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Abstract

Presence—absence (0—1) observations are special in that often the absence of evidence is not evidence of absence. Here we develop an
independent factor model, which has the unique capability to isolate the former as an independent discrete binary noise factor. This
representation then forms the basis of inferring missed presences by means of denoising. This is achieved in a probabilistic formalism,
employing independent beta latent source densities and a Bernoulli data likelihood model. Variational approximations are employed to
make the inferences tractable. We relate our model to existing models of 0—1 data, demonstrating its advantages for the problem
considered, and we present applications in several problem domains, including social network analysis and DNA fingerprint analysis.
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1. Introduction

Binary data repositories arise from areas as diverse as
social sciences, bioinformatics, or forensics research. The
processing of binary data requires appropriate tools and
methods for tasks such as exploratory analysis, feature
construction and denoising. These necessarily must follow
the specific distributional characteristics of the data and
cannot be accomplished with tools that exist for contin-
uous-valued data analysis.

In particular, in binary data, a ‘1’ encodes the presence,
whereas a ‘0’ the absence of an evidence. It is common
sense, however, that more often than not, the absence of
evidence is not evidence of absence [23]. For example, the
pixels of corrupted black and white images, the usage of
words in natural language, the presence—absence patterns
of social relationships or the entries of a matrix of
detections of any kind all typically share this characteristic.
In other binary data sets in turn, the absence of evidence is
also an evidence of absence—e.g. in clean b&w raster
images, the pixels that are present and those that are absent
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on the image, together define the content of the image.
(1) How can we find out whether a given 0—1 data set has
such anomalies? (i) How can we restore a likely ‘original’?
Currently there is no automated method available to
answer these questions, and this is what we tackle in this
paper.

We regard (i) as a source separation problem: Besides
content-bearing independent factors, we also need to
isolate an independent factor that represents absence of
evidence but not evidence of absence. If successful, this
representation forms a basis for approaching the second
part of the problem, (ii), which is essentially a data
denoising problem. Note, the order is important here, since
the existence of noise is not easily detectable, as the noisy
observations are still discrete binary.

Previous successes of factor models and in particular
independent component analysis (ICA) [12] make it an
important statistical principle worthy of investigation for
tackling both explanatory analysis and denoising pro-
blems. However, the ICA literature has been developed
for continuous-valued observation signals by large, and
the particular questions outlined above have never been
addressed in the context of 0-1 data. Work on ICA
methods for binary observations has been very scarce [11,6]
despite their wide potential applicability, and related


www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2007.07.038
mailto:A.Kaban@cs.bham.ac.uk,
mailto:axk@cs.bham.ac.uk
mailto:axk@cs.bham.ac.uk
mailto:ella@iki.fi

2292 A. Kabdn, E. Bingham | Neurocomputing 71 (2008) 2291-2308

methods for discrete data in general and binary data in
particular are mostly developed outside the ‘mainstream’
ICA community [25].

Several authors have considered the case of binary
sources in the ICA literature, most recently e.g. [8,19] who
give algorithms for the under-determined case of less
sensors than sources. There are two major differences from
this setting though, which make these methods inappropri-
ate for the problem we consider here: First, the unknown
components are binary but the noisy observations are real-
valued due to the Gaussian noise assumed. As the authors
point out, it is then an easy matter to determine whether
there is noise or not in the data. By contrary, our
observations are always binary. Hence our algorithm needs
to be successful in separating out the noise component in
order to reveal its presence. This is exactly the problem that
we tackle. The noise component is obviously non-
Gaussian, still, we will see from the presented applications
that it is a very frequently occurring type of noise in real-
world 0-1 data. Yet, it was never explicitly noticed in the
0-1 data analysis literature. Secondly, our setting is not
under-determined but over-determined. The number of
sensors in our case corresponds to the number of samples
collected (e.g. number of images, number of text docu-
ments, number of nodes in a graph etc.). Although the
sample size may be small, it is assumed that the number of
components is smaller. In addition, contrary to methods
that seek discrete binary sources, in this work, the sources
will be allowed to take continuous values in the interval
[0,1]. That is, rather than black & white, we will seek a
grey-scale representation.

In the sequel, we formalise the problem by formulating a
specific form of ICA model for multivariate binary
observations. An early version appears in [15]. We employ
a probabilistic framework and make use of the variational
methodology to make the inference tractable. Numerical
experiments will demonstrate the working of our approach
and its advantages over other models of 0—1 data, for the
problems considered. Application examples demonstrate the
use and the added value of our approach in application
areas where ICA methods have not been previously applied/
applicable, such as graph or network analysis and DNA
fingerprint analysis. A MatLab implementation is available
from http://www.cs.bham.ac.uk/~axk/bBICA.m.

1.1. An ndependent factor model with beta sources for
binary data

Consider an independent factor model for multivariate
1.1.d. binary data x,,n = 1,..., N, where N is the number of
observations. A general form of the probability of a datum
vector x,, under an independent factor model, in probabil-
istic terms, is the following:

K
P = [ Pty [ pibo) M)
k=1

Here i,k =1, ..., K represent hidden ‘source’ (component
or factor) variables that are assumed to be independent a
priori, and b = (by,...,bg)".

The observations are multivariate binary vectors x, =
(X1n, . - oo, xm)t with T samples and N will denote
the number of observation (features), n=1,...,N. It is
well known from statistics (see e.g. [22]) that the modelling
of binary observations requires a distribution that is zero
outside the set of the two distinct possible values. Hence,
e.g. a Gaussian likelihood model (as employed in most of
the previous ICA methods) would not be appropriate in
this case and for this reason we employ a conditionally
independent Bernoulli likelihood model. This is parame-
terised by a mean vector that takes the form of a mixture of
K components: Z,’f:l aucbin,

T K Xitn K 1—xm
P(xn|bn) = H ( arkbkn> <1 - Z atkbkn> . (2)
k=1 k=1

t=1

s X, -

The conditional independence is a standard assumption
in latent variable modelling, meant to force the data
dependences to be represented in the latent space. The
parameters a, in (2) are the mixing coefficients of the
factor model, and the mixture ), axbi, represents
the mean parameter of the Bernoulli likelihood.! More
intuitively, the data x,, is approximated by the combination
of factors Y, auby,, which is indeed the familiar modelling
assumption of linear factor models. In both (1) and (2), the
conditioning on the parameters ay is implicit.

