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Abstract. We address the problem of interactive feature construction
and denoising of binary data. To this end, we develop a variational ICA
method, employing a multivariate Bernoulli likelihood and independent
Beta source densities. We relate this to other binary data models, demon-
strating its advantages in two application domains.

1 Introduction

Binary data becomes more and more abundant, arising from areas as diverse
as bioinformatics, e-businesses and paleontological research. The processing of
binary data requires appropriate tools and methods for tasks such as exploratory
analysis, feature construction and denoising. These necessarily must follow the
specific distributional characteristics of the data and cannot be accomplished
with tools that exist for continuous valued data analysis.

Previous successes of Independent Component Analysis (ICA) [5] make it
an important statistical principle worthy of investigation for tackling such prob-
lems. However, contrarily to continuous-valued signals, work on ICA methods
for binary data has been very scarce [4, 3]. A few methods exist, though, that
seek binary sources [9, 10] from continuous data. Due to the discrete combinato-
rial nature of the problem, these latter works resort to search heuristics [10] or
indeed an exhaustive search [9], that are, at best, computationally intensive.

In this paper we develop a linear ICA model for binary data. We employ a
probabilistic framework and make use of the variational methodology to alleviate
the computational demand. Application examples will demonstrate the workings
of our approach and its advantages over other binary data models.

2 Binary ICA with Beta Sources

Consider an independent factor model for binary data x, having a Bernoulli
likelihood model and independent Beta latent priors.

P (xn) =

∫
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∏
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? Part of this work has been done while visiting HIIT BRU, Helsinki, Finland.



2

where B(b|α, β) = Γ (α+β)
Γ (α)Γ (β) (1−b)

β−1bα−1 is the Beta density [1]. This is defined

on the [0, 1] domain, which is desirable for our purposes, since we may be able
to interpret the components as grey-scale representations of the binary data. In
addition, the particularly flexible shape of the Beta density is advantageous.

Further, a linear-convex mixing process will be assumed, so that the mixing
coefficients are all non-negative and satisfy

∑

k atk = 1,∀t = 1 : T . This is mainly
due to computational convenience, since then it follows that

∑

k atkbk will neces-
sarily fall into [0, 1] so that we do not need any further nonlinear transformation
to obtain the mean parameter of the Bernoulli likelihood. While nonlinear mod-
els are also of interest, here we seek the 0-s and 1-s to be exchangeable within the
model, and this would not be possible if a nonlinearity is applied to non-negative
variables. Thus, a Dirichlet prior may be assumed for the mixing coefficients, to
make the specification fully Bayesian.

2.1 Inference and estimation

In order to make the problem tractable, we will employ the well-known Jensen’s
inequality to lower bound the data probability, and we make use of the factorial
posterior approximation to simplify the computations:

log

∫
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B(bk|α
0
k, β

0
k)dbk ≥
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0
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0
k)
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dbk

where
∏

k qn(bk) is the factorial variational posterior.
Due to the Bernoulli likelihood term P (xtn|b), this integral is still intractable,

therefore the ultimate lower bound will be obtained by a further application of
Jensen’s inequality. The convexity constraint imposed on the mixing proportions
comes in useful, as the likelihood term can be rewritten and lower bounded:

logP (xtn|b) = log

{

(
∑

k

atkbk)xtn(1 −
∑
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atkbk)1−xtn

}

= log

{

∑
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atkb
xtn

k (1 − bk)1−xtn

}

≥
∑

k

Qk|t,n,xtn
log

atkb
xtn

k (1 − bk)1−xtn

Qk|t,n,xtn

(3)

Here Qk|t,n,xtn
≥ 0,

∑

k Qk|t,n,xtn
= 1 is a discrete variational distribution with

values in {1, ..K}, where K denotes the number of components.
Using (3) we obtain a lower bound on the log likelihood, which is tractable

and will be referred to as Lbound.

