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Abstract

A method of complexity control in multinomial mixture modeling of multiple-marker
genotype data, imposing the Hardy-Weinberg equilibrium (HWE) between the geno-
type values, is studied. This is a very natural restriction and known to hold at popu-
lation level under modest assumptions. The hypothesis under study is that imposing
this restriction will prevent overfitting and lead to a better model. This is shown
to indeed be case. Experimental results on chromosomes 1 and 17 of the HapMap
data demonstrate that the restricted model generalizes better to unseen data and
also finds clusters that correspond better to the ethnic groups of the HapMap, when
compared to a model without the HWE restriction.

Key words: genotype data, multinomial mixture model, Hardy-Weinberg
equilibrium

1 Introduction

In this paper we discuss the problem of clustering genotype data that consists
of multiple markers. We adopt the statistical model-based approach, assum-
ing that the data are generated by a multinomial mixture model, and further
assuming that the parameters of such a model can be identified by the maxi-
mization of the data likelihood.

∗ Corresponding author. Tel: +358 9 191 51377, Fax: +358 9 191 51120
Email addresses: ella@iki.fi (Ella Bingham), heikki.mannila@tkk.fi

(Heikki Mannila).

Preprint submitted to Elsevier 12 June 2008



We study the effect of requiring that the Hardy-Weinberg equilibrium (HWE)
[1,2] holds for the genotype values. Our hypothesis is that imposing the HWE
restriction acts as a means to complexity control and helps to reduce overfit-
ting. Often in studies on genotype data, the number of observations (patients)
is quite small compared to the number of variables (markers) in the data,
making model estimation prone to overfitting.

Genotype data of a diploid organism can be presented as unordered pairs of
the maternal and paternal haplotypes: {A, A}, {a, a} and {A, a}. The data
are thus categorical and we do not assume any ordering between the values.
Multinomial mixtures are a well-known technique aimed at modeling such
categorical data, similarly to Bernoulli mixtures for 0/1 data [3–8].

Hardy-Weinberg equilibrium (HWE) is one of the key concepts in genetics. Let
us denote the frequency of allele A by α; then the frequency of allele a is 1−α.
The Hardy-Weinberg equilibrium says that the frequency of {A, A} is α2, the
frequency of {a, a} is (1−α)2 and the frequency of {A, a} is 2α(1−α). Given
a marker with any frequency distribution of the genotypes {A, A}, {A, a}, and
{a, a} in a large population, the simple assumptions of random mating and
no selective effects lead to HWE in one generation. The genotype frequencies
will remain unchanged over successive generations.

In mixture modeling of genotype data of multiple markers one can either
enforce the HWE for the model parameters or disregard it. Here we study the
effect of this choice from the point of view of identifying populations. Using
HapMap data, http://www.hapmap.org, we show that enforcing the HWE
leads to a multinomial mixture model that finds the ethnic groups in the
data more easily than a multinomial mixture model that disregards HWE. In
addition to identifying populations, we will also show that the HWE-enforced
model, hereafter HWEmultinomial, fits better to unseen data. The original
multinomial model, with no HWE imposed, has two unknown parameters for
each marker: the probabilities of two genotypes (the probability of the third
genotype value is not a free parameter, as we know that the probabilities
must sum to 1). In contrast, the HWEmultinomial model has only one free
parameter per marker. As a result, the HWEmultinomial has less freedom
in fitting to observed data, and does not overfit as easily to the possibly
noisy details of the data. The HWE restriction controls the flexibility of the
HWEmultinomial model, leading into better generalization capability and less
overfitting.