The bulk of the design of any factor model, is the
specification of the source prior distributions. These
determine the statistical characteristics of the sources that
we aim to infer. Here we employ independent beta latent
prior densities [4]:

I( + BY)
O (BY)
0

where o and [32 are strictly positive hyperparameters. In
the experiments reported, we have set both of and f) to 1,
which is the uninformative prior.

The domain of definition of the beta density is
by € [0, 1], Vk, which is desirable for our purposes, since we
may be able to interpret the inferred factors as grey-scale
representations of the binary data. Interpretability of the
components is one of the most important and desirable
aspects of independent factor models in general, and this is
also what we aim to achieve and exploit in this work. In
addition, the particularly flexible shape (see Fig. 1) of the beta
density is advantageous for the required density modelling.

The mixing process that we will assume is a con-
vex-linear one, so that the mixing coefficients are all
non-negative and satisfy ), ay = 1, for all data-features

o0 —
p(bi) = Blbylol, ) = A—b)fi ' 3)

"For the ease of notations, indices (e.g. in sums or products) are always
denoted by small characters and their upper limits by the associated
capital letter. Unless indicated otherwise, indices run from 1 to their upper
limit.
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Fig. 1. The beta density with various parameters.

t =1:T. This choice is not arbitrary, since then it follows
that >, aubi, €[0,1], as a convex combination of
by €10, 1]. Therefore we do not need any further nonlinear
transformation to obtain the mean parameter of the
Bernoulli likelihood. This is an essential difference from
both logistic models [27,26] and other so-called multiple-
cause models for binary data [24]. While nonlinear models
are also of interest and we will employ them in our
comparisons, by the above model design we seek the two
possible observation events, 0-s and 1-s, to be interchange-
able within the model, and this would not be possible if a
nonlinearity is applied to non-negative variables.

2. Inference and estimation

In order to make the problem tractable, we will employ
the well-known Jensen-inequality to lower bound the data
probability, and we make use of the factorial posterior
approximation [13] to simplify the computations:

tog P(x,) = log | PCxy16,) [T Blbualoh ),
k

2 Z (log P(xf"l'bn))Hk f](b/m)

t

+ ) (log Bbialo, B2) — 10g (b)) gy (4)
tk

where [ [, ¢(bkn) is the factorial variational posterior and (.)
is the expectation operator.

Now, due to the Bernoulli likelihood, the integral in the
first term is still intractable. Therefore a further lower bound
is created as follows. The convexity constraint imposed on
the mixing proportions comes in useful, as the log of the
likelihood term can be rewritten and lower bounded:

log P(x,|b,) = log{ (Z a,kbk,,>
k
1—=xXm
X (1 — Z a,kbk,,>
k
= log{z atkb;,[;(l - bkn)lxm}
k

anhy(1 — byy)'

Ou(k|xm)

>3~ 0,,(klxu) log (5)
k

Here Q,,(k|x,)=0, >, 0,(klx,)=11is a discrete varia-
tional distribution with values in {1,...,K}, where K
denotes the number of components.

Replacing (5) into (4), the obtained lower bound is now
tractable to compute and will be referred to as #°°und:

2P (x,) =3 0, (kIxm){logan + (log b (1 — b))
1.k
— log O, (klxu)} + Y _ {(log B(bilay, BY)
k

- 10g Q(bkn))}’ (6)

where (.) denotes expectation w.r.t. ¢(by,).

2.1. Variational EM solution

By maximising "™, a generalised EM algorithm with
partial E-steps [13,1] can be derived. In the variational
E-step, the mixing coefficients a; are kept fixed and we
compute the variational posteriors Q,,(k|xs) and q(by,) in
order to make the bound as tight as possible. In the
M-step, we maximise "™ as a function of mixing
coefficients a,, while keeping the variational posteriors
fixed. Each of these two steps is guaranteed not to decrease
the bound.

2.1.1. Variational E-step

Straightforward variational optimisation (Appendix A.l)
yields the optimal form for the variational posteriors. The
optimal functional form for g(by,) turns out to be a beta
density:

q(b/(l‘l) = B(bk|(xkn’ ﬁkn) (7)

with variational parameters

Okn = 062 + Z mem(k|xm - 1),
I3

B = BL+ D _(1 = xn) Qy(Klxin = 0). ®)
t

Further,

Qm(k|xtn) x atk(eﬂogbk,,))xm(e(log(lfbkn)))lfxm’ (9)

where the required variational posterior expectations in (9)
are evaluated as (loghy,) = Eyp,,)[logbin] = ¥(om) —
V(o + Pry)  and  (log(l — biy)) = Eqepy,p[log(1 — bin)] =
Y (Brn) — Y ©len + Brn)-
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Note these two posterior quantities are interdependent.
Therefore (8) and (9) need to be alternated in an inner loop
within the variational E-step.

It is also convenient to notice that the expression of
0,,(k|x,,) may be replaced into (8) so that the somewhat
burdensome multidimensional matrix (9) needs not be
stored. Hence, the obtained variational E-step equivalently
can be accomplished by iterating the following two
updates. We typically observed convergence within 5-6
iterations or less.

Xk

_ 40 (log byy)
Up = 0, + € kn . 10
" g Z Zk/azk’e(logbk/") (19
_ 1 — xp)am
oo = -+ etont-hu 37 O T (n

S g

2.1.2. M-step

The estimation of the mixing coefficients is now carried
out. Maximising #°°"™ w.r.t. a, under the constraint that
> panm =1 (Appendix A.2) and combining with the
expression of Q,,(k|x,,), yields the update equation:

X
Age X Ay E % e<10gbkn>
n Zk’ A€ &0k

1 — x4,

+
S e s,

ellog(1=byy)) } ) (12)

The algorithm is then to iterate the variational E-step and
the M-step to convergence.