2.2 Variational solution

Let qn(bk) = B(bk|αkn, βkn) be parameterised Beta variational posteriors with
variational parameters αkn, βkn. Then, maximising Lbound yields the following
update equations for the variational parameters

αkn = α0
k +

∑

t

xtnQk|t,n,xtn=0 = α0
k + e〈log bkn〉

∑

t

xtnatk
∑

k atke〈log bkn〉
(4)
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βkn = β0
k +

∑

t

(1 − xtn)Qk|t,n,xtn=1 = β0
k + e〈log(1−bkn)〉

∑

t

(1 − xtn)atk
∑

k atke〈log(1−bkn)〉

(5)
where

Qk|t,n,xtn
∝ atk(e〈log bkn〉)xtn(e〈log(1−bkn)〉)1−xtn (6)

is obtained by maximising Lbound w.r.t. Qk|t,n,xtn
and this has been replaced

into the expressions of all variational parameter estimates above.
The required variational posterior expectations are easily evaluated as 〈log bkn〉 ≡

Eqn(bk)[log bk] = ψ(αkn)−ψ(αkn+βkn) and 〈log(1−bkn)〉 ≡ Eqn(bk)[log(1−bk)] =
ψ(βkn) − ψ(αkn + βkn).

Maximising Lbound in atk under the constraint that
∑

k atk = 1 and replacing
the expression of Qk|t,n,xtn

as before, yields the update equation below.

atk ∝ atk

{

∑

n

xtn
∑

k atke〈log bkn〉
e〈log bkn〉 +

1 − xtn
∑

k atke〈log(1−bkn)〉
e〈log(1−bkn)〉

}

(7)

Finally, the prior parameters α0
k and β0

k will both be set to one, in order to
express a uniform prior.

To make some connections with earlier work, it can easily be shown that
a maximum likelihood estimator for our model (2) would yield equations that
(after some algebra) are identical to the aspect Bernoulli (AB) algorithm in
[7]. Vice-versa, the above construction offers an interpretation of AB as an ICA
model. By analogy, other popular aspect models [2, 3] may also be related to
ICA in a similar manner, and this is different from, and complementary to the
connection initially envisaged in [3].

2.3 Bayesian model selection

As already mentioned, a prior may also be naturally specified for the mixing
coefficients, and due to the imposed convexity constraint, a Dirichlet is appro-
priate. As a result, the optimal number of components can determined simply
by choosing the model order that maximises the log of the data evidence bound

Eqt(a)[L
bound] + Eqt(a)[logDir(a|γ

0)] −Eqt(a)[log qt(a)] (8)

where qt(a) = Dir(a|γt) is the variational posterior of the mixing variable.
The modification this brings to the previously presented estimation procedure

is minimal — denoting by γtk the additional variational parameters associated
with atk and omitting the straightforward algebra, the parameters atk in (4) will
need to be replaced by e〈log γtk〉 and instead of eq (5) we will have:

γtk = γ0
k + e〈log atk〉

{

∑

n

xtne
〈log bkn〉

∑

k e
〈log atk〉e〈log bkn〉

+
(1 − xtn)e〈log(1−bkn)〉

∑

k e
〈log atk〉e〈log(1−bkn)〉

}

(9)

The parameter of the Dirichlet prior, γ0
tk will again be set to 1 to express a

uniform prior, and the remaining posterior expectation in (9) is computed as
〈log atk〉 ≡ Eqt(a)[log ak] = ψ(γtk) − ψ(

∑

k′ γtk′).
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3 Analyst input and posterior data reconstruction

Perhaps the greatest reason for the popularity of ICA methods for exploratory
data analysis is that the independent components are often easier to compre-
hend and interpret by humans separately, rather than in their mixture. This has
been exploited in numerous applications, most notably for signal denoising [6].
Once the independent signals of different genuine and artifact sources are sepa-
rated from the data, artifact-corrected signals may be derived by eliminating the
contributions of the artifact sources. Our methodology is conceptually similar,
although the formalism differs according to our probabilistic framework.

Let us denote the posterior means obtained from our algorithm by 〈atk〉
and 〈bkn〉: 〈bkn〉 = Eqn(bk)[bk] =

∫

dbkbkB(bk|αkn, βkn) = αkn

αkn+βkn

and anal-

ogously 〈atk〉 = γtk
∑

k′
γ

tk′

. These are themselves discrete probabilities, so that
∑

k〈atk〉 = 1. After inspecting the independent components 〈bk〉, the elimination
of undesired components may now be accomplished by specifying a probability
value, P (u|k), for each component and using these to modify our unsupervised
estimates. Denoting by Pt(k) the posterior expectations 〈atk〉, for each t, the
Bayes rule will provide us the post-processed data representation.

