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ABSTRACT

Large 0-1 datasets arise in various applications, such as mar-
ket basket analysis and information retrieval. We concen-
trate on the study of topic models, aiming at results which
indicate why certain methods succeed or fail. We describe
simple algorithms for finding topic models from 0-1 data.
We give theoretical results showing that the algorithms can
discover the epsilon-separable topic models of Papadimitriou
et al. We present empirical results showing that the algo-
rithms find natural topics in real-world data sets. We also
briefly discuss the connections to matrix approaches, includ-
ing nonnegative matrix factorization and independent com-
ponent analysis.

Categoriesand Subject Descriptors

G.3 [Probability and Statistics]: Contingency table anal-
ysis; H.2.8 [Database Management]: Database Applica-
tions—Data mining; 1.5.1 [Pattern Recognition]: Mod-
els—Structural

General Terms
Algorithms, Theory

1. INTRODUCTION

Large 0-1 datasets occur in various applications, such as
market basket analysis, information retrieval, and mobile
service use analysis. Lots of research has been done in the
data mining community on methods for analyzing such data
sets. The techniques can be roughly divided into two classes:
(i) the methods based on frequent sets and association rules,
aiming at discovery of interesting patterns, and (ii) proba-
bilistic modeling methods aimed at discovering global struc-
ture from the data set.

In this paper we consider methods that fall in between
these classes of methods. We study the identification of
topics from 0-1 data. Intuitively, a topic is a set of inter-
connected variables such that, the occurrence value 1 in one
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of them tends to increase the probability of seeing value 1
for the other variables. The term “topic” comes from in-
formation retrieval: if a document concerns a certain topic,
then the occurrence of some words is more probable than
in the case when the document does not concern that topic.
A single document can discuss many topics, and all words
belonging to a topic need not appear in a document about
that topic.

The concept of a topic is not restricted to document data.
For example, in market basket data one can consider the
customers having different topics in mind when they enter
the store. A customer might for example want to purchase
beer; the actual brand is selected only later, and perhaps
she/he buys more than one brand.

The problem of finding topics in data has been consid-
ered using various approaches. Examples of the approaches
are identification of finite mixtures, latent semantic index-
ing, probabilistic latent semantic indexing, nonnegative ma-
trix factorization, and independent component analysis (see,
e.g., [5, 10, 8, 14, 11, 13, 12]). Related work is considered in
some more detail in Section 6.

We describe a simple topic model, corresponding to a gen-
erative model of the observations. The model states that
there is a number of topics in the data, and that the oc-
currences of topics are independent. Given that the topic
occurs, the words belonging to that topic are also considered
to be independent. Later, we consider an extension of the
model where the probabilities of topics vary from document
to document (as in, e.g., [11, 14]).

The first question to address is whether actual data sets
can be considered to be results of such generative process.
Our definition of topic models implies, e.g., that negative
correlations between variables are absent. We show that this
is indeed the case on real data sets: while there are negative
correlations, they are typically quite weak and cannot be
considered to be violations of the model.

Given the class of topic models, the problem is then whether
the model parameters can be estimated from the data. Our
model class is close to the class of finite mixtures of multi-
variate Bernoulli distributions, a nonidentifiable class [10].
However, while in Bernoulli distributions the information
obtained from 0 and 1 are on an equal footing, in our model
the values 0 and 1 are not symmetric. This implies that
for models where the topics are almost disjoint (e.g., the e-
separability condition of Papadimitriou et al. [14]) we can ef-
ficiently identify the topics and their parameters. Our main
focus is whether there are some simple theoretical arguments
that imply that simple topic models can be estimated from



Figure 1: An example topic model

the data. We are able to show some first results in this
direction, and support the results with empirical evidence.

The rest of this paper is organized as follows. In Sec-
tion 2 we define the variants of topic models we consider.
Section 3 describes the algorithms we use to find the topics.
The theoretical results showing why the algorithms have a
chance of working are given in Section 4. Some empirical
results are described in Section 5. Related work is discussed
in Section 6. Section 7 is a a short conclusion.

2. TOPIC MODELS

In this section we first introduce the simple topic model
we consider, and then give an extension that corresponds
to the model in [14]. We sometimes use the terminology
of information retrieval, talking about documents instead of
observations.

