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Abstract. The problem of analysing dynamically evolving textual data has arisen within the
last few years. An example of such data is the discussion appearing in Internet chat lines.

In this Letter a recently introduced source separation method, termed as complexity pursuit,
is applied to the problem of finding topics in dynamical text and is compared against several
blind separation algorithms for the problem considered. Complexity pursuit is a generalisation

of projection pursuit to time series and it is able to use both higher-order statistical measures
and temporal dependency information in separating the topics. Experimental results on chat
line and newsgroup data demonstrate that the minimum complexity time series indeed do cor-

respond to meaningful topics inherent in the dynamical text data, and also suggest the applic-
ability of the method to query-based retrieval from a temporally changing text stream.
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1. Introduction

In times of huge information flow especially in the Internet, there is a strong need for

automatic textual data analysis tools. There are a number of algorithms and methods

developed for text mining from static text collections [2]. The WEBSOM1 is a docu-

ment clustering and visualisation method [19]; its probabilistic counterpart has been

presented e.g. in [16]. Another basic algorithm is Latent Semantic Indexing (LSI) [7]

in which the data is projected onto a subspace spanned by the most important singu-

lar vectors of the data matrix; its probabilistic counterparts have been presented by

Hofmann [9] and Papadimitriou [27]. LSI is found to capture some of the underlying

semantics of textual data, resolving problems of synonymy and polysemy.

In recent years, the use of higher-order statistics and information-theoretic

measures has gained popularity in the data analysis community. LSI uses only
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second-order moments of the data and neglects any higher order correlations, so a

natural step forward is to apply more powerful methods. An important class of

higher order statistical methods are independent component analysis (ICA)-type

methods [6, 12, 14]. In ICA a set of multidimensional observations is presented as

a (linear) combination of some underlying latent features that are more or less inde-

pendent of each other.

First approaches of using ICA in the context of text data were presented by Isbell

and Viola [13], Kolenda et al. [22] and Kabán and Girolami [15]. In these approa-

ches, the textual data is not a dynamic time series but rather an instantaneous mix-

ture of independent topics. The underlying assumption which we also adopt is that

the textual data consists of some more or less independent topics. In the text retrieval

parlance, a topic is a probability distribution on the universe of terms; it is typically

concentrated on terms that might be used when discussing a particular subject. In

this paper, the word ‘topic’ also refers to a hidden, more or less independent random

variable with time structure. Thus we can analyze the ‘independent components’ of

text both by the terms they concentrate on, and by their activity in time.

Recently the issue of analyzing dynamically evolving textual data has arisen, and

investigating appropriate tools for this task is of practical importance. An example

of a dynamically evolving discussion is found in the Internet relay chat rooms. In

these chat rooms daily news topics are discussed and the topic of interest changes

according to participants’ contributions. The online text stream can thus be seen

as a time series, and methods of time series processing may be used to extract the

underlying characteristics – here the topics – of the discussion. Kolenda and Hansen

[20, 21] employ Molgedey and Schuster’s [23] ICA algorithm for the identification of

the dynamically evolving topics. Molgedey and Schuster’s algorithm is an early

separation algorithm which uses temporal information and does not require any

higher order moments for the source separation problem. Kabán and Girolami

[17] have recently presented a Hidden Markov Model (HMM)-type algorithm for

the topographic visualization of time-varying data.

In this Letter a recently introduced powerful separating method is applied to the

problem of extracting the topics of a dynamically evolving discussion. The method

presented by Hyvärinen, termed as complexity pursuit [11], is a generalization of

projection pursuit [8] to time series and it is able to exploit both higher-order and

temporal dependency information in separating the topics. Complexity pursuit is a

method for finding interesting projections of time series, the interestingness being

measured as a short coding length of the projection. Projection pursuit, on the other

hand, neglects any time-dependency information and defines interestingness as non-

gaussianity. Complexity pursuit uses both information-theoretic measures and time-

correlations of the data, which makes it more powerful and motivates its use in the

task approached in this paper.