2.2. Variational Bayesian solution

So far, the mixing coefficients a; have been treated as
free parameters. Therefore the likelihood bound £ is
not suitable for selecting the optimal number of compo-
nents. To overcome this, we may place a prior over the
mixing coefficients. Because of the convexity constraint
that we imposed (see Section 2), a Dirichlet density is
appropriate. The model then resembles some analogies
with generative aspect models for count-based data
[5,6,20], which have been quite popular recently for text
document analysis and collaborative filtering, but have
never been applied to either denoising problems or 0-1
data analysis. We have set the Dirichlet hyperparameter to
1 in all our experiments, in order to encourage a uniform
spread of the mixing coefficients.

Since now there are no free parameters left in the model,
the optimal number of components can be determined by
choosing the model order that maximises the log of the
data evidence bound [13] (see Appendix B.1). Alternatively,
we may initialise the model with a relatively large number
of components and the priors will drive the unnecessary
components to extinction. From our experiments we found
this latter procedure more convenient for two reasons: It
does not require us to repeat the runs for several candidate

number of components. Secondly, we do not have much
information about the tightness of the bound and have
observed the evidence bound as a criterion for model
selection may occasionally underestimate the number of
components in this model.

Nevertheless, the priors are necessary for performing a
Bayesian model selection. The modification brought to the
previously presented estimation procedure is that now a
variational M-step is required. This is derived analogously
to the variational E-step. Details are given in Appendix
B.2. It should be mentioned that the variational Bayesian
estimation methodologies have a relatively long successful
history with various independent factor models over
continuous-valued data [17,1], as well as a number of
other latent variable models [2].

3. Analyst input and posterior data reconstruction

Perhaps the greatest reason for the popularity of ICA
methods for exploratory data analysis is that the indepen-
dent components are often easier to comprehend and
interpret by humans separately, rather than in their
mixture. This has been exploited in numerous applications,
most notably in the context of medical signal denoising
[14]. Once the independent signals of different genuine and
artefact sources are separated from the data, artefact-
corrected signals may be derived by eliminating the
contributions of the artefact sources. Our methodology is
conceptually similar, although the formalism differs
according to our probabilistic framework.

Let us denote the posterior expectations obtained from
our algorithm by (asx) and (by,), respectively: (bi,) = Ey@,,)
(6] = [ dbi bi Bl %ens Brn) = 0tk / (%n + Prn) and  analo-
gously (aw) = yu/> p va—when a Dirichlet prior was
employed, or otherwise we work with the estimates
ay. These are themselves discrete probabilities, so that
> law) = 1. After inspecting the independent components
(by), the elimination of undesired components may now
be accomplished by specifying a probability value, P(u|k),
for each component k, and using these to modify our
unsupervised estimates.

Let us denote by P,(k) the posterior expectations (a),
for the Bayesian version or simply the estimates a, in the
variational EM version. In both cases, Bayes rule will
provide the post-processed data representation:

_ _ Puk)P(ulk)
(atk>poslproc~—Pt(k|u) - Zk’Pt(k,)P(mk/). (13)

Typically P(ulk) = 0 will be specified for components that
are capturing undesirable noise factors, while P(ulk) =1
will specify a clearly meaningful component. It is easy to
see that having a value of P(ulk)=0 implies that
(@i ) posiproc = 0, V2. This essentially means that we remove
the components rated as noise and re-normalise the mixing
coefficients a,, k' #k of the remaining ones.

Naturally, the formalism straightforwardly permits also
the specification of analyst inputs at more detailed levels.
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Fig. 2. Left: the monotonically increasing log evidence bound versus iterations: ‘o’ within variational E-steps, “x’: within variational M-steps. Right: the
log evidence bound peaks at K = 3, which is the correct number of components in the toy data set.

E.g. nothing prevents us from specifying a separate set
of probabilities, P(ulk,?), for each ¢t. However, we may
typically expect human experts to feed back on the level of
entire components, since those are hoped to provide some
interpretable representations.

For computing the posterior data reconstruction, we re-
express the post-processing described, in terms of a
conditional posterior g(a;|u):=D(a;|y, o P(u|.)), whose ex-
pectation is exactly (au|u) = (@) posiproc- Here, D denotes
the Dirichlet distribution, o denotes element-wise product
and u is the random vector of ulk when k = 1 : K. Then the
posterior probability that a data entry is reconstructed as a
1 is the following (Appendix C):

PG = 11X,0) =Y (aulu) (i)
k

(14)

and so the binary reconstruction is given by thresholding
this value.

4. Experiments and evaluation
4.1. A toy experiment

We generated a simple toy data set from the model, with
K =3, of size¢ T =150 and N = 30. The log evidence
bound is monitored against iterations till convergence, on
the left-hand plot of Fig. 2. As expected, a monotonic
increase can be observed. We have set the maximum
number of inner loops for both the variational E and M
steps to 10 and each of these inner loops is stopped earlier
if the change in log evidence is less then 107>, The values
are monitored with two different symbols for the varia-
tional E and M steps, respectively, so it can nicely be seen
how the inner loops get shorter over time, towards
convergence. On the right-hand plot of Fig. 2, we see the
converged log likelihood bound for different trials of
model orders in the range 2—6. The peak is at K = 3, and so
the model order is correctly recovered. At more than three
components, the extra components are automatically
eliminated: Their posterior equals to their prior and the

expectation of the associated mixing coefficients goes to
Zero.

The subsequent experiments demonstrate the working of
our model, together with detailed quantitative evaluation
on semi-synthetic data. It should be noted that—similarly
to other ‘blind’ separation models and methods—the
approach presented is aimed to be a ‘generic’ tool for
analysing and denoising binary data. It is nearly certain
that for any specific application area, an improved
refinement could be made, e.g. by employing more
domain-specific dependency structure within the priors
instead of our independent beta priors. Such specific
tailoring is outside the scope of this paper. Instead, the
experiments that follow are meant to demonstrate that
given a 0-1 data set, our method succeeds at identifying
binary noise and restoring a more likely original.

