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Abstract

We present a probabilistic multiple cause model for the analysis of binary (0-1) data. A
distinctive feature of the Aspect Bernoulli (AB) model is its ability to automatically detect
and distinguish between “true absences” and “false absences” (both of which are coded
as 0 in the data), and similarly, between “true presences” and “false presences” (both of
which are coded as 1). This is accomplished by specific additive noise components which
explicitly account for such non-content bearing causes. The AB model is thus suitable for
noise removal and data explanatory purposes, including omission/addition detection.

An important application of AB that we demonstrate is data-driven reasoning about
palaeontological recordings. The observations consist of remains of mammal genera found
at different sites of excavation. In this data, two types of zeros arise naturally: a zero,
indicating that remains of a genus were not observed at a particular site, arises either
because the genus did not live in the site, or because it did but no remains were found. The
former is a true absence and the latter a false absence. Additionally, results on recovering
corrupted handwritten digit images and expanding short text documents are also given,
and comparisons to other methods are demonstrated and discussed. Specifically, by being
a factor model, the AB model is also a powerful probability estimator for high dimensional
data analysis problems and outperforms related models in terms of generalisation ability
in the case of the data sets considered.

1. Introduction

In multivariate binary data, only the presence (1) or absence (0) of each attribute is known,
in contrast to count data where the actual frequencies of attribute occurrences are taken
into account. Binary data arise in various applications, ranging from information retrieval,
link analysis, transaction analysis and telecommunications to bio-informatics, to name a
few. In this paper we concentrate on probabilistic latent variable modelling of multivariate
binary data, meaning that we aim at estimating the properties of the underlying system that
has generated the observed data. It is assumed that the data arise due to latent or hidden
causes and their combinations. Revealing these causes gives new insight into the underlying
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system, and enables one to characterise the data in a compressed form. Probabilistic latent
variable modelling is typically unsupervised, i.e. no “training data” with known latent
causes are available.

Multiple cause models, termed also as factor models or distributed models (Harman,
1967; Saund, 1995; Hofmann, 2001; Hyvérinen et al., 2001; Blei et al., 2003, and others)
allow for several explanatory variables for each observation vector. That is, the elements
of a vector-valued observation may have different underlying causes. In terms of clustering,
an observation may belong to several clusters simultaneously. Some multiple cause models
also allow for multi-way clustering of data, meaning that both observations and attributes
can be clustered according to which latent causes they are due to.

We present a probabilistic, multiple-cause latent variable model for binary data. The
Aspect Bernoulli (AB) model, previously presented in a short preliminary version (Kaban
et al., 2004), can formally be seen as a Bernoulli analogue of the multinomial decomposition
model known under the names of aspect model, PLSA (Hofmann, 2001), and their generative
versions such as Latent Dirichlet Allocation (LDA) (Blei et al., 2003) and Multinomial
Principal Component Analysis (MPCA) (Buntine, 2002). Contrarily to multinomial models,
where the event space is the set of attributes, for AB, the event space is the set {presence
(0), absence (1)} (as in McCallum & Nigam, 1998). A distinctive feature of the AB model
is that noise in this event space is explicitly modelled by specialised components, and this
may further be straightforwardly exploited for noise removal from binary data.

Multiple-cause models for binary data have been devised before in the literature. Most
notably, Saund’s model (Saund, 1995) asserts an interaction model for the 1s in the data,
which takes the form of a noisy-OR. However, the 0-s are suppressed this way, and observing
0-s remains a default uninteresting event. By contrast, in a Bernoulli model, the Os and
1s are interchangeable. Keeping our model linear, provides symmetry to AB enabling the
analysis of the causes behind not only the ones (presences) but also the zeros (absences) in
the data. Indeed in many applications it is of interest to model the zeros as well, when it
comes to inferring hidden causes, as the absence (0) of an attribute might be indicative of an
important underlying cause of interest. To give an illustrative example, the semantic content
of two images that contain the digits '3’ and '8’ respectively, differ by pixels that are ’off’
rather than ’on’. In various situations we may also encounter noise factors, which exclusively
generate 0s, “wiping off” some of the content-bearing 1s. This is the case in text document
data, where certain attributes (words) are genuinely absent i.e. they have no intersection
with the topical content of the observation (document) whereas others are absent for no
specific reason other than the document is short. Similarly, black-and-white images may
contain corrosion which turns a black pixel (1) into white (0). Stated briefly, there might
be two kinds of zeros, which of course look the same in the data: “true absences” which
agree with the content of an observation, or “false absences” (omitted presences), which
might well have been 1s but due to some underlying cause are left unobserved. We have
no prior knowledge about whether or not a data set under study contains such distorted
observations and it is of interest to infer this from the data. As we will see, this is what the
AB model is designed for. It enables us to automatically detect and distinguish between
these two types of zeros under the AB model’s generative assumptions. Detecting omitted
presences may help e.g. in query expansion in which short documents can be augmented by
topically related words, or in image restoration by detecting the corrupted pixels. Clearly,



by symmetry, the AB model can also distinguish between “true presences” (which are in
accordance with the content of the observation) and “false presences” (which are due to a
noise cause which explicitly turns Os into 1s).

In addition to the mentioned potential uses, in this paper, we demonstrate the abilities
of the Aspect Bernoulli model in an actual application, in the context of palacontological
data (Fortelius et al., 1996) consisting of remains of mammal genera found at various sites of
excavation across Europe and Asia. We may conjecture that there are underlying causes that
can explain this data, such as those that reflect the communities of genera. Furthermore, if
remains of a mammal genus were found on a site, we can infer that the mammal lived at or
near that site. However, if no remains of a mammal genus were found, what can we infer?
This is the sort of question we try to answer under the AB generative modelling assumption.
Indeed, the palaeontological data are inherently noisy: It might be that remains of a genus
are not recorded at a particular site even though the genus lived in the location of the site.
There are a number of reasons why an observation may not be recorded in the data; we
will discuss this in more detail in Section 3.1.1. As such, the data demands a model that
is able to distinguish between true absences and false absences, both of which are coded as
“0”. We will show that the Aspect Bernoulli model is suitable for these purposes.

In addition to the actual palaeontological application, we will also demonstrate results
on black-and-white raster images and binary coded text in order to assess the noise detection
and removal performance on systematic and controlled experimental settings.

Our AB model can formally be seen as a special case of a more general matrix fac-
torisation theory discussed e.g. by Srebro (2004). It can also be seen as a special case of
the URP model of Marlin and Zemel (2004), if the observations were to be restricted to
0/1. Further, closely related models were discussed by Hofmann et al. (1998, 2004) and
others. A more complete review of related models will be given in Section 2.4. However,
while these frameworks are formally closely related to our approach, our inferential scope
is rather different. Our purpose here is to devise an appropriate factorisation model for
the specific purpose of reasoning about 0-1 data by detecting and removing “noise” factors.
There is no readily available algorithm for this task. Secondly, it is also of interest here to
study how such a specific instantiation of factorisation models compares to other models in
terms of prediction and generalisation on real world data.

Before proceeding, we make a note regarding the use of a number of almost synonymous
terms in the paper: “aspect”, “cause”, “component”, “factor”, “prototype” and “basis”.
To avoid confusion, in this paper we will follow certain guidelines in the term usage. First
of all, “cause” refers to a true underlying phenomenon in the data. In general, the causes
are modelled by “components” which can further be characterised as follows. A component
is called a “factor” in factor models, a group of models in which aspect models belong to,
and hence the term “aspect” refers to a component of a linear convex factor model. A
“prototype” is a component that has an interpretable representation, e.g. a cluster-centre.
In turn, the term “basis” refers to the coefficients of the linear combination for a particular
component, which may or may not be directly interpretable.

This paper is organised as follows. We first describe the model and place it in the
context of various other models in Section 2. Experimental results are shown in Section 3,
demonstrating and Section 4 draws some conclusions and discusses possible future direc-
tions.



2. The model

In this Section we first describe the data generation process assumed in the Aspect Bernoulli
(AB) model, and derive the algorithm for estimating the model parameters. We then discuss
some particular features of the model, such as its scaling and its ability to detect omissions
and additions. We end by contrasting the AB model to various other multiple cause models.

2.1 Derivation of the algorithm

We start by describing the data generation process of the Aspect Bernoulli model. The
indicesn =1,...,N,t=1,...,T and k = 1,..., K are used to denote the observations,
attributes and latent aspects, respectively. Let x, denote a T-dimensional multivariate
binary observation and xy, the value of its t-th attribute. The elements x, may be generated
by different latent aspects k with probabilities specific to the observation and aspect in
question. The n-th observation vector x,, is assumed to be generated as follows:

e Pick a discrete distribution P(1|n),... P(K|n) over all the latent aspects k = 1,..., K.
The distribution is picked uniformly from the set of all such distributions.

e Separately for each element x4, of x,,, the following two steps are taken:

— Pick a latent aspect k with probability P(k|n)

— Let the latent aspect k generate a 1 (presence) or a 0 (absence) of the t-th
attribute. The Bernoulli probability of generating 1, P(1|k,t), only depends on
k and t and is not specific to the observation index n.

Thus there are two sets of unknown probability parameters in the model. Let us denote
by sk, = P(k|n) the probability of choosing a latent aspect k in observation! n, and by
ag, = P(1|t, k) the Bernoulli probability of the ¢-th attribute being “on” conditioned on
the latent aspect k. As K is typically significantly smaller than N, the total number
(T- K+ K - N) of unknown parameters is smaller than the size (T'- N) of the original data
set, allowing for a compressed representation of the data.