Given a set U of attributes, a k-topic model T = (5,q)
consists of k topic probabilities 3 = (s1,...,s;) and a topic-
attribute probability matrixz q, giving for each i = 1,...,k
and A € U an attribute probability q(i, A) of A in topic i.

A document is sampled from 7 as follows. First, one
selects independently which topics are on: topic ¢ is on with
probability s;. All attributes are initially assigned value
0. Then, for each topic i that was selected, attribute A is
assigned value 1 with probability ¢(i, A).

Given a topic model 7 = (8, q), the weight w(¢) of topic 4
in 7 is ) 4y q(4, A), i.e., the expected value of ones gener-
ated by topic 1.

A topic model 7 = (3, q) is e-separable, if for each topic 4
there exists a set U; C U of attributes such that U; NU; = 1}
for i # j and 3 ... q(i, A) < ew(i). That is, each topic
i concentrates most of its mass to entries in U;, and the
overlap between these sets gets at most mass €. We call U;
the primary set of attributes of topic i, and for A € U; we
say that ¢ is the topic of A. If A, B € U; for some i, we say
that A and B belong to the same topic. Thus a 0-separable
topic model is one where for each attribute A there is at
most one topic ¢ such that ¢(i, A) > 0.

Figure 1 illustrates an e-separable topic model. The at-
tribute set is U = {A, B,...,G}, there are 3 topics, and
the attribute subsets corresponding to the topics are U =
{A,B,C}, Uy = {D, E}, and Us = {F,G}. The dashed ar-
rows are examples of relationships that are possible in an
e-separable model with € > 0.

A possible drawback with the above model for the gen-

eration of observations is that the topic probabilities s; are
considered to be constant: this could be considered unre-
alistic. Next we describe a variant, the wvarying-probability
topic model in which they are also allowed to vary. Such a
topic model is described as 7 = (S, q), where S is a finite
set of topic probability vectors s.

A document is sampled from a varying-probability topic
model by sampling first the topic probabilities § from S,
and then using the resulting topic model (s,q) as above.
Thus this model is quite similar to the ones described in
[14, 11]. The weight of a topic in such a model is defined to
be the expected weight of topic under the sampling of the
probability vector 5.

The condition of e-separability is defined for varying-pro-
bability topic models in the same way as for normal topic
models: at most a fraction of € of the weight of each topic
goes outside the primary attributes of that topic.

Given an 0-1 table over attributes U, denote for A, B € U
by p(A) the probability in the data of the event A = 1
and by p(AB) the probability of A = 1 A B = 1. Then
the conditional probability p(A|B) of A given B is of course
p(AB)/p(B). In practice, the probabilities are estimated as
frequencies in the data.

There are certain degenerate cases in which the identi-
fication of topics does not succeed. For example, if there
is one topic with one attribute, then different combinations
of topic and attribute probabilities give the same observed
frequency.

3. ALGORITHMSFOR FINDING TOPICS

In this section we describe two simple algorithms for find-
ing topics. The first algorithm is applicable only to the basic
model, while the second works also for varying-probability
topic models.

Ratio algorithm. Consider first a k-topic 0-separable
model 7 = (5, q). Given two attributes A and B belonging
to the same topic 4, we have p(A4) = s;q(i, A) and p(B) =
$:q(i, B). Furthermore, p(AB) = s;q(i, A)q(i, B). Thus we
have

p(A)p(B) _
p(AB) "

If, however, A and B belong to different topics ¢ and j, we
have p(A) = siq(i, A) and p(B) = s;q(j, B), and p(AB) =
sis5q(i, A)q(j, B). Hence

p(A)p(B)

p(AB) b

In the e-separable case, any attribute may in principle be
generated by any topic, and so p(4) = >, s:q(i, A) and

Thus the algorithm for finding topics is simple. Compute
the ratio r(A, B) = p(A)p(B)/p(AB) for all pairs A and
B; if the ratio is about 1, the attributes belong to different
topics, if it is less than 1, the attributes might belong to the
same topic.