4.2. Restoration of corrupted binary images

A data set of handwritten digit images® is employed in
the subsequent experiments. The subset ‘0°—4’ is employed,
which has 200 examples for each digit, which totals 7' =
1000 instances. The number of pixels on each image is
N =15 x 16 =240. We artificially created a corrupted
version of this data set, by simulating a uniformly varying
process of degradation, which turns off some of the pixels
that were initially ‘on’. Fifteen randomly chosen examples
are shown from the initial data set, along with their
corrupted version, in Fig. 3. We run the variational
Bayesian version of our method for 500 outer iterations
and with a maximum of inner loops set to 5. Fig. 4
then shows the ICA representation obtained®: Several
components can clearly be recognised as typical digits,
and one other, ‘blank’ component separates out the
corruption factor. Inspecting the mixing proportions for
the data instances shown earlier, it is clear that the white

2http://www.ics.uci.edu/mlearn/MLSummary.html.
3Unnecessary components, which have their posterior equal to their
prior (thus look completely grey) are not shown.
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Fig. 4. Left: the components estimated from the corrupted binary image data set. Right: the mixing coefficients associated with the examples shown on the
right-hand plot of Fig. 3. The mixing coefficients associated with the noise component are highlighted in light colour.
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Fig. 6. The representation (factors) created by other competing binary factor models. From left to right: MB, LPCA and BNMF.

component is present in exactly those images that suffered
a degradation.

To remove the noise component, we apply the procedure
described earlier. The results can be followed in Fig. 5:
The grey-scale posterior reconstruction of the data has
indeed filtered out the degradation factor and presents a
smoothed reconstruction of the initial clean data. On this
plot, the grey levels correspond to probabilities of pixels
being ‘on’. Thresholding these probabilities at 0.5 gives us
the binary reconstruction of the data shown on the right-
hand plot. The degradation has now been climinated.

A comparative set of experiments has then been
conducted in order to assess the performance of our
method in reconstructing the clean data from its corrupted
version. We included a comprehensive set of binary data
analysis methods in this comparison: mixtures of Bernoulli
(MB), Bernoulli (logistic) PCA [27] (LPCA), our binary
ICA with and without post-processing (BICA-postproc
and BICA, respectively), and a Bernoulli version of

non-negative matrix factorisation [18], that we created for
the purpose of this comparison (BNMF). For the latter, a
shifted and rescaled sigmoid nonlinearity was used, which
transforms the non-negatively constrained factors and
mixing proportions into the [0,1] interval. Fig. 6 shows
the representations created by these other models. None of
the methods except BICA was able to separate out the
noise factor. In consequence no obvious correction post-
processing is applicable to the other methods. Fig. 7 shows
their grey-scale reconstruction obtained. Despite some
smoothing, the corrupted images are still of low quality.
For a first quantitative assessment, we split the data into
two halves: 500 corrupted images were used for training
and another 500 corrupted images formed an independent
test set. We will refer to denoising the training set as ‘weak
denoising’, whereas denoising the previously unseen test set
(both the training and testing sets are corrupted in this
case) will be referred to as ‘strong denoising’. Note that the
variational Bayesian version of our algorithm, that has a
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Fig. 8. The effect of post-processing on the denoising performance of BICA and bBICA.

prior postulated on a,; can be used for strong denoising:
For the previously unseen data instances, the variational
parameters of the variational posterior g(a;) are estimated.
To differentiate between this and the variational EM
version of our model, BICA will refer to our model
estimated by variational EM and bBICA will stand for the
variational Bayesian version.

The post-processing was performed as described earlier
and to automate the process, for this particular data set, a
threshold of 0.1 was employed: If the average of a
component, i.e. > (b,)/N is below this threshold then
the component is removed. This worked well in this
experiment although of course using human expertise may
potentially further improve the results, especially in cases
when we do not know beforehand what average statistics
the useful/noisy components might have.

Fig. 8 shows the beneficial effect of the proposed post-
processing for both BICA and bBICA. For the latter,
strong denoising is also demonstrated on the plot. On these
plots, and throughout, the performance is measured in
terms of the area under the average expected ROC curve of
all instances (in sample for weak denoising, out of sample
for strong denoising) (AUC)* [9] of the posterior recon-
struction. More precisely, the posterior reconstruction of
pixels in image regions where the clean image is white were
merged together to produce the average expected ROC
curve and the area under this ROC curve is plotted against
the number of components in the range 3-25. Note the
clean data are not used anywhere else, only for evaluation.

“For binary reconstruction AUC = 1 — (fp + fir) /2, where fp is the false
positive rate and fn is the false negative rate.

We see the two versions of our algorithm perform
similarly on weak denoising and they are accurate over a
wide range of model orders. It is also notable that the
strong denoising results are no inferior in this experiment.

We compare the denoising performance of our approach
to other binary factor models. Figs. 9 and 10 show this
comparison in terms of weak and strong denoising,
respectively. As we can see, the proposed post-processing,
by the removal of the automatically separated noise
component, BICA becomes the most successful in this
exercise—comparable with the nonlinear and time-
consuming LPCA at grey-scale reconstruction and net
superior at binary reconstruction. Note that LPCA scales
cubically per iteration, due to a matrix inversion required
at each iteration. Furthermore, finding a suitable threshold
to obtain an accurate binary reconstruction would require
further computations. It is also instructive to inspect the
extent to which the models ‘get fooled’ to reconstruct the
corrupted data sets. This is shown in Fig. 11. Clearly,
LPCA ranks first in this, due to its flexibility, while our
post-processing strategy, as we have seen, results in a
poorer reconstruction of the erroneous data but instead
excels in reconstructing the never seen clean data.

4.2.1. Varying the training set size

It is an important issue to study the variation of these
results with the training set size. In our next experiment we
vary the size of the training set and measure the noise
removal capability of the model in corrupted digit data. Of
the total of 1000 datum instances, 200, 300,...,900 were
sampled randomly for training and the rest used for testing.
The number of components was chosen as K =10
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processing strategy, reduces the accuracy of reconstructing the erroneous data in favour of reconstructing the never seen clean data.

throughout this experiment, as the earlier experiments
demonstrated that the choice of K is not crucial. As before,
we measure the post-processed model’s ability to recon-
struct the noiseless data, at the zero (white) entries of
the training set (weak denoising) and test set (strong

denoising), respectively. Fig. 12 shows the variation
as a function of the training set size. The error bars
show the mean and one standard deviation over the 10
bootstrap repeats for each training set size tested. As one
would expect, we see that the weak denoising performance
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Fig. 13. Weak denoising on small size data set (N = 125).

of both bBICA and BICA improves at larger training set
sizes and the performance of bBICA at test data (strong
denoising) levels up after a training set size of cca. 500
instances.