In addition, a “dummy” indicator variable zy, will denote which of the latent aspects
generated the 0/1 event at the ¢-th attribute of the n-th instance: 0(z¢, — k) will equal
one for exactly one aspect k, and §(zy, — k') = 0 for all ¥’ # k. We will use the shortcut
Zink = 0(2in — k). The conditional complete data likelihood now reads as

T K
p(%nZnlsn) = [ [ [Isenaiim (1 = ag)' =]z (1)

t=1k=1
where s, = (S1p, ..., SKn), are the probabilities of selecting one of the K aspects and z,, =
(Z1nls- -+ 2Tnls - - - 2Tnk ). The model assumes that the elements x4, of x,, are conditionally

independent given the latent variable z,. This is a standard assumption in generative
modelling, and it signifies that all dependencies that exist in the observations are meant to
be explained by the hidden variables of the model.

1. Note that at each attribute ¢ of observation n, the latent aspect k is sampled anew from the distribution
P(1n),..., P(K|n).



The expected complete data log likelihood is

N
E{‘CC} = E{logp(xl)' <y XNy 21y - 7ZN|SI)' .- 7SN)} = ZE{logp(Xn7Zn|Sn)}
n=1

= > v 108 [sknafi (1= ag) =] (2)
n,t,k

= Z Qk,n,t,xtn[IOg Skn + Tn log ag, + (1 - xtn) IOg(l - atk)] (3)
n,t,k

where g p 20, = EP(inltnzim) [ztnk] is evaluated as the posterior probability that the aspect
k has generated the observation (either the 0 or the 1) at the ¢-th attribute of the n-th
instance.

The maximisation of the expected complete data log likelihood (3) — by taking deriva-
tives, equating to zero and also taking into account the constraint ), si, = 1 with the aid
of Lagrange multipliers — then leads to the iterative EM algorithm below.

sy (1= agg)
Do 8enayy" (1 — age) =

Skn = Z qk,t,n,xtn/T (5)
t

kat,nvmtn

Zn Tindktn,zin
5 (6)

n 9k tn,zin

Let us now analyse the above model in more detail. To start with, consider the likeli-
hood of a single multivariate Bernoulli: [, pf**(1 — p¢)!=** where p; = p(z4, = 1) is the
probability for observing 1 in the ¢-th element of any observation vector x,. A well-known
extension of this is the single-cause mixtures of Bernoulli (MB) model (Everitt & Hand,
1981; Gyllenberg et al., 1994) >, m [T, afi" (1 — a)'~** where ay, = P(1]t, k) and 7y, is
the prior probability of the k’th mixture component. Now let us instead extend the original
simple parametric model in another vein, giving each observation vector n its own set of
parameters py, = p(xy, = 1). This is clearly an over-parameterisation, so let us restrict it
into a convex combination p, = >, a4 Sk, where >, sk, =1 and 0 < ay, < 1 for all ¢ and
k. This is indeed the core of the Aspect Bernoulli model, and we see this by summing out
z from (1):

Qg =

T K
p(Xn|Sn) == Zp(Xn, Zn|Sn) == Z H H[Sknaf]é"(l — atk)l_mtn]ztnk
z

z t=1k=1
T K
=TI sknaiir (1 = ag)' (7)
t=1 k=1
T K
= H(Z At Skn) " (1 — Z QuSkn) T (8)
t=1 k=1 k

where the summation in the first row is taken over all possible combinations of the z,, and
in the second row we have used the fact that only one of the z4,, equals 1 at each pair ¢ and n.



Finally, to see the equivalence between (7) and (8), notice that when x;, = 1, then according
to both (7) and (8) we have that p(zn|sy) = D) atkSkn; and for the case when x4, = 0 we
have p(z4n|sn) = D1 (1 — aw)Sky from both (7) and (8). In obtaining the latter equality, we
have used the convexity of the combination — note that 1 — ), awskn = > (1 — awk)Skn-

The likelihood in (8) indeed resembles the well-known Bernoulli likelihood if we denote
by pin = p(@wm = 1lsn) = D4 @kSkn the Bernoulli probability of obtaining 1. Thus the
Bernoulli mean is factorised in a convex combination — which is a useful insight for relating
this model to other distributed models of binary data, as will be seen in the experimental
section.

We can also rewrite the (4-6) in order to gain savings in the memory requirements and
obtain a convenient matrix-form notation. The derivation of this iterative algorithm is given
in the Appendix.

1 — @y
Skn = Slm{z Ze 5o’ %(1 —ay)}/T (9)

Qi = g, Z Z Skn/ Cth (10)
¢

QteSpn

where the denominator evaluates as

Sk + (1= a) Y (.~ om)

———"Skn. 11
— 1 =Y ausen (11)

Ctk = Atk Z Z
£

QtpSen
Finally, the summary of this fixed point algorithm in matrix-form notation is listed below.
e Initialise A and S within the appropriate domains.

e Iterate until convergence

A=1-A (12)
S=S®{AT[X0AS]+ AT [1-X)0AS]} (13)
S=S0Z (14)
A=Ax{XoAS|ST} (15)
A=Ae{[1-X)oAS]s"} (16)
A=A0(A+A) (17)

where Z denotes the matrix of normalisation factors of elements Zj, = ), sm, VK,
and ® and © denote element-wise matrix product and division, respectively.

Note that only those elements of the product AS need to be computed for which we have a
nonzero observation element in the corresponding position. Likewise, only those elements of
the product AS = 1 — AS need to be computed for which the corresponding element in the
data matrix is zero. Sparsity of any of the quotient matrices can be then taken advantage
of in the matrix multiplications in the algorithm.



2.2 Scaling

The scaling per iteration of the ML estimation of an Aspect Bernoulli is O(NTK). This is
less convenient as the O(#(nonzero) K) scaling of multinomial aspect models, which scale
linearly in the number of nonzero attribute occurrences in the data. However, this is the
price we have to pay as our Bernoulli model operates on the event space of attribute values,
proposing to explain both the presences and the absences of each attribute and each datum
instance. By contrast, multinomial models operate on the event space of attributes, and
are only concerned with explaining the attribute occurrences. Bernoulli component models,
with very few exceptions (Meild, 1999), typically do not scale better than AB: The scaling
per iteration of the Bernoulli mixtures is the same O(NTK). Logistic PCA (Schein et al.,
2003), a recently introduced nonlinear distributed model for binary data, discussed in some
detail later, scales as O(NTK?) due to the matrix inversions that it requires.

2.3 Omission/addition detection by “phantom” latent aspects

Let us now discuss the ability of the Aspect Bernoulli model to detect and distinguish
between two types of zeros (“true absences” and “false absences”) and similarly between
two types of ones (“true presences” and “false presences”). These abilities were not discussed
above when the model and algorithm were presented, and indeed the abilities are not “hard-
coded” into the model. Instead, the detection of values that disagree with the topical content
of an observation, namely false absences or presences, is automatically accomplished by
additional factors that we will call “phantom” latent aspects. A “white phantom” is a
latent aspect which has a negligible probability of generating a value 1 at any attribute,
meaning as; ~ 0 at all ¢, and thus it explicitly generates zeros in the data and can be
used to detect and distinguish false absences from true absences. In contrast, a “black
phantom” generates the value 1 at all attributes, a;;, = 1 at all ¢, and it can be used to
distinguish added presences from true ones. We would like to stress that the phantoms are
never imposed but instead found in the learning procedure when appropriate.

To provide an insight into this representation scheme, we analyse the implications of the
optimisation performed by the EM algorithm, in terms of the entropies of the parameters
involved. It can be shown that the Aspect Bernoulli algorithm minimises the weighted
sum of entropies of all its parameters as a by-product of the likelihood maximisation. This
implies that if there is a process that generates non-content-bearing zeros or ones in the
data, it will be detected and modelled by the phantom aspects. The entropy argument
is seen in the following: Rewrite the expected complete data likelihood (3) by the help of



formulae (5-6) and obtain the following.

E{ﬁc} = Z lOg Skn Z Qkn,t,zin + Z 10g gk Z xthk,n,t,xm"i_
TL,k t k,t n
+) log(1— aw) Y (1 — Ttn) Gk trm (18)
k.t

n

=T sknlogsin + Y amlogam > G tamt
n,k k.t n
+ Z(l — ay;) log(1 — a) Z Qk,n,t,zen (19)
k.t n
=-T Z H(sp) — Z H ([a, 1 — a)) Z Qk,n,t,zen (20)
n k.t n

Here s,, refers to the distribution (s1y,...,8xn). Now each parameter ay; and s, is a
function of qxtn.,,. Consequently each E-step will necessarily increase (20). Thus, the
iterative EM maximisation of the model likelihood could also be interpreted as an iterative
minimisation of a weighted sum of entropies. This implies two representational tendencies
of the model:

e a tendency towards a sparse distribution of s,, (only a few latent aspects are active at
a time), due to the first sum of terms in (20)

e a tendency towards extreme binary values in a4, due to the second sum of terms in
(20)

Specifically, in the extreme case when the data supports that only one latent cause is active
at a time, the representation reduces to a single-cause mixture; this implies that the bases
ay, are local averages of data. Averaging black and white (which is the case when a varying
degree of omissions or additions are present in the data at random locations) would result in
grey values in ay, i.e. high entropy Bernoullis — this is not preferable in the light of (20),
so in such a case the method chooses to keep two active causes, namely one content-bearing
aspect and one “phantom” aspect. The reduction of grey values in a4 this way obtained
compensates for the slight increase in the entropy of s,, when more than one s, become
active for a given n.