This paper is organized as follows. Section 2 describes the data and its preproces-

sing. Section 3 provides an introduction to complexity pursuit. Section 4 presents

experimental results on using the complexity pursuit algorithm on chat line and
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newsgroup data, and shows comparisons between several algorithms that have been

presented for separating time-correlated signals. Finally, some conclusions are

drawn in Section 5.

2. Dynamical Textual Data: Chat Line Discussion

Often the characteristics of the textual data of interest change over time. Such dyna-

mical data can be found e.g. in the online news services. Our example of dynamically

evolving text is chat line data, and later also newsgroup data that shares some simi-

larities to chat line data.

The discussion found in chat lines on the Internet is an ongoing stream of text gen-

erated by the chat participants and the chat line moderator. To analyze it using data

mining methods a convenient technique is to split the stream into windows that may

be overlapping if desired. Each such window can now be viewed as one document.

(In splitting the text stream, the boundaries between comment lines are not taken

into account, as this might result into windows of different lengths. Also, this kind

of partitioning is not always possible in other dynamical text streams, and we do not

wish to restrict our analysis to chat line discussions only.)

We employ the vector space model [28] for representing the documents, although

other models can be considered. In the vector space model, each document forms

one T-dimensional vector where T is the number of distinct terms in the vocabulary.

The i-th element of the vector indicates (some function of) the frequency of the i-th

vocabulary term in the document. The data matrix X, also called the term by docu-

ment matrix, contains the document vectors as its columns and is of size T�N

where N is the number of documents. We will write X when referring to the whole

set of data vectors and x when referring to one of them; thus X ¼ ðxðtÞÞ, t ¼ 1; . . . ;N.

As a preprocessing step we compute the LSI of the data matrix X, that is,

the singular value decomposition (SVD)

X ¼ UDVT ð1Þ

where orthogonal matrices U and V contain the left and right singular vectors of X,

respectively, and the pseudodiagonal matrix D contains the singular values of X. The

term by document matrix – which may be of very high dimension – is then projected

onto a smaller dimensional subspace spanned by K left singular vectors in UK corres-

ponding to the K (K� T) largest singular values in the diagonal matrix DK:

Z ¼ D�1
K U

T
KXK ¼ V

T
K ð2Þ

where XK ¼ UKDKV
T
K is an approximation of X. Thus the observations in X are

represented as linear combinations of some orthogonal latent features. The new data

matrix Z ¼ VT
K and its columns zðtÞ, t ¼ 1; . . . ;N are now the inputs for the algo-

rithm that will be described in Section 3.

The time-structure of the topics of the discussion, or the minimum complexity

projections, can be found by projecting Z onto the directions W ¼ ðw1 	 	 	wMÞ given
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by the complexity pursuit algorithm described in the following section. It is often

advantageous to compute the LSI projection onto a somewhat larger dimensionality

K > M and then to find M minimum complexity projections.

To represent the estimated topics in the term space, the transpose of the original

data is first projected onto the LSI term space by

Zterm ¼ D
�1
K VKX

T
K ¼ U

T
K ð3Þ

and then projected onto the directions W that were found earlier by feeding Z into

the algorithm.

The LSI (SVD) preprocessing is computationally the most demanding part of the

problem, of order OðNTcÞ for a sparse T�N data matrix with c nonzero entries per

column (here, c is the number of vocabulary terms present in one document). If new

data is obtained after the LSI has been computed, the decomposition can be easily

updated by folding-in [4] documents or terms: the LSI projection of a new document

vector xnew (a new column in X) is znew ¼ xnewUKD
�1
K . Similarly, the projection of a

new term vector xterm
new (a new row in X) is zterm

new ¼ x
term
new VKD

�1
K .