Linkage disequilibrium, dependence between nearby markers, is another bio-
logical constraint in genotype data. We concentrate our study on the effect of
HWE, independently of linkage disequilibrium. To accomplish this we select
markers randomly from a chromosome; as a result the markers are on average
quite far from each other and the effect of linkage disquilibrium is small.
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Multinomial models with HWE have been presented before in a single-attribute
case, as opposed to our multivariate approach. Glickman and Kao [9] study
the role of the Apo-E gene in the onset of cardiovascular diseases. They report
that imposing the HWE restriction results in poorer fit, which is not surpris-
ing as the model has less free parameters. HWE of HapMap data is studied
in Wigginton et al [10] who give exact statistical tests, Barrett et al [11] who
present an analysis software, McCarroll et al [12] who discover common dele-
tion polymorphisms, Fung et al [13] who study the genotyping of Parkinson
disease and Weinberg [14] et al who comment on testing for HWE and possible
reasons for HWE violations. Monitoring deviations from HWE can be used as
tools for quality control [15], and for identifying interesting genomic locations;
see [16] for a study on the use and underuse of HWE.

Methods for identifying population structure in multilocus genotype data have
been presented by several authors. Rannala and Mountain [17] and Cornuet et
al [18] discuss assigning individuals of unknown origin into potential (known)
source populations. Pritchard et al [19] and further Falush et al [20,21] give
a Bayesian formulation for finding the populations and assigning individu-
als to them. The model is implemented as the structure program that uses
MCMC simulations to estimate the model parameters. Their model accounts
for the presence of Hardy-Weinberg disequilibrium by grouping individuals
into populations within which the HWE more or less holds. We will discuss
the structure program in more detail in the experimental section in which
we show comparisons between it and the method presented in this paper.
Somewhat similar models are presented by Dawson and Belkhir [22] and by
Anderson and Thompson [23]. Corander et al [24] give a Bayesian method for
estimating hidden population substructure that uses geographical sampling
information and again assumes HWE and linkage equilibrium within popula-
tions. Excoffier et al [25] use approximate Bayesian computation to estimate
a model that is capable of explicitly handling mutations; their model was de-
fined previously by Bertorelle and Excoffier [26] and (in a maximum likelihood
formulation) by Wang [27]. Wu et al [28] give a maximum likelihood approach,
partially based on the method presented by Tang et al [29], and an efficient
implementation.

This paper is organized as follows. In Section 2 we present the multinomial
models, both the original and the HWE-restricted version. In Section 3 we
show experimental results on both clustering and generalization, using the
two multinomial models and the structure program. Section 4 concludes the
paper with a brief discussion.
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2 Models

We assume multivariate genotype data, and denote by t = 1, . . . , T the vari-
ables (attributes, markers, columns) and by n = 1, . . . , N the observations
(individuals, rows) in the data. For brevity, we will use the symbols 1, 2 and
0 to denote the genotype values {A, A}, {a, a} and {A, a}, respectively. Note
that these are just symbols and we do not assume any ordering between the
values 1, 2 and 0. Thus xtn ∈ {0, 1, 2} is the value of the t-th marker of the
n-th observation. Each marker is considered separately of others, and hence
observing, say, value 1 at one marker gives us no information of value 1 at
another marker. (The markers will be chosen far away from each other so that
linkage disequilibrium can be neglected.) Finally, we denote by k = 1, . . . , K
the mixture components that are assumed to have generated the data. In
practice, the mixture components k will correspond to different populations
or groups to which the individuals belong.

Let

ptk = prob(variable t = 1|component k) = p(xtn = 1|k) (1)

for any n. Similarly,

rtk = prob(variable t = 2|component k) = p(xtn = 2|k) (2)

and

1 − ptk − rtk = prob(variable t = 0|component k) = p(xtn = 0|k). (3)

Also let πk be the prior probability of mixture component k, and
∑

k πk = 1.
The log likelihood of the multinomial mixture model is then

L =
∑

n

log
∑

k

πk

∏

t

p
I(xtn=1)
tk

r
I(xtn=2)
tk

(1− ptk − rtk)
I(xtn=0) − β(

∑

k

πk − 1) (4)

where I(xtn = ℓ) is an indicator function, and β is a Lagrange multiplier using
which we ensure that the prior probabilities sum to 1 (it is easily seen that
β = N).