Interestingly, quite a similar analysis can be performed in the single-cause Bernoulli
mixture model: the corresponding lower bound of the complete data likelihood can be
written as Q@ = —NH () — >y, H([aw, 1 — aw]) 3, Skn Where m = (mr1,..., 7 ) is a vector
of the prior probabilities of the mixture components and s, is the posterior probability of
component k causing observation n. However, phantom-type components cannot arise as
only one mixture component is allowed per observation and a phantom alone cannot explain
both the ones and the zeros in the observation.

In the experiments that follow we will demonstrate detailed experimental analyses of
the behaviour of “white” and “black” phantoms in the Aspect Bernoulli model.



2.4 Relation to other models

Starting from the factorisation in (8), we can draw parallels to a number of other multiple
cause models in which a somewhat similar factorisation of the mean of the data distribu-
tion takes place. Perhaps the most well known probabilistic model for binary data is the
single cause mixtures of Bernoulli (MB) model (Everitt & Hand, 1981; Gyllenberg et al.,
1994), already mentioned in Section 2.1; however, as a single cause model it assumes that
all elements of the multivariate observation share the same latent cause. The Logistic PCA
model (Schein et al., 2003) and the models of Tipping (1999) and Collins et al. (2001) de-
compose the so called natural parameter 6 of the Bernoulli distribution as 0y, := ), axSkn,
and the Bernoulli mean is then obtained using the logistic function ps, = 1/(1 + e~ %n).
The nonlinear logistic function gives more flexibility as the parameters a and s need not be
probabilities but can take any real values. For this reason, these models fit well to the data.
However, a disadvantage of these models is the loss of interpretability of the parameters a
and s, and also possibly over-fitting. In contrast, the parameters of the linear decomposition
in the Aspect Bernoulli model allow for insightful interpretations, as will be demonstrated
later in this paper.

Apart from these Bernoulli-type models, the PLSA (Probabilistic latent semantic anal-
ysis, Hofmann, 2001), LDA (Latent Dirichlet allocation, Blei et al., 2003) and MPCA
(Multinomial PCA, Buntine, 2002) models for multinomial data have been quite popular
over the last few years. These factorise the multinomial parameter vector into a convex
combination of latent causes. The PLSA is “aspect multinomial”, in which the statistical
events are the attributes, and the decomposition reads p(tjn) = >, @ Skn. In contrast,
in the Aspect Bernoulli model the statistical events are the outcomes of the attributes
(presences and absences) and these are the events that we seek to reason about.

As already mentioned, AB could formally be seen as a special case of the URP model
(Marlin, 2004). The URP model was designed for collaborative filtering, and it assumes that
the ratings or attribute outcomes are natural numbers in a given range. Each attribute is
modelled as a multinomial variable over the possible outcomes. Thus, with ratings restricted
to 0/1, URP reduces to AB — however, such a model has not been previously analysed.

Another collaborative filtering method (Pol¢icova & Tino, 2004), one that could be
termed “aspect binomial”, assumes that there is an inherent order scale of the attribute
outcomes. No such ordering is imposed either in the aspect multinomial (PLSA) or As-
pect Bernoulli (AB) models — the attributes of PLSA are not ordered, and similarly the
outcomes 0 and 1 of AB could be replaced with any binary values. Collaborative filtering
models for binary data have also been studied by Hofmann and Puzicha (1999) and Hofmann
(2004); the model presented in the latter can be used for arbitrary response scales.

Saund’s model (1995) is one of the first multiple cause models for binary data. It does
not perform a linear decomposition of the Bernoulli mean parameter but instead it identifies
a nonlinear “noisy-OR” relationship between the hidden causes. A closed form solution is
not available but a gradient algorithm maximising the likelihood is given (Saund, 1995)
and a mean-field approximate solution has been provided later (Dayan & Zemel, 1995).
A somewhat similar model is the topic model presented by Seppénen et al. (2003); there
the relationship between latent causes is described by a discrete logical OR function. The
problem of finding an optimal topic assignment is shown to be NP-hard, and approximative



iterative algorithms for the estimation of the parameters are given (Seppénen et al., 2003).
A discrete logical OR function is also discussed by Jaakkola (1997) who gives upper and
lower bounds for the likelihood.

Early approaches to multiple cause models have been presented by Barlow et al. (1989),
Foldidk (1990), Schmidhuber (1992) and Zemel (1993); in these models the data is not
necessarily assumed binary valued. Later, Dayan and Zemel (1995) have presented a model
where the latent components compete with each other and thus ensure that they account
for representing different parts of the binary data space. Yet another formulation is given
by Marlin and Zemel (2004) in their multiple multiplicative factor models, also allowing
different components to specialise to a subset of the data space; their models are given for
multinomial data but can be easily adapted for binary. Recently, an interesting approach
of latent class modelling in relational binary data has been presented by Kemp et al (2004).

Non-probabilistic methods for the analysis of binary data include the method of frequent
sets (Agrawal et al., 1996) which as such does not give a model of the data but instead
reveals local patterns of co-occurrence of attributes. Subspace clustering, also known as
co-clustering or double clustering (Dhillon, 2001), analyses the structure of binary data
and partitions the data both on the level of observations and on the level of attributes; in
contrast to latent variable methods, no underlying causes are assumed to have generated the
data, and no overlap between the clusters are allowed. Yet another method of unsupervised
learning from binary data is the famous Boltzmann machine (Smolensky, 1986).

Apart from binary data, well known methods for factoring continuous data include
principal component analysis (PCA, Jolliffe, 1986), independent component analysis (ICA,
Hyvarinen et al., 2001) and nonnegative matrix factorisation (NMF, Lee & Seung, 1999,
2000). Of these, NMF is perhaps the closest to our approach, as its decomposition reads
Tin = Y _j Atk Skn Where ay, and sy, are nonnegative but not restricted to be probabilities.

Srebro and Jaakkola (2003, 2004) and Gordon (2003) discuss the general class of matrix
factorisations and give an overall view to the problem.

As already stated, our inferential purposes are different from those of the mentioned
works, since none of these formally related models have been used for inferring and removing
non-content-bearing causes from the data. However, we placed our approach in the more
general context of matrix factorisation and multiple cause modelling literature, and we now
turn to experimentally demonstrate the use of AB on real world data sets, contrasting it to
some of the related models reviewed here.

3. Experiments

In this Section we first describe the data sets used in the experiments. Model selection
in terms of choosing an optimal number of latent aspects is then addressed, followed by
detailed analyses of model parameters. Additional analyses are given in the end of this
Section where the model’s ability to detect omissions and additions is demonstrated.

3.1 Data sets

The data sets used to demonstrate the performance of the Aspect Bernoulli model are quite
distinct in their nature: palaeontological findings of mammals at various sites of excavation;
black-and-white images of handwritten digits; and binary coded newsgroup documents.
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3.1.1 PALAEONTOLOGICAL DATA

Our palaeontological data come from the NOW database, a public resource based on col-
laboration between mammal palacontologists?. The NOW data derive from the published
literature as well as from unpublished compilations by contributors.

The dataset we use comes from NOW public release 030717. We have excluded small
mammals (orders Insectivora, Chiroptera, Lagomorpha and Rodentia), and limited the
geographic coverage to Europe, arbitrarily truncated towards Asia at 60 degrees eastern
longitude. Our dataset consists of 501 sites (localities where fossils have been recovered,
usually by excavation), in which occurrences of 139 genera are observed. Genera with less
than 10 occurrences and sites with single genera have been excluded. We interpret the fossil
sites as observations and the genera as attributes. The data are quite sparse: 5.08 per cent
of the entries are 1. The data matrix is seen in Figure 1.

I I I I I I I I LU
50 100 150 200 250 300 350 400 450 500

Figure 1: Palaeontological data. Rows correspond to genera and columns to sites of exca-
vation.

In addition, we have access to the ages of the fossil sites. The age is estimated from
all available evidence, including, at best, radiometric dating and palaeomagnetism, but the
majority of the sites are dated by means of mammal biochronology, i.e., the evolutionary
change observed in the mammals themselves. For technical details of how age is handled in
NOW see Fortelius et al. (1996) or the NOW web site. The age estimates in our dataset
vary between 2 and 23 million years. The age information will be used to validate and
visualise the results shown later.

The palaecontological data are inherently noisy: it might be that remains of a genus
are not recorded at a particular site even though the genus lived in the location of the
site. There are a number of reasons why an observation may not be recorded in the data.
Sampling plays a major role: in small samples, only the most common genera tend to

2. NOW: Neogene of the Old World, http://www.helsinki.fi/science/now/
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be recorded, and the number of rarer genera present continues to increase with sampling
for most represented sample sizes (Fortelius et al., 1996). The preservation, recovery, and
identification of fossils are all random to some extent; in addition, there are more systematic
reasons for spurious absences. Mammals differ in size and anatomy, and as a result some
are more likely than others to be preserved and correctly identified. Sometimes, only one
group of genera (e.g., the primates, the pigs) has yet been studied from a site. Similarly,
the discovery of remains of common genera are rarely published without some particular
reason, such as new discoveries of more rare ones. A third systematic reason is that a rare
genus might not be recognised because no specialist was available. All of these phenomena
incur absences of attributes in the data.

The NOW data used here are quite typical of palaeontological datasets; if anything,
most datasets are even more sparse. From a palaeontologist’s point of view, the possibility
to distinguish between ”true absences” and ”false absences” therefore has great appeal,
along with other methods that strive to compensate for the low level of sampling (e.g.,
Barry et al., 2002; Puolamaéki et al., 2005). Our AB analysis may provide new insights into
this issue, as will be demonstrated in the sequel.

