variances and

uncorrelated real and imaginary parts of equal vari-

ances. In short, these requirements are equivalent to

E{ssH} = I and E{ssT } = O. In the latter, the ex-

pectation of the outer product of a complex random

vector without the conjugate is a null matrix. These

assumptions imply that sj must be strictly complex;

that is, the imaginary part of sj may not in general

vanish.

A frequently encountered statistics in ICA is

kurtosis, or fourth-order cumulant. For zero-mean,

complex random variables it could be defined, for

example, as in Refs. 6 and 7

kurt(y)=E{|y|4}−E{yy∗}E{yy∗}−E{yy}E{y∗y∗}

−E{yy∗}E{y∗y} (3)

but the definitions vary with respect to the place-

ment of conjugates (∗) — actually, there are 24 ways

to define the kurtosis.7 We choose the definition in

Ref. 8, where

kurt(y) = E{|y|4} − 2(E{|y|2})2 − |E{y2}|2

= E{|y|4} − 2 (4)

where y is white, i.e., the real and imaginary parts

of y are uncorrelated and their variances are equal.

This definition of kurtosis is intuitive since it van-

ishes if y is Gaussian.

3. Indeterminacy of the Independent

Components

The independent components s in the ICA model (1)

are found by searching for a matrix W such that
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s = WHx up to some indeterminacies, which are

discussed in the following. In this paper, we use the

notation s = WHx which is analogous to the nota-

tion in Ref. 4 but differs from the notation s = Wx

used in Ref. 3.

In the real case, a scalar factor αj ∈ R, αj 6= 0

can be exchanged between sj and a column aj of

A without changing the distribution of x: ajsj =

(αjaj)(α
−1
j sj). In other words, the order, the signs

and the scaling of the independent components can-

not be determined. Anyhow, the order of sj may be

chosen arbitrarily and it is a common practice to set

E{s2
j} = 1; thus only the signs of the independent

components are indetermined.

Similarly in the complex case there is an unknown

phase vj for each sj : it is easily proved that

ajsj = (vjaj)

(
sj

vj

)
, |vj | = 1, vj ∈ C . (5)

If sj has a spherically symmetric distribution, i.e.,

the distribution depends on the modulus of sj
only, the multiplication by a variable vj does not

change the distribution of sj . Thus the distribution

of x remains unchanged as well.

From this indeterminacy it follows that it is im-

possible to retain the phases of sj , and WHA is a

matrix where in each row and each column there is

one nonzero element vj ∈ C that is of unit modulus.

Note that the indeterminacy is an inherent property

of complex ICA — it does not follow from the as-

sumptions made in this article.

4. Contrast Function

4.1. Choice of the contrast function

Now we generalize the framework in Refs. 3, 4 and 9

for complex valued signals. One might make a dis-

tinction between “top-down” and “bottom-up” ap-

proaches to ICA.9 In the top-down approach, inde-

pendence is measured by such measures as mutual

information which is often approximated by using

cumulants. This may result in non-robust contrast

functions and burdensome computations. We choose

here the bottom-up approach, where the higher-

order statistics are implicitly embedded into the al-

gorithm by arbitrary non-linearities. We start from

an arbitrary non-linear contrast function and prove

that its extrema coincide with the independent com-

ponents. This bottom-up approach is computation-

ally simple, and the non-linearity can be chosen quite

freely to optimize e.g., the statistical behavior of the

estimator.

Our contrast function is

JG(w) = E{G(|wHx|2)} (6)

where G : R+ ∪ {0} → R is a smooth even function,

w is an n-dimensional complex weight vector and

E{|wHx|2} = 1. Finding the extrema of a contrast

function is a well defined problem only if the func-

tion is real. For this reason our contrast functions

operate on absolute values rather than on complex

values.

Remember Formula (4) for the kurtosis of com-

plex variables: if we chooseG(y) = y2, then JG(w) =

E{|wHx|4}. Thus J essentially measures the kurto-

sis of wHx, which is a classic measure in higher-order

statistics.

Maximizing the sum of n one-unit contrast func-

tions, and taking into account the constraint of

decorrelation, one obtains the following optimization

problem:

maximize
n∑
j=1

JG(wj) with respect to wj ,

j = 1, . . . , n

under constraint E{(wH
k x)(wH

j x)∗} = δjk (7)

where δjk = 1 for j = k and δjk = 0 otherwise.

It is highly preferable that the estimator given by

the contrast function is robust against outliers. The

more slowly G grows as its argument increases, the

more robust is the estimator. For the choice of G we

propose now three different functions, the derivatives

g of which are also given:

G1(y) =
√
a1 + y , g1(y) =

1

2
√
a1 + y

(8)

G2(y) = log(a2 + y) , g2(y) =
1

a2 + y
(9)

G3(y) =
1

2
y2 , g3(y) = y (10)

where a1 and a2 are some arbitrary constants for

which values a1 ≈ 0.1 and a2 ≈ 0.1 were chosen in

this work. Of the above functions, G1 and G2 grow

more slowly than G3 and thus they give more robust

estimators. G3 is motivated by kurtosis (4).
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4.2. Consistency

In Ref. 9, in the context of ICA on real-valued sig-

nals, it was stated that any non-linear learning func-

tion G divides the space of probability distributions

into two half-spaces. Independent components can

be estimated by either maximizing or minimizing a

function similar to (6), depending on which half-

space their distribution lies in. In Ref. 9, a theo-

rem for real valued signals was presented that dis-

tinguished between maximization and minimization

and gave the exact conditions for convergence. In

the following, we show how this idea can be gen-

eralized to complex valued random variables. We

have the following theorem on the local consistency

of the estimators, the proof of which is given in

the Appendix:

Theorem

Assume that the input data follows the model (1).

The observed variables xk, k = 1, . . . , n in x are

prewhitened using E{xxH} = I. The indepen-

dent component variables sk, k = 1, . . . , n in s are

zero-mean and have unit variances and uncorrelated

real and imaginary parts of equal variances. Also,

G : R+ ∪ {0} → R is a sufficiently smooth even

function. Then the local maxima (resp. minima) of

E{G(|wHx|2)} under the constraint E{|wHx|2} =

‖w‖2 = 1 include those rows ak of the inverse of the

mixing matrix A such that the corresponding inde-

pendent components sk satisfy

E{g(|sk|2) + |sk|2g′(|sk|2)− |sk|2g(|sk|2)} < 0

(> 0, resp.) (11)

where g() is the derivative of G() and g′() is the

derivative of g(). The same is true for the points

−ak.

A special case of the theorem is when g(y) = y,

g′(y) = 1. Condition (11) reads now

E{|sk|2 + |sk|2 − |sk|2|sk|2}

= −E{|sk|4}+ 2 < 0 (> 0, resp.) . (12)

Thus the local maxima of E{G(|wHx|2)} are found

when E{|sk|4} − 2 > 0, i.e., the kurtosis (4) of sk is

positive.

5. Fixed-Point Algorithm

We now give the fixed-point algorithm for complex

signals under the ICA data model (1). The algorithm

searches for the extrema of E{G(|wHx|2)}. Details

of the derivation are presented in the Appendix.

The algorithm requires a preliminary sphering

or whitening of the data: the observed variable

xold is linearly transformed to a zero-mean variable

x = Qxold, x = (x1r + ix1i, . . . , xnr + ixni) such

that E{xxH} = I. Whitening can always be accom-

plished by e.g., Principal Component Analysis.1

The fixed-point algorithm for one unit is

w+ = E{x(wHx)∗g(|wHx|2)} −E{g(|wHx|2)

+ |wHx|2g′(|wHx|2)}w

wnew =
w+

‖w+‖ .

(13)

The one-unit algorithm can be extended to the esti-

mation of the whole ICA transformation s = WHx.

To prevent different neurons from converging to

the same maxima, the outputs wH
1 x, . . . , wH

n x are

decorrelated after every iteration. A simple way

to accomplish this is a deflation scheme based on

a Gram-Schmidt-like decorrelation:3 When we have

estimated p independent components, or p vectors

w1, . . . , wp, we run the one-unit fixed-point algo-

rithm for wp+1, and after every iteration step sub-

tract from wp+1 the projections of the previously

estimated p vectors, and then renormalize wp+1:

wp+1 = wp+1 −
p∑
j=1

wjw
H
j wp+1

wp+1 =
wp+1

‖wp+1‖
.

(14)

The above decorrelation scheme is suitable for defla-

tionary separation of the independent components.

Sometimes it is preferable to estimate all the inde-

pendent components simultaneously, and use a sym-

metric decorrelation. This can be accomplished e.g.,

by

W = W(WHW)−1/2 (15)

where W = (w1 · · ·wn) is the matrix of the vectors.
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6. Simulation Results

Complex signals were separated to test the per-

formance of the fast fixed-point algorithm and the

Theorem. Symmetric decorrelation scheme, pre-

sented in Formula (15), was used in the algorithm.

The data were artificially generated complex ran-

dom signals sj = rj(cos φj + i sin φj) where for each

signal j the radius rj was drawn from a different

distribution and the phase angle φj was uniformly

distributed on [−π, π], which implied that real and

imaginary parts of the signals were uncorrelated and

of equal variance. These assumptions are quite re-

alistic in practical problems. Also, each signal was

normalized to unit variance. There were a total of

eight complex random signals and 50,000 samples per

signal at each trial.

Source signals s were mixed using a randomly

generated complex mixing matrix A. The mixed sig-

nals xold = As were first whitened using x = Qxold

and then fed to the fixed point algorithm. A complex

unmixing matrix W was sought so that s = WHx.

The result of the separation can be measured by

WH(QA). It should converge to a matrix where

in each row and each column there is one non-zero

element v ∈ C of unit modulus; i.e., in the end,

|WH(QA)| should be a permutation matrix. Our

error measure is the sum of squared deviation of

|WH(QA)| from the nearest permutation matrix.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5
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4.5

Fig. 1. Convergence of the fixed-point algorithm using
contrast function G2(y) = log(a2 + y); average result
over ten runs. About six iteration steps were needed for
convergence.

All three contrast functions were successful

in that the Theorem was always fulfilled and

|WH(QA)| converged to a permutation matrix in

about six steps. Figure 1 shows the convergence

using G2.

7. Relation to Subspace Methods

Our complex ICA closely resembles independent sub-

space methods10 and multidimensional ICA.11 In

both methods, the components sj can be divided into

m-tuples such that the components inside a givenm-

tuple may be dependent on each other but indepen-

dent of other m-tuples. Each m-tuple corresponds to

m basis vectors that are orthogonal after prewhiten-

ing. In Ref. 10, it was proposed that the distributions

inside the m-tuples could be modeled by spherically

symmetric distributions. This implies that the con-

trast function (for one subspace) should be of the

form E{G(
∑m
j=1(wT

j x)2)} where wT
j wk = 0, j 6= k.

In our complex ICA, the contrast func-

tion operates on |wHx|2 which may be ex-

pressed as (w̃T x̃)2 + (w̃′T x̃)2. Here w =

(w1r + iw1i, . . . , wnr + iwni), x = (x1r +

ix1i, . . . , xnr + ixni), w̃ = (w1r, w1i, . . . , wnr , wni),

w̃′ = (−w1i, w1r, . . . , −wni, wnr) and x̃ =

(x1r, x1i, . . . , xnr , xni). Thus the subspace is two-

dimensional (real and imaginary parts of a complex

number) and there are two orthogonal basis vectors:

w̃T w̃′ = 0. In contrast to subspace methods, one of

the basis vectors is determined straightforward from

the other basis vector.

In independent subspace analysis, the indepen-

dent subspace is determined only up to an orthog-

onal m × m matrix factor.10 In complex ICA how-

ever, the indeterminacy is less severe: the sources are

determined up to a complex factor v, |v| = 1.

It can be concluded that complex ICA is a re-

stricted form of independent subspace methods.

8. Conclusion

We have presented a fixed-point type algorithm for

the separation of linearly mixed, complex valued sig-

nals in the ICA framework. Our algorithm is based

on a deflationary separation of independent compo-

nents. The algorithm is robust against outliers and

computationally simple, and the estimator given by

the algorithm is locally consistent. We have also

shown the computational efficiency of the algorithm

by simulations.
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Appendix A

Proof of Theorem

Denote by H(w) the function to be minimized or

maximized, E{G(|wHx|2)}. Make the orthogonal

change of coordinates z = AHw, giving H(z) =

E{G(|zHs|2)}. When w coincides with one of the

rows of A−1, we have z = (0, . . . , 0, v, 0, . . . , 0) —

remember that A is orthogonal due to the prewhiten-

ing of x. In the following, we shall analyze the sta-

bility of such z.

We now search for a Taylor expansion of H in

the extrema. We do not use complex differentiation

operators because H is in general not analytic and

thus it cannot be expanded as a Taylor series in the

complex form. The gradient of H with respect to z

is

∇H(z) =



∂

∂z1r

∂

∂z1i

...

∂

∂znr

∂

∂zni


H(z)

= 2



E{Re{s1(zHs)∗} g(|zHs|2)}
E{Im{s1(zHs)∗} g(|zHs|2)}

...

E{Re{sn(zHs)∗} g(|zHs|2)}
E{Im{sn(zHs)∗} g(|zHs|2)}



(16)

where zj = zjr + izji and sj = sjr + isji.

The Hessian of H is now a 2n× 2n real matrix:

denote ∇H as (hR1, hI1, . . . , hRn, hIn) where

hRj = E{Re{sj(zHs)∗} g(|zHs|2)} (17)

hIj = E{Im{sj(zHs)∗} g(|zHs|2)} (18)

whence the Hessian of H is

∇2H(z) = 2



∂hR1

∂z1r

∂hR1

∂z1i
· · · ∂hR1

∂znr

∂hR1

∂zni

∂hI1

∂z1r

∂hI1

∂z1i
· · · ∂hI1

∂znr

∂hI1

∂zni

...
...

. . .
...

...

∂hRn

∂z1r

∂hRn

∂z1i
· · · ∂hRn

∂znr

∂hRn

∂zni

∂hIn

∂z1r

∂hIn

∂z1i
· · · ∂hIn

∂znr

∂hIn

∂zni


.

(19)

Without loss of generality, it is enough to analyze

the stability of the point z = ve1 = (v, 0, . . . , 0),

which corresponds to w = va1. Now v = vr + ivi
and |zHs|2 = |s1|2. Evaluating the gradient (16) at

point z = ve1, we get

∇H(ve1) = 2



vrE{|s1|2 g(|s1|2)}
viE{|s1|2 g(|s1|2)}

0

...

0


(20)

using the independence of sj and the zero-mean and

unit-variance properties of sj .

For the Hessian at point z = ve1 we use the in-

dependence of sj and the assumptions E{ssH} = I

and E{ssT } = O, yielding

∇2H(ve1) = 2



E{|s1|2g(|s1|2) + 2v2
r |s1|4g′(|s1|2)} 2vrviE{|s1|4g′(|s1|2)} 0 · · · 0

2vrviE{|s1|4g′(|s1|2)} E{|s1|2g(|s1|2) + 2v2
i |s1|4g′(|s1|2)} 0 · · · 0

0 0 α · · · 0

...
...

...
. . .

...

0 0 0 . . . α


(21)

where

α = E{g(|s1|2) + |s1|2g′(|s1|2)} . (22)

Note that we do not assume that the real and imaginary parts of the same variable sj are independent, even
though we use the independence of sj and sk, j 6= k as discussed in Sec. 2.
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Now we make a small perturbation ε = (ε1r, ε1i, . . . , εnr, εni) where εjr and εji are the real and imaginary
parts of εj ∈ C and evaluate the Taylor expansion of H:

H(ve1 + ε) = H(ve1) + εT∇H(ve1) +
1

2
εT∇2H(ve1)ε+ o(‖ε‖2)

= H(e1) + 2(ε1rvr + ε1ivi)E{|s1|2g(|s1|2)}+ ε2
1rE{|s1|2g(|s1|) + 2v2

r |s1|4g′(|s1|2)}

+ 4vrviε1rε1iE{|s1|4g′(|s1|2)}+ ε2
1iE{|s1|2g(|s1|) + 2v2

i |s1|4g′(|s1|2)}

+E{g(|s1|2) + |s1|2g′(|s1|2)}
∑
j>1

(ε2
jr + ε2

ji) + o(‖ε‖2) . (23)

Furthermore, due to the constraint ‖w‖ = 1 and thus

‖ve1 + ε‖ = 1 we get

2(ε1rvr + ε1ivi) = −
n∑
j=1

(ε2
jr + ε2

ji) . (24)

Using this, we get

H(ve1 + ε) = H(ve1) +E{g(|s1|2) + |s1|2g′(|s1|2)

− |s1|2g(|s1|2)}
∑
j>1

(ε2
jr + ε2

ji)

+ 2(ε1rvr + ε1ivi)
2E{|s1|4g′(|s1|2)}

+ o(‖ε‖2) (25)

where the term of order (ε1rvr + ε1ivi)
2 is o(‖ε‖2)

according to (24), giving

H(ve1 + ε) = H(ve1) +E{g(|s1|2) + |s1|2g′(|s1|2)

− |s1|2g(|s1|2)}
∑
j>1

(ε2
jr + ε2

ji)

+ o(‖ε‖2) . (26)

Thus z = ve1 is an extremum, and it is the maximum

(minimum) if

E{g(|s1|2) + |s1|2g′(|s1|2)− |s1|2g(|s1|2)} < 0

(> 0, resp.) . (27)

Appendix B

Derivation of the algorithm

We shall derive the fixed-point algorithm for one

unit. Let w = wr + iwi and x = xr + ixi. For

the ease of derivations, the algorithm updates the

real and imaginary parts of w separately. We as-

sume that the source signals sj are white, i.e., they

are zero-mean and have unit variances and uncor-

related real and imaginary parts of equal variances,

that is, E{ssH} = I and E{ssT } = O. The ob-

served variable x is whitened so that it also obeys

E{xxH} = I.