In this report we restrict the multinomial mixture model by additionally re-
quiring that the HWE holds. Using the notation in Section 1, this translates
to ptk = α2, rtk = (1−α)2 and 1− ptk − rtk = 2α(1−α). These equations can
be combined into

rtk = (1 −√
ptk)

2 (5)

which is the restriction we want to apply to our parameters. The log likelihood
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(4) then becomes

L =
∑

n

log
∑

k

πk

∏

t

p
I(xtn=1)
tk

(1 −√
ptk)

2I(xtn=2)(2
√

ptk − 2ptk)
I(xtn=0)

− β(
∑

k

πk − 1). (6)

We will use an EM algorithm [30] for estimating the parameters of the model.
The update equation for the parameter πk is similar to the update rule in the
original multinomial mixture model [4], [3], [8]:

πk =
1

N

∑

n

skn (7)

where skn is the posterior probability of component k having created observa-
tion n. The update rule of skn in turn is different from its update rule in the
original multinomial mixture model; this time it is computed as

skn =
πk

∏
t p

I(xtn=1)
tk

(1 −√
ptk)

2I(xtn=2)(2
√

ptk − 2ptk)
I(xtn=0)

∑
k πk

∏
t p

I(xtn=1)
tk

(1 −√
ptk)2I(xtn=2)(2

√
ptk − 2ptk)I(xtn=0)

. (8)

The update equation for the parameter ptk is in turn

√
ptk =

∑
n skn(I(xtn = 1) + 1

2
I(xtn = 0))

∑
n skn

. (9)

For comparison, the update equation in the original multinomial mixture
model is

ptk =

∑
n sknI(xtn = 1)

∑
n skn

. (10)

Also for curiosity let us see how the update equation for rtk would look like,
derived from (5):

√
rtk =

∑
n skn(I(xtn = 2) + 1

2
I(xtn = 0))

∑
n skn

. (11)

An EM algorithm for genotype data, taking into account the Hardy-Weinberg
equilibrium, is now given by (7), (8) and (9).

Our hypothesis is that incorporating the HWE restriction is a convenient and
biologically well motivated way to reduce overfitting. The experimental section
gives supporting evidence for this.
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3 Results

We show clustering and generalization results on both the original multino-
mial model and the HWE-restricted multinomial model. The experiments are
conducted on Matlab, in which the two multinomial models are implemented.
In addition, we will show clustering results on the structure program [19], us-
ing the implementation given at http://pritch.bsd.uchicago.edu. Let us start
by describing the data sets used in the experiments.

3.1 Basic properties of the data

In the HapMap project [31], http://www.hapmap.org, the complete genotype
information of 270 persons was identified and delivered in public domain. The
270 persons consist of 90 European, 90 African and 90 Asian individuals. More
specifically, the “European” samples are Utah residents with ancestry from
northern and western Europe; the “African” samples are from the Yoruba
people of Ibadan, Nigeria; and the “Asian” samples consist of 45 Japanese
individuals from Tokyo and 45 Han Chinese individuals from Beijing. We
used the phase II data, release 21.

We took chromosome 1 and screened the markers such that all markers having
missing values in any of the individuals were removed. We then selected T =
20, 50, 150 or 500 markers randomly along the chromosome. We repeated this
200 times, ending up with 200 data sets of random markers at each T . Similar
samples were drawn from chromosome 17.

There are some issues of data quality that one should keep in mind. The MAF,
minimum allele frequency, is quite small at some markers, meaning that the
value of the marker is nearly constant. This kind of a marker does not help
differentiating between the rows (persons) of data. However, we do not remove
such markers from the data. Figure 1 (left panel) shows the histogram of the
MAF values in chromosome 1. We see that out of a total of 46468 markers,
about 13000 or 28 per cent have MAF ≤ 0.05. In chromosome 17 the MAF is
not as small on the average, but still out of 18611 markers, about 19 per cent
have MAF ≤ 0.05 (Figure 1, right panel).