3. The Complexity Pursuit Algorithm

Complexity pursuit [11] is a recently developed, computationally simple algorithm

for separating interesting components from time series. It is an extension of projec-

tion pursuit [8] to time series data and also closely related to ICA. Projection pursuit

seeks for directions in which the data has an interesting, structured distribution,

the interestingness being understood as nongaussianity – neglecting any time-

dependency information that may exist in the data. ICA, on the other hand, finds

statistically independent directions. It is to be noted that under some restrictions,

it is also possible to estimate the independent components using the time dependency

information alone (see e.g. [3, 23]); however the early algorithms as that proposed in

[23] do not utilize the distribution of the data in obtaining the separation. A heuristic

way of combining both of these estimation criteria (nongaussianity and time-corre-

lations) has been proposed in the JADETD algorithm [24]. However, complexity pur-

suit combines these criteria in a principled way by employing the information

theoretical concept of Kolmogoroff complexity [25] and developing a simple

approximation of it. In complexity pursuit the structure of the projected time series

is measured as the coding complexity. Time series which have the lowest coding com-

plexity are considered the most interesting. Another method of separating indepen-

dent sources in time series has recently been presented by Stone [30]; in his approach,

it is assumed that the source signals are more predictable than any linear mixture of

them. In Section 4 we shall present experimental results on using complexity pursuit,

JADETD, ordinary ICA and the methods presented in [30] and [20]. Some other

methods for detecting the semantics in a dynamical text stream are described e.g.

in [29].
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Our data model assumes that the observations xðtÞ are linear mixtures of some

latent components:

x ¼ As ð4Þ

where x ¼ ðx1; . . . ; xTÞ is the vector of observed random variables, s ¼ ðs1; . . . ; sMÞ is

the vector of independently predictable latent components, and A is an unknown

constant mixing matrix. In the context of complexity pursuit we do not put any spe-

cial emphasis on the statistical independence of si, even though the data model (4) is

similar to that of linear ICA.

A separate autoregressive model is assumed to model each component si ¼ w
T
i x;

as a simple special case of the algorithm presented in [11], we employ a first order

autoregressive (AR) process ŝiðtÞ ¼ aisiðt� tÞ on each latent variable si. The approxi-

mate Kolmogoroff complexity of the residuals dsðtÞ ¼ sðtÞ � ŝðtÞ (using the predictive

coding of the components) [11]

K̂ðdðwTxðtÞÞÞ ¼ E
n
G
� 1

sdðwÞ
wTðxðtÞ � axðt� tÞÞ

�o
þ log sdðwÞ ð5Þ

is then minimized, where G is the negative log-density of the residuals. In the above

formula it is emphasized that the values of a and the residual standard deviation sd
depend on the projection vector w only. An additional constraint EfðwTxðtÞÞ2g ¼ 1 is

also required to fix the scale of the projection. In the right hand side of Formula (5)

the first term measures the contribution of the nongaussianity, and the second term

the contribution of the variance to the entropy of the residual. Minimizing the first

term would find the direction of maximal nongaussianity of the residual, and mini-

mizing the second term the direction of maximum autocovariances, i.e. maximum

time-dependencies [11].

In our application the latent time-components si will model the evolving topics of

the discussion. To find the minima of (5), the data is first whitened by LSI as descri-

bed in the previous section. We denote by zðtÞ this preprocessed data, and w now cor-

responds to an estimate of a row of the inverse of the mixing matrix for whitened

data. At every step of the algorithm, the autoregressive constant aðwÞ for the time

series given by wTzðtÞ is first found using [11]

â ¼ wTEfzðtÞzðt� tÞgw ð6Þ

Then the gradient update of w that minimizes (5) is the following [11]:

w w� mEfðzðtÞ � aðwÞzðt� tÞÞgðwTðzðtÞ � aðwÞzðt� tÞÞÞg ð7Þ

w w=jjwjj ð8Þ

The function g is chosen according to the probability distribution of the residual: to

be exact, g should be the negative score function p0=p of the density of the residual, as

g is the derivative of G in (5). In practice, the choice of g is quite flexible. Choosing

a linear g corresponds to neglecting the higher-order structure of the data, and
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analyzing the time-correlations of the signals only. This kind of complexity minimi-

zation is discussed e.g. in [26]. In general, a nonlinear g should be preferred for the

estimation of nongaussian latent variables or residuals.

To estimate several projections one can either use a deflation scheme, or estimate

all projections simultaneously in a symmetric manner and use orthogonal decorrela-

tion

W 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWWTÞ

�1

q
W ð9Þ

instead of (8). In the deflationary approach, after the estimation of p projections, we

run the algorithm for wpþ1 and after every iteration step subtract from wpþ1 the pro-

jections of the previously estimated p vectors, and then renormalize wpþ1. This kind

of Gram-Schmidt decorrelation is presented e.g. in [10].

