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Abstract

We present a novel probabilistic multiple cause model for

binary observations. In contrast to other approaches, the

model is linear and it infers reasons behind both observed

and unobserved attributes with the aid of an explanatory

variable. We exploit this distinctive feature of the method

to automatically distinguish between attributes that are ‘off’

by content and those that are missing. Results on artificially

corrupted binary images as well as the expansion of short

text documents are given by way of demonstration.

1 Introduction

Developing generative models for inferring multiple
reasons behind observations has long been a central aim
of unsupervised learning [10, 4, 2]. Besides variations
determined by the type of data at hand, models vary
in the form of interactions they assume the hidden
generators may follow in explaining (generating) the
observations.

In this paper we will concentrate on modelling bi-
nary coded data where only the presence or absence of
an attribute is of interest; this is in contrast to count
data in which the actual frequencies of attributes are
coded. For count data, multinomial models [4, 2, 3]
are a common choice whereas for binary data, Bernoulli
mixtures [6, 7] among others have been used. It is worth
noticing that while multinomial models [4, 2] are focus-
ing exclusively on what has been explicitly observed,
Bernoulli models by definition need to explain both
the presence and the absence of the attributes, that is,
both the zeros and ones in the data. In other words,
in a multinomial model, the statistical events are the
attributes, whereas in Bernoulli models the statistical
events are ‘on’ (1) or ‘off’ (0) [8]. However, in exist-
ing approaches to multiple-cause modelling of binary
observations [10, 11], the attributes that are ‘off’ are
suppressed, and the effort is spent on identifying the
difficult nonlinear relationship between hidden causes
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and the attributes that are ‘on’. Indeed, this relation-
ship may take the form of a discrete logical OR in which
case NP-completeness of the problem has been proven
[11], or a noisy-OR [10] in which case a gradient-based
optimisation is provided in [10] as no closed form solu-
tion is available.

However, while this nonlinear modelling may be
essential in some applications, there are also cases, when
inferring reasons behind having not observed some of
the attributes is at least as important as those behind
having observed some others. Examples include images
with a varying degree of corrosion, or text corpora where
words might be absent either because their presence
would be in contradiction with the topical content of
a document, or simply because they are missing.

In this paper we formulate a linear multiple-cause
model for multivariate binary data which yields a
novel method of dealing with this problem in a prin-
cipled manner. The model can be formally seen as a
Bernoulli analogue of the multinomial decomposition
model known under the names of aspect model, proba-
bilistic Latent Semantic Analysis [4] and also as multi-
nomial Principal Component Analysis [3]. For placing
the proposed model in context, we will show that —
as opposed to logistic distributed models [13, 14], which
are nonlinear and proceed by decomposing the Bernoulli
natural parameter, our model performs a convex decom-
position of the mean parameter of the Bernoulli. Dis-
cussions and illustrative examples will be provided.

2 The aspect Bernoulli model

Let xn denote a T -dimensional multivariate binary
observation and xtn its t-th component, t = 1, . . . , T .
A multiple-cause generation process on the level of the
multivariate observations allows the components of the
instance xn to be generated by different latent causes
k = 1, . . . , K in instance-specific proportions. The n-th
instance is assumed to be generated as the following:

• Pick a discrete distribution P (.|n) over the latent
causes from the set of all K-dimensional discrete
distributions (uniformly)

• For each component xtn of xn, t = 1, . . . , T :
Pick a cause k with probability P (k|n).
Pick either an ‘on’ (1) or an ‘off’ (0) event for



xtn according to a component-specific univariate
Bernoulli distribution, conditioned on k.

Denoting the instance-specific probability of the k-th
aspect by skn = P (k|n) and the conditional probability
of the t-th component being ‘on’ by P (1|k, t) = atk, the
conditional data likelihood of this model is the following.
(2.1)

p(xn|sn) =

T∏

t=1

p(xtn|sn) =

T∏

t=1

K∑

k=1

sknaxtn

tk (1−atk)1−xtn

where sn is a vector of the probabilities skn. We made
the modelling assumption here that data components
are conditionally independent given the latent variable,
to force their dependencies to be captured by the lower
dimensional hidden variable s. Assuming a uniform
Dirichlet prior on s, then p(xn|sn) ∝ p(xn, sn) ∝
p(sn|xn). Maximising this quantity will therefore yield
a maximum a posteriori (MAP) / Maximum Likelihood
(ML) estimation algorithm as derived below. This
provides the most probable hypothesis s, which is the
optimal choice when the main focus is to study the
representational characteristics of a model on fixed
data sets [9] — which is the primary scope in this
paper. Approximate estimates of a fully generative
model formulation similar to the approach taken in [2]
can also be straightforwardly obtained, however this is
outside the scope of this paper.