One may then wonder what happens when the training
set gets small, where one may expect to encounter a larger
variation. On the other hand, in the case of a small training
set, the form of the model and the priors matter much
more—a more appropriate model (in terms of the purpose
of the modelling) can be expected to have a greater
advantage. Furthermore, it is interesting to see the
variation comparatively with the other models and to
assess the statistical significance of the differences between
methods.

To provide an insight into this issue, Figs. 13 and 14
show the variation of weak and strong denoising,

respectively, when both the training and the test set size
is as small as ¥ = 125. For this experiment, both sets were
sampled randomly from the previously employed larger
(500 + 500) sets (training and testing sets are disjoint, of
course) and repeats were performed in the range K = 9-19.
All these results were then collected together for each
model in turn and these distributions are shown on the
plots of Figs. 13 and 14. Apparently, the advantage of our
approach is more pronounced in this setting. A pairwise
application of the Kolmogorov—Smirnov test has indicated
the difference in performance of post-processed BICA and
bBICA and the performance of all other models is
significant for both weak and strong denoising (the p-value
has been of the order 107%). No significant difference was
detected between BICA-post and bBICA-post on weak
denoising.
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5. Applications

In this section we present examples of real-world
application areas where our method may be used, and its
added value over existing alternative 0—1 data analysis
models and methods. In principle, it is applicable whenever
the data under study consists of multivariate 0—1 vectors.

5.1. Identification of treatment groups from DNA
fingerprints

Microbial community fingerprints are intensely studied
in agriculture, e.g. in the context of optimising the
productivity of the soil. They can be represented as binary
vectors [28], where the observations are presence/absence
indicators of microbial populations across a number of
samples is different treatment groups. We use data from
[28], where the objective was to investigate the impact of
different agronomic treatments on the microbial commu-
nity structure of corn in rizosphere. This consists of 7" = 89
samples from four different treatment groups, over N = 84
microbial populations. See [28] for details. In [28], four
different feature selection and classification combinations
were devised and applied to this data. These are supervised
methods that use class label information at the training
stage. Their best results, in terms of the number of correct
classifications in leave-one-out testing, are listed in Table 1,
along with the true number of instances in each class—10
instances are misclassified in total. These form an objective
basis for evaluating our bBICA analysis, as follows. Now
we apply bBICA to the same data set, without using any
feature selection or any other pre-processing, and without
making use of class information. In order to avoid possible
spurious local optima, we repeated our algorithm 50 times,
selecting the best local optimum of the data evidence. The
obtained factorisation is shown in Fig. 15. Differently from
some of the other examples given, no noise component is
detected in this data, meaning that the absence of evidence
of any of the microbial populations most probably
represents an evidence of its absence. Moreover, it is quite

Table 1

Clustering and classification results on DNA fingerprints, in terms of the
number of correct matches with the true class labels and the total matches
given in percentage. The leave-one-out (L-O-O) classification results are
taken from [28] and represent the best results they obtained on this data.
Despite our bBICA is an unsupervised method, the agreement with the
true class labels is higher

Class 1 Class 2 Class 3 Class 4 Total Accuracy (%)

True 23 22 22 22 89 -
L-0-O classif. [28] 22 18 22 17 79 83
bBICA 23 19 22 19 83 93
Bernoulli mixtures 23 17 22 0 62 69

apparent from the figure that the mixing coefficients of
bBICA discover four distinct classes. After an appropriate
permutation of the components (by computing the confu-
sion matrix), we find a remarkable correspondence between
the strongest component and the true class labels, and the
number and percentage of correct matches is given in Table 1.
Note, the total number of mismatches is 6, which is lower
than that previously found with the best supervised
method. The results of a Bernoulli mixture clustering
(selected based on highest likelihood from 50 repeats to
avoid local optima) is also shown as a baseline in the table.
The Bernoulli mixture confuses the classes 3 and 4 and
displays a rather poor match with the true treatment
groups. In addition, the bBICA components represent the
characteristic presence—absence patterns of microbial
populations associated with the four discovered treatment
groups, and thus naturally reveal information about the
impact of the various treatments.

As described above, this result was obtained by selecting,
from multiple random restarts, the run that obtained the
highest evidence bound (i.e. the best local optimum). To see
how well this unsupervised, model-based criterion works, it
is also interesting to inspect the correlation between the
converged evidence bound values and the clustering
accuracy. Fig. 16 (left-hand plot) shows the scatter-plot
from 20 repeats. We observe the existence of spurious local
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posterior means of mixing coefficients.

optima at some distance from the better ones. But more
importantly, we find a significant positive correlation
between these two quantities—the evidence bound and
the cluster accuracy—in terms of a good match with the
true class labels. Hence, by selecting the model that
achieves a better optimum in terms of the evidence bound
is also likely to be a model that produces a better match
with the true class labels—which means the model is well
suited for describing this data. The right-hand plot displays
the posterior mean mixing coefficients corresponding to the
result with highest evidence (seen also in Fig. 15) as a 3D
plot. We see the misclassified points are actually not that
far from their correct class.

Finally, we also tested the model for initial values of K
other than the true number of clusters. When K was
initialised to a larger number (e.g. we tried K = 12 and 16),

the model tended to settle at a final number of components
larger than 4. To somehow quantify these results, we then
assigned each component the class of the majority of its
data, using the posterior estimates of the mixing propor-
tions. This evaluation strategy was previously used in [7] to
match up the clusters identified by a Bayesian model with a
smaller number of true classes. It turns out, as shown in
Fig. 17 that the components tend to subdivide the true
treatment groups, without confusing them.

5.2. Finding groups and identifying opportunities from social
networks

Graphs or network models are widely used to represent
relations between interacting entities—e.g. epidemic net-
works, computer networks, gene networks and social
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networks, to name just a few. In a social network, each
node represents a person or a social group and each link or
edge has information about a relationship. Here we will
focus on 0-1 relations, i.e. two nodes are either connected
or they are not. We consider the edges are directed, that is,
if a node has a link to another node, the converse is not
implied. There has been a lot of interest in modelling and
analysing network data in general and social networks in
particular—see e.g. [10,16,25] for some recent studies.
However, we know of no applications of ICA approaches
to this problem.