Finding the topics from these ratios can be formalized as
follows. We search for a partition of the set of attributes
U into subsets so that within subsets most of the ratios
r(A, B) are close to a constant, and between subsets most
of the ratios are close to 1. That is, given the matrix r(A, B),
where A, B € U, and an integer k, find the partition of U to



subsets U; for i = 1,..., k, minimizing the score

k
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where a and (8 are constants and +; is the average of the
ratios r(A, B) within block U;. This is a typical clustering
problem, NP-complete in its general form, but lots of good
approximate solutions exist.

This almost trivial method actually works quite nicely on
some artificial and real data sets. However, it fails whenever
the observations are generated using the varying-probability
topic model. Thus we need more refined techniques.

Probe algorithm. Our second method is still quite sim-
ple. It is based on the method for finding similar attributes
in 0-1 data described by Das et al. [7]. The basic intuition
behind the algorithm is as follows. If two attributes A and
B belong to the same topic, then the information that the
occurrence of A (meaning the event A = 1) gives is about
the same as the information given by the occurrence of B.
Thus, if we have a measure for the similarity of the informa-
tion given by two attributes, we can use that to find topics.

The probe distance d(A, B) of two attributes is defined by

d(A,B)= Y

CeU\{A,B}

[p(C|A) — p(C|B)|.

The intuition here is that attributes A and B are similar
if the distributions of the other attributes in the rows with
A =1 and in the rows with B = 1 are about the same. The
attributes C' serve as probes which are used to measure how
similar the sets of rows are.

Our algorithm is as follows. Compute distances d(A, B)
for all pairs of attributes. (For a data set of n rows and p
attributes, this can be done in time O(np?).) Again, find a
partition of the set U of all attributes to subsets U; minimiz-
ing the within-cluster distance and maximizing the distances
between clusters. This can, of course, be solved using any
clustering method. The details of the clustering are not our
main focus; rather, we aim at giving results indicating why
the method works. This is done in the next section.

4. PROPERTIESOF THE PROBE
ALGORITHM

In this section we consider the properties of the probe
algorithm given in the previous section. We first consider
the case of O-separable models, which naturally are quite
simple. We show that for large sample sizes the distance be-
tween two attributes in the same topic tends to 0, and that
the expected distance between two attributes belonging to
different topics is quite large. We then consider the case
of e-separable models, and show that the same results con-
tinue to hold under some additional conditions. Most of the
results are formulated under the assumption of no sample
effects, i.e., by assuming infinite sample size.

We start with a lemma showing that for O-separable mod-
els the distance between two attributes in the same topic
goes to 0 as the sample size grows.

LEMMA 1. Let r be a table of n rows over attributes U
generated by a 0-separable topic model T = (S,q). If A and
B belong to the same topic U;, then lim, .o d(A, B) = 0.

The next proposition extends this result to varying-pro-
bability topic models.

THEOREM 1. Let r be a table of n rows over attributes
U generated by a 0-separable varying-probability topic model
T =(S,q). Then, if A and B belong to the same topic U;,
then lim, .o d(A, B) = 0.

Proor. Consider each probability vector 5 € S. For
the observations generated using the topic model (5, q) the
lemma holds. As the statement of the lemma is independent
of the actual topic probabilities s;, the claim follows. [

LEMMA 2. Let r be a table of n rows over attributes U
generated by a 0-separable topic model T = (5,q). If at-
tribute A belongs to topic i, and attribute D belongs to topic
J with j # 1, then E(d(A, D)) = (1 —s;)(w(7,4) —q(i, A)) +
(1 - s)(w(T,j) - q(j, D)).

THEOREM 2. Let r be a table of n rows over attributes
U generated by a 0-separable varying-probability topic model
T = (S,q). If attribute A belongs to topic i, and attribute
D belongs to topic j with j # i, then E(d(A,D)) = (1 —
Si)(w(Tvi) - Q(iv A)) + (1 - 51)(w(T7]) - Q(j7 D))

The proof is the same as for Theorem 1.