Taking an EM-type approach [1, 5] to maximising
(2.1), we obtain the iterative algorithm below.

qk,n,t,xtn
∝ sknaxtn

tk (1 − atk)1−xtn(2.2)

skn =
∑

t

qk,n,t,xtn
/T(2.3)

atk =

∑
n xtnqk,n,t,xtn∑

n qk,n,t,xtn

(2.4)

Note that the constraint atk ∈ [0, 1] needs not be
explicitly imposed in this model setting, as it will be
automatically satisfied given that the other constraints
are satisfied and the data is binary — as can be seen
from the form of (2.4)1. Here qk,n,t,xtn

represents the
posterior probability that the cause k has generated the
observation (either the 0 or the 1) at the t-th component
of the n-th instance, i.e. P (k|n, t, xtn).

A somewhat similar procedure has been recently
developed for the case of continuous data in [5], based
on Gaussians and utilised for analysing / predicting user
ratings.

1This is a consequence of the fact that the Bernoulli is a
member of the exponential family of distributions and follows from
the first moment identity.

2.1 An alternative view It is also interesting, from
the point of relating this model to other binary models,
to point out that (2.1) can be rewritten as the following.
(2.5)

p(xn|sn) =
∏

t

(
∑

k

atkskn)xtn(1−
∑

k

atkskn)1−xtn

To see this, notice that when xtn = 1, then according
to both (2.1) and (2.5) we have that p(xtn|sn) =∑

k atkskn; and for the case when xtn = 0 we have
p(xtn|sn) =

∑
k(1 − atk)skn from both (2.1) and

(2.5). In obtaining the latter equality, we have used
the convexity of the combination — indeed, note that
1 −

∑
k atkskn =

∑
k(1 − atk)skn.

We can now observe that, similarly to the multino-
mial aspect model, the mean parameter of the distribu-
tion (Bernoulli in this case), for the t-th component of
the n-th observation, is factorised in a convex combina-
tion: ptn := p(xtn = 1|sn) =

∑
k atkskn. Although the

generative multinomial aspect model is also known un-
der the name of multinomial PCA in the literature [3],
the term Bernoulli PCA would be somewhat confusing,
as the extension of the PCA technique for Bernoulli
data [13] refers to logistic PCA which factorises the
natural parameter of the Bernoulli: θtn :=

∑
k atkskn,

where ptn = eθtn/(1 + eθtn). Therefore the model just
described should rather be termed as aspect Bernoulli
(AB) model. In terms of the restrictions imposed on
the model parameters, the AB model lies between logis-
tic PCA [13] (which does not restrict the values of atk

and skn, in contrast to AB) and single-cause Bernoulli
mixtures [7] (which assume one hidden cause for a mul-
tivariate observation). Implications of this regarding
various criteria such as compression accuracy, generali-
sation and direct interpretability of the parameters will
be demonstrated in the next section.

3 Simulations

3.1 Compression and generalisation on binary

digit images The data set utilised for the first demon-
stration is a collection of 1,000 binary digital images
containing handwritten digits2. There are 200 instances
from each digit category, each image containing 15× 16
pixels, each of which can be either ‘on’ or ‘off’.

We demonstrate the Aspect Bernoulli (AB) model
in the context of two related Bernoulli models, Logistic
Principal Component Analysis (LPCA) [13] and single
cause mixture of Bernoullis (MB). As already pointed
out, AB is more restrictive than LPCA but more
general than MB. As expected, in terms of compression
(reconstruction) of a fixed data set, measured as the

2http://www.ics.uci.edu/mlearn/MLSummary.html



negative log likelihood, AB lies between LPCA and MB,
as can be seen on the left hand plot of Figure 1. The
best results over 15 randomly initialised restarts have
been retained for all models in this experiment, in order
to avoid problems of local optima due to the non-convex
optimisation.