For a first example, we took the monks network used in
[10], which received much attention in the social networks
literature. It describes the social relations between 18
monks in an isolated American monastery (see [10] and
references therein for details on the data and its previous
uses). There are three main groups: the young turks (T)
(seven members), the loyal opposition (L) (five members)
and the outcasts (O) (three members). In addition, three
monks wavered between L and T. We run bBICA, in 50
randomly initialised repeats to avoid local optima and
selected the run with best log evidence. In Fig. 18 we show
the posterior expectations of the inferred mixing propor-
tions—since K =3 in this case, these can be easily
visualised. The markers reflect the true labels for the
convenience of visual evaluation. We see the three groups
are well separated and there is a good agreement with
the true structure of the data. Two out of the three wavers
are indeed situated between the groups of L and T. It
should be stressed, this latter property is not exhibited by
clustering methods, which, by contrary, tend to divide the
data into disjoint groups. E.g. the clustering result in [3],
for the same data, has grouped two of the wavers with the
group of ‘L’-s and one other with the group of ‘O’-s.
Therefore, our bBICA model is more than a clustering
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0.6 * wavers between L and T
0.5 4
0.4 +
0.3 4
. <
0.2~ . . .
+ +
0.1+ to+ < q4 *
< <
0 -

Fig. 18. Visual display of the posterior expectations of the mixing
coefficients estimated from the Monks network data set.

method; it can preserve some of the topology of the
network nodes.

After this illustrative example on the rather small and
clean, previously well-studied monks network, in the
sequel, we analyse a real-world social network, collected
from an Internet Relay chat room. Initially, the data are a
temporal sequence of 25,355 contributions made by 844
participants. For a topic-independent analysis of the social
relations, the sequence of ID-s may be analysed [16].
Contrarily to this previous study, here we represent the ID
sequence as a binary graph, in order to infer the underlying
components of the presences and absences of relationships
(rather than their ‘strengths’). Since this is a real-world
example, we anticipate that apart from components that
correspond to clear groups or communities, there will
be noise components as well. As we will see, the noise
components of this binary representation are very useful to
identify and can be interpreted in this context as missed
relationship-opportunities. The removal of such compo-
nents will reveal links that are invisible when the noise
component is present.

The nodes of our chat network are the 844 unique ID-s.
We construct the binary graph in two ways. A first order
graph will have a ‘I’ whenever a consecutive contribution
of a pair of participants exists in the sequence. This is a
very crude representation, since the intended order of
contributions may interleave in practice and random
temporal delays may be present. Therefore, our second
(and more realistic) approach is to pre-process the
sequence using the mixed transition Markov model of [3],
i.e. to infer the intended connections by taking into account
transitions situated at deeper temporal lags. The maximum
lag was set to 8, which should be sufficiently long to
recover delays that are due to differences in typing speed or
those due to network bandwidth limitations. At each time
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point, the most probable posterior lag is obtained and these
are used for reconstructing the graph of transition
frequencies. These are then made binary, so that non-zero
frequencies correspond to presence and zero frequencies to
absence of relationships between the nodes of our graph.
Our bBICA decomposition came up with K =18
components for the first-order graph and K = 15 for the
second version of the graph. Based on these, we can reorder
the nodes such that those nodes whose highest mixing
coefficient is the same will be next to each other.
Optionally, we can also order the components in the
descending order of the sum of presence probabilities in
their presence—absence pattern. Fig. 19 shows the two
binary graph matrices with reordered nodes. The revealed
structure is rather interesting, and it gives an entirely
different alternative view from models that are based on
connection frequencies (such as the one in [16]). Recall, for

both graphs, the nodes and edges are untouched, only the
ordering of the nodes is done using the results of bBICA.
From the left-hand plot of Fig. 19 we see that bBICA
separates out those nodes that form groupings and those
which do not. Apparently, only about half of the
participants form groupings in the first-order graph. At
some closer inspection, unsurprisingly, it turns out that
there are a number of ‘noise’ components, dominated by
high probability of absence, and for the ‘non-group-
forming’ subset of the participants, one of these noise
components is the most dominant.

The right-hand figure shows results for the second
version of the graph. As we can see, the amount of noise
here is less. However, inevitably, noise components still do
exist. In fact, one of the most important strengths of our
model is to be able to separate these out so they can be
identified, appropriately interpreted and the information
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Table 2
Expansion of randomly picked documents from the training set

atho church rutger god sin word peopl

christian 0.52 bibl 0.34 faith 0.34 christ 0.33 jesu 0.32 accept 0.32 agre 0.31 love 0.29 speak 0.28

scriptur 0.27 truth 0.26 man 0.24 clh 0.24 teach 0.22 geneva 0.22 religion 0.22

decrypt den chip enforc escrow clipper kei encrypt

system 0.66 govern 0.60 public 0.60 secur 0.54 peopl 0.52 comput 0.40 algorithm 0.28 secret 0.27
nsa 0.26 devic 0.26 access 0.25 scheme 0.24 trust 0.23 cryptographi 0.22 pgp 0.22 privaci 0.19

man sternlight secret escrow

peopl 0.46 system 0.42 kei 0.33 encrypt 0.31 govern 0.31 public 0.31 chip 0.30 clipper 0.28 secur 0.27
comput 0.22 space 0.19 access 0.18 nasa 0.17 effect 0.15 orbit 0.15 algorithm 0.15

henri space effect

peopl 0.36 nasa 0.33 system 0.31 orbit 0.30 man 0.25 cost 0.22 launch 0.20 mission 0.18 flight 0.17
shuttl 0.16 medic 0.16 moon 0.15 solar 0.15 spacecraft 0.13 doctor 0.13 toronto 0.12

orbit space cost peopl

nasa 0.33 system 0.29 man 0.24 launch 0.20 mission 0.18 flight 0.17 shuttl 0.16 henri 0.16
moon 0.15 pat 0.15 solar 0.15 effect 0.13 spacecraft 0.13 access 0.13 spencer 0.12 toronto 0.12

space

peopl 0.40 system 0.26 nasa 0.25 orbit 0.23 man 0.20 cost 0.17 effect 0.16 launch 0.15
pat 0.15 access 0.14 mission 0.14 flight 0.13 shuttl 0.13 henri 0.12 moon 0.11 solar 0.11

The first line gives the list of words that are actually present in the document, followed by the list of 16 most likely expected additional words along with

their reconstruction probabilities.

obtained from this can be appropriately used. Fig. 20
shows the actual decomposition, i.e. the matrices of
posterior expectations (a) and (b), respectively. The former
are the mixing coefficients, the Ilatter are the beta
components (characteristic presence—absence probability
patterns). White corresponds to 0 and black to 1. The
components are ordered w.r.t. > (bg,), and the nodes are
ordered by their strongest component. We see four almost
entirely white components (12—15 on the right-hand plot).