The algorithm scales as OðNK2MÞ on preprocessed data; this is linear in the num-

ber of observations N as typically K� N and M4K.

4. Experimental Results

4.1. EXPERIMENTAL SETTING

The chat line data used in our experiments was collected from the CNN Newsroom

chat line2. A contiguous stream of almost 24 hr of discussion of 3200 chat partici-

pants, contributing 25 000 comment lines, was recorded on January 18th, 2001.

The data was cleaned by omitting all user names and non-user generated text. The

remaining text stream was split into windows of 12 rows (about 130 words); subse-

quent windows shared an overlap of 66%. From these windows a term histogram

was generated using the Bow toolkit3. Stemming, stop-word removal and tf-idf (term

frequency – inverse document frequency) term weighting were part of the process.

This resulted in a term by document matrix X of size T�N ¼ 5000� 7430.

The binary valued coding of the term by document matrix – ith entry of a docu-

ment vector was 1 if the ith vocabulary term was present in the document, and 0

otherwise – was used in the experiments. Binary coding avoids serious outliers in

the data and is computationally simple; also, it may be suitable for short documents

where the size of the vocabulary is large, such as short windows of chat line

discussion.

The text document data is typically very sparse; in our chat line data, on the aver-

age, each document had about 40 vocabulary terms and only 0.65% of the entries of

the data matrix X were nonzero. Sparsity gives additional computational savings, so

we did not make the data zero mean as is often done in the context of ICA-type

2http://www.cnn.com/chat/channel/cnn_newsroom
3http://www.cs.cmu.edu/�mccallum/bow/
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algorithms – that would have destroyed the sparsity and resulted in severe computa-

tional difficulties in the LSI preprocessing stage.

The choice of the number of estimated topics M is somewhat arbitrary4. It has

been proved in [27] that if the data has a clear clustered structure, it is enough to

choose M equal to the number of clusters. In our application the case is somewhat

more complex, because more than one topic may be discussed at any one time, and

real-life data may not have clear clusters.

The identified topics lend themselves easily to human evaluation if they are presen-

ted in the term space as described in the end of Section 2 and the most representative

words associated with each wi, i ¼ 1; . . . ;M are listed. In the case of static data – e.g.

ICA of functional magnetic resonance imaging (fMRI) and image recognition, or

textual document analysis [15] – one can use both X and XT for training (see [15]

for derivation); this is called spatio-temporal ICA. In our case, the documents evolve

dynamically but the terms have no time structure, and thus they will be employed in

the visualization phase only.

It should also be noted that the projections wTzðtÞ that represent the latent topics

of discussion are found by the complexity pursuit algorithm up to permutation, sign

and scaling, as is always the case in the context of ICA-type algorithms. Therefore

some prior knowledge based post-processing is necessary for interpreting the results.

We know that the terms belonging to each topic should have a positively skewed dis-

tribution – there are often only a few terms that occur very frequently and corre-

spondingly a large number of seldom occurring terms. (Katz [18] studies the

distribution of words in phrases in more detail.) We must change the sign of the

negatively skewed projections wTzðtÞ so that their distribution becomes positively

skewed.

Our experiments showed that choosing a first order AR model ŝðtÞ ¼ asðt� tÞ was

successful and that lags of e.g. t ¼ 1 and t ¼ 5 were the most suitable – in a typical

discussion in a chat line, the participants’ on-line contributions only depend on a few

previous comments which in our data are recorded in the preceding text windows.

AR models of order >1 did not bring substantial improvement in the results; also,

estimating an AR(1) model is computationally much simpler than more complex

AR models.