However, in terms of generalisation the picture
looks different on this data. We have evenly divided the
data set into a training set and an independent test set
and have employed an empirical Bayesian latent density
estimate in computing out of sample likelihood values:

− log
1

N

∑

n

∏

t

(atsn)
xt,test (1 − atsn)

1−xt,test

and likewise for LPCA. Here at denotes the t-th row
of A, sn is the latent vector obtained for the training
point xn and xt,test is the t-th dimension of a new,
previously unseen test point (image). Results are
shown on the right hand plot of Figure 1. The LPCA
experiences overfitting after K = 7 aspects (7 assumed
causes) whereas AB only starts to overfit after K = 40
aspects. The best generalisation performance of the MB
is inferior to those of both LPCA and AB on this data
set.
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Figure 1: Reconstruction error (left) and generalisation
error (right) obtained on the handwritten digits data
set. Horizontal axis: K.

3.2 Multiple cause explanatory power In order
to demonstrate the distributive nature of the AB repre-
sentation and the interpretability of the AB parameters,
it is more interesting to see the aspect Bernoulli model
at work when there may be several causes for the same
observation, e.g. when corrosion is present in the data.
In its initial form, any pixel that is ‘off’ in the digits
data set can be explained by the category content of
the image. However, in a second round of experiments,
we have artificially introduced a uniformly varying level
of corrosion, by turning off some of the pixels that were
‘on’ initially on the image. Clearly, by doing so we have
created distinct causes for observing the value ‘off’ for
a pixel and identifying this will serve as an evaluation

criteria for the proposed multiple-cause model. An AB
model with 10 components and the bases obtained are
shown in the upper row of Figure 2. It can be observed
that in addition to bases that contain high probabili-
ties on bunches of pixels that together look like proto-
typical images of digits, the AB model has also identi-
fied ‘phantom-bases’ as additional common causes. The
first column of Figure 2 shows data instances whose
analysis is provided in the remainder of the columns.
For each image, the probability that a basis k explains
the observed value (either 0 or 1) of any of its pixels,
i.e. P (k|n, t, xtn) are shown in column k. On all these
plots, the level of darkness of a pixel is proportional to
the probability of it being ‘on’. For the ‘1’ depicted on
the first data instance (second row of Figure 2) we can
observe that those pixels which are off due to the ar-
tificially created corrosion are explained by one of the
‘phantom-bases’ with the highest probability. At the
same time, the pixels in the upper left and lower right
corners of the image, which are ‘off’ due to the content
of the image, are explained by the fourth basis, a ‘1’
that is indeed quite similar to the observed image. Fur-
ther examples are given on the rows that follow, the last
three showing more complex cases where pixels that are
‘on’ may also have multiple causes. On Figure 3 we show
for comparison the basis set (with the same number of
components) created by mixture Bernoulli, logistic PCA
[13] and NMF [12] models on the same corrupted data.
None of these models are able to ‘explain’ the corrosion
as a common cause in an intuitively meaningful way.
As in this example the corrosion has been created arti-
ficially, then we can objectively measure the degree to
which the model is able to distinguish between different
reasons. This is shown for the previous experiment in
the form of normalised histograms on Figure 4. For each
aspect k, the following quantities have been computed:

P (k|missing pixels) ∝
∑

n,t:xtn=0 missing

P (k|n, t, xtn)

P (k|‘on’) ∝
∑

n,t:xtn=1

P (k|n, t, xtn)

P (k|‘off’ by content) ∝
∑

n,t:xtn=0 by content

P (k|n, t, xtn)

P (k|content bearing pixels) = 1 − P (k|missing pixels)

∝ P (k|‘on’) + P (k|‘off’ by content)

Summarising, from the first histogram we have that 70%
of the zeros which are due to corrosion are explained
by the ‘phantom’-like bases. In contrast, summing the
numbers on the third histogram we find that 88% of the
content bearing zeros are explained by the 8 content-
bearing bases in this experiment. To give more exact
numbers in addition to the relative values above, there



Figure 2: Results on artificially corrupted binary hand-
written digit images. The images on the top line de-
pict the reshaped parameters (basis-images) estimated
by the aspect Bernoulli model. Some examples from
this data set are shown in the first column along with
their analysis as provided by the proposed model in the
next columns. For each datum instance n and each ba-
sis k, the probability values P (k|n, t, k) are shown for
each pixel t ∈ {1, ..., 240}. On all these plots, the level
of darkness of a pixel is proportional to the probability
of it being ‘on’.