〈atk〉postproc := Pt(k|u) =
Pt(k)P (u|k)

∑

k′ Pt(k′)P (u|k′)
(10)

Typically a 0 probability will be specified for components that are capturing
undesirable noise, while 1 will specify a clearly meaningful component. Clearly,
if for a component k a value of p(u|k) = 0 was specified, then 〈atk〉postproc = 0
will become zero for all t. Naturally, the formalism straightforwardly permits
the specification of analyst inputs at more detailed levels. E.g. nothing prevents
us from specifying a separate set of probabilities, P (u|k, t), for each t. However,
we may typically expect human experts to feed back on the components’ level,
since those are hoped to provide some interpretable representations.

For computing the posterior data reconstruction, we re-express the above in
terms of a conditional posterior: qt(a|u) := Dir(a|γt◦P (u|.)), whose expectation
is exactly 〈atk|u〉 = 〈atk〉postproc. Here, ◦ denotes element-wise product and u

is the random vector of u|k when k = 1 : K. Then the posterior post-processed
data reconstruction can be computed as follows (omitting the algebra):

P (x̂tn|X,u) =

∫

dadbP (x̂tn|a, b)qt(a|u)
∏

k

qn(bk) (11)

= (
∑

k

〈atk|u〉〈bkn〉)
x̂tn(1 −

∑

k

〈atk|u〉〈bkn〉)
1−x̂tn (12)

In consequence, the grey-scale posterior reconstruction of the (t, n)-th data entry
is

〈x̂tn|u〉 = p(x̂tn = 1|X, u) =
∑

k

〈atk|u〉〈bkn〉 (13)

and so the binary reconstruction is given by thresholding this value.
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4 Experiments

4.1 Restoration of corrupted binary images

For the first set of experiments we use a data set of handwritten digit images3.
The subset of the first five digits were taken, each having 200 examples, which
totals 1,000 image instances. We artificially created a corrupted version of this
data set, by simulating a uniformly varying process of degradation, which turns
off some of the pixels that were initially ’on’. Fifteen randomly chosen examples
are shown from the initial data set, along with their corrupted version, on Figure
1. Figure 2 then shows the ICA representation obtained: several components can
clearly be recognised as typical digits, and one other – completely blank – sepa-
rates out the corruption factor. Inspecting the mixing proportions for the data
instances shown earlier, it is clear that the white component is indeed present
in those images that suffered a degradation. To remove the noise component, we
apply the procedure described earlier. The results can be followed on Figure 3:
The grey-scale posterior reconstruction of the data has indeed filtered out the
degradation source and presents a smoothed reconstruction of the initial clean
data. The grey levels correspond to probabilities of pixels being ’on’. Thresh-
olding these probabilities at 0.5 gives us the binary reconstruction of the data
shown on the right-hand plot. The degradation has now been eliminated.

A comparative set of experiments has then been conducted in order to objec-
tively and quantitatively assess the performance of our method in reconstructing
the clean data from its corrupted version. We included a comprehensive set of
binary data analysis methods in this comparison: mixtures of Bernoulli (MB),
Bernoulli (logistic) PCA [11] (LPCA), our binary ICA with and without post-
processing (BICA-postproc and BICA respectively), and a Bernoulli version of
non-negative matrix factorisation [8], that we created for the purpose of this
comparison (BNMF). (For the latter, a shifted and rescaled sigmoid nonlin-
earity was used, which transforms the non-negatively constrained factors and
mixing proportions into the [0,1] interval.) None of the methods except BICA
was able to separate out the noise factor. In consequence no obvious correction
post-processing is applicable to the other methods. In this experiment, 500 cor-
rupted images were used for training and another 500 corrupted images formed
an independent test set. For the previously unseen data instances, the required
posteriors were first estimated. In the case of BNMF we just implemented a
Maximum Likelihood estimation method and in this case the required parame-
ter matrix was estimated anew for the previously unseen test data. The upper
plots of Figure 4 show the areas under the ROC curve of the posterior data
reconstruction (both grey-scale and black&white, using a threshold of 0.5), av-
eraged over all pixels of the corrupted test set. LPCA is the overall winner in
reconstructing the corrupted test data set. The lower plots of the same figure,
in turn, show the AUC values averaged over the blank pixels of the test images,
but computed against the pixel values of the true, uncorrupted test set (not used
anywhere else). As we can see, the proposed post-processing, by the removal of