According to the Kuhn-Tucker conditions, the

optima of E{G(|wHx|2)} under the constraint

E{|wHx|2} = ‖w‖2 = 1 are obtained at points

where

∇E{G(|wHx|2)} − β∇E{|wHx|2} = 0 (28)

where β ∈ R and the gradient is computed with re-
spect to real and imaginary parts of w separately.
The first term in (28) is

∇E{G(|wHx|2)} =



∂

∂w1r

∂

∂w1i

...

∂

∂wnr

∂

∂wni



E{G(|wHx|2)}

= 2



E{Re{x1(wHx)∗} g(|wHx|2)}

E{Im{x1(wHx)∗} g(|wHx|2)}
...

E{Re{xn(wHx)∗} g(|wHx|2)}

E{Im{xn(wHx)∗} g(|wHx|2)}



(29)
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and the second term in (28) is

∇E{|wHx|2} = 2



Re{w1}
Im{w1}

...

Re{wn}
Im{wn}

 (30)

where the assumption E{xxH} = I was used.
The Newton method is used to solve (28). The

Jacobian matrix of ∇E{G(|wHx|2)} as in (29) can
be approximated as

∇2E{G(|wHx|2)}

= 2E{(∇2|wHx|2)g(|wHx|2)

+ 2(∇|wHx|2)(∇|wHx|2)T g′(|wHx|2)} (31)

≈ 2E{g(|wHx|2) + |wHx|2g′(|wHx|2)}I (32)

where the approximation was done by separating

the expectations. Also, E{xxT } = O (which follows

straightforward from E{ssT } = O) was used. The

Jacobian matrix of β∇E{|wHx|2} is, using (30),

β∇2E{|wHx|2} = 2βI . (33)

The total approximative Jacobian of (28) is now

J = 2(E{g(|wHx|2) + |wHx|2g′(|wHx|2)} − β)I

(34)

which is diagonal and thus easy to invert. We obtain

the following approximative Newton iteration:

w+ =w− E{x(wHx)∗g(|wHx|2)}−βw

E{g(|wHx|2)+|wHx|2g′(|wHx|2)}−β

wnew =
w+

‖w+‖ .

(35)

If we multiply both sides of (35) by β −
E{g(|wHx|2) + |wHx|2g′(|wHx|2)}, the fixed-point

algorithm simplifies to

w+ = E{x(wHx)∗g(|wHx|2)}

−E{g(|wHx|2) + |wHx|2g′(|wHx|2)}w

wnew =
w+

‖w+‖ .
(36)

Decorrelation schemes suitable for deflationary or

symmetric separation of the independent compo-

nents were presented in Sec. 5.
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ABSTRACT
Random projections have recently emerged as a powerful
method for dimensionality reduction. Theoretical results
indicate that the method preserves distances quite nicely;
however, empirical results are sparse. We present experi-
mental results on using random projection as a dimension-
ality reduction tool in a number of cases, where the high
dimensionality of the data would otherwise lead to burden-
some computations. Our application areas are the process-
ing of both noisy and noiseless images, and information re-
trieval in text documents. We show that projecting the
data onto a random lower-dimensional subspace yields re-
sults comparable to conventional dimensionality reduction
methods such as principal component analysis: the similar-
ity of data vectors is preserved well under random projec-
tion. However, using random projections is computationally
significantly less expensive than using, e.g., principal com-
ponent analysis. We also show experimentally that using a
sparse random matrix gives additional computational sav-
ings in random projection.

Keywords
random projection, dimensionality reduction, image data,
text document data, high-dimensional data

1. INTRODUCTION
In many applications of data mining, the high dimen-

sionality of the data restricts the choice of data process-
ing methods. Such application areas include the analysis
of market basket data, text documents, image data and so
on; in these cases the dimensionality is large due to either
a wealth of alternative products, a large vocabulary, or the
use of large image windows, respectively. A statistically op-
timal way of dimensionality reduction is to project the data
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onto a lower-dimensional orthogonal subspace that captures
as much of the variation of the data as possible. The best
(in mean-square sense) and most widely used way to do this
is principal component analysis (PCA); unfortunately it is
quite expensive to compute for high-dimensional data sets.
A computationally simple method of dimensionality reduc-
tion that does not introduce a significant distortion in the
data set would thus be desirable.

In random projection (RP), the original high-dimensional
data is projected onto a lower-dimensional subspace using
a random matrix whose columns have unit lengths. RP
has been found to be a computationally efficient, yet suf-
ficiently accurate method for dimensionality reduction of
high-dimensional data sets. While this method has attracted
lots of interest, empirical results are sparse.

In this paper we give experimental results on using RP as
a dimensionality reduction tool on high-dimensional image
and text data sets. In both application areas, random pro-
jection is compared to well known dimensionality reduction
methods. We show that despite the computational simplic-
ity of random projection, it does not introduce a significant
distortion in the data.

The data sets used in this paper are of very different na-
tures. Our image data is from monochrome images of nat-
ural scences. An image is presented as a matrix of pixel
brightness values, the distribution of which is generally ap-
proximately Gaussian: symmetric and bell-shaped. Text
document data is presented in vector space [25], in which
each document forms one d-dimensional vector where d is
the vocabulary size. The i-th element of the vector indi-
cates (some function of) the frequency of the i-th vocabu-
lary term in the document. Document data is often highly
sparse or peaked: only some terms from the vocabulary are
present in one document, and most entries of the document
vector are zero. Also, document data has a nonsymmetric,
positively skewed distribution, as the term frequencies are
nonnegative. It is instructive to see how random projection
works as a dimensionality reduction tool in the context of
these two very different application areas.

We also present results on images corrupted by noise, and
our experimental results indicate that random projection is
not sensitive to impulse noise. Thus random projection is
a promising alternative to some existing methods in noise
reduction (e.g. median filtering), too.

This paper is organized as follows. At the end of this intro-
duction we discuss related work on random projections and
similarity search. Section 2 presents different dimensionality



reduction methods. Section 3 gives the experimental results
of dimensionality reduction on image data, and Section 4 on
text data. Finally, Section 5 gives a conclusion.

1.1 Related work
Papadimitriou et al. [22] use random projection in the

preprocessing of textual data, prior to applying LSI. They
present experimental results on an artificially generated set
of documents. In their approach, the columns of the ran-
dom projection matrix are assumed strictly orthogonal, but
actually this need not be the case, as we shall see in our
experiments.

Kaski [17, 16] has presented experimental results in using
the random mapping in the context of the WEBSOM1 sys-
tem. Kurimo [20] applies random projection to the indexing
of audio documents, prior to using LSI and SOM. Kleinberg
[19] and Indyk and Motwani [14] use random projections
in nearest-neighbor search in a high dimensional Euclidean
space, and also present theoretical insights. Dasgupta [6, 7]
has used random projections in learning high-dimensional
Gaussian mixture models. Other applications of random
projection include e.g. [4, 28].

The problems of dimensionality reduction and similarity
search have often been addressed in the information retrieval
literature, and other approaches than random projection
have been presented. Ostrovsky and Rabani [21] give a di-
mension reduction operation that is suitable for clustering.
Agrawal et al. [3] map time series into frequency domain by
the discrete Fourier transform and only retain the first few
frequencies. Keogh and Pazzani [18] reduce the dimension
of time series data by segmenting the time series into sec-
tions and indexing only the section means. Aggarwal et al.
[2] index market basket data by a specific signature table,
which easens the similarity search. Wavelet transforms ([12,
27] etc.) are a common method of signal compression.

2. METHODS FOR DIMENSIONALITY RE-
DUCTION

2.1 Random projection
In random projection, the original d-dimensional data is

projected to a k-dimensional (k << d) subspace through
the origin, using a random k × d matrix R whose columns
have unit lengths. Using matrix notation where Xd×N is the
original set of N d-dimensional observations,

XRP
k×N = Rk×dXd×N (1)

is the projection of the data onto a lower k-dimensional
subspace. The key idea of random mapping arises from
the Johnson-Lindenstrauss lemma [15]: if points in a vec-
tor space are projected onto a randomly selected subspace
of suitably high dimension, then the distances between the
points are approximately preserved. For a simple proof of
this result, see [10, 8].

Random projection is computationally very simple: form-
ing the random matrix R and projecting the d × N data
matrix X into k dimensions is of order O(dkN), and if the
data matrix X is sparse with about c nonzero entries per
column, the complexity is of order O(ckN) [22].

Strictly speaking, (1) is not a projection because R is gen-
erally not orthogonal. A linear mapping such as (1) can

1See http://websom.hut.fi/websom/

cause significant distortions in the data set if R is not or-
thogonal. Orthogonalizing R is unfortunately computation-
ally expensive. Instead, we can rely on a result presented
by Hecht-Nielsen [13]: in a high-dimensional space, there
exists a much larger number of almost orthogonal than or-
thogonal directions. Thus vectors having random directions
might be sufficiently close to orthogonal, and equivalently
RT R would approximate an identity matrix. In our exper-
iments, the mean squared difference between RT R and an
identity matrix was about 1/k per element.

When comparing the performance of random projection
to that of other methods of dimensionality reduction, it is in-
structive to see how the similarity of two vectors is distorted
in the dimensionality reduction. We measure the similarity
of data vectors either as their Euclidean distance or as their
inner product. In the case of image data, Euclidean distance
is a widely used measure of similarity. Text documents, on
the other hand, are generally compared according to the
cosine of the angle between the document vectors; if docu-
ment vectors are normalized to unit length, this corresponds
to the inner product of the document vectors.

We write the Euclidean distance between two data vec-
tors x1 and x2 in the original large-dimensional space as
||x1 −x2||. After the random projection, this distance is ap-
proximated by the scaled Euclidean distance of these vectors
in the reduced space:

√

d/k ||Rx1 − Rx2|| (2)

where d is the original and k the reduced dimensionality of
the data set. The scaling term

√

d/k takes into account
the decrease in the dimensionality of the data: according to
the Johnson-Lindenstrauss lemma, the expected norm of a
projection of a unit vector onto a random subspace through
the origin is

√

k/d [15].
The choice of the random matrix R is one of the key points

of interest. The elements rij of R are often Gaussian dis-
tributed, but this need not be the case. Achlioptas [1] has
recently shown that the Gaussian distribution can be re-
placed by a much simpler distribution such as

rij =
√

3 ·











+1 with probability 1

6

0 with probability 2

3

−1 with probability 1

6
.

(3)

In fact, practically all zero mean, unit variance distributions
of rij would give a mapping that still satisfies the Johnson-
Lindenstrauss lemma. Achlioptas’ result means further com-
putational savings in database applications, as the compu-
tations can be performed using integer arithmetics. In our
experiments we shall use both Gaussian distributed random
matrices and sparse matrices (3), and show that Achlioptas’
theoretical result indeed has practical significance. In con-
text of the experimental results, we shall refer to RP when
the projection matrix is Gaussian distributed and SRP when
the matrix is sparse and distributed according to (3). Oth-
erwise, the shorthand RP refers to any random projection.

2.2 PCA, SVD and LSI
In principal component analysis (PCA), the eigenvalue

decomposition of the data covariance matrix is computed as
E{XXT } = EΛET where the columns of matrix E are the
eigenvectors of the data covariance matrix E{XXT } and Λ
is a diagonal matrix containing the respective eigenvalues.



If dimensionality reduction of the data set is desired, the
data can be projected onto a subspace spanned by the most
important eigenvectors:

XPCA = ET
k X (4)

where the d × k matrix Ek contains the k eigenvectors cor-
responding to the k largest eigenvalues. PCA is an op-
timal way to project data in the mean-square sense: the
squared error introduced in the projection is minimized over
all projections onto a k-dimensional space. Unfortunately,
the eigenvalue decomposition of the data covariance matrix
(whose size is d×d for d-dimensional data) is very expensive
to compute. The computational complexity of estimating
the PCA is O(d2N) + O(d3) [11]. There exists computa-
tionally less expensive methods [26, 24] for finding only a
few eigenvectors and eigenvalues of a large matrix; in our
experiments, we use appropriate Matlab routines to realize
these.

A closely related method is singular value decomposition
(SVD): X = USV T where orthogonal matrices U and V
contain the left and right singular vectors of X, respectively,
and the diagonal of S contains the singular values of X. Us-
ing SVD, the dimensionality of the data can be reduced by
projecting the data onto the space spanned by the left sin-
gular vectors corresponding to the k largest singular values:

XSV D = UT
k X (5)

where Uk is of size d×k and contains these k singular vectors.
Like PCA, SVD is also expensive to compute. There exists
numerical routines such as the power or the Lanczos method
[5] that are more efficient than PCA for sparse data matrices
X, and that is why we shall use SVD instead of PCA in the
context of sparse text document data. For a sparse data
matrix Xd×N with about c nonzero entries per column, the
computational complexity of SVD is of order O(dcN) [22].

Latent semantic indexing (LSI) [9, 22] is a dimensionality
reduction method for text document data. Using LSI, the
document data is presented in a lower-dimensional “topic”
space: the documents are characterized by some underlying
(latent, hidden) concepts referred to by the terms. LSI can
be computed either by PCA or SVD of the data matrix of
N d-dimensional document vectors.

2.3 Discrete cosine transform
Discrete cosine transform (DCT) is a widely used method

for image compression and as such it can also be used in
dimensionality reduction of image data. DCT is compu-
tationally less burdensome than PCA and its performance
approaches that of PCA. DCT is also optimal for human
eye: the distortions introduced occur at the highest frequen-
cies only, and the human eye tends to neglect these as noise.
DCT can be performed by simple matrix operations [23, 27]:
an image is transformed to the DCT space and dimensional-
ity reduction is done in the inverse transform by discarding
the transform coefficients corresponding to the highest fre-
quencies. Computing the DCT is not data-dependent, in
contrast to PCA that needs the eigenvalue decomposition of
data covariance matrix; that is why DCT is orders of mag-
nitude cheaper to compute than PCA. Its computational
complexity is of the order O(dN log

2
(dN)) for a data ma-

trix of size d × N [27].

3. RESULTS ON IMAGE DATA

The data set consisted of N = 1000 image windows drawn
from 13 monochrome images2 of natural scenes.The sizes of
the original images were 256 × 256 pixels, and windows of
size 50 × 50 were randomly drawn from the images. Each
image window was presented as one d-dimensional column
vector (d = 2500).

3.1 Noiseless image data
When comparing different methods for dimensionality re-

duction, the criteria are the amount of distortion caused
by the method and its computational complexity. In the
case of image data we measure the distortion by comparing
the Euclidean distance between two dimensionality reduced
data vectors to their Euclidean distance in the original high-
dimensional space. In the case of random projection, the
Euclidean distance in the reduced space is scaled as shown
in (2); with other methods, no scaling is performed.

We first tested the effect of the reduced dimensionality us-
ing different values of k in [1, 800]. At each k, the dimension-
ality reducing matrix operation was computed anew. Figure
1 shows the error in the distance between members of a pair
of data vectors, averaged over 100 pairs. The results of ran-
dom projection with a Gaussian distributed random matrix
(RP), random projection with a sparse random matrix as in
(3) (SRP), principal component analysis (PCA) and discrete
cosine transform (DCT) are shown, together with their 95
per cent confidence intervals.
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Figure 1: The error produced by RP (+), SRP (∗),
PCA (�) and DCT (◦) on image data, and 95 % con-
fidence intervals over 100 pairs of data vectors.

In Figure 1 it is clearly seen that random projection (RP
and SRP) yields very accurate results: dimensionality re-
duction by random projection does not distort the data sig-
nificantly more than PCA. At dimensions k > 600, random
projection and PCA give quite accurate results but the error
produced by DCT is clearly visible. At smaller dimensions
also PCA distorts the data. This tells us that the variation
in the data is mostly captured by the first 600 principal com-
ponents, because the error in PCA is dependent on the sum
of omitted eigenvalues, and k is equal to the number of eigen-

2Available from
http://www.cis.hut.fi/projects/ica/data/images/



values retained. In contrast, the random projection method
continues to give accurate results until k = 10. One expla-
nation for the success of random projection is the J-L scaling
term

√

d/k (Formula (2)), which takes into account the de-
crease in the dimensionality. In PCA, such scaling would
only be useful in the smallest dimensions but a straightfor-
ward rule is difficult to give.

Another point of interest is the computational complex-
ity of the methods. Figure 2 shows the number of Mat-
lab’s floating point operations needed when using RP, SRP,
PCA or DCT in dimensionality reduction, in a logarithmic
scale. It can be seen that PCA is significantly more burden-
some than random projection or DCT. (In the case of DCT,
only the chosen data vectors were transformed instead of
the whole data set; this makes the number of floating point
operations rather small.)
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Figure 2: Number of Matlab’s floating point oper-
ations needed when reducing the dimensionality of
image data using RP (+), SRP (∗), PCA (�) and
DCT (◦), in a logarithmic scale.

From Figures 1–2 we can conclude that random projec-
tion is a computationally inexpensive method of dimension-
ality reduction while preserving the distances of data vectors
practically as well as PCA and clearly better than DCT.
Even more, at smallest dimensions RP outperforms both
PCA and DCT.

Dimensionality reduction on image data differs slightly
from another common procedure, image compression, in
which the image is transformed into a more economical form
for e.g. transmission, and then transformed back into the
original space. The transformation is often chosen so that
the resulting image looks as similar as possible to the orig-
inal image, to a human eye. In this respect, the discrete
cosine transform has proven optimal. To see how an im-
age whose dimensionality is reduced by RP would look like,
the random mapping should be inverted. The pseudoin-
verse of R is expensive to compute, but since R is almost
orthogonal, the transpose of R is a good approximation
of the pseudoinverse, and the image can be computed as
Xnew

d×N = RT
d×kXRP

k×N where XRP is the result of the random
projection (1). Nonetheless, the obtained image is visually
worse than a DCT compressed image, to a human eye. Thus
random projection is successful in applications where the
distance or similarity between data vectors should be pre-

served under dimensionality reduction as well as possible,
but where the data is not intended to be visualized for the
human eye. These applications include, e.g., machine vi-
sion: it would be possible to automatically detect whether
an (on-line) image from a surveillance camera has changed
or not.