In the context of social network analysis, a ‘white’
component means a linking pattern dominated by absence.
All nodes have some non-zero mixing coefficients correspond-
ing to white components (rows 1215 in the left-hand plot),
since it is inevitable that some links that could have been
present were actually not (missed opportunities). However,
we see there are also nodes whose dominant component is a
white one (see columns 690-844 in rows 12-15). These are the
ones for which a noise-removal will most dramatically change
the mixing weights (recall, the mixing coefficients get
renormalised in this operation). Removing the noise compo-
nents identified from the whole network implies therefore that
the links to the active components (communities) are
expanded. This can be used for identifying opportunities that
are not so evident otherwise, and guiding participants
towards a suitable active community.

5.3. Expansion of short text messages

A final experiment considers binary coded text. That is,
each text document or message is represented as a vector of
size equal to the size of a common dictionary, having an
entry of 1 for words that are present and an entry of 0 for
words that are absent. This encoding has been used in text

categorisation, in the context of Naive Bayes classification
[21] and has consistently been found inferior to multi-
nomial-based encodings. Interestingly, none of the existing
literature on this subject seems to realise how noisy a
binary encoding of text is. It is intuitively evident that only
a small fraction of the words that could be used to express
a topic are actually present in each of the documents.
Moreover, some documents are really short.

We apply bBICA to analysing a subset from the
20Newsgroups collection,” which contains short Usenet
messages from four different topics of discussion: ‘sci.
crypt’, ‘sci.med’, ‘sci.space’ and ‘soc.religion.christian’. A
number of 100 documents from each newsgroup were
sampled and binary term by document matrix was created
using the Bow toolkit® over a 100 words dictionary.

Unsurprisingly, a bBICA analysis of this data consis-
tently returns at least one blank factor. This factor is a
‘semantic noise’ inherent in the language. Removing the
blank component has the effect of expanding the text with
semantically related words. There is no objective way of
quantifying this semantic relatedness; however, Tables 2
and 3 give a random sample of messages together with their
expansion, as computed for examples of the training set
and a small hold-out test set, respectively.

By inspection, we find the words on the expansion list are
semantically strongly related to the words which are
actually present in the documents. Although we cannot
quantify this semantic relatedness directly, after removing
the noise factor we computed the clustering error w.r.t. the
true class labels and found a remarkable agreement, the

Shttp://www.cs.cmu.edu/~textlearning/.
Shttp://www.cs.cmu.edu/~mccallum/bow/.
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Table 3
Expansion of documents from a hold-out set

spirit scriptur clh church love accept agre effect peopl

god 0.51 christian 0.51 rutger 0.45 word 0.37 bibl 0.34 faith 0.34 christ 0.33 jesu 0.31
speak 0.28 truth 0.26 man 0.24 atho 0.22 teach 0.22 geneva 0.21 religion 0.21 sin 0.18

bibl clh church geneva rutger speak god christian public peopl
word 0.44 faith 0.41 christ 0.40 jesu 0.38 accept 0.37 agre 0.37 love 0.34 scriptur 0.33
truth 0.31 man 0.28 atho 0.26 teach 0.26 religion 0.26 sin 0.21 spirit 0.21 passag 0.20

pain medic patient physician doctor effect

peopl 0.53 diseas 0.41 treatment 0.38 medicin 0.37 symptom 0.31 food 0.31 med 0.30 diet 0.29
clinic 0.27 infect 0.24 syndrom 0.23 diagnos 0.22 system 0.22 accept 0.18 access 0.12 word 0.11

encrypt algorithm

peopl 0.49 system 0.36 kei 0.30 public 0.29 govern 0.29 chip 0.28 clipper 0.26 secur 0.25 comput 0.20
escrow 0.20 access 0.19 effect 0.15 pat 0.14 secret 0.13 nsa 0.13 devic 0.12 scheme 0.12 space 0.11

jesu geneva rutger christ christian

peopl 0.67 god 0.49 word 0.35 church 0.34 bibl 0.33 faith 0.32 accept 0.30 agre 0.30
love 0.27 speak 0.27 scriptur 0.26 truth 0.25 man 0.24 clh 0.23 atho 0.21 teach 0.21

syndrom symptom medicin medic diseas med doctor peopl

effect 0.68 patient 0.45 treatment 0.38 physician 0.32 food 0.31 diet 0.29 pain 0.28 clinic 0.28
infect 0.25 diagnos 0.22 system 0.21 accept 0.18 access 0.12 word 0.11 chip 0.11 agre 0.08

pgp public kei encrypt

peopl 0.50 system 0.50 govern 0.43 chip 0.42 clipper 0.40 secur 0.39 escrow 0.30 comput 0.30
access 0.22 algorithm 0.20 secret 0.20 nsa 0.19 devic 0.19 scheme 0.18 trust 0.17 cryptographi 0.16

orbit lunar spacecraft moon nasa

space 0.60 system 0.41 man 0.37 cost 0.33 launch 0.32 mission 0.28 flight 0.27 shuttl 0.26
henri 0.25 peopl 0.24 solar 0.23 spencer 0.19 toronto 0.18 vehicl 0.17 zoo 0.17 satellit 0.17

mismatch was 5.75% in average. Having detected and
realised this semantic noise gives an additional insight into
why binary text encodings have not been so fruitful in text
categorisation in their basic form. Denoising of text data
may provide interesting new avenues and could also be used
e.g. for query expansion in query-based search engines.