The above results show that the probe distances have a
meaningful relationship to the topics of a 0-separable topic
model. The details for general e-separable models are far
messier, but we give here an analogue of Lemma 1. The in-
tuition is that when we add some weak links to a 0-separable
model, the conditional probabilities are not perturbed too
much, and thus the probe distances within a single topic will
remain small. However, there are pathological e-separable
models: for example, consider a model where all attribute
probabilities are much less than €. Then, changes of the
order of ¢ will naturally have a significant impact on the
model. Of course, there is little hope of finding the topics
in this kind of a model.

To rule out this kind of cases, there are several possibil-
ities. For example, we can define the distinctiveness of an
e-separable topic model 7 = (5, ¢q) as the smallest value of
the probability of an attribute being generated in the con-
text of its primary topic:

A(T) = ,min siq(i, A),

where the minimum is taken over all topics i and all at-
tributes A € U;. Thus, if a model has high distinctiveness
(A(T) > ¢), the generated attributes should usually reflect
the topics they belong to.

An alternative restriction would be to say that the e-
separable topic model 7 has 6-bounded conspiracy, if for
all attributes A with topic ¢ we have Zj# q(5,A) <0, ie.,
the model 7 assigns at most a mass of # to any attribute
from topics other than its main topic. That is, the other
topics do not conspire against a single attribute in a topic.
Similar results as the one below can be proved for that case.

LEMMA 3. Let r be a table of n rows over attributes U
generated by a e-separable topic model T = (§,q). If at-
tributes A and B belong to the same topic i, then E(d(A, B))
< 2|U\ke/A(T).



5. EMPIRICAL RESULTS

5.1 Experimentson simulated data

To evaluate how well do our algorithms perform, we gener-
ated artificial data according to our topic models described
in Section 2. The data consisted of 100 attributes and 10
topics, each topic having a random number of primary at-
tributes, and the number of observations was 100000. We
performed tests on a e-separable model with € = 0, 0.01 and
0.1. In all experiments with the first (constant topic proba-
bilities) model, the topic probabilities s; were the same, so
that we were able to test the effect of € in model estimation
accuracy.

Ratio algorithm. First we considered the ratios r(A, B) =

p(A)p(B)/p(AB). Recall that this should yield s;, probabil-
ity of topic i if A and B belong to the same topic 4, and 1
otherwise, as then A and B are independent and their joint
probability is separable. By listing these ratios in a matrix
one can easily distinguish which topics belong to the same
topic, as all of them have approximately the same ratio. In
this way we can estimate the topic structure of the data, and
also the topic probabilities s; and topic-attribute probabili-
ties q(i, A) of A in topic ¢. Comparing to the true probabil-
ities, the mean squared errors (MSE) of topic probabilities
and the MSEs of topic-attribute probabilities are listed in
Table 1 for € = 0, 0.01 and 0.1. These figures are averages
of 10 experiments. The variance between experiments was
very small.

e | MSE of topic probs. MSE of topic-attr. probs.
0 0.92-1077 1.00-1073
0.01 | 1.04-107* 1.02-1073
0.1 |1.01-107* 1.03-1073

Table 1: Mean squared errors of estimated topic and
topic-attribute probabilities in the ratio algorithm.

In our varying-probability topic model, the topic proba-
bilities s; are randomly drawn for each document, and the
ratio algorithm is not applicable.

Probe algorithm. Sammon mapping [17] is a conve-
nient way to visualize how the attributes are grouped into
distict topics. Figure 2 shows the Sammon map of the probe
distances of the attributes in the 0-separable model. We can
see that the attributes are nicely grouped into about 10 clus-
ters, most of which are clear in shape. The clusters are not
of equal size, as each topic has a random number of primary
attributes. In the case of ¢ = 0.01, the clusters are a bit
more vague in shape but still visible; with € = 0.1, no clear
clusters are seen anymore. The probe algorithm is quite re-
sistant to the extension of varying topic probabilities: the
Sammon maps are remarkably similar to those obtained for
the nonvarying-probability topic models.

Maximum entropy model. We also considered whether
the maximum entropy method described in e.g. [16, 15]
might be useful in finding topics. The method is used to
answer queries about the data as follows: first, one mines
frequent sets with some threshold [1, 2], and then finds the
maximum entropy distribution [3, 9] consistent with the fre-
quent sets. We performed experiments using simulated data
to see whether the results are consistent with the topic mod-
els used to generate the data. The results (not shown) indi-
cate that this method does find results consistent with topic

Figure 2: Sammon map of probe distances of at-
tributes in artificial data; € = 0.

models quite satisfactorily but not perfectly. However, the
performance is comparable only when the method is given
roughly as much input as the simpler probe algorithm, and
degrades badly when the frequency threshold increases and
the input size decreases.