3.2 Noise reduction in images
In our second set of experiments we considered noisy im-

ages. The images were corrupted by salt-and-pepper im-
pulse noise: with probability 0.2, a pixel in the image was
turned black or white. We wanted to project the data in
such a way that the distance between two data vectors in
the reduced noisy data space would be as close as possible to
the distance between these vectors in the high-dimensional
noiseless data space, even though the dimensionality reduc-
tion was applied to high-dimensional noisy images.

A simple yet effective way of noise reduction especially
in the case of salt-and-pepper impulse noise is median fil-
tering (MF) where each pixel in the image is replaced by
the median of the pixel brightnesses in its neighborhood.
The median is not affected by individual noise spikes and so
median filtering eliminates impulse noise quite well [27]. A
common neighborhood size is 3×3 pixels which was also used
in our experiments. MF is computationally very efficient, of
order O(dmN) for N image windows of d pixels, where m
denotes the size of the neighborhood (in our case, m = 9).
Also, MF does not require dimensionality reduction; thus its
result can be used as a yardstick when comparing methods
for dimensionality reduction and noise cancellation.

Figure 3 shows how the distance between two noisy image
windows is distorted in dimensionality reduction, compared
to their distance in the original high-dimensional, noiseless
space. Here we can compare different dimensionality re-
duction methods with respect to their sensitivity to noise.
We can see that median filtering introduces quite a large
distortion in the image windows, despite that to a human
eye it removes impulse noise very efficiently. The distor-
tion is due to blurring: pixels are replaced by the median of
their neighborhood, eliminating noise but also small details.
PCA, DCT and random projection perform quite similarly
to the noiseless case. From Figure 3 we can conclude that
random projection is a promising alternative to dimension-
ality reduction on noisy data, too, as it does not seem to
be sensitive to impulse noise. There exists of course many
other methods for noise reduction, too. Here our interest
was mainly in dimensionality reduction and not noise re-
duction.

4. RESULTS ON TEXT DATA
Next, we applied dimensionality reduction techniques on

text document data from four newsgroups of the 20 news-
groups corpus3: sci.crypt, sci.med, sci.space and soc.religion.
christian. The documents were converted into term fre-
quency vectors and some common terms were removed using
McCallum’s Rainbow toolkit4 but no stemming was used.

The data was not made zero mean, nor was the overall
variance of entries of the data matrix normalized. The doc-
ument vectors were only normalized to unit length. This
kind of preprocessing was different from that applied to im-

3Available from http://www.cs.cmu.edu/~textlearning
4Available from http://www.cs.cmu.edu/~mccallum/bow
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Figure 3: The error produced by RP (+), SRP (∗),
PCA (�), DCT (◦) and MF (−) on noisy image data,
with 95% confidence intervals over 100 pairs of im-
age windows. In MF dimensionality is not reduced.

age data. Together with the distinct natures of image and
text data, differences in preprocessing yielded slightly dif-
ferent results on these different data sets. The size of the
vocabulary was d = 5000 terms and the data set consisted
of N = 2262 newsgroup documents.

We randomly chose pairs of data vectors (that is, docu-
ments) and computed their similarity as their inner product.
The error in the dimensionality reduction was measured as
the difference between the inner products before and after
the dimensionality reduction.
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Figure 4: The error produced by RP (+) and SVD
(�) on text document data, with 95% confidence in-
tervals over 100 pairs of document vectors.

Figure 4 shows the error introduced by dimensionality re-
duction. The results are averaged over 100 document pairs.
The results of SVD and random projection with a Gaus-
sian distributed random matrix are shown, together with 95
per cent confidence intervals. The reduced dimensionality
k took values in [1, 700]. It is seen that random projection
is not quite as accurate as SVD but in many applications
the error may be neglectable. The Johnson-Lindenstrauss

result [15] states that Euclidean distances are retained well
in random projection. The case of inner products is a differ-
ent one — Euclidean distances of document vectors would
probably have been preserved better. It is a common prac-
tice to measure the similarity of document vectors by their
inner products; thus we present results on them.

Despite using efficient SVD routines for finding a few sin-
gular vectors of a sparse matrix, SVD is still orders of mag-
nitude more burdensome than RP.

Our results on text document data indicate that random
projection can be used in dimensionality reduction of large
document collections, with less computational complexity
than latent semantic indexing (SVD). Similarly to what was
presented in [22], RP can speed up latent semantic indexing
(LSI): the dimensionality of the data is first reduced by RP
and the burdensome LSI is only computed in the new low-
dimensional space. In [22] the documents were generated
artificially and the random matrix R was assumed strictly
orthogonal; our experiments show that neither of these re-
strictions is actually necessary. Another common problem in
text document retrieval is query matching. Random projec-
tion might be useful in query matching if the query is long,
or if a set of similar documents instead of one particular
document were searched for.

5. CONCLUSIONS
We have presented new and promising experimental re-

sults on random projection in dimensionality reduction of
high-dimensional real-world data sets. When comparing dif-
ferent methods for dimensionality reduction, the criteria are
the amount of distortion caused by the method and its com-
putational complexity. Our results indicate that random
projection preserves the similarities of the data vectors well
even when the data is projected to moderate numbers of
dimensions; the projection is yet fast to compute.

Our application areas were of quite different natures: noisy
and noiseless images of natural scenes, and text documents
from a newsgroup corpus. In both application areas, random
projection proved to be a computationally simple method of
dimensionality reduction, while still preserving the similar-
ities of data vectors to a high degree.

We also presented experimental results of random pro-
jection using a sparsely populated random matrix intro-
duced in [1]. It is in fact not necessary to use a Gaussian
distributed random matrix but much simpler matrices still
obey the Johnson-Lindenstrauss lemma [15], giving compu-
tational savings.

One should emphasize that random projection is benefi-
cial in applications where the distances of the original high-
dimensional data points are meaningful as such — if the orig-
inal distances or similarities are themselves suspect, there is
little reason to preserve them. For example, consider using
the data in neural network training. Projecting the data
onto a lower dimensional subspace speeds up the training
only if the training is based on interpoint distances; such
problems include clustering and k Nearest Neighbors etc.
Also, consider the significance of each of the dimensions of
a data set. In a Euclidean space, every dimension is equally
important and independent of the others, whereas e.g. in
a process monitoring application some measured quantities
(that is, dimensions) might be closely related to others,
and the interpoint distances do not necessarily bear a clear
meaning.



A still more realistic application of random projection
would be to use it in a data mining problem, e.g. clustering,
and compare the results and computational complexity of
mining the original high-dimensional data and dimensional-
ity reduced data; this is a topic of a further study.

An interesting open problem concerns k, the number of
dimensions needed for random projections. The Johnson-
Lindenstrauss result [15, 10, 8] gives bounds that are much
higher than the ones that suffice to give good results on our
empirical data. For example, in the case of our image data,
the lower bound for k on ε = 0.2 is 1600 but in the ex-
periments, k ≈ 50 was enough. The Johnson-Lindenstrauss
result, of course, is a worst-case one, and it would be inter-
esting to understand which properties of our experimental
data make it possible to get good results by using fewer
dimensions.

We conclude that random projection is a good alternative
to traditional, statistically optimal methods of dimension-
ality reduction that are computationally infeasible for high
dimensional data. Random projection does not suffer from
the curse of dimensionality, quite contrary to the traditional
methods.
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Abstract

The data model of independent component analysis (ICA) gives a multivariate probability
density that describes many kinds of sensory data better than classical models like Gaussian
densities or Gaussian mixtures. When only a subset of the random variables is observed, ICA
can be used for regression, i.e. to predict the missing observations. In this paper, we show that
the resulting regression is closely related to regression by a multi-layer perceptron (MLP). In
fact, if linear dependencies are 4rst removed from the data, regression by ICA is, as a 4rst-order
approximation, equivalent to regression by MLP. This theoretical result gives a new interpretation
of the elements of the MLP: The outputs of the hidden layer neurons are related to estimates of
the values of the independent components, and the sigmoid nonlinearities are obtained from the
probability densities of the independent components.
c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Nonlinear regression; Multilayer perception; Independent component analysis; Projection pursuit

1. Introduction

Independent component analysis (ICA) [2,11,6,13] is a recently developed statistical
model where we express observed random variables x1; x2; : : : ; xq as linear combinations
of unknown component variables, denoted by s1; s2; : : : ; sn. The components si are,
by de4nition, mutually statistically independent, and zero-mean. Let us arrange the
observed variables xi into a vector x=(x1; x2; : : : ; xq)T and the independent components
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si into a vector s, respectively; then the linear relationship is given by

x = As: (1)

Here, A is an unknown q× n matrix, called the mixing matrix. The basic problem of
ICA estimation is then to estimate the mixing matrix A, as well as the densities of the
si, using only observations of the mixtures xj. This means that we try to approximate
the joint density of x as precisely as possible by the densities of sums of independent
random variables. We assume here that n¿ q, in order to have a nonsingular joint
density.
Regression, i.e. prediction, is one of the fundamental problems in supervised learning.

In the general regression problem, the variables in x are divided into two parts, observed
and missing, that is, the predicting variables and the variables to be predicted. For
simplicity, we can arrange the variables in x so that the k 4rst variables form the
vector of the observed variables xo = (x1; : : : ; xk)T, and the remaining variables form
the vector of the missing variables xm =(xk+1; : : : ; xq)T. Thus the model can be written
as (

xo
xm

)
=
(
Ao
Am

)
s: (2)

The problem is now to predict xm for a given observation of xo. To be able to predict
the xm, we must use (an estimate of) the joint probability distribution of x. Of course,
we must have some previous observations of xm to be able to estimate the joint
probability distribution, that is, to be able to measure how the predicted (missing)
variables depend on the predicting (observed) variables. (This is the case for any
regression method.) The regression x̂m is conventionally de4ned as the conditional
expectation:

x̂m = E{xm|xo}: (3)

Since the data model of ICA describes well some aspects of many kinds of sensory
data [15], it would be natural to attempt to use ICA for regression for such data sets.
In fact, since the ICA data model gives (an approximation of) the joint probability
density of x, it is straightforward, at least in principle, to 4rst model the joint density
of x by ICA, and then, for a given sample of incomplete data, predict the missing
values in xm using the conditional expectation, which is well de4ned once the ICA
model has been estimated. Thus, we obtain

E{xm|xo}= Am
∫
Aos=xo

sp(s) ds: (4)

In the following, we shall call this generic idea “regression by ICA”.
Regression by ICA was already used in [14] to predict missing pixels in images.

In [5], the method was considered in a more general setting, and it was proposed that
instead of the conditional expectation, i.e. the minimum mean-square error estimator,
one could use the maximum a posteriori estimator, which is computationally much
simpler. A similar method was considered in [16], though the connection to ICA was
not mentioned.
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Regression by ICA is parametric, 1 yet nonlinear. It is, in fact, a direct generalization
of ordinary linear regression: if the independent components si were Gaussian, Eq. (1)
would simply give multivariate Gaussian distributions, and the conditional expectation
would be a linear function of xo. Regression by ICA is also closely connected to
projection pursuit regression [4], because it concentrates on those projections that are
the most non-Gaussian. It could therefore be expected to partially avoid the curse of
dimensions.
Thus, ICA gives us one approach to nonlinear regression. A vast literature on re-

gression exists, however, both in neural network and statistics literature, and it would
be most useful to know what is the connection between this regression by ICA and
classical regression methods. The purpose of this paper is to show that an intimate con-
nection exists between regression by ICA, and regression by multi-layer perceptrons
whose structure closely mimics the structure of the ICA model. A two-layer MLP
which has the same number of hidden units as the ICA model, and whose nonlinearity
is equal to the so-called score function of the independent components gives, as a
4rst-order approximation, the same regression as ICA. It is assumed here that linear
dependencies are removed as a preprocessing step. This result gives a new interpre-
tation of MLPs. Moreover, it shows clearly some further relations between regression
by ICA and other regression methods.
Some preliminary results were reported in [7].

2. Regression by ICA and by an MLP: the connection

Before announcing our main result, we must discuss the preprocessing of the data.
We assume here that the data is 4rst linearly preprocessed so that any linearly pre-
dictable part of xm is removed. In other words, the xm are replaced by the residuals
of linear regression. The result of this preprocessing step is that the xo and xm are
uncorrelated. Second, the vectors xo and xm are each separately whitened. Note that
these preprocessing steps cannot be replaced using ordinary whitening methods used
in ICA, because they confound the division to observed (predicting) and missing (pre-
dicted) variables. As is usual in ICA, this particular form of whitening implies that A
is an orthogonal matrix.
Our result is based on 4rst-order approximations whose accuracy depends on the

validity of some assumptions. First, the independent components must have distributions
that are not too far from the Gaussian distribution; this critical assumption is discussed
in Sections 4 and 5. Second, we assume that the dimension of xo is large when
compared to the dimension of xm; this assumption seems to be true in most practical
cases where multivariate regression is applied.
Let us denote the probability densities of the si by pi, and by gi(u)=p′

i(u)=pi(u)+cu
a function that equals the negative score function p′

i =pi of the probability density of si,

1 We assume here that the distributions of the independent components are either known or modelled
by a density family of a limited number of parameters. In general, if the distributions of the independent
components are not known, the regression would be semiparametric, though arguably weakly so.
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plus an arbitrary linear term, which is the same for all i. For example, the tanh function
is the score function of a mildly super-Gaussian (sparse) distribution [1]. Denote further
by g the multi-dimensional function that consists of applying gi on the ith component
of its argument, for every i. After the above preprocessing and assumptions we have
the following result (proven in Appendix A):

E{xm|xo} ≈ Amg(AToxo): (5)

In other words, the regression function for data modeled by ICA, is given by the output
of an MLP with one hidden layer. The weight vectors of the MLP are simple functions
of the mixing matrix, and the nonlinear activation functions of the MLP are functions
of the probability densities of the si.
To get insight into this approximation, let us consider super-Gaussian densities, in

which case we can take gi(u)=−tanh(u)+ u for all i. This is a shrinkage function [8]
that approximately reduces the value of its argument by a given constant, resembling
a soft-thresholding operation. Now, the vector AToxo can be interpreted as an initial
linear estimate of s. (In fact, due to whitening, A is orthogonal and therefore ATo is
equal to the pseudoinverse of Ao.) Thus, the nonlinear aspect of (5) consists largely
of thresholding the linear estimates of s, to obtain ŝ = g(AToxo). The thresholding can
be considered as a way of improving the linear estimate, in a manner similar to the
denoising method in [8]. The 4nal linear layer is basically a linear reconstruction of
the form xm = Am ŝ.

3. Relation to other methods

3.1. Projection pursuit regression

Our results make as well the connection of regression by ICA to projection pursuit
regression quite explicit. Assume that the dimension of the data is very high, and that
only certain projections of the data have non-Gaussian distributions. One variation of
projection pursuit regression [4] would then consist of 4nding the most non-Gaussian
projections, and using only those projections to construct the regression function. This
can be intuitively justi4ed as follows. Since all linear dependencies were removed as
a preprocessing step, and the optimal regression for Gaussian data is linear, Gaussian
projections of the data cannot give any new information that would be useful for
regression, and thus it is sensible to concentrate on the non-Gaussian projections.
In fact, if we assume that some of the independent components are Gaussian (say,

the last ones with indices i = l+ 1; : : : ; r), the regression function in (5) has the form

E{xm|xo} ≈
l∑
i=1

vigi(wTi xo); (6)

where wi is the ith column of the matrix Ao, and vi is the ith column of the matrix Am.
In this sum, only the l 4rst linear estimates wTi xo of the independent components are
used, i.e. only those corresponding to the non-Gaussian components. This is because
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the linear score function of the Gaussian independent components can be taken equal
to zero because of the possibility of adding an arbitrary linear term to the nonlinearities
gi. On the other hand, it is a well-known fact in the theory of ICA estimation that
the projections in the most non-Gaussian directions give estimates of the independent
components [6,11]. (This is not exactly true here, though, because we estimate the
independent components using a smaller number of observed variables.) Thus, we see
that the regression given in (5) is closely related to projection pursuit regression, both
consisting of using component-wise nonlinearities in the most non-Gaussian directions.

3.2. Wavelet shrinkage

Regression by ICA is also closely related to wavelet shrinkage [3]. In wavelet shrink-
age, the data is 4rst transformed into the wavelet domain. In the regression context,
any missing data points are treated as zeros. A thresholding operator is then applied
on the wavelet coeLcients, and the data is transformed back into the original domain.
Consider, for example, prediction (reconstruction) of missing pixels in image data. The
utility of such a reconstruction scheme can be intuitively seen in the following way:
The linear reconstructions of wavelet coeLcients are linear estimates of edges or bars;
thresholding them makes edges and bars sharper in the reconstructed image.
It has been shown that the independent components of image windows are quite

similar to the wavelet coeLcients; the wavelet transform can be thus considered as
an approximation of ICA [15,8]. As discussed above, the nonlinearity in the hidden
layer of the MLP can be taken to be a thresholding function when the independent
components are super-Gaussian, as usual with image data. Moreover, since the ICA
transform is orthogonal due to whitening, the linear estimation of the independent
components, as performed in the 4rst layer of the MLP is equivalent to estimating
the independent components as if the missing pixels were zero. Thus, we see that the
regression by ICA, according to the approximation in (5), is very closely related to
wavelet shrinkage for certain kinds of data, consisting of the same steps of transforming
to sparse or independent components, thresholding, and inversion of the transform.

4. Simulations

We performed simple simulations to validate the accuracy of the approximations
involved in our result. We generated arti4cially data according to the ICA model, and
compared the true ICA regression with our approximation.
Our simulation data was 100-dimensional and there were N =101 000 data samples.