The choice of the nonlinearity g in Formula (7) is another issue. The best results

were obtained when g was chosen as gðuÞ ¼ tanhðuÞ, corresponding to imposing a

‘cosh’ prior on the residuals sðtÞ � asðt� tÞ. We have also previously [5] had good

results with the simple gðuÞ ¼ signðuÞ nonlinearity that corresponds to a Laplace

prior on the residuals. In the ICA of static text documents, a nonlinearity

gðuÞ ¼ u2 has been found successful in e.g. [15], corresponding to the skewed

distribution of terms in documents. For dynamical text data, gðuÞ ¼ tanhðuÞ was

4In a recent paper, Kolenda et al. [21] give a Bayesian method for choosing the number of estimated topics.

We became aware of their work during the review process of this paper.
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nevertheless better. Also, choosing a linear g (which neglects the non-gaussian,

higher-order structure of the data) did not prove successful in our experiments.

4.2. RESULTS ON CHAT LINE DATA

The LSI of order K ¼ 100 was computed as a preprocessing step as described in (2).

Smaller K would also suffice, as we will demonstrate on another data set in the next

section. We estimated M ¼ 10 topics of chat line discussion simultaneously, using

the orthogonal decorrelation presented in the end of Section 3. Figure 1 shows

how different topic time series wT
i Z, i ¼ 1; . . . ;M are activated at different times.

We can see that the topics clearly are autocorrelated in time. The time span of

Figure 1 is almost 24 hr; some topics are more or less persistent during the whole per-

iod and some will come up again after a few hours. The same fact can also be seen in

the original text stream.

We now turn to analyze the projections wT
i Zterm of the terms onto minimum com-

plexity directions. This information is complementary to that revealed by analyzing

the document projections wT
i Z, and offers an informative way of visualizing the

results. By listing the terms corresponding to the highest values of wT
i Zterm we get

a list of keywords for the i-th topic. The keywords are listed in Table I in the order

of decreasing importance. It is seen that each keyword list indeed characterizes one

distinct topic quite clearly. Due to polysemy, the same word may appear in more

than one topic. Topic 1 deals with Jesse Jackson and his illegitimate child, topic 2

is about parental control over children’s web usage and topic 3 is a general discussion

about G. W. Bush. Topic 4 is a religious discussion, topic 5 deals with problems

of the youth such as violence and drug abuse, and topic 6 is about the controversial

flag of the state of Georgia, US, due to which the NCAA basketball games risked

Figure 1. Activity of topics (vertical axis) in each chat window (horizontal axis). gðuÞ ¼ tanhðuÞ and t ¼ 5

were used in Formula (7). The uppermost time series corresponds to topic 1, the second to topic 2 etc.
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cancellation in Atlanta. Topic 7 involves the energy shortage in California, topic 8

corresponds to comments given by the chat line moderator, topic 9 is about taxation

and topic 10 is a short discussion dealing with the values of the politicians in the US.

One can compare the activities of the topic time series in Figure 1, and the term by

document matrix frequencies of the first few keywords of each topic; the frequencies

of the keywords nicely follow the activities of the time series.

The choice of the number of estimated topics is somewhat flexible. For example,

estimating M ¼ 6 topics would have given keyword lists similar to topics 2, 3, 4, 5, 6

and 7 in Table I.

The evaluation of the results based on the keywords is rather subjective. Numeri-

cal measures are hard to find as the chat line discussion data is not labeled. For this

reason we present results on labeled data in the next section.

Table I. Keywords of chat line discussion topics related to the time series in Figure 1.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

jackson site bush religion violenc

sharpton web ashcroft god report

child net vote jesu youth

stori word kennedi bibl children

drudg parent presid religi gun

rainbow nanni cnn life point

monei internet time follow home

mistress block gore read drug

coalition kid question stori famili

tonight system elect univers satcher

pregnant access god exist health

affair child senat faith risk

black base power man factor

chenei chat thing book surgeon

jessi page fact earth prevent

Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

flag california join tax free

move power discuss cut liber

citi electr est exempt opinion

ncaa energi tonight monei religion

offici blackout room gop form

atlanta state studio hous polit

count deregul cnn congress conserv

game compani conserv pay birth

night crisi american interest philosophi

georgia price nea recess establish

chang plant union payer narrow

lose util keen secur restrict

confeder order type henri independ

hehe home chat hypocrit orthodox

chenei cost newsroom hyde bound
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4.3. RESULTS ON NEWSGROUP DATA