Moreover, the Hardy-Weinberg equilibrium does not always hold in the data.
We test the HWE at each marker by the chi squared goodness-of-fit test,
and find that the P value of the test is often small: In chromosome 1, 18% of
markers have P < 0.05, and still 9% of markers have P < 0.001. In chromosome
17, the violations are even more frequent: 25% of markers have P < 0.05 and
13% of markers have P < 0.001. However, the issue of multiple testing has
to be taken into account: when performing tens of thousands of tests, it may
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Fig. 1. Histogram of the minimum allele frequency in the markers of chromosome 1
(left) and chromosome 17 (right). In total, there are 46468 markers in chromosome
1 and 18611 markers in chromosome 17 in our data.

well be that some of them produce a very small P value just by chance. After
Bonferroni correction, there are still 3 − 5% of markers having P< 0.05 and
2 − 3% of markers having P< 0.001 in chromosomes 1 and 17. So the data
itself do not always obey the Hardy-Weinberg equilibrium. This is perhaps
due to finite population size and nonrandom mating, or to genotyping errors.
Indeed, many other methods for finding the population structure [19,22–24]
use the HWE violations. For a discussion on the detection of genotyping errors
by HWE violations see Hosking et al [15]. Still, in our experiments shown in
the sequel it is seen that the HWE is a useful constraint. In particular, we do
not remove the markers that are in Hardy-Weinberg disequilibrium, but keep
them in the data.

3.2 Choosing the number of components

The model order, that is, the number of multinomial components must be
chosen by the user. Popular ways to do this are the Bayesian Information
Criterion (BIC) [32] , Akaike Information Criterion (AIC) [33] and the peak
of the out-of-sample likelihood curve. BIC and AIC consider the ability of
the model to fit to the training data; this is well motivated when the aim is
to study the properties of the data at hand and obtain a parsimonious data
explanatory model, instead of predicting the behavior of unseen data. Ripley
[34] motivates the use of AIC in models estimated by likelihood maximization.
The BIC and AIC optimal numbers of multinomial components in our data
are typically 3 or 4. This is not surprising as the HapMap data is known to
contain observations of 4 ethnic groups, two of which might be similar to each
other (the Japanese in Tokyo and Han Chinese in Beijing).

On the other hand, the prediction or out of sample performance is often con-
sidered important. In this case the model order is selected based on the max-
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imum of the cross validated out of sample likelihood. Smyth [35] gives a nice
analytic motivation for this. Again, not surprisingly, the optimal number of
multinomial components in our data sets falls to 3 or a few more.

In the experiments we show results for K = 3, . . . , 8 components.

3.3 Clustering accuracy with respect to the HapMap ethnic groups

3.3.1 HWE-restricted multinomial versus ordinary multinomial

We cluster the individuals into K groups using the multinomial models. More
specifically, we select for each individual n the component (that is, cluster) k
for which the posterior probability skn is the largest over k = 1, . . . , K. For
each cluster, we check which of the 3 ethnic groups of the HapMap project it
best represents. (For simplicity of the presentation of results, we will merge the
Japanese and Chinese groups together, to get 3 groups of equal size. However,
the multinomial models have no intrinsic preferences towards equal group
sizes.) Then we count the number of individuals that do not belong to the
chosen group and interpret them as erroneously classified. Let us emphasize
that the clustering is completely unsupervised, and the information on the
ethnic groups is only used to assess the results.

The estimation of the model parameters by the EM algorithm is prone to
local maxima of the likelihood, and depends on the initialization of the model
parameters. A way to overcome this was suggested by Blekas et al [36] who
propose an incremental learning scheme. However, as the estimation of a sin-
gle model is computationally quite simple, we rely on repeated runs of the
EM algorithm using random initializations. We then simply choose the set of
parameters which yields the highest in-sample log likelihood. In the experi-
ments presented in this subsection, we initialized the EM algorithm 10 times
and chose the best parameters among those runs.