3 http://www.ics.uci.edu/mlearn/MLSummary.html
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the automatically separated noise component, BICA becomes the most success-
ful in this exercise – comparable with the nonlinear and time-consuming LPCA
at grey-scale reconstruction and net superior at binary reconstruction.

Fig. 1. Examples of clean (left) and corrupted (right) images.
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Fig. 2. Right: Independent components estimated from the corrupted binary image
data set; Left: The mixing coefficients associated with the examples shown on the right
hand plot of Fig.1. Small arrow heads point to the mixing coefficients associated with
the noise component.

Fig. 3. Reconstructed grey-scale (left) and binary (right) images after the post-
processing.

4.2 Age discovery and missingness detection in paleontological data

We now demonstrate our method in paleontological data4. The data consists of
findings of 139 mammals among 501 sites of excavation and is seen in Figure 5
(leftmost plot). Four components have been estimated, out of which three turned
out to capture contiguous disjoint time periods. The fourth component in turn
is completely blank — having all elements nearly zero. The second left plot of
Figure 5 shows the box plots of the ages of remains5, weighted by bkn. The

4 NOW database, http://www.helsinki.fi/science/now/, a public resource based on
collaboration between mammal paleontologists

5 The age information is auxiliary and it is not used during the parameter estimation.
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Fig. 4. Comparison of BICA with other binary data models on test inputs. Since both
the training and the test data sets are corrupted, all methods try to reconstruct the
data including the corruptions, LPCA being the best (upper plots). However, by the
described post-processing, BICA stops reconstructing the corrupted regions, instead it
becomes net superior in terms of restoration of the uncorrupted images (lower plots).

Kolmogorov-Smirnov test indicates that these distributions are indeed distinct:
the P values range between 5 · 10−13 and 3 · 10−4. The blank component is the
one shrunken to zero on this figure – clearly it does not contribute to the age
discovery. In turn, its presence indicates that not all zero observations are due
to age, but another reason for absence of remains exists.

Often, remains of a mammal are not observed at a site even though it prob-
ably lived there, as the preservation, recovery and identification of fossils are
subject to random effects. According to palaeontologists6, an indication of miss-
ingness can be derived from the age order of the sites: if a mammal is observed
at two sites but not at an intermediate site, it is possible (although not certain)
that an observation at the intermediate site is missing. This may be the addi-
tional independent noise factor that our method has separated out, and in order
to verify this, we will now remove this noise factor from the data. Employing the
probabilistic post-processing procedure described previously, and thresholding
at 0.5 (see Figure 5, third plot from the left), we obtain a significant decrease
in such intermediate, ”probably missing” values: 1369 of them will be filled in.
Furthermore, by thresholding at a smaller value of 0.3481 (obtained by consid-
ering all such intermediate values as missing, and dividing the number of 1s plus
missing values by the size of the data) the decrease in ”probably missing” values
raises to 3642. The continuity of mammals as recovered by our binary ICA is
now quite apparent on the rightmost plot of Figure 5.

6 Professor Mikael Fortelius, University of Helsinki, personal communication.
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Fig. 5. From left to right: The palaeontological data, both the sites and the remains of
mammals are ordered by age, for the ease of visual analysis of the results; Distributions
of ages of mammals, weighted by 〈bkn〉, for each component; Binary reconstruction of
the absences in the data after having removed the noise component, using a threshold
of 0.5 – these are superimposed with the observed presences; Binary reconstruction,
when using an estimated threshold.

5 Conclusions

We have devised a variational ICA method for binary data, employing indepen-
dent Beta latent densities. This turned out to be a flexible model and has allowed
us to include human input in a principled manner. We demonstrated the use of
our approach on two application examples.
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