In this section we present experimental results on newsgroup data where consecutive

newsgroup articles are divided into overlapping windows similarly to what was done

with the chat line data. Newsgroup data is often similar to chat line data in the sense

that subsequent articles share a vague topic and the topic changes in time. The news-

group data is labeled (as articles are from distinct newsgroups) and so we are able to

quantitatively assess the separation results obtained by our algorithm and some

other methods. The data is from four newsgroups of the 20 Newsgroup corpus5:

sci.crypt, sci.med, sci.space and soc.religion.christian. The newsgroup articles, about

1000 from each group, were split to windows of 20 rows (excluding the headers) with

50% overlap between neighboring windows. Again, a binary representation of the

documents was chosen but this time no stemming was used as newsgroup language

tends to be quite precise, in contrast to chat line discussions. The size of the data

matrix X was 5000 terms by 4695 documents.

LSI (2) of order K ¼ 50 was computed as a preprocessing step. 6, 8 or 10 mini-

mum-complexity directions w were estimated – discussion in a newsgroup can well

be divided into subgroups, if more than one topic is dealt with. Figure 2 shows

the topic time series wTZ in the case of 10 estimated topics. The asterisks in Figure

2 denote the borders between different newsgroups. It can be seen that each estima-

ted topic time series corresponds to one of the newsgroups, or part of it. The key-

words are seen in Table II, and they also nicely correspond to newsgroup labels:

topics 1, 2 and 3 characterize different aspects discussed in sci.med, topics 4, 8, 9

and 10 in sci.space, topics 5 and 6 in sci.crypt and topic 7 is the only topic from

soc.religion.christian.

Figure 2. Activity of topics (vertical axis) in each newsgroup window (horizontal axis). gðuÞ ¼ tanhðuÞ and

t ¼ 5 were used in Formula (7). The asterisks denote the newsgroup borders: sci.crypt, sci.med, sci.space

and soc.religion.christian. The uppermost time series corresponds to topic 1, the second to topic 2 etc.

5http://www.cs.cmu.edu/�textlearning
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The classification error of the newsgroup documents is computed in the following

way: The topic time series wT
i Z are first normalized to unit variance. Then a time ser-

ies is mapped to the newsgroup whose documents have the highest sum of time series

values in this particular time series. This is done at each time series separately. Now

on the other hand, each document t is classified to that topic time series i in which the

document projection wT
i ZðtÞ attains the maximum value. If the document is classified

to a time series representing a different newsgroup than where the document was

taken from, we consider the document misclassified. The total error is the percentage

of misclassifications.

The results are seen in Table III which shows average results over 20 trials with

different initial values for w. Complexity pursuit is compared to ordinary ICA

(FastICA [10]; this corresponds to complexity pursuit without the autoregressive

Table II. Keywords of newsgroup topics related to the time series in Figure 2.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

human problem bank design kei

effect diseas skeptic power chip

food scienc intellect station govern

studi medic chastiti control encrypt

brain studi surrend shuttl secur

glutam result shame orbit clipper

review food won option public

level effect patient human system

singl treatment mar provid algorithm

paper lot medic flight david

diet test blood engin bit

industri doctor pittsburgh modul phone

blood patient comput capabl data

real experi practic addition nsa

high medicin migrain system escrow

Topic 6 Topic 7 Topic 8 Topic 9 Topic 10

phone god space earth matter

drug christian launch venu burst

commun church satellit soviet rememb

kei christ market planet star

life sin project probe black

dealer jesu commerci mission galaxi

assum bibl servic surfac red

crimin approv plan mile grb

discov scriptur orbit kilomet dark

hold lord cost atmospher gamma

motiv homosexu vehicl venera galact

terrorist arami note lander shift

compromis faith develop orbit object

system love fund craft show

polic paul nasa balloon energi
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modeling of sðtÞ), JADETD [24], Kolenda’s delayed decorrelation [20] and Stone’s

temporal predictability maximization [30]. All these methods except ordinary ICA

and the temporal predictability maximization consider the data at the current time

instant and at some time lag t; we present here results on t ¼ 1, 5 and 10. The tem-

poral predictability maximization instead considers short-time and long-time fluc-

tuations in the data simultaneously.