were a number 18,095 pixels turned off out of 72,677
pixels that were ‘on’ initially in the non-corrupted data
in this experiment.

religious ph. cryptogr. medical space

god 1.00 0.01 system 1.00 effect 1.00 space 0.76
christ 1.00 0.00 kei 1.00 medic 0.99 nasa 0.61

peopl 0.99 0.00 encrypt 1.00 peopl 0.81 orbit 0.53
rutger 0.86 0.00 public 0.98 doctor 0.72 man 0.41

church 0.66 0.00 govern 0.93 patient 0.68 cost 0.35
word 0.66 0.00 secur 0.90 diseas 0.61 launch 0.35

bibl 0.64 0.00 clipper 0.87 treatmnt 0.61 system 0.35

faith 0.64 0.00 chip 0.85 medicin 0.58 mission 0.32
christ 0.63 0.00 peopl 0.79 physician 0.50 flight 0.30

jesu 0.60 0.00 comput 0.69 food 0.50 henri 0.30

Table 1: Five causes inferred from a document collection
from 4 Newsgroup messages.

3.3 Reading between the lines from binary

coded Newsgroup messages A real world example
that has a similar structure to the one just presented is
text. Binary coded text-based data inherently contains
missing words — not all words that may express a
topic are covered in a document about that topic.
However, some documents are really short, made up
by just a few words, and some longer ones utilise a
richer dictionary. Typically there is a dispersion of the
richness from very concise to quite extensive documents
in a collection, and of course, not the same words are
omitted each time when expressing a given topic. Thus,

Figure 3: Representation bases created on artificially
corrupted binary handwritten digit images by MB (top
row), LPCA (middle row) and NMF (last row) respec-
tively. None of these models produce a meaningful dis-
tinction from the initial non-corrupted data-set.
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Figure 4: Numerical evaluation of the multiple cause
representation provided by the AB model on artificially
corrupted digit images.

obviously there may be different reasons why words do
not appear — as well as there may be different reasons
why they do. To illustrate this, we performed the
analysis of a subset from the 20Newsgroups collection3,
which contains short Usenet messages from 4 different
topics of discussion (4 different newsgroups). A number
of 100 documents from each newsgroup were selected.
A binary term by document matrix was created using
the Bow toolkit4. Table 1 provides a typical example
of how the aspect Bernoulli model can capture that
missing words are a common feature of text. The list
of the top few words supported by each of the identified
causes, along with their probability of being generated
by that cause is summarized (Table 1) for a run with
five aspects for a collection of Usenet messages from
the following four newsgroups: ‘sci.crypt’, ‘sci.med’,
‘sci.space’ and ‘soc.religion.christian’. We have chosen
these numbers for the ease of presentation. As we
can observe from the table, the second cause is a
‘phantom-topic’, i.e. an aspect in which being ‘on’ has a
negligible probability for all words (obviously this aspect
is responsible for the presence of some of the zeros in
the data) — whereas the other four are clearly related
to the various topics of discussion. Apart from this
distinctive feature, the model is also able to represent

3http://www.cs.cmu.edu/˜textlearning/
4http://www.cs.cmu.edu/˜mccallum/bow/



polysemy – e.g. the word ‘system’ is generated by both
the ‘space-related’ and ‘cryptographic’ aspects. The
identifiers attached to each cause, shown in the table
header, have intentionally been chosen as adjectives, in
order to emphasize that these lists represent features
that are common to possibly overlapping subsets of the
data.

Finally, we show how we can use the proposed
method to ‘read between the lines’, i.e. to infer a list
of missing words and so expand short text messages.
Table 2 provides the top list of the most probable
words for which P (‘phantom’|n, t, xtn) is highest for
eight randomly selected documents of the corpus. As
expected, these are all words which are not present
in the document under consideration, however their
absence is not explained by topical features as they are
semantically strongly related to the words which are
present in the document. Indeed, the document could
readily be expanded with the list of words obtained.
Investigating the presented model for multiple Bernoulli
query expansion will therefore be an interesting future
work to pursue.