Both multinomial models are reasonably good in identifying the populations.
One can conclude that the data lend themselves easily to clustering, and the
peculiarities of the data discussed in section 3.1 do not pose difficulties. Mark-
ers having a very small minimum allele frequency, and thus having almost a
constant value over the individuals, are not problematic, and neither are the
markers whose values violate the Hardy-Weinberg equilibrium.

In the framework of identifying the HapMap populations, the HWE-restricted
multinomial model outperforms the original multinomial model; see figure 2
for results for marker sets of T = 20 and T = 50 markers. The results for
other sizes of marker sets are similar (data not shown). The box plot shows
the distribution of the difference between the number of erroneously classified
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individuals in the HWEmultinomial model and the multinomial model.
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Fig. 2. Classification error in HapMap ethnic groups. Number of classification er-
rors in the HWEmultinomial model minus number of classification errors in the
multinomial model. The difference is statistically significant. The box plot shows
the distribution of the difference: the boxes have lines at the lower quartile, median,
and upper quartile values. The whiskers are lines extending from each end of the
boxes out to the most extreme data value within 1.5 times the interquartile range
of the sample. 200 data sets of HapMap chr 1 (top) and chr 17 (bottom), each
containing 50 (top) or 20 (bottom) markers at random locations. Horizontal axis:
number of components in the multinomial models.
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We also used the t test on the difference between the number of erroneously
classified individuals in the HWEmultinomial model and the multinomial
model. For each number of markers T and number of components K we tested
200 data sets, over which the behaviour of the difference is systematic. The
difference is statistically significant for most combinations of T and K: in chro-
mosome 1, the P values given by the t tests are ≤ 9 ·10−4. The only exceptions
are the cases T = 150 and T = 500 for which the smallest K are not enough
to yield statistical significance. A general observation is that the larger the K,
the smaller the P values. Similarly, in chromosome 17, at T = 20, 50 or 150,
the P values of the t tests are ≤ 0.0452 at all K. In the most difficult setting
having T = 500, at K = 3 the two models perform identically but at K ≥ 4
the HWEmultinomial model is statistically significantly more accurate.

3.3.2 HWE-restricted multinomial versus structure

As a comparison, we also clustered the data using the structure program
[19,20]. To allow faithful comparisons to the multinomial models, we did not
use the admixture nor the correlated allele frequency nor linked loci options,
although they are available in the current version of the program. (We would
like to emphasize that our aim in this study was to see the effect of complexity
control in the clustering accuracy of a multinomial model, and not to devise
a widely applicable method such as structure.) The structure program uses
MCMC simulations to fit a probabilistic model to the data, and again the
results are dependent on a successful initialization. We initialized the simu-
lation 10 times at each data set and chose the in-sample likelihood optimal
parameters among those 10 initializations. The lengths of both the burn-in
and actual simulation were 40000 steps.

In the case of chromosome 1, for T = 50 markers, the structure program was
able to find the populations of HapMap data better than the HWEmultinomial
model, at K = 3 populations, over 100 data sets. At K = 4 and K = 5 the
HWEmultinomial model was slightly better, but not statistically significantly.
At chromosome 17, for T = 20 markers, over 90 data sets, the structure

program was statistically significantly better (P value of t test 8 · 10−4) at
K = 3 populations, but at K = 4 and K = 5 the HWEmultinomial model
was better (P values 0.0217 and 0.0260). As a conclusion one can say that the
HWEmultinomial model is comparable to the structure program in recognizing
populations in HapMap data. In addition, the HWEmultinomial model is much
simpler to implement and faster to estimate than structure: the time required
for estimating the HWEmultinomial model by an EM algorithm is less than
1% of the time required for the MCMC simulations in structure.
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3.3.3 Choosing the number of markers

A further question is the choice of the number of markers T . Irrespective of
the method, it seems that the larger the T the better, in terms of clustering
accuracy. However, increasing T will increase the number of parameters in the
model, making the estimation slower and prone to local minima. At T = 20,
the amount of erroneously clustered individuals is about 10 to 20 per cent at
all models; at T = 50 it decreases to 1 or 2 per cent, and at T = 150 all models
mostly perform flawlessly. Among these, T = 50 is a suitable compromise.