6. Conclusions

We have devised a variational method for the factorisa-
tion of 0-1 data, employing independent beta latent
densities. This model is particularly suited for denoising
problems, as shown in a set of comparative experiments.
We also demonstrated the use and good performance of
our approach on a number novel application domains,
including social network analysis and DNA fingerprint
analysis. The method may have further applications. In
particular, since missing value patterns are binary vectors,
the method devised here could be investigated for model-
ling non-ignorable missing data mechanisms in conjunction
with other appropriate data models being employed for the
observed data.

Acknowledgements

Thanks to Xin Wang for performing the mixed-transition
Markov analysis for the preprocessing of the chat sequence.

Appendix A. Variational EM solution
A.1. Inference

A.1.1. Computing q(by,)
Taking functional derivative from

gbound(xn) _ Z Ak (/ q(biy) dby — 1)
k

w.r.t. the variational density function ¢(by,) and setting it
to the identically null function, we obtain the optimal form
of this function. The last term is a Lagrangian term, with
Lagrange multipliers Ay, to ensure proper normalisation of
the obtained variational density:

agbound ‘
) = Z Q (k| xm) loglbyir (1 — b))
+ log B(bialoy, ) — log glbra) — 1 — 2k (A1)
(1 — bkn)z,‘wzo(l—xrn)Qm(klxrnZO)}
+ log B(brlof, ) — log g(brn) — 1 — 7
=0. (A.2)
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Isolating log¢(by,) and exponentiating both sides, we
obtain

Z Y= Xtn Qun (k| xXm=1)
q(bin) B(bkn|a29 ﬁg)bkn =1

(1 big) St

=0( 1=x1) Oy (k| x1n=0)

o1 0_1 Z =1 Xtn Qun(klxm=1)
o bt (1 = b))k b

:O(I*XM)Qm(kh'm =0)

X (l - bkn)zwm

BAD eyt Y Cnlklxn=1)—1
= bkn

0 —
x(1— bk,1)ﬁk+zf\xzn:0(1_X’”)Q’"(k‘x"’_o)_l

X B(bknhxkna ﬁkn)a (A3)
where
tn =)+ Y X Qu(klxm = 1), (A.4)
tlxm;m=1
Bia =B+ > (1= x0)Q(klxy = 0). (A.5)

t|xpn=0

Hence, the optimal free-form factorial variational poster-
iors are beta densities.

A.1.2. Computing Q
Solving the stationary equations from

Z $b°undx + Z Vit xm (Z Qtn(klxm) - >

n,txm
yields:
agbound
=1 (log By (1 — b))

— log 0y, (klxu) — 1
= 0yl x) o (o8l y < 081 =i =

~ Vntxm

(A.6)
with the normalisation being
Zatk/(e<10gbk/n>)xm(e(log(l7bk/")))l—xm’

k/
so that indeed the constraints are satisfied.
From the above, we also have
O,(k|xim = 0) o ay (e Pyl =xm (A7)
O(k|xtn = 1) o ay(e!8Punlym, (A.8)

which are required in (A.4) and (A.5), respectively. Using
these, and making the normalisation factor explicit,

0,,(k|xy,) can also be expressed as

xme(l()g bien)

> a8t

O, (k| x1) o atk{ (1 — xy)efloe=bin)) }
m n .

Zk’ atk’e (log(1 bk n)

(A.9)

A.2. Estimation of the mixing parameters

To obtain a maximum likelihood estimate of the mixing
matrix, we solve the stationary equation of a; from

PR CHE P <Z a — 1>,
n t k

where y, are Lagrange multipliers:

agbound
“oan = 2 Qb = g1 = 0 (A.10)
Multiplying both sides by a;, we obtain
> 0ulklxm) = waw =0 = ag o> 0 (klxm).
' ' (A.11)

Summing over k and using the constraint that >, ay =1,
the normalisation factor is found to be }; . Q,,(k|x,) = T

Appendix B. Variational Bayesian solution

B.1. The evidence bound

log P(X)

=log//1:[

T
x [ [ D(@ly”) da, > 6 (x)

t=1

= Z Qm(k|xm){<log )

n,t.k

—log Q,,(kIxm)} + Y _{{log B(brlo}. 7)
nk

—log q(bi))} + > _{(log D(a/|y")
t

K
P(xu|by, A) [ | p(bin) dbi
k=1

+ (log by (1 — byy)' ™)

— logg(a))}, (B.1)

where D denotes the Dirichlet distribution, 4 stands for all
mixing variables (ai,...,a,,...,ar) and (.) denotes expec-
tation w.r.t. g(by,) or g(a;), as appropriate.

B.2. Computing the variational posteriors of the mixing
coefficients

We take functional derivative from

éabound(X) _ Z

Ja (/ qla;)da, — 1)
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w.r.t. the variational distribution ¢,(a), where J. are Lagrange
multipliers to ensure proper normalisation. This is

0 0
Bat@) = 2 2 Qulkbamlogay +log Dlay’)

—logg(a;) — 1 — A
(KX
= Zlog a%” Ol log D(a,|y")
3

—logg(a,)—1— . (B.2)

Isolating log ¢(a,) and exponentiating both sides, we get

Ouuklxin)
a(@) o Dia ") [ a2 @ (B.3)
k
-1 > Qunlelxm)
o [Tak T ai
k k
Vg*Zan(Mxm)*l
= H ik
k
(B.4)

o D aly+> Qulklxu) .
n

Hence, the optimal variational posterior mixing distribu-
tions are Dirichlet densities, with variational parameters

Ya =0+ Y Qulklxm). (B.5)

B.3. Computing Q

The computation of Q,,(k|x,,) follows the same route as
before, and formally the only difference is that now instead
of the parameters a; we have e°2%) throughout.

Appendix C. Posterior data reconstruction

The posterior probability that a data entry is recon-
structed as a 1 can be expressed using the Bernoulli
likelihood and the model posteriors. For the model
estimated by the variational Bayes procedure, this is the
following:

Py =11X,u) = //P(fc,,, =1/b,a,)

x | [ 4(brn) dbiq(as|u) da, (C.1)
k

- [[X abiavrdbeataimda, c2)
k

= > {anlu)(by). (C3)

k
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