govern secur access scheme system devic

kei 0.99 encrypt 0.99 public 0.98 clipper 0.92 chip 0.91 peopl 0.89
comput 0.84 escrow 0.83 algorithm 0.76

encrypt decrypt tap
system 1.00 kei 1.00 public 1.00 govern 0.98 secur 0.98

clipper 0.97 chip 0.97 peopl 0.96 comput 0.94

algorithm encrypt secur access peopl scheme system comput

kei 0.98 public 0.97 govern 0.92 clipper 0.87 chip 0.85 escrow 0.75
secret 0.63 nsa 0.63 devic 0.62

peopl effect diseas medicin diagnos
medic 0.98 doctor 0.77 patient 0.75 treatment 0.71 physician 0.66

food 0.66 symptom 0.65 med 0.65 diet 0.65

system medicin

effect 0.97 medic 0.96 peopl 0.96 doctor 0.92 patient 0.92
diseas 0.91 treatment 0.91 physician 0.89 food 0.89

peopl secret effect cost doctor patient food pain
medic 0.48 diseas 0.28 treatment 0.27 medicin 0.27 physician 0.24

symptom 0.24 med 0.24 diet 0.24 clinic 0.23

peopl effect doctor
medic 0.98 patient 0.87 diseas 0.85 treatment 0.84 medicin 0.84
physician 0.81 food 0.81 symptom 0.80 med 0.80

peopl sin love christ rutger geneva jesu

god 0.99 christian 0.99 church 0.79 word 0.79 bibl 0.78 faith 0.78
agre 0.74 accept 0.73 scriptur 0.73

Table 2: Expansion of eight randomly selected docu-
ments from the 4 Newsgroups collection. For each docu-
ment, the first line of the cell contains the words present
in the document, followed by the top list of words that
the ’phantom-topic’ is responsible for, along with the
posterior probability of the ’phantom’ given a document
and a word.

4 Conclusions

We have presented a novel probabilistic multiple cause
model for inferring hidden causes behind multivariate
binary observations. As opposed to the multinomial
analogue of the model [4] as well as to previous nonlinear

multiple cause models of binary data — some of which
try to compensate for a binary thresholding of frequency
counts data [10, 11] — the presented model, by its
construction, infers reasons behind both the observed
and the unobserved attributes and we have exploited
this for automatically distinguishing between attributes
which are off and those that are missing. Illustrative
examples on artificially corrupted digit images as well
as binary coded text have been presented and discussed,
and comparisons have been shown.

Acknowledgements

The authors wish to thank professor Heikki Mannila for
valuable comments on the manuscript.

References

[1] C. Bishop, Neural Networks for Pattern Recognition,
Oxford University Press, 1995.

[2] D.M. Blei, A.Y.Ng and M.I. Jordan, Latent Dirichlet
Allocation. Journal of Machine Learning Research,
3(5):993–1022, 2003.

[3] W. Buntine, Variational extensions to EM and multi-
nomial PCA. Proc. European Conference of Machine

Learning, LNAI 2430, pp.23–34, 2002.
[4] T. Hofmann, Unsupervised learning by probabilistic

latent semantic analysis. Machine Learning, 42:177–
196, 2001.

[5] T. Hofmann, Gaussian latent semantic models for
Collaborative Filtering, Proc. ACM SIGIR, 2003.

[6] B. S. Everitt and D. J. Hand, Finite mixture distribu-

tions, Chapman & Hall, 1981.
[7] M. Gyllenberg, T. Koski, E. Reilink and M. Verlaan,

Nonuniqueness in probabilistic numerical identification
of bacteria, J. of Applied Probability, 31:542–548, 1994.

[8] A. McCallum and K. Nigam, A comparison of event
models for Naive Bayes text classification. Proc. of
AAAI/ICML-98 Workshop on Learning for Text Cat-
egorization, 1998, pp. 41–48.

[9] T. Mitchell, Machine Learning. McGraw-Hill, New
York, US, 1996.

[10] E. Saund, A multiple cause model for unsupervised
learning. Neural Computation 7:51–71.

[11] J. Seppänen, E. Bingham and H. Mannila, A simple
algorithm for topic identification in 0-1 data, Proc.
PKDD 2003, pp.423–434.

[12] D.D. Lee and H.S. Seung, Algorithms for non-negative
matrix factorization, Advances in Neural Information
Processing Systems, 2000, pp.556–562.

[13] A.I. Schein, L.K. Saul, L.H. Ungar, A generalised linear
model for Principal Component Analysis of binary
data, Proc. 9th International Workshop on Artificial
Intelligence and Statistics, January 2003.

[14] M.E. Tipping, Probabilistic visualisation of high di-
mensional data, Advances in Neural Information Pro-
cessing Systems, 1999, pp. 592–598.