3.1.2 BLACK-AND-WHITE RASTER IMAGES

Another data set considered for studying the performance of the Aspect Bernoulli model
is a collection of 2000 binary digital images of handwritten numerals®. There are 200
instances from each digit category (°0’, '1’, ..., ’9’), each image containing 15 x 16 pixels,
each of which can be either “on” (1) or “off” (0). In the original setting, any pixel that
is off can be explained by the content of the image and is thus a “true absence”. We
later add corrosion-like new causes to the observed pixel values in the data, by randomly
turning some pixels off or on. This data set is thus suitable as a basis for controlled
experimental validation. Especially, we will demonstrate the performance of AB and several
other methods in correcting for such corrosion.

3.1.3 BINARY CODED TEXT

The third real world data set is a subset of the 20Newsgroup corpus?: short Usenet messages
from 4 newsgroups ‘sci.crypt’, ‘sci.med’, ‘sci.space’ and ‘soc.religion.christian’. We selected
100 consecutive documents from each newsgroup and converted them into a binary term by
document matrix using the Bow toolkit®. Text document data inherently contains omitted
presences of words — not all words that may express a topic are covered in a document
about that topic. Some documents are really short, made up by just a few words, and
some longer ones utilise a richer dictionary. Typically there is a dispersion of the richness
from very concise to quite extensive documents in a collection, and of course, not the same
words are omitted each time when expressing a given topic. Thus, obviously there may be
different reasons why words do not appear — as well as there may be different reasons why
they do. Revealing such ambiguities can be useful in e.g. query based search. We note that

3. http://www.ics.uci.edu/ mlearn/MLSummary.html
4. http://www.cs.cmu.edu/ textlearning/
5. http://www.cs.cmu.edu/ mccallum/bow/
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previous statistical text modelling approaches have only been concerned with ambiguities
created by presences of terms (not their absences!), such as synonymy and polysemy.

3.2 Model order selection

The issue of model selection is now addressed, that is, how many components is the optimal
choice. Indeed, the optimal model order may depend on the application (Ripley, 1996) and
this is often overlooked in the machine learning literature; on the other hand, Smyth (2000)
emphasises the use of cross validation. A model selection that reflects the objective of the
modelling process should be adopted. For prediction problems, the model selection criterion
should be based on the quality of predictions, whereas in data-explanatory tasks the aim is
often related to Occam’s philosophical principle, namely to finding the most parsimonious
model that explains the data, but not simpler than that. The choice between prediction
and explanation as the purpose for model selection is also discussed by Heckerman and
Chickering (1996) in the Bayesian model selection framework. We will consider both cases
within our frequentist approach.

3.2.1 CROSS-VALIDATION BASED MODEL SELECTION FOR DATA PREDICTION

Let us first consider a model selection criterion for predictive purposes. Figure 2 shows the
ten-fold cross-validated out of sample log likelihoods of the models investigated here, for all
data sets. The out of sample likelihood is a measure that reflects the predictive capabilities
of the models on this data. The procedure we are using is known as “empirical Bayes test
likelihood”:

- IOg / p(xtest |Stest )p(stest)dstest (21)
Stest

where p(siest) = 1/Nirain D, 6(Stest — Sp) meaning that the vector sy is sampled from the
distribution of the estimates of s as obtained from the training data (Bernardo & Smith,
1994; Blei et al., 2003). For AB, the empirical Bayes test likelihood is computed as the

following:
1—x¢ test

Tt test
—log % zn: 1:[ (2}; atkskn> (1 — Zk: atkskn> (22)

and for MB as 1
Tt test 1—x¢ tes
—logﬁzn:zk:ﬂknatk (1 — agp)™ Ftotest (23)

and for LPCA respectively

| 1 Z H < 1 >It,test <1 1 >1—It,test (24)
—log — - .
N =23 \1+ exp(— 2 atkSkn) 1+ exp(— >4 QtkSkn)

Here n ranges over the training points; specifically, the sy, are obtained for the training
point x,,. Instead, x¢ tcs¢ is the t-th dimension of a new, previously unseen test point.

The out of sample likelihoods of PLSA and NMF cannot be directly compared to AB
in this setting, as they are not functions of strictly the same data: the zero entries do not
contribute to the log likelihood as log (), askn)* = 0 when 2 = 0. (The similarity of NMF
and PLSA has been discussed by Buntine (2002).)
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Figure 2: Out of sample log likelihood for LPCA, AB and MB, measuring the predictive
capabilities of the models on the (a) palacontological data, (b) handwritten digits
data and (c) newsgroup document data. Horizontal axis: model order (number
of estimated components K). The error bars show one standard error on both
sides of the mean of the folds in 10-fold cross-validation.
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From the results of Figure 2 it is clear that AB consistently and significantly outperforms
MB (except for the newsgroup data, in which the AB likelihood is higher but the error
bars overlap as the data set is quite small). Also, the peak values of LPCA and AB are
not significantly different: non-parametric Wilcoxon Rank-Sum tests on the best results
(LPCA at 4 and AB at 20 components in the palaeontological data; LPCA at 10 and AB at
50 components in the digits data; and LPCA at 4 and AB at 9 components in newsgroup
documents) show that the differences between these are not statistically significant at the
5% level: the P value is 0.52 in the palaeontological data, 0.62 in the digits data and 0.97
in the newsgroup data. Thus we can conclude that AB and LPCA are comparable in terms
of prediction performance on these data.

Interestingly, AB does not over-fit on these data sets over a wide range of model orders
considered. (In the palaeontological data, over-fitting has been experienced after 30 com-
ponents only.) LPCA however over-fits badly after 4 components in the palaecontological
and newsgroup data and after 10 components in the digit data.

AB may thus be a preferable choice for modelling and analysis because of AB’s additional
intuitive data explanatory capabilities, which will be demonstrated in the following Section.
Additionally, the comparative computational scaling of these two models advantages AB
over LPCA further, as discussed in Section 2.2.

3.2.2 AIC-BASED MODEL SELECTION FOR DATA EXPLANATION

In terms of data explanation, the AB model is of interest, as by construction it captures the
generative process that reflects our intuition about the data. Contrarily to prediction tasks,
we now seek to obtain a parsimonious data explanatory model. Following the arguments
given by Ripley (1996), a procedure designed to achieve this goal is the Akaike Information
Criterion (AIC) (Akaike, 1973). This has a very simple form as follows:

AIC(K) = —2£(K) + 2P(K) (25)

where £ is the trained log likelihood of the model (must not be normalised i.e. it must
not be divided by the size of the data), P is the number of free parameters that need to
be estimated and the factor of 2 has historical reasons only. For the case of the Aspect
Bernoulli model,

P(K)=TK + (K — 1)N (26)

where K is the assumed number of components. (The parameters si, sum to 1 over k,
reducing the number of free parameters by one.) The optimal model order is then found by
minimising (25) under K:
Kopt = argmin AIC(K) (27)
K

The log likelihood and AIC-penalised log likelihood values in palaeontological data can
be comparatively seen in Figure 3 (a) as obtained in 15 randomly (uniformly) initialised
independent runs for each choice of K ranging from 2 to 8. The maximum log likelihood
values have been selected for each value of K and these have then been used to create the
model selection curve shown in the figure. (Log likelihoods smaller than the maximum are
local optima.) Naturally, the log likelihood continues to increase with increasing model
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Figure 3: Log likelihoods (%) and AIC-penalised log likelihoods (o) of the AB model in
repeated experiments on the (a) palacontological data, (b) newsgroup data. The
values are not normalised by the size of the data. Horizontal axis: model order
(number of latent components K).

complexity — however, the AIC-penalised log likelihood peaks at K = 4 and thus this
model order can be chosen.

Similarly, the AIC-optimal model order for the newsgroup data is K = 5 components,
as seen in Figure 3 (b). In the handwritten digits data, the AIC suggests K = 15; the
natural variation (i.e. several styles of 1-s, 4-s etc.) in handwriting styles requires more
than 10 components to be used.

3.3 Parameter interpretability

Although our data sets are very different in their nature, in this Section we will demon-
strate that the modelling assumptions of AB give rise to quite intuitive and interpretable
representations on all three data sets analysed.

3.3.1 CLUSTERING TENDENCY AND PROTOTYPICAL REPRESENTATIONS

As detailed in Section 2.3, in case the data contain natural clusters, the AB model’s tendency
to produce minimum entropy mixing proportions makes it suitable to finding these clusters.
In this case, the components become cluster prototypes (cluster centres). To demonstrate
this, we consider the set of images of handwritten numerals, which clearly has a clustered
structure. The latent causes ar = (ayk,...,arx) estimated from this data are shown in
Figure 4 where the model order K = 15 has been chosen by the Akaike Information Criterion
(25). White encodes zero and darker means higher probability. The causes indeed display
prototypical images of the numerals. Quite a similar result is obtained by the Mixtures of
Bernoulli model.
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The cluster-based prototypical representation tendency will also be easily observed on
text document representations. Moreover, text documents and the palaeontological data
provide a more interesting setting, as they both naturally contain omitted presences of
various attributes, as will be shown in the sequel.

Figure 4: Latent causes in handwritten digits presented as prototype images given by the
parameters ag in the Aspect Bernoulli model. K = 15 latent causes were esti-
mated.