The independent components, generated according to some probability density (see
below) were mixed using a randomly generated n× n mixing matrix. The mixtures x
were then divided into observed (xo) and missing (xm). The dimensionality of xo was
99 and the dimensionality of xm was 1. The latter was chosen to facilitate analysis
and visualization of results.
In the preprocessing phase, the value of the missing variable xm was 4rst predicted

by linear regression, and the residual of this regression was used in place of xm in
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the sequel. After this linear prediction, the variables in xo were uncorrelated and their
variance was set to one; similarly, the variance of xm was set to one. Thus the data
were whitened.
After the above preprocessing the data was divided in two sets, a training data set of

size 100 000 and a test data set of size 1000. The ICA estimation on the training data

set gave the estimated values for the source signals s and the mixing matrix A=
(
Ao
Am

)
.

The test data set was used to compute estimates for the missing variable xm. The
value of the missing variable xm was predicted either using numerical integration as in
(4), or using our approximation in (5). The success of the approximation was measured
by the correlation coeLcient between the two values. Furthermore, we computed the
correlation coeLcients between the true values of xm are the results of numerical
integration to see if the very principle of ICA regression is useful.
Three diMerent distributions for the independent components were used, and the

results were accumulated over 10 diMerent random seeds.
In the following results, xm denotes the true value of the missing variable, xnumm is

the estimated value computed by numerical integration, and xapprm is the value given by
our MLP-like approximation

4.1. Strongly super-Gaussian data

In the 4rst experiments the independent components s were generated according to
the following strongly super-Gaussian density [8]:

p(s) =
1
2d

(�+ 2)[�(�+ 1)=2]�=2+1

[
√
�(�+ 1)=2 + |s=d|]�+3 ; (7)

where parameter values �= 1 and d= 1 were chosen, giving

p(s) =
1
2

3
(1 + |s|)4 : (8)

The strong super-Gaussianity of this distribution is seen in the fact that the kurtosis is
in4nite. The score function of this probability density is

f′(s) =
(�+ 3)=d sign(s)√
�(�+ 1)=2 + |s=d| : (9)

The correlation coeLcient between the numerical integration result and our approx-
imation �(xnumm ; xapprm ) was equal to 0:9067, which shows that the approximation was
quite good. The scatterplot is shown in Fig. 1a. Interestingly, if we used the—tanh
nonlinearity instead of the true score function (not shown), the correlation coeLcient
increased to 0:9303, probably because this is numerically more stable, avoiding the
singularity at 0.
As for the success of the very principle of predicting the actual values of xm, the

correlation coeLcient between the true xm and the numerical integration �(xm ; xnumm )
was 0:9044, which shows that the very principle of ICA regression was feasible: using
the ICA model in the regression does indeed give a good regression. This seems to be
due to the strong super-Gaussianity of the si. The scatterplot is shown in Fig. 1b.
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Fig. 1. The results for strongly super-Gaussian data: (a) scatterplot of optimal regression by numerical
integration vs. regression using our approximation and (b) scatterplot of optimal regression by numerical
integration vs. true values of xm.

4.2. Laplace distributed data

In the second set of experiments the s were generated according to the Laplace
distribution:

p(s) =
exp(−√

2|s|)√
2

(10)

for which the score function is

f′(s) =
√
2 sign(s): (11)

The correlation coeLcient between the numerical integration result and our approx-
imation �(xnumm ; xapprm ) was equal to 0:9120, which shows that the approximation was
quite good (see Fig. 2a).
On the other hand, the estimator xnumm obtained by numerical integration correlates

rather poorly with the true value of the missing variable xm: the correlation coeLcient
is only 0:6489 (see Fig. 2b). Thus, ICA regression does not work that well in this case.
This is probably because its success depends on the non-Gaussianity of the si, and thus
requires the si to be strongly non-Gaussian. Likewise, the MLP-like approximation is
not very successful in predicting the true value of the missing variable, the correlation
coeLcient being 0:5843.

4.3. Very weakly super-Gaussian data

In the third set of experiments the latent variables s were generated according to the
Cosh distribution:

p(s) =
1
2

1

cosh2 s
(12)
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Fig. 2. The results for Laplace (moderately super-Gaussian) data: (a) scatterplot of optimal regression by
numerical integration vs. regression using our approximation and (b) scatterplot of optimal regression by
numerical integration vs. true values of xm.
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Fig. 3. The results for weakly super-Gaussian data: (a) scatterplot of optimal regression by numerical integra-
tion vs. regression using our approximation and (b) scatterplot of optimal regression by numerical integration
vs. true values of xm.

for which the score function is

f′(s) = tanh s: (13)

With this weakly super-Gaussian data, our approximation of the regression function
was very good, the correlation coeLcient being 0:9965. This was in fact to be expected:
Our approximation was a 4rst-order approximation in the vicinity of the Gaussian
distribution for the si, and therefore it is not surprising that it works best when the si
have almost Gaussian distributions. The scatterplot is in Fig. 3a.
On the other hand, we see again that the principle of ICA regression itself does

not work well at all due to the weak non-Gaussianity of the data. The correlation
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coeLcient between the optimal regression computed by numerical integration and the
true values of xm was only 0:2969 (see Fig. 3b). Therefore, the approximating MLP
cannot really predict the xm, either, the correlation coeLcient was 0:2954.

4.4. Conclusion

Thus, we see that our approximation works reasonably well. If the distributions of
the independent components are close to Gaussian, it gives excellent results. If they are
strongly super-Gaussian, the approximation is less accurate but still quite reasonable in
the range we experimented with.
Another point is whether ICA regression in itself gives good regression results. Here

we consider the prediction of the residuals of linear regression, since linear regression
is a standard procedure and does not require the use of non-Gaussian structure. If the
data simply does not contain enough structure, even the optimal regression method
fails. We saw that the stronger the super-Gaussianity, the better the quality of the
regression. For strongly super-Gaussian components, the values can be predicted quite
well. In contrast, for weakly super-Gaussian components, ICA regression does not
really explain the data; this is natural since for Gaussian data any regression beyond
the linear one is impossible.

5. Discussion

We have shown a close connection between regression by ICA and regression by
MLPs. Instead of developing a new method either for ICA estimation or nonlinear re-
gression, our main contribution clearly lies in the theoretical insight on what multi-layer
perceptrons are doing.
We showed that the output of each hidden-layer neuron in an MLP corresponds to the

estimate of one independent component. This means that the problem of choosing the
number of hidden units is somewhat equivalent to choosing the number of independent
components in the ICA model. Thus, this classical problem in MLP research can
be seen as a problem of choosing the model order, which is a classical problem in
statistical modeling. Likewise, the choice of the nonlinearity is seen to be basically
a problem of estimating the probability densities of the independent components. 2

Further, overlearning in MLPs can be seen to correspond to modeling the data with
too many independent components, which is a form of overlearning typical of ICA [12].
To avoid overlearning, regularization is often used in MLPs, and similarly, regularizing
the mixing matrix in ICA could be most useful [10].
Regression by ICA is, in practice, computationally demanding, due to the (possi-

bly multi-dimensional) integration in (4). Our theoretical result might thus have some

2 Note that the nonlinearities given by the score functions need not be known a priori: they can be
estimated, just like the mixing matrix, by methods developed in ICA research, see [9]. The same is true
for the number of independent components, though this is a much more diLcult problem and satisfactory
solutions may not be available [9].
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practical signi4cance, since it shows that the integration may be approximated by the
computationally simple procedure of computing the outputs of an MLP.
It must be noted, however, that the equivalence we have shown is only true as a

4rst-order approximation, for weakly non-Gaussian independent components. Only ex-
periments can show whether this approximation is good enough in a given real-life
application. Our simulations indicate that the approximation might quite well be use-
ful. A second, independent question is, whether the very principle of ICA regression
is useful in practice. Again, our simulations indicate that this might be so, if the inde-
pendent components are strongly non-Gaussian, but assessing the utility in a real-life
situation needs real-life experiments. In fact, we have a kind of contradiction: the ap-
proximation is based on the assumption that the components are weakly non-Gaussian,
but the concept of regression by ICA seems to work only if the components are
strongly non-Gaussian. However, the simulations above seem to indicate that our ap-
proximation is not bad even for strongly non-Gaussian variables. The assumption of
weak non-Gaussianity could thus be considered as a technical assumption, allowing the
derivation of an approximation that seems to be valid even for the more relevant case
of strongly non-Gaussian components.
In conclusion, our result shows that the regression performed by MLPs, which is

conventionally considered as nonparametric or semiparametric, can be interpreted in
the framework of ICA as a model-based regression.

Appendix A. Proof of (5)

Denote hi(si) = s2i =2− 1
2 log 2�+ logpi(si). The variances of the si are equal to one

by de4nition. Due to the assumption of near-Gaussianity, hi(si) can thus be considered
in4nitesimal. We can write

E{xm|xo}= Am 1
(2�)n=2

∫
xo=Aos

s exp

(∑
i

[− s2i =2 + hi(si)]
)
ds: (A.1)

Now, let us do a 4rst-order approximation of
∑

i hi(si) in the vicinity of the point
AToxo, i.e. the linear estimate of the independent components. This point is a linear
approximation of the point where p(s|xo) is maximized. These approximations are
likely to be rather exact if the dimension of xo is large and the dimension of xm is
small. We obtain

E{xm|xo} ≈Am
1

(2�)n=2
·

∫
xo=Aos

s exp

(∑
i

[− s2i =2 + Hi(wTi xo) + h′i(wTi xo)(si − wTi xo)]

)
ds;

(A.2)

where wi denotes the ith column of Ao. Now we can use the fact that exp(hi(wTi xo))
is of order 1 + O(h). We can ignore this constant, since any change it could make
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would be in4nitesimal. Further, let us denote the constant exp(
∑

i−h′(wTi xo)wTi xo) by
c1. Thus we have

E{xm|xo} ≈Am
c1

(2�)n=2

∫
xo=Aos

s exp(−‖s‖2=2 + h′(AToxo)Ts]) ds

≈Am
c1c2
(2�)n=2

∫
xo=Aos

s exp
(
−1
2
‖s − h′(AToxo)‖2

)
ds; (A.3)

where h denotes the function where the hi are applied componentwise. Here we have
de4ned the constant c2 = exp(

∑
i h

′
i(w

T
i xo)

2).
Thus, we have only a Gaussian integral left. It can be evaluated by making a

norm-preserving variable change that parameterizes the space of the s such that xo=Aos.
This is given as AToxo + A

T
mu where u is not constrained. Thus we obtain

c1c2
(2�)n=2

∫
xo=Aos

s exp
(
−1
2
‖s − h′(AToxo)‖2

)
ds

=
c1c2
(2�)n=2

∫
u
[AToxo + A

T
mu] exp

(
−1
2
‖[AToxo + ATmu]− h′(AToxo)‖2

)
du

=
c1c2
(2�)n=2

∫
u
[AToxo + A

T
mu] exp

(
−1
2
[‖xo‖2 + ‖u‖2 + ‖h′(ATox)‖2

− 2h′(AToxo)
TAToxo − 2h′(AToxo)TATmu]

)
du

=
c1c2
(2�)n=2

exp(−‖xo‖2=2 + h′(AToxo)TAToxo) ·
∫
u
[AToxo + A

T
mu] exp

(
−1
2
‖u − Amh′(AToxo)‖2

)
du; (A.4)

where we have used the fact that the preprocessing implies that AmATo =0 and AmA
T
m=

AoATo =I. This can be evaluated by considering the Gaussian integral as an expectation
of a Gaussian random vector. Furthermore, note that c1 cancels the latter term in the
exponential that is before the integral sign. Somewhat less rigorously, we could also
assume that c2 is approximately cancelled by the 4rst term in that exponential; in any
case this is only a scalar scaling. Thus, we obtain

c1c2
(2�)n=2

∫
xo=Aos

s exp
(
−1
2
‖s − h′(AToxo)‖2

)
ds ≈ AToxo + A

T
mAmh

′(AToxo)

(A.5)

and we 4nally have

E{xm|xo} ≈ Amh′(AToxo); (A.6)

where we have again used the fact that the preprocessing implies that AmATo =0. Here,
h′i(u) is de4ned as h

′
i(u) = u+ (logpi)

′(u). On the other hand, AmATo = 0 implies that
addition of any linear function to h′ does not change the regression. Therefore, one
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can take h′i(u)= (logpi)
′(u)+ cu, i.e. h′i can be de4ned as the negative score function

of si plus any linear function. The linear function must be the same for all i.
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Abstract. The problem of analysing dynamically evolving textual data has arisen within the
last few years. An example of such data is the discussion appearing in Internet chat lines.

In this Letter a recently introduced source separation method, termed as complexity pursuit,
is applied to the problem of finding topics in dynamical text and is compared against several
blind separation algorithms for the problem considered. Complexity pursuit is a generalisation

of projection pursuit to time series and it is able to use both higher-order statistical measures
and temporal dependency information in separating the topics. Experimental results on chat
line and newsgroup data demonstrate that the minimum complexity time series indeed do cor-

respond to meaningful topics inherent in the dynamical text data, and also suggest the applic-
ability of the method to query-based retrieval from a temporally changing text stream.

Key words. chat line discussion, complexity pursuit, dynamical text, independent component
analysis, time series

Abbreviations. ICA – Independent component analysis; LSI – Latent semantic indexing

1. Introduction

In times of huge information flow especially in the Internet, there is a strong need for

automatic textual data analysis tools. There are a number of algorithms and methods

developed for text mining from static text collections [2]. The WEBSOM1 is a docu-

ment clustering and visualisation method [19]; its probabilistic counterpart has been

presented e.g. in [16]. Another basic algorithm is Latent Semantic Indexing (LSI) [7]

in which the data is projected onto a subspace spanned by the most important singu-

lar vectors of the data matrix; its probabilistic counterparts have been presented by

Hofmann [9] and Papadimitriou [27]. LSI is found to capture some of the underlying

semantics of textual data, resolving problems of synonymy and polysemy.

In recent years, the use of higher-order statistics and information-theoretic

measures has gained popularity in the data analysis community. LSI uses only

$ Corresponding author. e-mail: ella@iki.fi
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1 See http://websom.hut.fi/websom/
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second-order moments of the data and neglects any higher order correlations, so a

natural step forward is to apply more powerful methods. An important class of

higher order statistical methods are independent component analysis (ICA)-type

methods [6, 12, 14]. In ICA a set of multidimensional observations is presented as

a (linear) combination of some underlying latent features that are more or less inde-

pendent of each other.

First approaches of using ICA in the context of text data were presented by Isbell

and Viola [13], Kolenda et al. [22] and Kabán and Girolami [15]. In these approa-

ches, the textual data is not a dynamic time series but rather an instantaneous mix-

ture of independent topics. The underlying assumption which we also adopt is that

the textual data consists of some more or less independent topics. In the text retrieval

parlance, a topic is a probability distribution on the universe of terms; it is typically

concentrated on terms that might be used when discussing a particular subject. In

this paper, the word ‘topic’ also refers to a hidden, more or less independent random

variable with time structure. Thus we can analyze the ‘independent components’ of

text both by the terms they concentrate on, and by their activity in time.

Recently the issue of analyzing dynamically evolving textual data has arisen, and

investigating appropriate tools for this task is of practical importance. An example

of a dynamically evolving discussion is found in the Internet relay chat rooms. In

these chat rooms daily news topics are discussed and the topic of interest changes

according to participants’ contributions. The online text stream can thus be seen

as a time series, and methods of time series processing may be used to extract the

underlying characteristics – here the topics – of the discussion. Kolenda and Hansen

[20, 21] employ Molgedey and Schuster’s [23] ICA algorithm for the identification of

the dynamically evolving topics. Molgedey and Schuster’s algorithm is an early

separation algorithm which uses temporal information and does not require any

higher order moments for the source separation problem. Kabán and Girolami

[17] have recently presented a Hidden Markov Model (HMM)-type algorithm for

the topographic visualization of time-varying data.

In this Letter a recently introduced powerful separating method is applied to the

problem of extracting the topics of a dynamically evolving discussion. The method

presented by Hyvärinen, termed as complexity pursuit [11], is a generalization of

projection pursuit [8] to time series and it is able to exploit both higher-order and

temporal dependency information in separating the topics. Complexity pursuit is a

method for finding interesting projections of time series, the interestingness being

measured as a short coding length of the projection. Projection pursuit, on the other

hand, neglects any time-dependency information and defines interestingness as non-

gaussianity. Complexity pursuit uses both information-theoretic measures and time-

correlations of the data, which makes it more powerful and motivates its use in the

task approached in this paper.

This paper is organized as follows. Section 2 describes the data and its preproces-

sing. Section 3 provides an introduction to complexity pursuit. Section 4 presents

experimental results on using the complexity pursuit algorithm on chat line and
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newsgroup data, and shows comparisons between several algorithms that have been

presented for separating time-correlated signals. Finally, some conclusions are

drawn in Section 5.

2. Dynamical Textual Data: Chat Line Discussion

Often the characteristics of the textual data of interest change over time. Such dyna-

mical data can be found e.g. in the online news services. Our example of dynamically

evolving text is chat line data, and later also newsgroup data that shares some simi-

larities to chat line data.

The discussion found in chat lines on the Internet is an ongoing stream of text gen-

erated by the chat participants and the chat line moderator. To analyze it using data

mining methods a convenient technique is to split the stream into windows that may

be overlapping if desired. Each such window can now be viewed as one document.

(In splitting the text stream, the boundaries between comment lines are not taken

into account, as this might result into windows of different lengths. Also, this kind

of partitioning is not always possible in other dynamical text streams, and we do not

wish to restrict our analysis to chat line discussions only.)

We employ the vector space model [28] for representing the documents, although

other models can be considered. In the vector space model, each document forms

one T-dimensional vector where T is the number of distinct terms in the vocabulary.