As seen in Table III, complexity pursuit yields the smallest error of classifica-

tion. Ordinary ICA, delayed decorrelation and temporal predictability maximiza-

tion are not as successful as complexity pursuit and JADETD, giving evidence that

both the temporal structure and information-theoretic measures of the data need

to be taken into account. In all methods except JADETD and delayed decorrela-

tion, the data matrix is first reduced to K ¼ 50 dimensions using LSI (SVD) and

then M ¼ 10, 8 or 6 topics are estimated. In the cases of JADETD and delayed

decorrelation, the LSI of order K ¼M was computed in the beginning. This

makes these two methods computationally less demanding than the other meth-

ods, as seen in Table III where the number of Matlab’s floating point operations

is given.

A new paper by Kolenda et al. [21] gives a method for determining the optimal lag

parameter t; this method is not applied here. The values for t found in [21] are some-

what larger (naturally, this is data dependent) than those used in Table III, but test-

ing e.g. values of t ¼ 20, 50 or 100 in the delayed decorrelation method did not give

any improvements on the results.

Figure 3 is an example of a box plot of the results, showing the variation in the

results between different runs of the algorithms. All methods except JADETD are

sensitive to the initial choice of the vectors w.

Table III. Results of estimating 10, 8 or 6 topics on dynamical text document data (news-
group data) using complexity pursuit (with g ¼ tanh), JADETD [24], ordinary FastICA (with
g ¼ tanh), delayed decorrelation [20] and temporal predictability maximization [30]. Average

results over 20 independent trials with different initial values for w.

Method

Error

M ¼ 10

Flops

	109

Error

M ¼ 8

Flops

	109

Error

M ¼ 6

Flops

	109

Compl. purs. t ¼ 1 0.1515 9.29 0.1230 8.48 0.1081 8.01

Compl. purs. t ¼ 5 0.1495 8.33 0.1423 7.82 0.1922 7.57

Compl. purs. t ¼ 10 0.1737 8.27 0.1933 8.05 0.2760 7.53

JADETD t ¼ 1 0.1774 0.69 0.2043 0.55 0.2204 0.37

JADETD t ¼ 5 0.1774 0.79 0.2043 0.55 0.2204 0.37

JADETD t ¼ 10 0.1774 0.69 0.2043 0.55 0.2204 0.39

FastICA 0.4905 7.40 0.5460 7.16 0.6083 6.92

Del. decorr. t ¼ 1 0.6591 1.38 0.6603 1.08 0.6920 0.77

Del. decorr. t ¼ 5 0.6356 1.40 0.6700 1.08 0.6709 0.78

Del. decorr. t ¼ 10 0.6688 1.38 0.6675 1.10 0.6852 0.77

Temp. pred. maxim. 0.4843 6.82 0.5442 6.82 0.6116 6.81
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5. Conclusions

In this paper we have shown experimental results on how independent minimum

complexity projections of a dynamic textual data identify some underlying latent

or hidden topics in a dynamically evolving text stream. As an example of such dyna-

mically evolving data we used chat line discussions. The method we used for finding

the latent topics, complexity pursuit [11], is a generalization of projection pursuit to

time series and amounts to estimating projections of the data whose approximative

Kolmogoroff complexity is minimized. In our experiments the complexity pursuit

algorithm was able to find distinct and meaningful topics of the discussion. We com-

pared the complexity pursuit method to ordinary ICA and to ICA-type methods for

time-dependent data: JADETD [24], delayed decorrelation [20] and temporal predict-

ability maximization [30]. In order to obtain numerical results we used labeled dyna-

mical newsgroup data; complexity pursuit was the most successful in recognizing

topically different newsgroup articles. Our results suggest that the method could

serve in queries on temporally changing text streams, e.g. complementing other topic

segmentation and tracking methods [1].
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Figure 3. Box plot of the error in the case of M ¼ 10 estimated topics and lag parameter t ¼ 5. Methods

from left to right: complexity pursuit, JADETD, ordinary FastICA, delayed decorrelation and temporal

predictability maximization.
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