3.4 Out-of-sample log likelihood

The out-of-sample (that is, test data) log likelihood (OSLL) measures how
well the model is able to generalize to unseen observations. Typically models
that tend to overfit have poor out-of-sample likelihood.

We used 10-fold cross validation on each data set. That is, we split the obser-
vations into 10 parts such that 9/10 of the observations were used to estimate
the model. The likelihood of the remaining 1/10 observations given the model
was then computed. This was repeated at each part of the data, to get the
standard error. At each part, the model was estimated only once, and we did
not select any in-sample optimal parameter values as was done in Section 3.3
at the clustering experiment. An example of one data set of 150 randomly
selected markers in chromosome 17 is given in Figure 3.
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Fig. 3. Left: Out of sample log likelihood in a data set of 150 randomly selected
markers of HapMap chr 17. The error bars show one standard error in both direc-
tions. Horizontal axis: number of mixture components. Right: the same, zoomed
in.

The OSLL of the HWE-restricted model is statistically significantly better
than the OSLL of the original multinomial model. Box plots of the results over
200 data sets with the number of markers T = 150 and T = 500 are shown
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in Figure 4. Results for other values of T are similar. We also conducted a
t test on the difference between the OSLL’s and saw that the difference is
statistically significant: in both chromosomes 1 and 17, at T = 20, 50, 150 and
500, at all numbers of components K = 3, . . . , 8, the P values are extremely
small (the largest being 3 · 10−62.) A general observation is that the P values
get smaller as K increases or T decreases. Of course, the P values in a t test
are highly dependent on the number of samples, which in our case is quite
large, resulting from 10-fold cross validation on 200 data sets.

In terms of the out of sample likelihood it is particularly interesting to see the
behaviour of the models at a very large number of markers T : the number of
parameters of the model is then large compared to the number of observations,
and overfitting can be a problem. We see that the HWEmultinomial model
outperforms the original multinomial model also at the largest T .

It is not straightforward to compare the out-of-sample likelihoods of the multi-
nomial models and the structure program [19,20], as the models are quite
different; we have thus chosen not to report out-of-sample likelihoods of struc-

ture.

3.5 Perlegen data

We also ran experiments on the Perlegen data [37] containing the genotypes of
71 individuals, given at http://genome.perlegen.com/browser/download.html.
The OSLL of the HWE-restricted multinomial model was clearly better than
the OSLL of the original model, the difference being statistically significant.
This again shows that the restricted model generalizes better to unseen data.
In terms of clustering the data into populations — the Perlegen data contain
3 ethnic groups — we did not get statistically significant results, due to the
small size of the data.

4 Conclusions

We have studied using the Hardy-Weinberg equilibrium (HWE) as a means of
complexity control in mixture modeling of genotype data. We have presented
a multinomial mixture model that takes into account the HWE between the
frequencies of marker values. The HWE is a natural biological constraint that
is known to hold at population level, assuming random mating and no selective
effects. Our hypothesis was that HWE provides a way of regularization or
complexity control, preventing overfitting when the number of markers is quite
large compared to the number of observations. Our findings indicate that this
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Fig. 4. Difference in the out of sample log likelihoods (OSLL): OSLL of HWEmulti-
nomial minus OSLL of multinomial. The difference is statistically significant at all
K. Results over 200 data sets, each containing 150 (top) or 500 (bottom) randomly
selected markers of HapMap chr 1 (top) or chr 17 (bottom). Horizontal axis: K,
number of mixture components.

is indeed the case: the multinomial model incorporating the HWE fits better
to unseen data than an ordinary multinomial model. Interestingly, our model
is also able to identify the ethnic groups of HapMap data more accurately
than the ordinary model.