5.2 Experimentson real data

Correlations. To determine the validity of the model
assumptions on real data, we performed some trials on a
collection of bibliographical data on computer science avail-
able on the WWW?!. We call this the “Theory” dataset.
As a preprocessing step, we removed all words occurring in
fewer than 20 documents in the database. This reduced the
number of words to 4227; the number of documents is 67066.

After preprocessing, we determined the probabilities p(A)
and p(AB) for all words A, B (using word frequencies) and
computed the covariances cov(A, B) = p(AB) — p(A)p(B).
We can derive from the theoretical model in Section 2 that
cov(A, B) > 0 for all words A, B. This is not true in the
dataset; indeed, more of the covariances are negative than
positive. However, the distributions of the positive and neg-
ative covariances are very different. Figure 3 displays log-
arithmic histograms of the covariances in the Theory data.
The histograms have been scaled to have equal areas. A
short vertical line marks the position corresponding to one
line in the database; covariances that are (absolutely) much
smaller than this aren’t usually very interesting, since they
tend to reflect small-sample effects in cases where p(AB) is
very small (perhaps 0 or 1 lines) and p(A)p(B) is nonzero
but small.

Probe algorithm. We studied the behavior of the probe
algorithm on the Theory bibliography. As a preprocessing
step, we removed a small set of stop words and all numbers
in the data, and then selected the 200 most frequent terms.

The probe distances of the terms were computed, and
the term pairs with minimum probe distance are listed in
Table 2. The table lists all pairs whose probe distance is
under 1, in increasing order; the mean distance was about
2.7 and maximum distance about 6.2. The term pairs, most
of which are abbreviations, are quite meaningful: e.g. ’stoc’
is ACM Symp. on Theory of Computing and ’focs’ is Symp.

1h‘ctp ://liinwww.ira.uka.de/bibliography/Theory/Seiferas/
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Figure 3: Histogram of In(|cov(4, B)|) for positive
(solid) and negative (dashdotted) covariances for
words A, B in Theory. A short vertical line marks
In(1/67066) = —11.1.
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Figure 4: Sammon map of the probe distances of
the 30 most common terms in the Theory data set.

dist. | terms dist. | terms

0.50 | stoc focs 0.91 | jacm libtr
0.63 | infctrl tcs 0.92 | extended abstract
0.63 | tr libtr 0.93 | stacs icalp
0.67 | icalp tcs 0.94 | actainf tcs
0.75 | infctrl icalp 0.95 | fct jcss
0.76 | eurocrypt crypto || 0.95 | fct mfcs
0.79 | mfcs tcs 0.96 | stacs jess
0.81 | infctrl jess 0.96 | jacm tr

0.81 | mfcs icalp 0.96 | sijdm damath
0.81 | jcss tes 0.97 | ipps jpdc
0.84 | mfcs infetrl || 0.98 | stoc tr

0.86 | mfcs jcss 0.98 | icpp jpdc
0.88 | jcss icalp 0.99 | sicomp libtr
0.88 | ipps icpp 0.99 | stacs infctrl
0.89 | mst jess 0.99 | stacs tes

Table 2: Term pairs with minimum probe distance
in the Theory data set

on Foundations of Computer Science; ’infctr]l’ is Information
and Computation (formerly Information and Control) and
’tcs’ is Theoretical Computer Science. For each term pair,
the pair members belong to the same topical field, be it
theoretical computer science, technical reports, cryptogra-
phy, parallel processing, discrete mathematics etc. All these
terms appear quite often in the data base, which makes the
estimation of their probe distances reliable.