3.3.2 REPRESENTATION OF PALAEONTOLOGICAL DATA

Based on the Akaike Information Criterion, the model order of K = 4 latent aspects was
chosen for the analysis of palacontological data. We now estimate the corresponding Aspect
Bernoulli model. Figure 5 (a) shows the values of the parameters ay, giving the probability
that the latent aspect k generates a value 1 at attribute (genus) ¢. White corresponds to
zero probability and black to one. We can see that the aspects concentrate on distinct time
intervals (the attributes in the data set are roughly ordered based on their ages). Also,
there is one blank aspect to explain unknown false absences, giving a zero probability for
all attributes. We call this kind of aspect a “white phantom”. As already mentioned, a
white phantom explicitly generates zeros in the data, in contrast to other latent aspects
that generate both zeros and ones.

Let us visualise the grouping of genera by drawing a box plot of the ages of genera
captured by different latent aspects. Figure 5 (b) shows for each latent aspect k the distri-
bution of the ages of genera ¢ weighted by the probabilities as,. We can see that different
latent aspects indeed concentrate on different periods in time. The Wilcoxon Rank Sum
test applied on all pairs of distributions indicates that they are distinct: the P values range
between 0.0000 and 0.0201 for the null hypothesis of median equality.

The latent aspects can be viewed from a different angle if we consider the distributions
Sgn giving the probability of latent aspect k being present in observation (site) n. The
distributions are shown in Figure 6 (a). The fourth aspect, the “phantom”, is again different
in its behaviour: it seems to have a nonzero probability in most observations. Thus the
model proposes that a phantom cause is present in a number of observations; by its presence,
it generates absences of attributes, as seen in Figure 5 (a).
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Figure 6: (a) Distributions s, = P(k|n) given by the AB model at latent aspects k =
1,...,4 and observations (sites of excavation, sorted by their ages) n = 1,...,501.
(b) The value of sk, versus the number of attribute occurrences in observation n
for the phantom aspect k.

18



The varying probability of the phantom has a negative correlation with the number of
ones per observation: The observations having only a few attribute occurrences have a large
probability of the phantom being present, as seen in Figure 6 (b). At each observation, the
probabilities of different aspects k need to sum to 1, and it is quite natural that observations
having few 1s have small probabilities for aspects generating 1s. The Aspect Bernoulli model
thus explains the Os as well as the 1s, in contrast to most models which only explain the
1s and treat all zeros as a default value. In the view of the AB model, a “false absence” is
not “part of the background” but a true entity which occurs due to a hidden cause and, as
such, is modelled by the “phantom” aspect.

The parameters ay;, and sg, given by the LPCA, MB, PLSA and NMF models (not
shown) do not demonstrate a blank cause to explain unknown false absences. Instead, the
parameters given by MB, PLSA and NMF merely group with respect to time, quite similarly
to the non-phantom parameters of the AB. The parameters given by LPCA range across
positive and negative values as they are not restricted to be probabilities but instead give
the decomposition of the natural parameter 6 of the Bernoulli distribution, up to rotation;
the parameters are thus difficult to interpret.

3.3.3 TEXT DOCUMENT REPRESENTATION

We now turn to the newsgroup document data and demonstrate the latent aspects found
by the Aspect Bernoulli model. The latent aspects can be visualised by listing for each
aspect k the terms ¢ having the largest probability a;. of being generated by the aspect.
We estimate K = 5 aspects suggested by the Akaike Information Criterion (25). Table
1 lists the keywords and their probabilities in descending order. The second aspect is a
“phantom” aspect which gives a zero probability for the presence of any term. The other
four are clearly related to the various topics of discussion.

The probabilities a4 and sg, in the newsgroup data behave quite similarly to those in
the palaeontological data: For each aspect k, a group of terms ¢ has a large probability a
of being “on”, except for the phantom aspect. Respectively, each aspect k is active mainly
in a subset of documents n, represented by the distributions sg,, except for the phantom
aspect which is active in most documents. This is seen in Table 1: the figures on top of each
column k give ) sgy,, the sum of the probabilities of the k-th aspect in all documents; we
see that the “phantom” aspect has a large overall probability compared to the other aspects.

In Table 1 we also notice that in addition to the ambiguities regarding absences of terms,
solved in the AB model in an original manner with the aid of “phantom” aspects, AB is
also able to capture the well-known ambiguities that are associated with presences of terms
— synonymy and polysemy. An example of synonymy can be noticed in the given example
within the medical aspect, where both ‘medic’ and ‘doctor’ are terms whose presence is
highly probable. Polysemy is captured by that the presence of the same word may be
generated by several topical aspects — e.g. the presence of the word ’system’ is generated
by both the space-related and cryptographic aspects. The aspect identifiers, shown in the
table header, have intentionally been chosen as adjectives, in order to emphasise that the
keyword lists represent in fact common features extracted from the corpus and are in general
not cluster-centres. Naturally, if the corpus consists of well separated clusters then the main
features will consequently be close to the cluster-centres, due to the clustering tendency of
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religious phantom cryptographic  medical space-related
45.1 152.9 42.9 48.2 59.0

god 1.00 agre 1.3e-03 kei 1.00 effect 0.84 space 0.76
christian 1.00 sternlight 1.0e-11 encrypt 1.00  peopl 0.72 nasa 0.59
peopl 0.95 bless 3.2e-12 system 1.00 medic 0.66 orbit 0.49
rutger 0.81 truth 2.5e-15 govern 0.90 doctor 0.52 man 0.37
word 0.63 peopl 2.4e-15 public 0.89 patient 0.47 cost 0.35
church 0.63 comput 2.8e-16 clipper 0.84 diseas 0.42 system 0.34
bibl 0.61 system 8.6e-19 chip 0.83 treatment 0.40 pat 0.33
faith 0.60 man 1.1e-19 secur 0.82 medicin 0.40 launch 0.32
christ 0.59 nsa 1.0e-21 peopl 0.70 food 0.35 mission 0.30
jesu 0.56 shuttl 4.1e-22 comput 0.65  med 0.33 flight 0.28

Table 1: Five aspects k in a document collection of Usenet newsgroups ’sci.crypt’, ’sci.med’,
‘sci.space’ and ’soc.religion.christian’, presented as lists of terms ¢ having the
largest probabilities a;, (shown after the terms). Besides four aspects representing
the topical features of discussion, there is an additional “phantom” aspect common
to all documents, explaining absences of words which are not due to real topical
causes. The top row gives ) sk, which reflects the overall probability of aspect
k.

the model. However, the clustered structure is not artificially imposed, as in the case of
single-cause mixtures. Indeed, e.g. the omission of words is a common feature of all text-
based documents and this has been accounted for by the phantom topic.

Figure 7 depicts scatter plots of the probabilities sy, of each aspect k against the number
of distinct words which appear in the documents n, one subplot for each k. Indeed, the
probability of the phantom correlates negatively with the richness of the document. All real
topical aspects in turn correlate positively with the richness of the documents. Also, as an
example, three documents are highlighted, and it is seen that the length and the topical
content of the document effect the value of sg,,.

The analysis of individual documents is continued in Table 2. The first column lists the
words ¢t which are present in the document n, and in the second column the most probable
aspects k for each word are given along with their posterior probabilities P(k|n,t, x,) =
Gk tnsin (4) where k € {1,...,5} in this experiment. Small probability values are omitted for
brevity, however a complete list in each row would of course sum to one. We can observe
that some of the more common words share a number of topic-aspects which explain them
with a certain probability.

In addition we show how documents can be augmented with terms suggested by the
phantom. Table 3 lists the terms ¢ for which P(kl|t,n,xy,) is the largest for the phantom
aspect k in a document n. The results are given for ten randomly selected documents in
the corpus. The terms are not present in the corresponding document; however, they fit
nicely to the topical content of the original document, suggesting a promising method of
query expansion, as queries are typically short and incomplete.
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Figure 7: The probability sy, of the individual aspects (topics) plotted against the num-
ber of different words in document n (horizontal axis). The probability of the
phantom-topic (aspect no. 2) is negatively correlated with the richness of the
documents, whereas the real-topics are positively correlated with the richness.
Three documents are highlighted: o: ’system’ 'medicin’ — a very short docu-
ment; O: ’peopl’ 'public’ 'system’ ’agre’ ’faith’ ’accept’ ’christ’ 'teach’ ’clinic’
‘mission’ 'religion’ ’jesu’ ’holi’ ’doctrin’ ’scriptur’ — a fairly long document with
rich heterogeneous topical content; and >: ’govern’ ’secur’ ’access’ scheme’ ’sys-
tem’ ’devic’ — a medium size document focused on a single topic.

The above analyses can not be computed for the other models (MB, LPCA, NMF or
PLSA) because no single component accounts for the missing terms.

3.4 Detecting and removing “false absences” and “false presences”: An
evaluation

In this Section we measure the performance of the AB model in detecting non-content-
bearing causes. It should be stressed that there is no “clean” data available for training,
instead the algorithm only sees the possibly corrupted data, without knowing about the
existence of noise processes apriori.

Interestingly, in the natural binary data considered, we only encounter noise factors that
create attribute absences by turning a 1 into a 0. However, in order to show that our model
is not restricted to detecting this type of noise factor but also the symmetrical counterpart
of it (when some of the zeros are randomly flipped to ones), we will create such situations
artificially in some of the presented examples.