The i-th element of the vector indicates (some function of) the frequency of the i-th

vocabulary term in the document. The data matrix X, also called the term by docu-

ment matrix, contains the document vectors as its columns and is of size T�N

where N is the number of documents. We will write X when referring to the whole

set of data vectors and x when referring to one of them; thus X ¼ ðxðtÞÞ, t ¼ 1; . . . ;N.

As a preprocessing step we compute the LSI of the data matrix X, that is,

the singular value decomposition (SVD)

X ¼ UDVT ð1Þ

where orthogonal matrices U and V contain the left and right singular vectors of X,

respectively, and the pseudodiagonal matrix D contains the singular values of X. The

term by document matrix – which may be of very high dimension – is then projected

onto a smaller dimensional subspace spanned by K left singular vectors in UK corres-

ponding to the K (K� T) largest singular values in the diagonal matrix DK:

Z ¼ D�1
K U

T
KXK ¼ V

T
K ð2Þ

where XK ¼ UKDKV
T
K is an approximation of X. Thus the observations in X are

represented as linear combinations of some orthogonal latent features. The new data

matrix Z ¼ VT
K and its columns zðtÞ, t ¼ 1; . . . ;N are now the inputs for the algo-

rithm that will be described in Section 3.

The time-structure of the topics of the discussion, or the minimum complexity

projections, can be found by projecting Z onto the directions W ¼ ðw1 	 	 	wMÞ given
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by the complexity pursuit algorithm described in the following section. It is often

advantageous to compute the LSI projection onto a somewhat larger dimensionality

K > M and then to find M minimum complexity projections.

To represent the estimated topics in the term space, the transpose of the original

data is first projected onto the LSI term space by

Zterm ¼ D
�1
K VKX

T
K ¼ U

T
K ð3Þ

and then projected onto the directions W that were found earlier by feeding Z into

the algorithm.

The LSI (SVD) preprocessing is computationally the most demanding part of the

problem, of order OðNTcÞ for a sparse T�N data matrix with c nonzero entries per

column (here, c is the number of vocabulary terms present in one document). If new

data is obtained after the LSI has been computed, the decomposition can be easily

updated by folding-in [4] documents or terms: the LSI projection of a new document

vector xnew (a new column in X) is znew ¼ xnewUKD
�1
K . Similarly, the projection of a

new term vector xterm
new (a new row in X) is zterm

new ¼ x
term
new VKD

�1
K .

3. The Complexity Pursuit Algorithm

Complexity pursuit [11] is a recently developed, computationally simple algorithm

for separating interesting components from time series. It is an extension of projec-

tion pursuit [8] to time series data and also closely related to ICA. Projection pursuit

seeks for directions in which the data has an interesting, structured distribution,

the interestingness being understood as nongaussianity – neglecting any time-

dependency information that may exist in the data. ICA, on the other hand, finds

statistically independent directions. It is to be noted that under some restrictions,

it is also possible to estimate the independent components using the time dependency

information alone (see e.g. [3, 23]); however the early algorithms as that proposed in

[23] do not utilize the distribution of the data in obtaining the separation. A heuristic

way of combining both of these estimation criteria (nongaussianity and time-corre-

lations) has been proposed in the JADETD algorithm [24]. However, complexity pur-

suit combines these criteria in a principled way by employing the information

theoretical concept of Kolmogoroff complexity [25] and developing a simple

approximation of it. In complexity pursuit the structure of the projected time series

is measured as the coding complexity. Time series which have the lowest coding com-

plexity are considered the most interesting. Another method of separating indepen-

dent sources in time series has recently been presented by Stone [30]; in his approach,

it is assumed that the source signals are more predictable than any linear mixture of

them. In Section 4 we shall present experimental results on using complexity pursuit,

JADETD, ordinary ICA and the methods presented in [30] and [20]. Some other

methods for detecting the semantics in a dynamical text stream are described e.g.

in [29].
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Our data model assumes that the observations xðtÞ are linear mixtures of some

latent components:

x ¼ As ð4Þ

where x ¼ ðx1; . . . ; xTÞ is the vector of observed random variables, s ¼ ðs1; . . . ; sMÞ is

the vector of independently predictable latent components, and A is an unknown

constant mixing matrix. In the context of complexity pursuit we do not put any spe-

cial emphasis on the statistical independence of si, even though the data model (4) is

similar to that of linear ICA.

A separate autoregressive model is assumed to model each component si ¼ w
T
i x;

as a simple special case of the algorithm presented in [11], we employ a first order

autoregressive (AR) process ŝiðtÞ ¼ aisiðt� tÞ on each latent variable si. The approxi-

mate Kolmogoroff complexity of the residuals dsðtÞ ¼ sðtÞ � ŝðtÞ (using the predictive

coding of the components) [11]

K̂ðdðwTxðtÞÞÞ ¼ E
n
G
� 1

sdðwÞ
wTðxðtÞ � axðt� tÞÞ

�o
þ log sdðwÞ ð5Þ

is then minimized, where G is the negative log-density of the residuals. In the above

formula it is emphasized that the values of a and the residual standard deviation sd
depend on the projection vector w only. An additional constraint EfðwTxðtÞÞ2g ¼ 1 is

also required to fix the scale of the projection. In the right hand side of Formula (5)

the first term measures the contribution of the nongaussianity, and the second term

the contribution of the variance to the entropy of the residual. Minimizing the first

term would find the direction of maximal nongaussianity of the residual, and mini-

mizing the second term the direction of maximum autocovariances, i.e. maximum

time-dependencies [11].

In our application the latent time-components si will model the evolving topics of

the discussion. To find the minima of (5), the data is first whitened by LSI as descri-

bed in the previous section. We denote by zðtÞ this preprocessed data, and w now cor-

responds to an estimate of a row of the inverse of the mixing matrix for whitened

data. At every step of the algorithm, the autoregressive constant aðwÞ for the time

series given by wTzðtÞ is first found using [11]

â ¼ wTEfzðtÞzðt� tÞgw ð6Þ

Then the gradient update of w that minimizes (5) is the following [11]:

w w� mEfðzðtÞ � aðwÞzðt� tÞÞgðwTðzðtÞ � aðwÞzðt� tÞÞÞg ð7Þ

w w=jjwjj ð8Þ

The function g is chosen according to the probability distribution of the residual: to

be exact, g should be the negative score function p0=p of the density of the residual, as

g is the derivative of G in (5). In practice, the choice of g is quite flexible. Choosing

a linear g corresponds to neglecting the higher-order structure of the data, and
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analyzing the time-correlations of the signals only. This kind of complexity minimi-

zation is discussed e.g. in [26]. In general, a nonlinear g should be preferred for the

estimation of nongaussian latent variables or residuals.

To estimate several projections one can either use a deflation scheme, or estimate

all projections simultaneously in a symmetric manner and use orthogonal decorrela-

tion

W 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWWTÞ

�1

q
W ð9Þ

instead of (8). In the deflationary approach, after the estimation of p projections, we

run the algorithm for wpþ1 and after every iteration step subtract from wpþ1 the pro-

jections of the previously estimated p vectors, and then renormalize wpþ1. This kind

of Gram-Schmidt decorrelation is presented e.g. in [10].

The algorithm scales as OðNK2MÞ on preprocessed data; this is linear in the num-

ber of observations N as typically K� N and M4K.

4. Experimental Results

4.1. EXPERIMENTAL SETTING

The chat line data used in our experiments was collected from the CNN Newsroom

chat line2. A contiguous stream of almost 24 hr of discussion of 3200 chat partici-

pants, contributing 25 000 comment lines, was recorded on January 18th, 2001.

The data was cleaned by omitting all user names and non-user generated text. The

remaining text stream was split into windows of 12 rows (about 130 words); subse-

quent windows shared an overlap of 66%. From these windows a term histogram

was generated using the Bow toolkit3. Stemming, stop-word removal and tf-idf (term

frequency – inverse document frequency) term weighting were part of the process.

This resulted in a term by document matrix X of size T�N ¼ 5000� 7430.

The binary valued coding of the term by document matrix – ith entry of a docu-

ment vector was 1 if the ith vocabulary term was present in the document, and 0

otherwise – was used in the experiments. Binary coding avoids serious outliers in

the data and is computationally simple; also, it may be suitable for short documents

where the size of the vocabulary is large, such as short windows of chat line

discussion.

The text document data is typically very sparse; in our chat line data, on the aver-

age, each document had about 40 vocabulary terms and only 0.65% of the entries of

the data matrix X were nonzero. Sparsity gives additional computational savings, so

we did not make the data zero mean as is often done in the context of ICA-type

2http://www.cnn.com/chat/channel/cnn_newsroom
3http://www.cs.cmu.edu/�mccallum/bow/
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algorithms – that would have destroyed the sparsity and resulted in severe computa-

tional difficulties in the LSI preprocessing stage.

The choice of the number of estimated topics M is somewhat arbitrary4. It has

been proved in [27] that if the data has a clear clustered structure, it is enough to

choose M equal to the number of clusters. In our application the case is somewhat

more complex, because more than one topic may be discussed at any one time, and

real-life data may not have clear clusters.

The identified topics lend themselves easily to human evaluation if they are presen-

ted in the term space as described in the end of Section 2 and the most representative

words associated with each wi, i ¼ 1; . . . ;M are listed. In the case of static data – e.g.

ICA of functional magnetic resonance imaging (fMRI) and image recognition, or

textual document analysis [15] – one can use both X and XT for training (see [15]

for derivation); this is called spatio-temporal ICA. In our case, the documents evolve

dynamically but the terms have no time structure, and thus they will be employed in

the visualization phase only.

It should also be noted that the projections wTzðtÞ that represent the latent topics

of discussion are found by the complexity pursuit algorithm up to permutation, sign

and scaling, as is always the case in the context of ICA-type algorithms. Therefore

some prior knowledge based post-processing is necessary for interpreting the results.

We know that the terms belonging to each topic should have a positively skewed dis-

tribution – there are often only a few terms that occur very frequently and corre-

spondingly a large number of seldom occurring terms. (Katz [18] studies the

distribution of words in phrases in more detail.) We must change the sign of the

negatively skewed projections wTzðtÞ so that their distribution becomes positively

skewed.

Our experiments showed that choosing a first order AR model ŝðtÞ ¼ asðt� tÞ was

successful and that lags of e.g. t ¼ 1 and t ¼ 5 were the most suitable – in a typical

discussion in a chat line, the participants’ on-line contributions only depend on a few

previous comments which in our data are recorded in the preceding text windows.

AR models of order >1 did not bring substantial improvement in the results; also,

estimating an AR(1) model is computationally much simpler than more complex

AR models.

The choice of the nonlinearity g in Formula (7) is another issue. The best results

were obtained when g was chosen as gðuÞ ¼ tanhðuÞ, corresponding to imposing a

‘cosh’ prior on the residuals sðtÞ � asðt� tÞ. We have also previously [5] had good

results with the simple gðuÞ ¼ signðuÞ nonlinearity that corresponds to a Laplace

prior on the residuals. In the ICA of static text documents, a nonlinearity

gðuÞ ¼ u2 has been found successful in e.g. [15], corresponding to the skewed

distribution of terms in documents. For dynamical text data, gðuÞ ¼ tanhðuÞ was

4In a recent paper, Kolenda et al. [21] give a Bayesian method for choosing the number of estimated topics.

We became aware of their work during the review process of this paper.
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nevertheless better. Also, choosing a linear g (which neglects the non-gaussian,

higher-order structure of the data) did not prove successful in our experiments.

4.2. RESULTS ON CHAT LINE DATA

The LSI of order K ¼ 100 was computed as a preprocessing step as described in (2).

Smaller K would also suffice, as we will demonstrate on another data set in the next

section. We estimated M ¼ 10 topics of chat line discussion simultaneously, using

the orthogonal decorrelation presented in the end of Section 3. Figure 1 shows

how different topic time series wT
i Z, i ¼ 1; . . . ;M are activated at different times.

We can see that the topics clearly are autocorrelated in time. The time span of

Figure 1 is almost 24 hr; some topics are more or less persistent during the whole per-

iod and some will come up again after a few hours. The same fact can also be seen in

the original text stream.

We now turn to analyze the projections wT
i Zterm of the terms onto minimum com-

plexity directions. This information is complementary to that revealed by analyzing

the document projections wT
i Z, and offers an informative way of visualizing the

results. By listing the terms corresponding to the highest values of wT
i Zterm we get

a list of keywords for the i-th topic. The keywords are listed in Table I in the order

of decreasing importance. It is seen that each keyword list indeed characterizes one

distinct topic quite clearly. Due to polysemy, the same word may appear in more

than one topic. Topic 1 deals with Jesse Jackson and his illegitimate child, topic 2

is about parental control over children’s web usage and topic 3 is a general discussion

about G. W. Bush. Topic 4 is a religious discussion, topic 5 deals with problems

of the youth such as violence and drug abuse, and topic 6 is about the controversial

flag of the state of Georgia, US, due to which the NCAA basketball games risked

Figure 1. Activity of topics (vertical axis) in each chat window (horizontal axis). gðuÞ ¼ tanhðuÞ and t ¼ 5

were used in Formula (7). The uppermost time series corresponds to topic 1, the second to topic 2 etc.

76 ELLA BINGHAM ET AL.



cancellation in Atlanta. Topic 7 involves the energy shortage in California, topic 8

corresponds to comments given by the chat line moderator, topic 9 is about taxation

and topic 10 is a short discussion dealing with the values of the politicians in the US.

One can compare the activities of the topic time series in Figure 1, and the term by

document matrix frequencies of the first few keywords of each topic; the frequencies

of the keywords nicely follow the activities of the time series.

The choice of the number of estimated topics is somewhat flexible. For example,

estimating M ¼ 6 topics would have given keyword lists similar to topics 2, 3, 4, 5, 6

and 7 in Table I.

The evaluation of the results based on the keywords is rather subjective. Numeri-

cal measures are hard to find as the chat line discussion data is not labeled. For this

reason we present results on labeled data in the next section.

Table I. Keywords of chat line discussion topics related to the time series in Figure 1.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

jackson site bush religion violenc

sharpton web ashcroft god report

child net vote jesu youth

stori word kennedi bibl children

drudg parent presid religi gun

rainbow nanni cnn life point

monei internet time follow home

mistress block gore read drug

coalition kid question stori famili

tonight system elect univers satcher

pregnant access god exist health

affair child senat faith risk

black base power man factor

chenei chat thing book surgeon

jessi page fact earth prevent

Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

flag california join tax free

move power discuss cut liber

citi electr est exempt opinion

ncaa energi tonight monei religion

offici blackout room gop form

atlanta state studio hous polit

count deregul cnn congress conserv

game compani conserv pay birth

night crisi american interest philosophi

georgia price nea recess establish

chang plant union payer narrow

lose util keen secur restrict

confeder order type henri independ

hehe home chat hypocrit orthodox

chenei cost newsroom hyde bound
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4.3. RESULTS ON NEWSGROUP DATA

In this section we present experimental results on newsgroup data where consecutive

newsgroup articles are divided into overlapping windows similarly to what was done

with the chat line data. Newsgroup data is often similar to chat line data in the sense

that subsequent articles share a vague topic and the topic changes in time. The news-

group data is labeled (as articles are from distinct newsgroups) and so we are able to

quantitatively assess the separation results obtained by our algorithm and some

other methods. The data is from four newsgroups of the 20 Newsgroup corpus5:

sci.crypt, sci.med, sci.space and soc.religion.christian. The newsgroup articles, about

1000 from each group, were split to windows of 20 rows (excluding the headers) with

50% overlap between neighboring windows. Again, a binary representation of the

documents was chosen but this time no stemming was used as newsgroup language

tends to be quite precise, in contrast to chat line discussions. The size of the data

matrix X was 5000 terms by 4695 documents.

LSI (2) of order K ¼ 50 was computed as a preprocessing step. 6, 8 or 10 mini-

mum-complexity directions w were estimated – discussion in a newsgroup can well

be divided into subgroups, if more than one topic is dealt with. Figure 2 shows

the topic time series wTZ in the case of 10 estimated topics. The asterisks in Figure

2 denote the borders between different newsgroups. It can be seen that each estima-

ted topic time series corresponds to one of the newsgroups, or part of it. The key-

words are seen in Table II, and they also nicely correspond to newsgroup labels:

topics 1, 2 and 3 characterize different aspects discussed in sci.med, topics 4, 8, 9

and 10 in sci.space, topics 5 and 6 in sci.crypt and topic 7 is the only topic from

soc.religion.christian.

Figure 2. Activity of topics (vertical axis) in each newsgroup window (horizontal axis). gðuÞ ¼ tanhðuÞ and

t ¼ 5 were used in Formula (7). The asterisks denote the newsgroup borders: sci.crypt, sci.med, sci.space

and soc.religion.christian. The uppermost time series corresponds to topic 1, the second to topic 2 etc.

5http://www.cs.cmu.edu/�textlearning
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The classification error of the newsgroup documents is computed in the following

way: The topic time series wT
i Z are first normalized to unit variance. Then a time ser-

ies is mapped to the newsgroup whose documents have the highest sum of time series

values in this particular time series. This is done at each time series separately. Now

on the other hand, each document t is classified to that topic time series i in which the

document projection wT
i ZðtÞ attains the maximum value. If the document is classified

to a time series representing a different newsgroup than where the document was

taken from, we consider the document misclassified. The total error is the percentage

of misclassifications.