Does the method find topics? For example, listing the 10
terms with minimum probe distance to ’stoc’ we get ’focs’,
’tr’, ’sicomp’, ’libtr’, ’stacs’, ’jacm’, ’jcss’, ’icalp’, ’infctrl’,
and ’ipl’. Computing the average distances of every term
in this list to all other terms in the list, and taking the
average of these averages, we get a distance of 1.17. On the
other hand, computing the average distances of every term
in this list to all other terms in the vocabulary, and again
taking the average, yields 2.30. So the terms close to ’stoc’
are also very close to one another but less close to other
terms, and can thus be seen as forming a sort of topic. A
similar comparison can be done to the closest neighbors of
’focs’, giving a similar term list as above with similar average
distances.
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Figure 5: Sammon map of the LSI projections of the
30 most common terms in the Theory data set.

We used Sammon’s mapping to project the data into two
dimensions; Figure 4 shows how the 30 most common terms
are located. There is clear evidence of clustering of related
terms.

For comparison, we also projected the data into its 20-
dimensional LSI [8] space. The Sammon map of the 30
most common terms is seen in Figure 5. In interpreting
the figures, one should bear in mind that a two-dimensional
Sammon map may not truly represent the locations of high-
dimensional vectors.

6. RELATED WORK

The idea of looking at topics in 0-1 data (or other discrete
data) has been considered in various contexts. The latent
semantic indexing (LSI) method [8] uses singular-value de-
composition (SVD) to obtain good choices of topics. This
method works quite nicely in practice; the reason for this
remains unclear. In a seminal paper [14], Papadimitriou et



al. gave some arguments justifying the performance of LSI.
Their basic model is quite general and we have adopted their
basic formalism; to obtain the results on LSI they have to re-
strict the documents to stem from a single topic. Of course,
some restrictions are unavoidable.

Hofmann [11] has considered the case of probabilistic LSI.
His formal model is close to ours, having the form P(w|d) =
>, P(z|d)P(w|z), where the z’s are topics, d refers to a
document, and w to a word. Hofmann’s main interest is
in good estimation of all the parameters using the EM al-
gorithm, while we are interested in having some reasoning
explaining why the methods would find topics.

Cadez et al. [4] have considered the estimation of topic-
like market-basket data, with the added complication that
the same customer has multiple transactions, leading to the
need of individual weights.

Our topic models are fairly close to the class of finite mix-
tures of multivariate Bernoulli distributions, a nonidentifi-
able class [10] (see also [5]). However, for those models, the
values 0 and 1 have symmetric status, while for the topic
models defined above this is not the case. We conjecture that
the class of topic models is essentially identifiable provided
that the topics are almost disjoint in, e.g., the e-separability
sense.

In nonnegative matrix factorization (NMF), an observed
data matrix V is presented as a product of two unknown
matrices: V = WH. All three matrices have nonnegative
entries. Lee and Seung [13] give two practical algorithms
for finding the matrices W and H given V. Restriction to
binary variables is not straightforward in these algorithms.

Independent component analysis (ICA) [6, 12] is a statisti-
cal method that expresses a set of observed multidimensional
sequences as a combination of unknown latent variables that
are more or less statistically independent. Topic identifica-
tion in 0-1 data can be interpreted in the ICA terminology as
finding latent binary sequences, unions of which form the ob-
served binary data. ICA in its original form relies heavily on
matrix operations; for sparse data, union is roughly equiva-
lent to summation, so methods for ICA could be considered
for the problem at hand. Nevertheless, most existing ICA al-
gorithms are suitable for continuosly distributed data with
Gaussian noise — the case of 0-1 variables and Bernoulli
noise is quite different, and practical ICA algorithms tend
to fail in this case.

7. CONCLUSIONS

We have considered the problem of finding topics in 0-1
data. We gave a formal description of topic models, and
showed that relatively simple algorithms can be used to find
topics from data generated using such models. We showed
that the probe algorithm works reasonably well in practice.

Lots of open issues remain, both on the theoretical and
on the practical side. The detailed relationship of our model
compared to, e.g., Hofmann’s model remain to be studied.
We conjecture that the topic models are identifiable, in con-
trast with general mixtures of multivariate Bernoulli distri-
butions. Understanding the behavior of LSI is still open.
Similarly, seeing how nonnegative matrix factorization is
connected to the other approaches is open, as are the ways
of extending ICA to the Bernoulli case.
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