We have compared our model to one of the state-of-the art methods for identi-
fying populations, namely the structure program [19] and found the methods
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comparable to each other in HapMap data. In addition, the proposed model
is simpler and therefore significantly faster to estimate than structure. A topic
of an interesting follow-up study would be to compare the two methods on a
data set containing many more populations than the HapMap data.

We wanted to concentrate on the effect of using HWE as a constraint in a
multinomial mixture model and we thus made some simplifying assumptions.
Our model is a single-cause model: we assume that each individual originates
from one population (one mixture component) only. In the case of admix-
ture populations this does not hold but instead the genotype of an individual
consists of material from several populations. Probabilistic methods that take
this into account include the structure model by Pritchard et al [19] and the
models by Dawson and Belkhir [22], Bertorelle and Excoffier [26], Wang [27],
Corander et al [38] and Anderson and Thompson [23]. Various multiple-cause
latent variable models for multinomial data such as PLSA [39], LDA [40] and
MPCA [41] could also be used or extended to handle this kind of data.

Another simplifying assumption in our proposed model is that it does not
take linkage disequilibrium or dependence between neighboring markers into
account. A possible future direction would be to incorporate this, too. In the
present work, we chose the markers randomly along the chromosome, assuming
that the distance between randomly chosen markers is quite large and the
effect of linkage disequilibrium is thus small. However, it might be possible to
include the dependency structure of the markers in the model.
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differentiation between populations, Genetics 163 (2003) 367–374.

[25] L. Excoffier, A. Estoup, J.-M. Cornuet, Bayesian analysis of an admixture model
with mutations and arbitrarily linked markers, Genetics 169 (3) (2005) 1727–
1738.

[26] G. Bertorelle, L. Excoffier, Inferring admixture proportions from molecular
data, Molecular Biology and Evolution 15 (10) (1998) 1298–1311.

[27] J. Wang, Maximum-likelihood estimation of admixture proportions from genetic
data, Genetics 164 (2003) 747–765.

[28] B. Wu, N. Liu, H. Zhao, PSMIX: an R package for population structure inference
via maximum likelihood method, BMC Bioinformatics 7 (2006) 317.

[29] H. Tang, J. Peng, P. Wang, N. Risch, Estimation of individual admixture:
analytical and study design considerations, Genetic Epidemiology 28 (4) (2005)
289–301.

16



[30] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from incomplete
data via the EM algorithm, Journal of the Royal Statistical Society 39 (1977)
1–38.

[31] The International HapMap Consortium, The international HapMap project,
Nature 426 (2003) 789–796.

[32] G. Schwarz, Estimating the dimension of a model, Annals of Statistics 6 (2)
(1978) 461–464.

[33] H. Akaike, Information theory and an extension of the maximum likelihod
principle, in: B. Petrox, F. Csaki (Eds.), Second International Symposium on
Information Theory, 1973, pp. 267–281.

[34] B. D. Ripley, Pattern Recognition and Neural Networks, Cambridge University
Press, 1996.

[35] P. Smyth, Model selection for probabilistic clustering using cross-validated
likelihood, Statistics and Computing 10 (1) (2000) 63–72.

[36] K. Blekas, D. I. Fotiadis, A. Likas, Greedy mixture learning for multiple motif
discovery in biological sequences, Bioinformatics 19 (5) (2003) 807–817.

[37] D. A. Hinds,
L. L. Stuve, G. B. Nilsen, E. Halperin, E. Eskin, D. B. Ballinger, K. A. Frazer,
D. R. Cox, Whole-genome patterns of common DNA variation in three human
populations, http://genome.perlegen.com/browser/download.html.

[38] J. Corander, P. Waldmann, P. Marttinen, M. J. Sillanpää, Baps 2: enhanced
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