The results are seen in Table III which shows average results over 20 trials with

different initial values for w. Complexity pursuit is compared to ordinary ICA

(FastICA [10]; this corresponds to complexity pursuit without the autoregressive

Table II. Keywords of newsgroup topics related to the time series in Figure 2.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

human problem bank design kei

effect diseas skeptic power chip

food scienc intellect station govern

studi medic chastiti control encrypt

brain studi surrend shuttl secur

glutam result shame orbit clipper

review food won option public

level effect patient human system

singl treatment mar provid algorithm

paper lot medic flight david

diet test blood engin bit

industri doctor pittsburgh modul phone

blood patient comput capabl data

real experi practic addition nsa

high medicin migrain system escrow

Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

phone god space earth matter

drug christian launch venu burst

commun church satellit soviet rememb

kei christ market planet star

life sin project probe black

dealer jesu commerci mission galaxi

assum bibl servic surfac red

crimin approv plan mile grb

discov scriptur orbit kilomet dark

hold lord cost atmospher gamma

motiv homosexu vehicl venera galact

terrorist arami note lander shift

compromis faith develop orbit object

system love fund craft show

polic paul nasa balloon energi
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modeling of sðtÞ), JADETD [24], Kolenda’s delayed decorrelation [20] and Stone’s

temporal predictability maximization [30]. All these methods except ordinary ICA

and the temporal predictability maximization consider the data at the current time

instant and at some time lag t; we present here results on t ¼ 1, 5 and 10. The tem-

poral predictability maximization instead considers short-time and long-time fluc-

tuations in the data simultaneously.

As seen in Table III, complexity pursuit yields the smallest error of classifica-

tion. Ordinary ICA, delayed decorrelation and temporal predictability maximiza-

tion are not as successful as complexity pursuit and JADETD, giving evidence that

both the temporal structure and information-theoretic measures of the data need

to be taken into account. In all methods except JADETD and delayed decorrela-

tion, the data matrix is first reduced to K ¼ 50 dimensions using LSI (SVD) and

then M ¼ 10, 8 or 6 topics are estimated. In the cases of JADETD and delayed

decorrelation, the LSI of order K ¼M was computed in the beginning. This

makes these two methods computationally less demanding than the other meth-

ods, as seen in Table III where the number of Matlab’s floating point operations

is given.

A new paper by Kolenda et al. [21] gives a method for determining the optimal lag

parameter t; this method is not applied here. The values for t found in [21] are some-

what larger (naturally, this is data dependent) than those used in Table III, but test-

ing e.g. values of t ¼ 20, 50 or 100 in the delayed decorrelation method did not give

any improvements on the results.

Figure 3 is an example of a box plot of the results, showing the variation in the

results between different runs of the algorithms. All methods except JADETD are

sensitive to the initial choice of the vectors w.

Table III. Results of estimating 10, 8 or 6 topics on dynamical text document data (news-
group data) using complexity pursuit (with g ¼ tanh), JADETD [24], ordinary FastICA (with
g ¼ tanh), delayed decorrelation [20] and temporal predictability maximization [30]. Average

results over 20 independent trials with different initial values for w.

Method

Error

M ¼ 10

Flops

	109

Error

M ¼ 8

Flops

	109

Error

M ¼ 6

Flops

	109

Compl. purs. t ¼ 1 0.1515 9.29 0.1230 8.48 0.1081 8.01

Compl. purs. t ¼ 5 0.1495 8.33 0.1423 7.82 0.1922 7.57

Compl. purs. t ¼ 10 0.1737 8.27 0.1933 8.05 0.2760 7.53

JADETD t ¼ 1 0.1774 0.69 0.2043 0.55 0.2204 0.37

JADETD t ¼ 5 0.1774 0.79 0.2043 0.55 0.2204 0.37

JADETD t ¼ 10 0.1774 0.69 0.2043 0.55 0.2204 0.39

FastICA 0.4905 7.40 0.5460 7.16 0.6083 6.92

Del. decorr. t ¼ 1 0.6591 1.38 0.6603 1.08 0.6920 0.77

Del. decorr. t ¼ 5 0.6356 1.40 0.6700 1.08 0.6709 0.78

Del. decorr. t ¼ 10 0.6688 1.38 0.6675 1.10 0.6852 0.77

Temp. pred. maxim. 0.4843 6.82 0.5442 6.82 0.6116 6.81
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5. Conclusions

In this paper we have shown experimental results on how independent minimum

complexity projections of a dynamic textual data identify some underlying latent

or hidden topics in a dynamically evolving text stream. As an example of such dyna-

mically evolving data we used chat line discussions. The method we used for finding

the latent topics, complexity pursuit [11], is a generalization of projection pursuit to

time series and amounts to estimating projections of the data whose approximative

Kolmogoroff complexity is minimized. In our experiments the complexity pursuit

algorithm was able to find distinct and meaningful topics of the discussion. We com-

pared the complexity pursuit method to ordinary ICA and to ICA-type methods for

time-dependent data: JADETD [24], delayed decorrelation [20] and temporal predict-

ability maximization [30]. In order to obtain numerical results we used labeled dyna-

mical newsgroup data; complexity pursuit was the most successful in recognizing

topically different newsgroup articles. Our results suggest that the method could

serve in queries on temporally changing text streams, e.g. complementing other topic

segmentation and tracking methods [1].
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ABSTRACT
Large 0-1 datasets arise in various applications, such as mar-
ket basket analysis and information retrieval. We concen-
trate on the study of topic models, aiming at results which
indicate why certain methods succeed or fail. We describe
simple algorithms for finding topic models from 0-1 data.
We give theoretical results showing that the algorithms can
discover the epsilon-separable topic models of Papadimitriou
et al. We present empirical results showing that the algo-
rithms find natural topics in real-world data sets. We also
briefly discuss the connections to matrix approaches, includ-
ing nonnegative matrix factorization and independent com-
ponent analysis.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Contingency table anal-
ysis; H.2.8 [Database Management]: Database Applica-
tions—Data mining ; I.5.1 [Pattern Recognition]: Mod-
els—Structural

General Terms
Algorithms, Theory

1. INTRODUCTION
Large 0-1 datasets occur in various applications, such as

market basket analysis, information retrieval, and mobile
service use analysis. Lots of research has been done in the
data mining community on methods for analyzing such data
sets. The techniques can be roughly divided into two classes:
(i) the methods based on frequent sets and association rules,
aiming at discovery of interesting patterns, and (ii) proba-
bilistic modeling methods aimed at discovering global struc-
ture from the data set.

In this paper we consider methods that fall in between
these classes of methods. We study the identification of
topics from 0-1 data. Intuitively, a topic is a set of inter-
connected variables such that, the occurrence value 1 in one

Permissionto make digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthisnoticeandthefull citationon thefirst page.To copy otherwise,to
republish,to postonserversor to redistributeto lists,requiresprior specific
permissionand/ora fee.
SIGKDD ’02 Edmonton,Alberta,Canada
Copyright 2002ACM 1-58113-567-X/02/0007...$5.00.

of them tends to increase the probability of seeing value 1
for the other variables. The term “topic” comes from in-
formation retrieval: if a document concerns a certain topic,
then the occurrence of some words is more probable than
in the case when the document does not concern that topic.
A single document can discuss many topics, and all words
belonging to a topic need not appear in a document about
that topic.

The concept of a topic is not restricted to document data.
For example, in market basket data one can consider the
customers having different topics in mind when they enter
the store. A customer might for example want to purchase
beer; the actual brand is selected only later, and perhaps
she/he buys more than one brand.

The problem of finding topics in data has been consid-
ered using various approaches. Examples of the approaches
are identification of finite mixtures, latent semantic index-
ing, probabilistic latent semantic indexing, nonnegative ma-
trix factorization, and independent component analysis (see,
e.g., [5, 10, 8, 14, 11, 13, 12]). Related work is considered in
some more detail in Section 6.

We describe a simple topic model, corresponding to a gen-
erative model of the observations. The model states that
there is a number of topics in the data, and that the oc-
currences of topics are independent. Given that the topic
occurs, the words belonging to that topic are also considered
to be independent. Later, we consider an extension of the
model where the probabilities of topics vary from document
to document (as in, e.g., [11, 14]).

The first question to address is whether actual data sets
can be considered to be results of such generative process.
Our definition of topic models implies, e.g., that negative
correlations between variables are absent. We show that this
is indeed the case on real data sets: while there are negative
correlations, they are typically quite weak and cannot be
considered to be violations of the model.

Given the class of topic models, the problem is then whether
the model parameters can be estimated from the data. Our
model class is close to the class of finite mixtures of multi-
variate Bernoulli distributions, a nonidentifiable class [10].
However, while in Bernoulli distributions the information
obtained from 0 and 1 are on an equal footing, in our model
the values 0 and 1 are not symmetric. This implies that
for models where the topics are almost disjoint (e.g., the ε-
separability condition of Papadimitriou et al. [14]) we can ef-
ficiently identify the topics and their parameters. Our main
focus is whether there are some simple theoretical arguments
that imply that simple topic models can be estimated from
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Figure 1: An example topic model

the data. We are able to show some first results in this
direction, and support the results with empirical evidence.

The rest of this paper is organized as follows. In Sec-
tion 2 we define the variants of topic models we consider.
Section 3 describes the algorithms we use to find the topics.
The theoretical results showing why the algorithms have a
chance of working are given in Section 4. Some empirical
results are described in Section 5. Related work is discussed
in Section 6. Section 7 is a a short conclusion.

2. TOPIC MODELS
In this section we first introduce the simple topic model

we consider, and then give an extension that corresponds
to the model in [14]. We sometimes use the terminology
of information retrieval, talking about documents instead of
observations.

Given a set U of attributes, a k-topic model T = (s̄, q)
consists of k topic probabilities s̄ = (s1, . . . , sk) and a topic-

attribute probability matrix q, giving for each i = 1, . . . , k
and A ∈ U an attribute probability q(i, A) of A in topic i.

A document is sampled from T as follows. First, one
selects independently which topics are on: topic i is on with
probability si. All attributes are initially assigned value
0. Then, for each topic i that was selected, attribute A is
assigned value 1 with probability q(i, A).

Given a topic model T = (s̄, q), the weight w(i) of topic i
in T is

∑
A∈U q(i, A), i.e., the expected value of ones gener-

ated by topic i.
A topic model T = (s̄, q) is ε-separable, if for each topic i

there exists a set Ui ⊆ U of attributes such that Ui ∩Uj = ∅
for i 6= j and

∑
A6∈Ui

q(i, A) ≤ εw(i). That is, each topic
i concentrates most of its mass to entries in Ui, and the
overlap between these sets gets at most mass ε. We call Ui

the primary set of attributes of topic i, and for A ∈ Ui we
say that i is the topic of A. If A, B ∈ Ui for some i, we say
that A and B belong to the same topic. Thus a 0-separable
topic model is one where for each attribute A there is at
most one topic i such that q(i, A) > 0.

Figure 1 illustrates an ε-separable topic model. The at-
tribute set is U = {A, B, . . . , G}, there are 3 topics, and
the attribute subsets corresponding to the topics are U1 =
{A, B, C}, U2 = {D, E}, and U3 = {F, G}. The dashed ar-
rows are examples of relationships that are possible in an
ε-separable model with ε > 0.

A possible drawback with the above model for the gen-

eration of observations is that the topic probabilities si are
considered to be constant: this could be considered unre-
alistic. Next we describe a variant, the varying-probability

topic model in which they are also allowed to vary. Such a
topic model is described as T = (S, q), where S is a finite
set of topic probability vectors s̄.

A document is sampled from a varying-probability topic
model by sampling first the topic probabilities s̄ from S,
and then using the resulting topic model (s̄, q) as above.
Thus this model is quite similar to the ones described in
[14, 11]. The weight of a topic in such a model is defined to
be the expected weight of topic under the sampling of the
probability vector s̄.

The condition of ε-separability is defined for varying-pro-
bability topic models in the same way as for normal topic
models: at most a fraction of ε of the weight of each topic
goes outside the primary attributes of that topic.

Given an 0-1 table over attributes U , denote for A, B ∈ U
by p(A) the probability in the data of the event A = 1
and by p(AB) the probability of A = 1 ∧ B = 1. Then
the conditional probability p(A|B) of A given B is of course
p(AB)/p(B). In practice, the probabilities are estimated as
frequencies in the data.

There are certain degenerate cases in which the identi-
fication of topics does not succeed. For example, if there
is one topic with one attribute, then different combinations
of topic and attribute probabilities give the same observed
frequency.

3. ALGORITHMS FOR FINDING TOPICS
In this section we describe two simple algorithms for find-

ing topics. The first algorithm is applicable only to the basic
model, while the second works also for varying-probability
topic models.

Ratio algorithm. Consider first a k-topic 0-separable
model T = (s̄, q). Given two attributes A and B belonging
to the same topic i, we have p(A) = siq(i, A) and p(B) =
siq(i, B). Furthermore, p(AB) = siq(i, A)q(i, B). Thus we
have

p(A)p(B)

p(AB)
= si.

If, however, A and B belong to different topics i and j, we
have p(A) = siq(i, A) and p(B) = sjq(j, B), and p(AB) =
sisjq(i, A)q(j, B). Hence

p(A)p(B)

p(AB)
= 1.

In the ε-separable case, any attribute may in principle be
generated by any topic, and so p(A) =

∑
i
siq(i, A) and

p(AB) =
∑

i siq(i, A)q(i, B) +
∑

i

∑
k 6=i siskq(i, A)q(k, B).

Thus the algorithm for finding topics is simple. Compute
the ratio r(A, B) = p(A)p(B)/p(AB) for all pairs A and
B; if the ratio is about 1, the attributes belong to different
topics, if it is less than 1, the attributes might belong to the
same topic.

Finding the topics from these ratios can be formalized as
follows. We search for a partition of the set of attributes
U into subsets so that within subsets most of the ratios
r(A, B) are close to a constant, and between subsets most
of the ratios are close to 1. That is, given the matrix r(A, B),
where A, B ∈ U , and an integer k, find the partition of U to



subsets Ui for i = 1, . . . , k, minimizing the score

α
k∑

i=1

∑

A,B∈Ui

(r(A, B) − γi)
2

+ β

k∑

i=1

∑

j=1,...,k,j 6=i

∑

A∈Ui

∑

B∈Uj

(r(A, B) − 1)2,

where α and β are constants and γi is the average of the
ratios r(A, B) within block Ui. This is a typical clustering
problem, NP-complete in its general form, but lots of good
approximate solutions exist.

This almost trivial method actually works quite nicely on
some artificial and real data sets. However, it fails whenever
the observations are generated using the varying-probability
topic model. Thus we need more refined techniques.

Probe algorithm. Our second method is still quite sim-
ple. It is based on the method for finding similar attributes
in 0-1 data described by Das et al. [7]. The basic intuition
behind the algorithm is as follows. If two attributes A and
B belong to the same topic, then the information that the
occurrence of A (meaning the event A = 1) gives is about
the same as the information given by the occurrence of B.
Thus, if we have a measure for the similarity of the informa-
tion given by two attributes, we can use that to find topics.

The probe distance d(A, B) of two attributes is defined by

d(A, B) =
∑

C∈U\{A,B}

|p(C|A) − p(C|B)|.

The intuition here is that attributes A and B are similar
if the distributions of the other attributes in the rows with
A = 1 and in the rows with B = 1 are about the same. The
attributes C serve as probes which are used to measure how
similar the sets of rows are.

Our algorithm is as follows. Compute distances d(A, B)
for all pairs of attributes. (For a data set of n rows and p
attributes, this can be done in time O(np2).) Again, find a
partition of the set U of all attributes to subsets Ui minimiz-
ing the within-cluster distance and maximizing the distances
between clusters. This can, of course, be solved using any
clustering method. The details of the clustering are not our
main focus; rather, we aim at giving results indicating why
the method works. This is done in the next section.

4. PROPERTIES OF THE PROBE
ALGORITHM

In this section we consider the properties of the probe
algorithm given in the previous section. We first consider
the case of 0-separable models, which naturally are quite
simple. We show that for large sample sizes the distance be-
tween two attributes in the same topic tends to 0, and that
the expected distance between two attributes belonging to
different topics is quite large. We then consider the case
of ε-separable models, and show that the same results con-
tinue to hold under some additional conditions. Most of the
results are formulated under the assumption of no sample
effects, i.e., by assuming infinite sample size.

We start with a lemma showing that for 0-separable mod-
els the distance between two attributes in the same topic
goes to 0 as the sample size grows.

Lemma 1. Let r be a table of n rows over attributes U
generated by a 0-separable topic model T = (s̄, q). If A and

B belong to the same topic Ui, then limn→∞ d(A, B) = 0.

The next proposition extends this result to varying-pro-
bability topic models.

Theorem 1. Let r be a table of n rows over attributes

U generated by a 0-separable varying-probability topic model

T = (S, q). Then, if A and B belong to the same topic Ui,

then limn→∞ d(A, B) = 0.

Proof. Consider each probability vector s̄ ∈ S. For
the observations generated using the topic model (s̄, q) the
lemma holds. As the statement of the lemma is independent
of the actual topic probabilities si, the claim follows.

Lemma 2. Let r be a table of n rows over attributes U
generated by a 0-separable topic model T = (s̄, q). If at-

tribute A belongs to topic i, and attribute D belongs to topic

j with j 6= i, then E(d(A, D)) = (1− si)(w(T , i)− q(i, A))+
(1 − si)(w(T , j) − q(j, D)).

Theorem 2. Let r be a table of n rows over attributes

U generated by a 0-separable varying-probability topic model

T = (S, q). If attribute A belongs to topic i, and attribute

D belongs to topic j with j 6= i, then E(d(A, D)) = (1 −
si)(w(T , i) − q(i, A)) + (1 − si)(w(T , j) − q(j, D)).

The proof is the same as for Theorem 1.
The above results show that the probe distances have a

meaningful relationship to the topics of a 0-separable topic
model. The details for general ε-separable models are far
messier, but we give here an analogue of Lemma 1. The in-
tuition is that when we add some weak links to a 0-separable
model, the conditional probabilities are not perturbed too
much, and thus the probe distances within a single topic will
remain small. However, there are pathological ε-separable
models: for example, consider a model where all attribute
probabilities are much less than ε. Then, changes of the
order of ε will naturally have a significant impact on the
model. Of course, there is little hope of finding the topics
in this kind of a model.