3.4.1 DETECTION OF MISSING OR ADDED REMAINS FROM PALAEONTOLOGICAL DATA

Filling in missing values. We assume that a genus (an attribute) is absent in a site
(an observation) either because the genus did not live in the area, or because it did but no
remains were recorded. The former is a true absence and the latter a false absence. Reasons
for the missingness were discussed in Section 3.1.1. One might quite safely assume that in
case a genus is observed at several sites, the sites should be consecutive in their ages. That
is, observing a genus at sites n and n+1, [ > 1 implies that the genus should also have been
observed at all intermediate sites n + 1, ..., n 4+ 1 — 1, if the sites are sorted according to
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Words Latent aspects and their posterior probabilities

system medical 0.55, cryptogr. 0.44, space 0.01
medicin medical 1.00
peopl religious 0.75, cryptogr. 0.08, medical 0.13, space 0.04
public cryptogr. 0.58, religious 0.42
system cryptogr. 0.44, medical 0.19, space 0.37
agre religious 0.95
faith religious 1.00
accept religious 0.88
christ religious 1.00
teach religious 0.97
clinic medical 1.00
mission space 1.00
religious religious 1.00
jesu religious 1.00
holi religious 1.00
doctrin religious 1.00
scriptur religious 1.00
govern cryptogr. 1.00
peopl cryptogr. 0.66, medical 0.13, space 0.20
christ religious 1.00
food medical 1.00
rutger cryptogr. 1.00
church religious 1.00
atho religious 1.00

Table 2: Analysis of three heterogeneous newsgroup documents as provided by the AB
model. The first column lists the words ¢ which are present in the document n
whereas in the second column the most probable aspects k are given along with
their posterior probabilities P(k|t,n,x,) (k € {1,...,5} in this experiment). Note
the uncertainty in explaining some of the more common words.

their ages. Not observing the genus ¢ at an intermediate site n’ means that the zero at x,;
is a false absence.

In the experiments that follow, the original data is fed to the AB model, without labels
indicating the type of zeros. We would like to stress that the order of the observations is
by no means utilised in the AB model or in the estimation procedure.

As the missingness is largely identified by one latent aspect as shown in Section 3.3.2,
we can correct for the missingness by removing the “phantom” aspect and reconstructing
the data again. More precisely, let k* denote the phantom aspect; this is easily identified
by a= =~ 0Vt. Set Sgx, = 0¥n and normalise all s, such that >, si, = 1 holds again for
all n. Then compute the reconstruction of the data by rounding p¢, = > ) aweSgn to 0 or 1,
where sp,, was updated as described above.

For comparison, we also reconstruct the data by other methods: For MB, LPCA and
NMF, the reconstruction is computed similarly by rounding py, to 0 or 1, except that no
component is removed, as the missingness in these methods is not identified by any one
component but instead the components collaborate in explaining the data as it is.

It should also be noted that models not designed for binary data are somewhat problem-
atic to employ, due to the lack of suitable probabilistic interpretation: With NMF, values
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govern secur access scheme system devic

kei 0.99 encrypt 0.99 public 0.98 clipper 0.92 chip 0.91 peopl 0.89 comput 0.84 escrow 0.83 algorithm 0.76
encrypt decrypt tap

system 1.00 kei 1.00 public 1.00 govern 0.98 secur 0.98 clipper 0.97 chip 0.97 peopl 0.96 comput 0.94
algorithm encrypt secur access peopl scheme system comput

kei 0.98 public 0.97 govern 0.92 clipper 0.87 chip 0.85 escrow 0.75 secret 0.63 nsa 0.63 devic 0.62

peopl effect diseas medicin diagnos

medic 0.98 doctor 0.77 patient 0.75 treatment 0.71 physician 0.66 food 0.66 symptom 0.65 med 0.65 diet 0.65
system medicin

effect 0.97 medic 0.96 peopl 0.96 doctor 0.92 patient 0.92 diseas 0.91 treatment 0.91 physician 0.89 food 0.89
peopl secret effect cost doctor patient food pain

medic 0.48 diseas 0.28 treatment 0.27 medicin 0.27 physician 0.24 symptom 0.24 med 0.24 diet 0.24 clinic 0.23
peopl effect doctor

medic 0.98 patient 0.87 diseas 0.85 treatment 0.84 medicin 0.84 physician 0.81 food 0.81 symptom 0.80 med 0.80
peopl sin love christ rutger geneva jesu

god 0.99 christian 0.99 church 0.79 word 0.79 bibl 0.78 faith 0.78 agre 0.74 accept 0.73 scriptur 0.73

peopl public system agre faith accept christ teach clinic mission religion jesu holi doctrin scriptur

god 0.05 christian 0.05 rutger 0.04 word 0.03 church 0.03 bibl 0.03 love 0.03 man 0.03 truth 0.03

govern peopl christ food rutger church atho

god 0.74 christian 0.74 word 0.66 accept 0.64 bibl 0.64 faith 0.64 jesu 0.63 agre 0.63 effect 0.63

Table 3: Expansion of 10 randomly selected documents from the 4 Newsgroups collection.
For each document, the first line of the cell contains the terms present in the
document, followed by the top list of terms that the phantom-topic is responsible
for, along with the posterior probability p(k|t,n,z4y,) of the phantom.

above 1 are possible as NMF' does not treat the values as probabilities, so we simply turn
those to 1. In PLSA, the data model is quite different, as the parameters give p(t|n), the
probability of generating word ¢ into any word position of document n. Let L, be the un-
known length of document n, and compute the probability of word ¢ appearing at least once
in the document — this corresponds to binary coding of the document. The probability is
then

p(attribute ¢ appears at least once in observation n’) = 1 — (1 — p(t|n)) =" (28)

in which we assume the unknown document length L, to be the number of ones in the
observation®. The probability thus obtained is again rounded to 0 or 1.

Table 4 shows the decrease in the number of missing values when the data is recon-
structed as described above, using AB, MB, LPCA, NMF and PLSA. The decrease is largest
in post-processed AB; the result for non-post-processed AB is also given for comparison. It
is well possible that new missing values are generated in the reconstruction process, if new
1s are inserted outside the original range of the observations of a genus. Indeed, such new
missing values are generated especially at PLSA.

Detecting added noise. A more challenging setting, from the point of demonstrating
the abilities of AB, is obtained by artificially introducing an extra noise factor by randomly
adding extra presences (1s) into the original data. In this case, not only the 0s have two un-
derlying explanations (a “true absence” or a “false absence”) but also the 1s may be “true”

6. Another way would be to average over L,,, assuming that L, ranges uniformly between the number of
ones in the observation and some manually chosen upper limit; in Table 4 this would give inferior results.
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AB post-proc. AB MB LPCA NMF PLSA
745 47 54 155 75 -39

Table 4: Decrease in the number of missing values when the palaeontological data is recon-
structed using the model parameters. Generation of new missing values is possible,
as indicated by the negative decrease of PLSA.

or “added”. We corrupt the data such that the proportion of extra’ 1s in each observation
(site) is distributed according to Uniform[0,0.4]; in the original data the percentage of 1s is
5.08% and in the corrupted data it is 12.5 % — more than doubled. We then estimate K = 5
latent aspects in the corrupted data and obtain one “white phantom” having a negligible
probability of generating any genus, and one “black phantom” having a large probability
of generating any genus, and three real aspects.

The posterior probability P(k|t,n, %) = Qktnz., that the aspect k has generated
the observation xy, is computed as in Formula (4). The histograms of the posteriors
P(klt,n,x,) for true 1s, added 1s and Os are seen in Figure 8. They are computed as

p(k|true ones) Z P(k|t,n,z) (29)
t,n:xrtn=1 originally
p(kladded ones) o Z P(k|t,n, z,) (30)
t,n:xin=1 added
p(k|zeros) o Z P(k|t,n, z,) (31)
t,n:xtn=>0

The quantities (29-31) are normalised such that each of them sums to 1 over k. We can see
in Figure 8 (a) that the “white phantom” (the leftmost bar in all plots) has a very small or
zero probability in true or added 1s and correspondingly a high probability at zeros. The
“black phantom” (the third bar in all plots) has a large posterior probability in the added
1s and a very small probability at zeros. The real aspects behave in an opposite manner.

For comparison, Figures 8 (b) and (c) give the corresponding values for MB and PLSA.
The number of components is chosen such that the total number of parameters is equal in
all models considered — this gives K = 19 for MB and K = 5 for PLSA. At each model,
the parameters used are from an in-sample log likelihood -optimal run over 10 repeated
runs. No latent component differentiates between Os and true and added 1s either in MB
or in PLSA. For LPCA and NMF, the quantities (29-31) cannot directly be computed, as
the posterior of a component is not a well defined concept.

3.4.2 DETECTING AND CORRECTING DISTORTIONS IN RASTER IMAGES

The data set of raster images of handwritten digits originally has no inherent pixel omissions
or additions; therefore it can be used for objective and controlled assessment. We create
the two types of distortion studied in this section artificially and measure the ability of AB
in detecting them.

7. This is indeed not the proportion of Os turned to 1s, but instead includes new 1s superimposed at existing
1s, which have no effect.
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Figure 8: Posterior probabilities of the latent aspects k in corrupted palaeontological data.
(a) AB, (b) MB, (c¢) PLSA. At each case, the leftmost plot shows the probabilities
at true 1s (29), the middle one at added 1s (30) and the rightmost at Os (31).
The number of components is chosen such that the total number of parameters
is the same in all models. In AB, aspects kK = 1 and 3 differentiate between the
three cases.

First we add a corrosion cause into the data: we turn “off” a uniformly varying amount
of pixels that were “on” in the original images. In the original data, any pixel that is “off”
(0) is a “true absence” and can be explained by the content of the image. In the corrupted
data however, a 0 is either a true absence as before, or a false absence, explained by the
corrosion.

Out of sample likelihood. The degree of corrosion, measured as the proportion of
extra Os in the data®, is selected randomly for each observation from an uniform distribution
on [0,0.4]. Figure 9 (a) shows the 10-fold cross-validated out of sample likelihood for varying
the number of latent components. The behaviour of different models is quite similar to what
was seen on the non-corrupted data in Figure 2: LPCA over-fits quickly as the number of
latent components increases, and AB always outperforms MB.