To rule out this kind of cases, there are several possibil-
ities. For example, we can define the distinctiveness of an
ε-separable topic model T = (s̄, q) as the smallest value of
the probability of an attribute being generated in the con-
text of its primary topic:

∆(T ) = min
i,A∈Ui

siq(i, A),

where the minimum is taken over all topics i and all at-
tributes A ∈ Ui. Thus, if a model has high distinctiveness
(∆(T ) � ε), the generated attributes should usually reflect
the topics they belong to.

An alternative restriction would be to say that the ε-
separable topic model T has θ-bounded conspiracy, if for
all attributes A with topic i we have

∑
j 6=i q(j, A) ≤ θ, i.e.,

the model T assigns at most a mass of θ to any attribute
from topics other than its main topic. That is, the other
topics do not conspire against a single attribute in a topic.
Similar results as the one below can be proved for that case.

Lemma 3. Let r be a table of n rows over attributes U
generated by a ε-separable topic model T = (s̄, q). If at-

tributes A and B belong to the same topic i, then E(d(A, B))
≤ 2|U |kε/∆(T ).



5. EMPIRICAL RESULTS

5.1 Experiments on simulated data
To evaluate how well do our algorithms perform, we gener-

ated artificial data according to our topic models described
in Section 2. The data consisted of 100 attributes and 10
topics, each topic having a random number of primary at-
tributes, and the number of observations was 100000. We
performed tests on a ε-separable model with ε = 0, 0.01 and
0.1. In all experiments with the first (constant topic proba-
bilities) model, the topic probabilities si were the same, so
that we were able to test the effect of ε in model estimation
accuracy.

Ratio algorithm. First we considered the ratios r(A, B) =
p(A)p(B)/p(AB). Recall that this should yield si, probabil-
ity of topic i if A and B belong to the same topic i, and 1
otherwise, as then A and B are independent and their joint
probability is separable. By listing these ratios in a matrix
one can easily distinguish which topics belong to the same
topic, as all of them have approximately the same ratio. In
this way we can estimate the topic structure of the data, and
also the topic probabilities si and topic-attribute probabili-
ties q(i, A) of A in topic i. Comparing to the true probabil-
ities, the mean squared errors (MSE) of topic probabilities
and the MSEs of topic-attribute probabilities are listed in
Table 1 for ε = 0, 0.01 and 0.1. These figures are averages
of 10 experiments. The variance between experiments was
very small.

ε MSE of topic probs. MSE of topic-attr. probs.
0 0.92 · 10−4 1.00 · 10−3

0.01 1.04 · 10−4 1.02 · 10−3

0.1 1.01 · 10−4 1.03 · 10−3

Table 1: Mean squared errors of estimated topic and
topic-attribute probabilities in the ratio algorithm.

In our varying-probability topic model, the topic proba-
bilities si are randomly drawn for each document, and the
ratio algorithm is not applicable.

Probe algorithm. Sammon mapping [17] is a conve-
nient way to visualize how the attributes are grouped into
distict topics. Figure 2 shows the Sammon map of the probe
distances of the attributes in the 0-separable model. We can
see that the attributes are nicely grouped into about 10 clus-
ters, most of which are clear in shape. The clusters are not
of equal size, as each topic has a random number of primary
attributes. In the case of ε = 0.01, the clusters are a bit
more vague in shape but still visible; with ε = 0.1, no clear
clusters are seen anymore. The probe algorithm is quite re-
sistant to the extension of varying topic probabilities: the
Sammon maps are remarkably similar to those obtained for
the nonvarying-probability topic models.

Maximum entropy model. We also considered whether
the maximum entropy method described in e.g. [16, 15]
might be useful in finding topics. The method is used to
answer queries about the data as follows: first, one mines
frequent sets with some threshold [1, 2], and then finds the
maximum entropy distribution [3, 9] consistent with the fre-
quent sets. We performed experiments using simulated data
to see whether the results are consistent with the topic mod-
els used to generate the data. The results (not shown) indi-
cate that this method does find results consistent with topic
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Figure 2: Sammon map of probe distances of at-
tributes in artificial data; ε = 0.

models quite satisfactorily but not perfectly. However, the
performance is comparable only when the method is given
roughly as much input as the simpler probe algorithm, and
degrades badly when the frequency threshold increases and
the input size decreases.

5.2 Experiments on real data
Correlations. To determine the validity of the model

assumptions on real data, we performed some trials on a
collection of bibliographical data on computer science avail-
able on the WWW1. We call this the “Theory” dataset.
As a preprocessing step, we removed all words occurring in
fewer than 20 documents in the database. This reduced the
number of words to 4227; the number of documents is 67066.

After preprocessing, we determined the probabilities p(A)
and p(AB) for all words A, B (using word frequencies) and
computed the covariances cov(A, B) = p(AB) − p(A)p(B).
We can derive from the theoretical model in Section 2 that
cov(A, B) ≥ 0 for all words A, B. This is not true in the
dataset; indeed, more of the covariances are negative than
positive. However, the distributions of the positive and neg-
ative covariances are very different. Figure 3 displays log-
arithmic histograms of the covariances in the Theory data.
The histograms have been scaled to have equal areas. A
short vertical line marks the position corresponding to one
line in the database; covariances that are (absolutely) much
smaller than this aren’t usually very interesting, since they
tend to reflect small-sample effects in cases where p(AB) is
very small (perhaps 0 or 1 lines) and p(A)p(B) is nonzero
but small.

Probe algorithm. We studied the behavior of the probe
algorithm on the Theory bibliography. As a preprocessing
step, we removed a small set of stop words and all numbers
in the data, and then selected the 200 most frequent terms.

The probe distances of the terms were computed, and
the term pairs with minimum probe distance are listed in
Table 2. The table lists all pairs whose probe distance is
under 1, in increasing order; the mean distance was about
2.7 and maximum distance about 6.2. The term pairs, most
of which are abbreviations, are quite meaningful: e.g. ’stoc’
is ACM Symp. on Theory of Computing and ’focs’ is Symp.

1
http://liinwww.ira.uka.de/bibliography/Theory/Seiferas/
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Figure 3: Histogram of ln(| cov(A, B)|) for positive
(solid) and negative (dashdotted) covariances for
words A, B in Theory. A short vertical line marks
ln(1/67066) = −11.1.

dist. terms
0.50 stoc focs
0.63 infctrl tcs
0.63 tr libtr
0.67 icalp tcs
0.75 infctrl icalp
0.76 eurocrypt crypto
0.79 mfcs tcs
0.81 infctrl jcss
0.81 mfcs icalp
0.81 jcss tcs
0.84 mfcs infctrl
0.86 mfcs jcss
0.88 jcss icalp
0.88 ipps icpp
0.89 mst jcss

dist. terms
0.91 jacm libtr
0.92 extended abstract
0.93 stacs icalp
0.94 actainf tcs
0.95 fct jcss
0.95 fct mfcs
0.96 stacs jcss
0.96 jacm tr
0.96 sijdm damath
0.97 ipps jpdc
0.98 stoc tr
0.98 icpp jpdc
0.99 sicomp libtr
0.99 stacs infctrl
0.99 stacs tcs

Table 2: Term pairs with minimum probe distance
in the Theory data set

on Foundations of Computer Science; ’infctrl’ is Information
and Computation (formerly Information and Control) and
’tcs’ is Theoretical Computer Science. For each term pair,
the pair members belong to the same topical field, be it
theoretical computer science, technical reports, cryptogra-
phy, parallel processing, discrete mathematics etc. All these
terms appear quite often in the data base, which makes the
estimation of their probe distances reliable.

Does the method find topics? For example, listing the 10
terms with minimum probe distance to ’stoc’ we get ’focs’,
’tr’, ’sicomp’, ’libtr’, ’stacs’, ’jacm’, ’jcss’, ’icalp’, ’infctrl’,
and ’ipl’. Computing the average distances of every term
in this list to all other terms in the list, and taking the
average of these averages, we get a distance of 1.17. On the
other hand, computing the average distances of every term
in this list to all other terms in the vocabulary, and again
taking the average, yields 2.30. So the terms close to ’stoc’
are also very close to one another but less close to other
terms, and can thus be seen as forming a sort of topic. A
similar comparison can be done to the closest neighbors of
’focs’, giving a similar term list as above with similar average
distances.
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Figure 4: Sammon map of the probe distances of
the 30 most common terms in the Theory data set.
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Figure 5: Sammon map of the LSI projections of the
30 most common terms in the Theory data set.

We used Sammon’s mapping to project the data into two
dimensions; Figure 4 shows how the 30 most common terms
are located. There is clear evidence of clustering of related
terms.

For comparison, we also projected the data into its 20-
dimensional LSI [8] space. The Sammon map of the 30
most common terms is seen in Figure 5. In interpreting
the figures, one should bear in mind that a two-dimensional
Sammon map may not truly represent the locations of high-
dimensional vectors.

6. RELATED WORK
The idea of looking at topics in 0-1 data (or other discrete

data) has been considered in various contexts. The latent
semantic indexing (LSI) method [8] uses singular-value de-
composition (SVD) to obtain good choices of topics. This
method works quite nicely in practice; the reason for this
remains unclear. In a seminal paper [14], Papadimitriou et



al. gave some arguments justifying the performance of LSI.
Their basic model is quite general and we have adopted their
basic formalism; to obtain the results on LSI they have to re-
strict the documents to stem from a single topic. Of course,
some restrictions are unavoidable.

Hofmann [11] has considered the case of probabilistic LSI.
His formal model is close to ours, having the form P (w|d) =∑

z P (z|d)P (w|z), where the z’s are topics, d refers to a
document, and w to a word. Hofmann’s main interest is
in good estimation of all the parameters using the EM al-
gorithm, while we are interested in having some reasoning
explaining why the methods would find topics.

Cadez et al. [4] have considered the estimation of topic-
like market-basket data, with the added complication that
the same customer has multiple transactions, leading to the
need of individual weights.

Our topic models are fairly close to the class of finite mix-
tures of multivariate Bernoulli distributions, a nonidentifi-
able class [10] (see also [5]). However, for those models, the
values 0 and 1 have symmetric status, while for the topic
models defined above this is not the case. We conjecture that
the class of topic models is essentially identifiable provided
that the topics are almost disjoint in, e.g., the ε-separability
sense.

In nonnegative matrix factorization (NMF), an observed
data matrix V is presented as a product of two unknown
matrices: V = WH. All three matrices have nonnegative
entries. Lee and Seung [13] give two practical algorithms
for finding the matrices W and H given V . Restriction to
binary variables is not straightforward in these algorithms.

Independent component analysis (ICA) [6, 12] is a statisti-
cal method that expresses a set of observed multidimensional
sequences as a combination of unknown latent variables that
are more or less statistically independent. Topic identifica-
tion in 0-1 data can be interpreted in the ICA terminology as
finding latent binary sequences, unions of which form the ob-
served binary data. ICA in its original form relies heavily on
matrix operations; for sparse data, union is roughly equiva-
lent to summation, so methods for ICA could be considered
for the problem at hand. Nevertheless, most existing ICA al-
gorithms are suitable for continuosly distributed data with
Gaussian noise — the case of 0-1 variables and Bernoulli
noise is quite different, and practical ICA algorithms tend
to fail in this case.

7. CONCLUSIONS
We have considered the problem of finding topics in 0-1

data. We gave a formal description of topic models, and
showed that relatively simple algorithms can be used to find
topics from data generated using such models. We showed
that the probe algorithm works reasonably well in practice.

Lots of open issues remain, both on the theoretical and
on the practical side. The detailed relationship of our model
compared to, e.g., Hofmann’s model remain to be studied.
We conjecture that the topic models are identifiable, in con-
trast with general mixtures of multivariate Bernoulli distri-
butions. Understanding the behavior of LSI is still open.
Similarly, seeing how nonnegative matrix factorization is
connected to the other approaches is open, as are the ways
of extending ICA to the Bernoulli case.
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topic identification in 0–1 data
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Helsinki University of Technology

Abstract. Topics in 0–1 datasets are sets of variables whose occurrences
are positively connected together. Earlier, we described a simple genera-
tive topic model. In this paper we show that, given data produced by this
model, the lift statistics of attributes can be described in matrix form.
We use this result to obtain a simple algorithm for finding topics in 0–1
data. We also show that a problem related to the identification of top-
ics is NP-hard. We give experimental results on the topic identification
problem, both on generated and real data.

1 Introduction

Large collections of 0–1 data occur in many applications, such as information
retrieval, web browsing, telecommunications, and market basket analysis. While
the dimensionality of such data sets can be large, the variables (or attributes)
are seldom completely independent. Rather, it is natural to assume that the
attributes are organized into (possibly overlapping) topics, i.e., collections of
variables whose occurrences are somehow connected to each other.1 For example,
in document data the topics correspond to topics of the document: e.g., phrases
“data mining”, “decision trees” and “association rules” probably are included
in one topic, which might be called the “data mining” topic. In supermarket
market basket data, the topics could correspond to classes of products such
as soft drinks, vegetables, etc. In discretized gene expression data topics could
correspond to groups of genes that are expressed in similar conditions or tissues.

Finding topics from data is by no means easy: the topics can be overlapping,
and a particular topic is active only for a subset of documents. For example,
simple frequent set based approaches are unable to find topics, as the attributes
in a topic are seldom 1 together. There has been lots of work that searches for
latent structure in 0–1 data (see, e.g., [1–10]). The approaches range from simple
methods based on covariance-type statistics (e.g., [9]) to full probabilistic models
(e.g., [4]) and to spectral approaches [10].

In order to discover topics from 0–1 data, one first has to specify the model
for topics, and then give a method that finds topics corresponding to the model.

1 Our usage of the word topic is similar but not identical to the meaning in information
retrieval literature, where a topic is a probability distribution on the universe of
terms, typically concentrating on a few terms.
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In this paper we describe a simple generative topic model, based on our previous
work [11]. We prove some analytical results about the model by using the concept
of lift [12]. We show that the lift statistics of individual attribute pairs can be
described in matrix form as linear combinations of lift statistics of disjoint topics.
Based on this observation, we give a simple algorithm for finding topics in 0–1
data. We also show that one form of the topic identification problem is NP-hard.
We give experimental results on both generated and real data, showing that the
algorithm works well in practice.

First we review some other methods for finding latent structure in binary
data. Many of these generative models are quite powerful and are able to de-
scribe complex situations. On the other hand, finding exact solutions for them
is computationally intractable, and it is difficult to get a clear picture of the
quality of the obtained estimates. Many of the methods are also symmetric with
respect to the data values 0 and 1; on the basis of the asymmetry in the data
generating process, this can be viewed as a potential source of problems.

In nonnegative matrix factorization (NMF) [1], an observed data matrix is
decomposed into a product of two unknown matrices. All three matrices have
nonnegative entries. The observed data is regarded as a sum of latent variables.
Lee and Seung give two algorithms for finding the unknown matrices; there is,
however, no probabilistic interpretation of the results of NMF. Computationally,
the methods seems very demanding and there are no clear results on the quality
of the solutions [13].

The latent semantic analysis (LSA) method [2] uses singular-value decom-
position to decompose an observed data matrix into a product of matrices. (In
contrast to NMF, the matrices can have negative entries, too.) In a seminal
paper by Papadimitriou et al. [3] some arguments were given to justify the per-
formance of LSI by presenting a probabilistic corpus model. Their basic model
is quite general and somewhat similar to ours.

Hofmann [4] has presented a probabilistic version of LSA, termed PLSA. His
formal model is fairly close to ours and we will show comparative results on the
models. For each observation vector, some topics are first selected according to
some observation-specific topic probabilities; then, the topics generate attributes
according to some topic-attribute probabilities. The attributes are conditionally
independent given the topic. Hofmann’s main interest is in good estimation of all
the parameters using the EM algorithm, while we are interested in the structure
of the data (that is, the probabilities of attributes belonging to topics) and also
explaining why the methods would find topics.

Laten Dirichlet Allocation (LDA) [14–16] is a method in which the data
model is closely similar to Hofmann’s PLSA but the estimation of the parame-
ters is computationally more demanding: a variational approximation to the data
likelihood is needed prior to EM estimation of the parameters. Independent com-
ponent analysis (ICA) ([8, 17, 18]) is a statistical method that expresses observed
multidimensional sequences as combinations of unknown latent variables, that
are statistically as independent as possible. The so called probe distances [19]
of attributes can be used to find (possibly overlapping) sets of attributes that
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behave similarly with respect to other attributes; we studied this in an earlier
paper [11]. Cooley and Clifton [9] compute the frequent sets in the data and
cluster them using a hypergraph partitioning scheme, thus avoiding the problem
of not having all attributes of a topic present in one data vector.

A popular method to analyze 0–1 data is the class of finite mixtures of mul-
tivariate Bernoulli distributions. However, for the Bernoulli models, the values 0
and 1 have symmetric status, while for our topic models defined in Section 2 this
is not the case. Another important difference between Bernoulli (or any other)
mixture model and our model is that in mixture models it is assumed that an
observed 0–1 vector is only generated by one latent topic, although generation
probabilities are given for all latent topics. In this paper we assume that a data
vector is generated by the interaction of several latent topics. Binary generative
topographic mapping [20, 21] also assumes that the data vectors are generated
by one latent topic at a time.

The rest of this paper is organized as follows. We describe our model and
examine some of its analytical properties in Section 2. In Section 3 we study the
lift statistic and describe the simple algorithm based on it. We give experimental
results in Section 4, and conclude in Section 5.

2 Topic Models

In this section we present our concept of a topic model, give the likelihood
function of the model, and discuss what kinds of parameter values are realistic.
This form of the model was introduced earlier by us [11].

Let U be an n-element set of attributes (e.g., words). A k-topic model T
arranges the n attributes into k topics. The model has the following parameters:
a k-element vector s = (s1, . . . , sk) corresponding to the k topics, and a k ×
n matrix Q whose elements relate the topics to the attributes; the element
corresponding to topic i and attribute A is denoted by Qi,A. All elements of s

and Q must be probabilities, i.e., reals in the range [0, 1]; however, neither s nor
any row or column of Q is required to sum up to 1.