We then vary the degree of corrosion so that the proportion of extra Os in each observa-
tion is distributed according to Uniform|[0, u] where u is fixed for all observations; separate
experiments are conducted on u = 0.2,0.4,0.6,0.8. The optimal number K of latent com-
ponents varies according to u and is selected based on in-sample values of the AIC at each
u. The out-of-sample likelihood is then computed and shown in Figure 9 (b) for different
choices of u at both AB and MB. We see that as the proportion of extra Os increases, the
out of sample likelihood decreases. From this observation we can draw a new hypothesis
regarding another field of application, namely text document data, in which a term absence
(0) either means that the term does not fit the topical content of the document, or that
the term is simply omitted. It is often argued that a Multinomial model is more powerful
than a Bernoulli model for analysing term-document data, as a Multinomial model takes
into account the actual frequencies of terms in documents instead of just presences and

8. Again, this is not the proportion of 1s turned to Os but indeed the proportion of added Os in the whole
observation. Superimposing an extra 0 where the data instance is 0 does not have any effect.
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Figure 9: (a) Out of sample log likelihood for the corrupted handwritten digits data set.
The error bars show the variation in ten-fold cross-validation (one standard error).
Corrosion was added in the data such that the proportion of extra zeros was
drawn from a Uniform|[0, 0.4] distribution at each observation. (b) Out of sample
log likelihoods of the AB and MB models when the proportion of extra 0Os is
Uniform [0, u]. Horizontal axis: u. u = 0 refers to the noiseless case.

absences. There may however be another reason, too. A Bernoulli model treats both zeros
and ones as information-bearing entities. In text document data, many of the zeros are
“missing presences” of terms, in the sense that a term is not used despite it suits well the
topical content of the document — in other words, there is a lot of noise in the zeros. A
Bernoulli model attempts to model these noisy zeros, too, and risks to fail at generalising
to unseen documents.

Noise removal. We then demonstrate the use of the Aspect Bernoulli model in noise
removal. As the noise is identified by one latent aspect, we can correct for the noise by re-
moving the noise aspect and reconstructing the data again. Similarly to what was described
in Section 3.4.1, we identify k* as the aspect corresponding to noise, by au+ ~ 0Vt’. We
then set sg+, = 0Vn and normalise all sy, by requiring >, s, = 1. The reconstruction of
the data is then computed by rounding py, = >, @Sk, to 0 or 1.

Figure 10 shows the success in reconstructing corrupted digits where some pixels are
turned to 0: the proportion of extra Os is drawn from a Uniform[0,0.4] distribution. The
noise removal rate is measured as 1 — (fp + fn)/2 where fp is the rate of false positives,
occurring if a true 0 is turned to 1, and fn is the rate of false negatives, occurring if a false
0 is not turned to 1. At MB, LPCA, NMF and PLSA, the reconstruction is computed as
described in Section 3.4.1 related to Table 4.

In Figure 10 we see that Aspect Bernoulli is very successful in binary noise removal
when the parameters are post-processed by removing the aspect corresponding to noise, as
described above. Without such post-processing (not shown), AB behaves quite similarly to
NMF. LPCA again overfits quickly, and PLSA is not very successful: in both methods, the

9. At large K, several aspects may correspond to noise, but for simplicity we only select the one having the
smallest value of 3, atr.

26



rate of false negatives is quite large even though false positives are rare. The error bars give
the standard error on both sides of the mean, over 5 disjoint subsets of the data.

Binary reconstruction
T T

1—(fp+in)/2

06| =+ AB-postproc
< MB

Figure 10: Noise removal in artificially corrupted binary handwritten digit images. The
parameters of AB are post-processed by removing the component explaining the
noise, re-normalising the parameters, and reconstructing the data. In the other
methods, the data is reconstructed from the original estimated parameters, as
no single component explains the noise.

Multiple causes of presences and absences. Let us then see how the basis images
combine to reconstruct instances of observed digit images. As an example we analyse the
corrupted digit data where the proportion of extra 0s was drawn from a Uniform[0,0.4]
distribution; the same data set was used to create Figures 9 (a) and 10. The number of
latent aspects was chosen based on the AIC as K = 14. The top row of Figure 11 shows
the 14 bases (parameters as) obtained for this data set. In addition to bases that look like
prototypical images as they contain high probabilities on corresponding pixels, we also have
one phantom basis for which a is almost zero at all pixels t. To demonstrate the role of the
phantom and the way the aspects may combine, we then analyse 6 observed images, shown in
the leftmost column. For each image n and aspect k, the posterior probability P(k|n,t, z,)
that the k’th aspect explains the observed value (0 or 1) of all pixels t = 1,...,240 is then
given. On all these plots, the level of darkness of a pixel is proportional to the probability
of it being “on”.

The ’5’ depicted on the first data instance (second row of Figure 11) is largely explained
by the basis image which is a prototype of ’5’. In addition, the basis '6’ explains the pixels
that are left unexplained by the basis ’5’. A similar phenomenon is seen in the second and
third data instances where a ’6’ and an '8’ are analysed. The pixels that are “on” have
multiple causes and so several bases contribute to explaining the observed data.

The fourth data instance is a ’2’ that has suffered corrosion. It is well explained by the
basis ’2’, except for the pixels which are off due to the artificially created corrosion. These
pixels are explained by the phantom with the highest probability. A similar case is seen in
the fifth data instance where a corrupted ’1’ is analysed.
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Figure 11: Results on artificially corrupted binary handwritten digit images where some
pixels have been turned to white. The images on the top line depict the reshaped
parameters ay; as basis images. Some examples from this data set are shown in
the first column, and their analysis as provided by the AB model in the next
columns. For each datum instance n and each aspect k, the probability values
P(k|n,t,z,) are shown for each pixel ¢ € {1,...,240}. On all these plots, the
level of darkness of a pixel is proportional to the probability of it being ’on’.
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Figure 12: Basis images estimated by MB (top row), LPCA (second row), PLSA (third
row) and NMF (bottom row) in artificially corrupted binary handwritten digits.

The last example does not directly resemble any one of the basis images, and it is
explained by a combination of bases ’7’ and '6’ and the phantom.

The bases given by MB, LPCA, PLSA and NMF are shown in Figure 12. No single
basis corresponds to the corruption, instead the bases resemble parts of digits. For the ease
of comparison, K = 14 bases are estimated; however, the results at different K are quite
similar.

Similarly, in Figure 13 the results of AB are shown for the case of added 1s: the pro-
portion of pixels turned “on” was drawn from a Uniform[0,0.4] distribution. There are
K =15 bases as chosen by the Akaike Information Criterion; the second to last of them is
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a “black phantom”. Again, the phantom has a high posterior probability of having created
the non-content-bearing black pixels, and the content-bearing pixels (both white and black)
are explained by one or a few content-bearing latent aspects.
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Figure 13: Results on binary handwritten digit images where extra black pixels are added
into the images. The images on the top line depict the reshaped parameters a
as basis images. Some examples from this data set are shown in the first column,
and their analysis as provided by the AB model in the next columns. For each
datum instance n and each aspect k, the probability values P(k|n,t,xy,) are

shown for each pixel ¢ € {1,...,240}. On all these plots, the level of darkness
of a pixel is proportional to the probability of it being ’on’.
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Again, the bases given by MB, LPCA, PLSA and NMF in the case of added 1s are shown
in Figure 14. No single basis corresponds to the added pixels, instead the bases resemble
parts of digits very similarly to Figure 12.
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Figure 14: Basis images estimated by MB (top row), LPCA (second row), PLSA (third

row) and NMF (bottom row) in binary handwritten digits where extra black
pixels are added.
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3.4.3 DETECTING OMITTED OR ADDED WORDS FROM USENET TEXT MESSAGES

In Section 3.3.3 we have seen that term occurrences in text messages naturally contain a
factor of word omission and AB is able to detect that factor. However, the goodness of this
detection can only be assessed in a subjective manner. In order to conduct an objective
evaluation we would need to have the true values. For this reason, in the same way as
with the palaeontological data, we create an artificial setting which we use to objectively
demonstrate the ability of the Aspect Bernoulli model in detecting and distinguishing ex-
tra, non-content-bearing 1s in binary coded newsgroup documents. We randomly add 1s
in the data such that the proportion of extra 1s in each document is distributed accord-
ing to Uniform[0,0.4]; in the original data the percentage of 1s is 6.3% and in the added
data it is 13.7% — more than doubled. We then estimate K = 6 latent aspects in the
corrupted data, and obtain four aspects reflecting the four newsgroups; in addition there
is a “white phantom” having a negligible probability of generating any term, and a “black
phantom” having a large probability of generating any term. The black phantom explains
the artificially added terms which do not fit the topical contents of the documents.

The latent aspects can also be visualised by listing the keywords having the largest
probabilities ay; of being generated by each topic k; these are seen in Table 5 for AB.
Again, the term lists of the phantoms do not show any coherence, whereas the real topics
are easily distinguished by their keywords.

“black phantom”  cryptographic — medical religious “white phantom”  space-related
33.4 46.9 61.2 51.5 111.1 43.8

effect 1.00 kei 1.00 peopl 0.65 christian 1.00  bless 4.3e-02 space 1.00
symptom 0.99 encrypt 0.95 effect 0.53 god 1.00 man 1.5e-02 nasa 0.99
kei 0.99 govern 0.86 medic 0.45 peopl 0.92 pat 2.6e-03 system 0.92
pgp 0.96 chip 0.85 patient 0.42 rutger 0.81 space 1.3e-07 orbit 0.91
biblic 0.95 public 0.76 doctor 0.34 christ 0.73 den 7.6e-13 cost 0.74
secur 0.93 clipper 0.76 diseas 0.31 bibl 0.70 peopl 8.9e-14 launch 0.68
holi 0.91 system 0.73 med 0.29 church 0.70 agre 8.0e-15 spacecraft 0.68
devic 0.90 secur 0.66 diet 0.28 word 0.65 henri 5.0e-16 mission 0.64
patient 0.89 escrow 0.59 infect 0.28 accept 0.64 satellit 4.9e-16 shuttl 0.63
secret 0.89 comput 0.49 treatment 0.27  agre 0.61 comput 2.9e-16 flight 0.58

Table 5: Six aspects inferred by AB from a document collection of 4 Newsgroup messages
where extra terms were randomly added in the documents. Besides four aspects
representing the topical features of discussion, there are two “phantom” aspects:
the first aspect explains the artificially added 1s and the fifth aspect explains
the natural term omissions. For each aspect k, the terms ¢ having the largest
generation probabilities ay are listed, together with the values of the as;. The top
row of each column gives >, Sgy.

As the document corruption was created artificially by adding extra terms into the
documents, we can measure the degree to which the models are able to distinguish between
different 1s. Figure 15 shows the normalised histograms of the posterior probabilities of
latent aspects k. For each k, we compute p(k|true 1), p(kladded 1) and p(k|0) similarly as
before by AB (a), MB (b) and PLSA (c). At MB and PLSA, the number of components is
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chosen such that the number of parameters in all methods are equal. In Figure 15 (a) in the
first histogram we see that the “white phantom” (k = 5) of AB explains none of the true 1s.
Correspondingly, the “black phantom” (k = 1) explains the added 1s to a high degree, as
seen in the second histogram. The third histogram shows that the white phantom (k = 5)
explains most of the zeros whereas the black phantom (k = 1) only explains a small fraction
of them. In text document data, the zeros might be “true absences” or “false absences” but
we cannot manually distinguish between them, and so the numerical accuracies cannot be
measured in this respect. In Figure 15 (b), the sixth Bernoulli mixture component explains
the added 1s to a high degree, but it also explains the true 1s and Os to a large degree. In
Figure 15 (c), none of the PLSA components deviates.
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Figure 15: Posterior probabilities of the latent aspects k = 1,...,6 in corrupted newsgroup
data. (a) AB, (b) MB, (c) PLSA. At each case, the leftmost plot shows the
probabilities at true 1s (29), the middle one at added 1s (30) and the rightmost
at 0s (31). In AB, aspects k = 1 and 5 differentiate between the three cases.

4. Conclusions

This paper presented a probabilistic multiple cause model for 0-1 data. The Aspect Bernoulli
model analyses the causes behind not only the presences (1) but also the absences (0) of
attributes, in contrast to all existing models for 0-1 data. A distinctive feature of the
Aspect Bernoulli model is its ability to detect both omissions and additions in the data
by automatically creating specific “phantom” latent aspects. A “white phantom” gives a
negligible probability of appearance to any attribute and thus it is used to explain omissions
in the data; in contrast, a “black phantom” generates occurrences of all attributes with
probability close to 1 and as such it explains additions in the data. The phantoms are not
hard-coded into the model but arise automatically as the algorithm minimises the entropies
of the model parameters.

In addition to the variety of related factorisation models discussed, it might also be
interesting to follow up some similarity with the model of Law et al. (2004), proposed
for feature selection in unsupervised learning, in a mixture of Gaussians setting. The data
generation process in their model is remotely similar to our AB model: For each observation,
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a content-bearing latent cause k is first selected. Then for each attribute, the value of the
attribute is either generated from a distribution specific to the latent cause chosen, or from
a common cause. The “common cause” can be seen in analogy with our phantom aspect.
However, in contrast to AB, only one content-bearing cause is used for all attributes in an
observation, and the model is thus not a multiple cause model in a strict sense.

In a somewhat similar line of thought, the models of Hofmann (1999), Barnard et
al. (2001, 2003) and Blei et al. (2004) present hierarchical architectures where the latent
components are arranged into a tree, and a multidimensional observation is constructed
by travelling down the tree and generating multinomial attribute occurrences according
to the latent components visited on the path of the tree. The root node is a common
component that may participate in the generation of all the observations. Again a remote
analogy can be followed in that this common component often captures uninformative
features such as the stop words in documents. Recently, using a somewhat similar tree-
construction has been considered explicitly for finding uninformative features by Wang and
Kaban (2005). However, our factorisation approach separates out the common (non-specific,
un-informative) features without imposing any artificial topologies.

As a further refinement of the Aspect Bernoulli model one could consider a fully sym-
metric model that analyses the observations and attributes simultaneously: in some data
sets such as the palaeontological data considered in this paper, there are both observation-
dependent and attribute-dependent noise factors, requesting a model that is capable of
considering both dimensions.

An intermediate model between Logistic PCA and Aspect Bernoulli could also be con-
structed for completeness, as p(x|s,a) = ], [T, 904 awkskn)® (1 — g(>°, aukskn))
where the parameters ay, and sg, are not restricted to probabilities. In our studies (not
shown), using g(u) = (exp(u) — 1)/(exp(u) + 1), the results of such a model have indeed
consistently been between those of LPCA and AB in all respects. However, the data repre-
sentation is similar to NMF; and the noise is not separated out into any specific components.

In this paper we have shown how the Aspect Bernoulli model can successfully analyse
both noisy and noiseless 0-1 data in a variety of application areas, of which the palaeon-
tological setting is perhaps the most demanding. From a palaeontologist’s point of view,
the possibility to distinguish between true and false absences has great appeal, as there are
several systematic and random sources of bias in the data collection process. In addition to
studies involving palaeobiodiversity and turnover, the method has potential applicability in
palaeoecology, including the generation of ”proxy” data for palaeoenvironment reconstruc-
tion, for palaeocommunity reconstruction, and for the study of evolutionary dynamics at
the community and metacommunity levels. A very practical use of the method is to charac-
terise and summarise the taxonomic deficiencies of the palaeontological data: for example,
a group of genera (attributes) having a lot of false absences can be concluded as too noisy
to be included in further studies.

We have also demonstrated how the Aspect Bernoulli model outperforms related models
in the task of noise removal from binary data. In addition we studied and contrasted AB
to related Bernoulli models in several settings in terms of scaling, out-of-sample likelihood
and parameter interpretability: AB scales equally to the mixtures of Bernoulli model and
outperforms that in terms of out-of-sample likelihood; AB scales favourably compared with
logistic PCA while their out-of-sample likelihoods tend to be similar; finally, AB gives in-
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terpretable parameters whereas logistic PCA does not. Non-Bernoulli models such as prob-
abilistic latent semantic analysis and nonnegative matrix factorisation cannot be compared
to in terms of out-of sample likelihoods, as the event spaces are different; also, they cannot
separate binary noise into one single component, making noise removal more difficult.
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Appendix A

The derivation of the algorithm in (9-11) is as follows.
Denote @i = 1 — ay,. The log likelihood (8) is maximised, subject to the constraints
> i Skn = 1 and ay, + @z = 1. The corresponding Lagrangian is thus the following:

L= Z Z Ttn lOg Z Atk Skn + 1 — Ttn IOg Z Atk Skn

— ctk(atk + ay — 1 Z Skn — (32)

where ¢y, and A, are Lagrangian multipliers, and we have rewritten (1 — >, aSkn) as
> -k GtkSkn- The stationary equations of £ with respect to both a4, and @y are

oL

= — C = 0 33
dag, Z Zg ateszn tk (33)
oL 1-— Ttn

= — ¢y =0 34
Dag, Z > 0w ateszn tk (34)

Multiplying the first of the above equations by a4 and the second by a;; we obtain:

Ttn
Ak Y ———Skn — CtkQtk = 0 35
zn: Sy awsSen (35)
_ 1- Ttn _
Atk ) —=——Skn — CtkQtk = 0 36
— > s (36)

Summing both sides and using a + @ = 1 provides the Lagrangian multiplier cg:

1-— Tin
= Sknt+ Gtk Z S s (37)

Cti, = Qgk; Z Z
4

QteSpn

as in (11). From (35) we have the solution for a;, in the form of a fixed point equation:

Qi = Quy; Z Z Skn/Ctk (38)
¢

QtpSen
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as in (10). Solving for s, proceeds similarly: the stationary equation is

n 1- n —
oLy (Lam + %c@ — Ay =0 (39)
t

O0Skn > 0 QteSen > 0 @eSen

Multiplying both sides by s, we obtain

T 11—z
Z <$atkskn 7matk3kn> = A\nSkn (40)
t

> 0 QteSen > ¢ QiSm

Summing over k and using >, s, = 1 we have the Lagrange multiplier \,,:

n—zz Zatkskn+z L~ T Zatkskn—zmtn+zl_$tn =T (41)
¢

> ¢ QteSen
Having computed \,,, from (40) we obtain the fixed point equation for sy, identical to (9):

Skn = Skn{z Zg

At Sen

11—z

@} /T (42)

———
Quesm > 0 @iSen

Here we presented a derivation of (9)-(11) which is independent of the model formulation
provided at (1). Naturally, the same equations could be obtained by starting from the
algorithm (4)-(6): replacing (4) into (5) and (6), and manipulating the resulting expressions,
using that x, is either 0 or 1.
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