A data vector x (e.g., a document) is sampled from T as follows. First, the
active topics are selected by sampling a k-element binary vector t whose every
component ti is 1 with probability si, independently of all other components.
Second, the active topics generate the attributes. For each topic i, an n-element
binary vector xi is sampled so that the component corresponding to A is 1 with
probability tiQi,A, independently of all other components. The data vector x is

then the logical or (i.e., maximum) of all the vectors xi, x =
∨k

i=1 xi.
It would be possible to add another layer on top of the topics, selecting the

topic probabilities anew for each data vector from, e.g., a Dirichlet distribution.
Many of our results could be generalized to such settings, which however fall
outside the scope of this treatment. This type of approach has been taken in [3,
4, 14–16].

We next present the likelihood function of a k-topic model T with param-
eters s,Q. The data D consists of vectors x, each considered independently of
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the others,

P (D | T ) =
∏

x∈D

P (x | T ).

The probability of a single observation x is

P (x | T ) =
∑

t

P (t | T )P (x | t, T ).

The sum is taken over all k-element 0–1 vectors t, corresponding to all 2k possible
combinations of active topics. The probability of a topic combination depends
on the parameters s only,

P (t | T ) = P (t | s) =

k
∏

i=1

P (ti | si) =

k
∏

i=1

sti

i (1 − si)
1−ti .

The probability of an observation given the active topics depends on the param-
eters Q only,

P (x | t, T ) = P (x | t,Q) =
∏

A∈U

P (xA | t,Q),

where xA denotes the element of x that corresponds to the attribute A ∈ U .
A single attribute has a value of either zero or one, with distribution

P (xA | t,Q) = pxA

A (1 − pA)1−xA =

{

1 − pA, xA = 0

pA, xA = 1,

where

pA = 1 −
k

∏

i=1

(1 − Qi,A)ti .

The likelihood function, if expanded fully, would have a large number of terms
because of the sum over 2k topic combinations t. This suggests a high compu-
tational complexity, and indeed the task of selecting the best t is difficult. This
is illustrated by the following theorem, whose proof we defer to the Appendix.

Theorem 1. The following problem is NP-complete: given a topic model T , a

single data vector x and a threshold ρ, decide whether there is a topic assign-

ment t such that the probability of the data given the assignment exceeds the

threshold, P (x | t, T ) ≥ ρ.

However, the models involved in the proof would best be described as con-
trived, so the result should not dissuade us from researching some reasonable
subclass of topic models. But what kind of models are reasonable?

One assumption that we will make is that the topic probabilities si are small.
This seems reasonable at least in the context of document data: if some words
occur in a large fraction of all documents, in information retrieval they would
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be classified as stop words and not considered in searches; it is the less common
words that distinguish interesting documents.

Another question is the amount of overlap between topics – if two topics
consist of almost completely the same attributes, it does not seem easy to dis-
tinguish between them. In [11] we considered a class of “ε-separable” models,
an idea similar to that in [3]. A model is ε-separable if every topic has a set of
primary attributes and assigns at most a fraction ε of its attribute-activation
weight to the non-primary attributes. However, the ε-separability property does
not perfectly capture the idea of almost-disjoint topics, as the discussion in [11,
before Lemma 3] notes: for example, several topics can “conspire” against an-
other topic i by giving high weight to one of i’s primary attributes. Even if every
high weight is less than a fraction ε of the topic’s total weight, it is possible that
the majority of activations of that attribute come from the conspiring topics and
not the primary topic.

This leads us to define a different separability concept: a model has θ-bounded

conspiracy if every attribute A has a primary topic i such that

∑

j 6=i

Qj,A ≤ θQi,A.

We conjecture that a model is discoverable from data if it has low values of si

and conspiracy bounded by some low θ.

3 Using the Lift Statistic

We now consider a statistic commonly called called lift or interest [12, 22, 23],

lift(A,B) =
P (A | B)

P (A)
=

P (A,B)

P (A)P (B)
,

which is a kind of a relative risk factor: how much more common is it to observe A
given that B is observed, compared to no information about B? Lift was chosen
because it measures dependence, which is highly relevant to topic models – when
two attributes belong strongly to the same topic, their co-occurrence should de-
viate significantly from the independence assumption. For independent A and B,
lift(A,B) = 1, and the stronger the (positive) dependence, the higher the lift.
Note that our model predicts lift(A,B) ≥ 1 for all pairs A,B ∈ U ; thus, one
way of assessing whether the model fits a given data set is to see how lift(A,B)
is actually distributed.

Proposition 1. Assume that attribute A is only generated by topic i. Then for

any attribute B,

lift(A,B) =
P (ti | B)

P (ti)
=

P (ti, B)

P (ti)P (B)
.
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Proof. We factorize the probabilities: P (A) = P (A, ti) = P (ti)P (A | ti) and
P (A,B) = P (ti, A,B) = P (ti)P (B | ti)P (A | ti, B). Since A is only generated
by topic i, P (A | ti, B) = P (A | ti). Thus

lift(A,B) =
P (A,B)

P (A)P (B)
=

P (ti)P (A | ti)P (B | ti)

P (ti)P (A | ti)P (B)
.

Using Bayes’ theorem P (B | ti) = P (B)P (ti | B)/P (ti) and canceling terms we
obtain the result. ut

What Proposition 1 says is that if A is a “core attribute” of topic i, i.e., an
attribute generated by i only, then A represents i perfectly in lift calculations,
even if Qi,A < 1. Of course in practice, when the lift must be estimated from
data, a small value of Qi,A can cause poor results. Another point to note is that
the probability P (B | ti) appearing in the proof is not the model parameter Qi,B .
Instead, it is the probability that any topic will generate B conditioned on the
fact that at least topic i is active. Proposition 1 has as immediate consequences
two results that we used already in [11].

Corollary 1. If attributes A and B are only generated by topic i, i.e., Qj,A =
Qj,B = 0 for j 6= i, then lift(A,B) = s−1

i .

Corollary 2. If attribute A is only generated by topic i and attribute B is only

generated by topic j, then lift(A,B) = 1.

Thus, the lift statistic between attributes belonging to one topic only is very
simple. The interesting question is how lift behaves when an attribute belongs
to several topics.

Assume that attribute A is only generated by topic i, and attribute B is
generated by both topics i and j. Now lift(A,B) is, after simplification,

P (A,B)

P (A)P (B)
=

Qi,B + sjQj,B − Qi,BsjQj,B

siQi,B + sjQj,B − sisjQi,BQj,B

≈
Qi,B + sjQj,B

siQi,B + sjQj,B

where in the approximation we have assumed that Qi,BsjQj,B and sisjQi,BQj,B

are small compared to the other terms. The above formula generalizes to the
case where B is generated by some other topics than i and j, too: before the
approximation we then have several second order terms s`Q`,B corresponding to
all topics ` that generate B, and similarly several third order terms s`Qi,BQ`,B

(in the numerator) or fourth order terms sis`Qi,BQ`,B (in the denominator).

Assume now that all the topic probabilities are (approximately) equal, i.e.,
s` ≈ s for all topics `. Then we can write the above formula as lift(A,B) ≈
(s−1Qi,B + Qj,B)/(Qi,B + Qj,B). Furthermore, let each topic ` have c` core
attributes that are only generated by that topic. Then using Corollaries 1 and 2
we note that the lifts of A and all core attributes can be included in the formula
as follows:
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Observation. The lift between a core attribute A of topic i and an attribute B
generated by topics i and j is

lift(A,B) ≈
∑

A′

lift(A,A′)c−1
i

Qi,B

Qi,B + Qj,B

+
∑

D′

lift(A,D′)c−1
j

Qj,B

Qi,B + Qj,B

where
∑

A′ lift(A,A′)c−1
i is an averaged estimate of s−1,

∑

D′ lift(A,D′)c−1
j = 1

and the two sums run over the core attributes A′ and D′ of topics i and j,
respectively. Also, we may add a third summation including lift(A,F ′) where F ′

is a core attribute belonging to topic l into which B does not belong to, as then
Ql,B = 0 and the whole term vanishes. This observation again generalizes to the
case where B is generated by multiple topics.

The above reasoning included approximations in discarding high-order terms
and the somewhat crude assumption that all si are equal. In any case, it does
yield an idea of how to discover topics: for an attribute B that belongs to
several topics, define a vector α whose length is the total number of all core
attributes. The element corresponding to A (a core attribute of topic i) is
αA = Qi,B/(ci

∑

j Qj,B). Then lift(A,B) ≈ α
T lift(A, ·) for all core attributes A,

where we denote by lift(A, ·) the vector of lifts between A and all core attributes
(where lift(A,A) = 0). This gives us an algorithm for finding the topics in which
the attributes belong, and also the parameters Q:

– Identify those attributes that belong to one topic only – this can be done
by looking at the lift statistics, which are always either 1 or 1/s for those
attributes.

– Cluster those attributes using some traditional clustering algorithm; at this
stage the clusters do not overlap and do not cover all attributes – if an
attribute B belongs to several topics, its lifts are intermediate between 1
and 1/s, and so B is not clustered. For A belonging to one topic i only,
Qi,A = P (AA′)/P (A′) which can be averaged over all A′ belonging to the
same topic i as A.

– For attributes B which are not clustered, find a decomposition lift(B, ·) =
α

T R, where the square symmetric matrix R has the vectors lift(A, ·) (of
already clustered attributes A) as its columns. All of the lifts in this formula
are known, so the vector α can be estimated straightforwardly. The elements
of α are nonzero for those attributes that share a topic with B, and zero
for others. Also, the elements are more or less constant within attributes
of a given topic. Now Qi,B = αAci/

∑

j Qj,B where αA can be averaged
over all A′ belonging to topic i, ci is known, and for small and equal sj we
can approximate P (B) ≈ s

∑

j Qj,B , which gives us
∑

j Qj,B . We can also
assume

∑

j Qj,B = 1 and scale the estimated Qi,B accordingly.

4 Experimental Results

4.1 Generated Data

We designed experiments to see how the conspiracy statistic θ of a model af-
fects our clustering results. The results corroborate our conjecture that low-
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conspiracy models are easier to discover. We constructed random models with
θ-bounded conspiracy using the following recipe. The model has 10 topics and
100 attributes. The probability si of a topic was drawn uniformly at random
from the interval [0.01, 0.5]. Each attribute was assigned a primary topic so that
each topic was primary for 10 attributes.

To assign the within-topic attribute probabilities Qi,A so that the conspiracy
parameter is θ, we first drew a number p uniformly from [0, 1] and let Qi,A = p
for the primary topic i. Then we distributed the mass θp to the non-primary
topics in an uneven way. Each non-primary topic in random order received a
fraction of φ of the remaining mass, where φ is chosen at random from [0, 1],
separately for each non-primary topic. The last topic received all remaining mass
to make the mass sum up exactly to θp.

This way of generating a random model includes a number of somewhat
arbitrary choices that we now justify. First, the topic probabilities si were chosen
not from [0, 1] but from a smaller interval. Some lower limit is necessary so
that each topic is represented in a finite data sample; and an upper limit is
needed by our algorithm, which distinguishes a topic by estimating its probability
and cannot discover a topic that is almost always active. In a preliminary test
(not shown), our algorithm’s performance was best with low upper limits, and
deteriorated rapidly when the upper limit approached 1. We chose 0.5 as the
upper limit as a conservative approach: in document data, one would expect
that individual topics have much smaller probabilities.

Second, we discuss the distribution of the within-topic attribute probabilities
of non-primary topics. A more obvious strategy would be to draw the probabili-
ties independently and then to normalize, but then the distribution would have
become more even. With 9 non-primary topics, all the probabilities would cen-
ter around θ/9 times the primary probability, which makes the task far easier:
none of the non-primary topics is likely to be confused with the primary topic.
In contrast, our procedure typically results in a few non-primary topics with
non-negligible topic-attribute probabilities for each attribute. We wish to mimic
the behavior of true data sets, such as text document data: a term may have
several meanings, perhaps a primary meaning and one or few secondary mean-
ings, hence it belongs primarily to one topic of discussion and secondarily to a
few other topics, but not to all possible topics.

In the experiment, we estimated the topic-attribute probabilities Q using
the lift statistic, NMF, PLSA2 and K-means. The NMF and PLSA methods
estimate Q given the observed binary data. A naive alternative is the simple
K-means algorithm which clusters the attributes into non-overlapping sets; we
assume that Qi,A is equal for all attributes A of topic i and sums to 1 at each
topic.

Figure 1 shows the mean squared errors (MSE’s) of the estimated Q, com-
pared to the true probabilities used to generate the data. The conspiracy param-
eter θ runs from 0 to 1. At each θ, the topic probabilities s are sampled anew, so
there is great variability in the data models. Originally, the topic-attribute prob-

2 The PLSA method was kindly programmed by Mr. Teemu Hirsimäki.
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abilities estimated by the methods do not necessarily sum to 1 at each topic –
they do in PLSA, but not either in the other methods or in the true data model –
but we scale them accordingly, to be able to compare the MSE’s.

In Figure 1 we see that at smaller θ, the Lift algorithm estimates the Q and
thus the structure of the data very nicely. When θ grows very large, the data
model is more difficult to estimate. The behaviors of NMF and PLSA3 do not
depend on θ, which is natural: the methods are not primarily aimed for such
θ-bounded data but instead are able to estimate the structure also when the
topics are totally overlapping. The K-means algorithm estimates the structure
of the data poorly for all θ.

4.2 Real Data

We performed experiments on bibliographical data on computer science available
on the WWW4. We first tested the model’s prediction that lift(A,B) ≥ 1 for
all A,B; while it does not hold perfectly because there are negative correlations
between words, the vast majority of these negative correlations are statistically
insignificant (details omitted). We preprocessed the data by removing a small
set of stop words and all numbers, and then selected the 100 most frequent terms
for further analysis.

We computed the lift statistics between all term pairs and used hierarchical
average linkage clustering based on the inverses of lifts. Table 1 shows how the
terms are clustered into topics. The number of clusters (21) was chosen based
on the distance between clusters being merged in the process of hierarchical
clustering: until these 21 clusters, the intercluster distances were quite small but
distances between the final 21 clusters were large. The structure in Table 1 is
immediately familiar to a theoretical computer scientist: the topics concentrate
on different fields of the science.

We also performed topic finding on yeast gene expression data, using the same
gene expression dataset as in [24] that combines the results of several different
gene expression studies. The combined dataset measures the expression level of
over six thousand genes in almost a hundred experiments; thus, we used the
experiments as “attributes” and the genes as “measurements”. The levels were
discretized so that the top 5% expressed genes in each experiment were given
the value 1. The results are not shown due to space constraints, but as a brief
example, the discovered topics were seen to reflect cyclical behavior of the genes
in the time-series experiments.

5 Concluding Remarks

We studied a simple generative topic model and showed that the lift statistics of
attributes can be described in matrix form. Based on this, we obtained a simple

3 No simulated annealing was used in the EM algorithm of the PLSA.
4 http://liinwww.ira.uka.de/bibliography/Theory/Seiferas/
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Fig. 1. Mean squared errors of Q at different conspiracy parameters θ.
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topic terms

1 algorithms approximation damath problems scheduling some tree two
2 analysis distributed libtr probabilistic systems
3 bounds communication complexity focs lower
4 algorithm efficient fast ipl matching problem set simple
5 design ieeetc network networks optimal parallel routing sorting
6 note tcs
7 finding graphs minimum planar polynomial sets sicomp time
8 graph number properties random tr
9 from information learning lncs theory
10 approach jacm linear new programming system
11 actainf binary search trees
12 abstract computation extended model stoc
13 automata finite languages mfcs
14 data dynamic infctrl logic programs structures using
15 applications icalp theorem
16 cacm computer computing science
17 crypto functions
18 jcss machines
19 algebraic beatcs computational geometry
20 de stacs van
21 codes dmath

Table 1. Terms in different topics. (The order of the topics is not relevant).
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algorithm for finding topics in 0–1 data. We also showed that a problem related
to the identification of topics is NP-hard, and gave experimental results.

Several open problems remain. Our model is simple, and seems to yield good
results; still, more complex models might do a better job at identifying, e.g.,
topics containing partly exclusive attributes. The identifiability of the model is
another interesting issue: could one prove something about it? Further experi-
mental studies are also needed.
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Appendix

Proof of Theorem 1. That the problem is in NP is simple to see: the certifi-
cate is the topic vector t, and the formula for P (x | t, T ) involves multiplying
n numbers, each computable in O(k) time.

To show NP-hardness, we reduce SAT to a topic assignment problem. Given
a SAT instance of m clauses over n variables, we define a topic model with
2n topics and n + m attributes. For each variable Vi, we create two topics Ti

and T ′
i , and one attribute Ai. For each clause Cj , we create one attribute Bj .

Each topic has probability 0.5, and each attribute has 0/1 within-topic proba-
bilities as follows: attribute Ai has probability 1 in topics Ti and T ′

i and prob-
ability 0 in other topics; attribute Bj has probability 1 in the topics Ti such
that Vi appears positively in clause Cj and in the topics T ′

i such that Vi appears
negatively in clause Cj , and probability 0 in all other topics. We consider a data
vector where all attributes have value 1.

Now, if the SAT problem has a satisfying truth assignment, it corresponds
to a solution of the topic assignment problem where Ti is active if Vi is true and
T ′

i is active if Vi is false. This solution has likelihood 0.5n, since exactly n topics
are active, and the active topics explain all attributes Ai and Bj . Conversely,
if a solution to the topic assignment problem exists such that the likelihood is
at least 0.5n, it must have at most n active topics. To explain attribute Ai,
either Ti or T ′

i must be active; thus the number of active topics is exactly n,
and the solution corresponds to a truth assignment. Since the solution must
also explain each attribute Bj , the truth assignment must satisfy the original
problem. In summary, the SAT instance has a solution if and only if the topic
assignment problem has a solution with likelihood at least 0.5n. ut
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