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ABSTRACT

A fast and robust algorithm for the separation of com-
plex valued signals is presented. It is assumed that
the original, complex valued source signals are mutu-
ally statistically independent, and that the mixing pro-
cess is linear. The problem is solved by the independent
component analysis (ICA) model. ICA is a statistical
method for transforming an observed multidimensional
random vector into components that are mutually as in-
dependent as possible. Our fast, fixed-point type algo-
rithm is capable of separating complex valued, linearly
mixed source signals in a deflationary manner. The com-
putational efficiency of the algorithm is shown by simu-
lations. Also, a theorem on the local consistency of the
estimator given by the algorithm is presented.

1 INTRODUCTION

1.1 The problem

In this paper we present an algorithm for the separa-
tion of complex valued signals. Our framework is Inde-
pendent Component Analysis (ICA) [3], [9]. ICA is a
statistical method where the observed data is expressed
as a combination of underlying latent variables. The la-
tent variables are assumed non-Gaussian and mutually
independent. The task is to find out both the latent
variables and the mixing process. The ICA model used
in this paper is

x = As (1)

where x = (21, ..., Zy) is the vector of observed signals,
s = (s1,... ,8n) is the vector of statistically independent
latent variables called the independent components, and
A is an unknown constant mixing matrix. Comon [3]
has presented the fundamental restrictions under which
the above model is identifiable: at most one of the inde-
pendent components s; may be Gaussian, and the ma-
trix A must be of full column rank. (The identifiability
of the model is proved in [3] in the case n = m.)
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1.2 Indeterminacy of the independent compo-
nents

The independent components s in the ICA model (1) are
found by searching for a matrix W such that s = WHx
up to some indeterminacies, which are discussed in the
following.

In the case of real valued signals, a scalar factor o €
R, a; # 0 can be exchanged between s; and a column
a; of A without changing the distribution of x: a;s; =
(ajaj)(aj_lsj). In other words, the order, the signs and
the scaling of the independent components cannot be
determined. Anyhow, the order of s; may be chosen
arbitrarily and it is a common practice to set E{s}} = 1;
thus only the signs of the independent components are
indetermined.

Similarly in the case of complex valued signals there
is an unknown phase v; for each s;: it is easily proved
that

a5 = @)D, =Luec @)
From this indeterminacy it follows that it is impossible
to retain the phases of s;, and WHA is a matrix where
in each row and each column there is one nonzero el-
ement v; € C that is of unit modulus. Note that the
indeterminacy is an inherent property of complex ICA
— it does not follow from the assumptions made in this
paper.

In the light of this indeterminacy, spherically sym-
metric distributions are preferable. If a complex signal
s; has a spherically symmetric distribution, i.e. the dis-
tribution depends on the modulus of s; only, the mul-
tiplication by a variable v; € C does not change the
distribution of s;. Thus the distribution of x remains
unchanged as well.

1.3 Owur approach

A fast fixed point algorithm (FastICA) for the separa-
tion of linearly mixed, real valued independent source
signals was presented by Hyvirinen and Oja [5], [7].
The FastICA algorithm is a computationally efficient
and robust fixed-point type batch algorithm for inde-
pendent component analysis and blind source separa-



tion. For sphered real-valued data the one-unit FastICA
algorithm has the following form:

Whew = E{xg(w'x)} — E{g'(wTx)}w (3)

where the weight vector w is normalized to unit norm
after every iteration. The nonlinearity g can be cho-
sen quite freely, and e.g. g(u) = tanh(aiu), a1 ~ 1,
or g(u) = uexp(—u?/2) are often used. Units using the
algorithm in (3) can be combined into systems that esti-
mate several independent components either one-by-one
using deflation, or in parallel using symmetric decorre-
lation.

In this paper we show how the FastICA algorithm
can be extended to complex valued signals. Both s and
x in model (1) assume complex values. For simplicity,
the number of independent component variables is the
same as the number of observed linear mixtures, that
is, n = m. The mixing matrix A is of full rank and it
may be complex as well, but this is optional. A nec-
essary preprocessing of the data x is whitening, which
can always be accomplished by e.g. Principal Compo-
nent Analysis [3]. We assume that the signals s; are
zero-mean and white, i.e. the real and imaginary parts
of s; are uncorrelated and of equal variance; this can be
summarized as E{ss} =T and E{ss”} = O. (The lat-
ter property is usually referred to as “circularity”.) The
above assumptions on s; are quite realistic in practical
problems, because when separating complex valued sig-
nals using ICA it is impossible to retain the phases of the
signals — the independent components are found up to
permutation, signs and scaling by a complex constant,
as discussed in Section 1.2.

1.4 Other approaches

Algorithms for independent component analysis of com-
plex valued signals have been presented earlier, see [1],
[4] and [10]. These earlier algorithms are either compu-
tationally more intensive than our algorithm or based
on using kurtosis. Also, no theoretical justification on
consistency is given in these references. In contrast, we
present a theorem on the local consistency of the esti-
mator given by our algorithm, and show its computa-
tional efficiency by simulations. Our algorithm is also
more robust against outliers than kurtosis-based ICA
algorithms (see [5] for a discussion on robust estimators
for ICA). Also, our algorithm is capable of deflationary
separation of the independent component signals; it is
possible to estimate only one or some of the indepen-
dent components, which is useful if the exact number of
independent components is not known beforehand. In
deflationary separation the components tend to separate
in the order of decreasing non-Gaussianity, which often
equals decreasing “importance” of the components.

2 CONTRAST FUNCTION

2.1 Choice of the contrast function
Our contrast function is

Ja(w) = B{G(Iw"x|*)} (4)

where G : R U {0} — R is a smooth even func-
tion, w is an n-dimensional complex weight vector and
E{|wHx|?} = 1. Finding the extrema of a contrast
function is a well defined problem only if the function
is real. For this reason our contrast functions operate
on absolute values rather than on complex values. Re-
member also that we assumed a spherically symmetric
distribution for the sources s (Section 1.2), and hence
the use of absolute rather than complex values is not a
severe restriction.

It is highly preferable that the estimator given by the
contrast function is robust against outliers. The more
slowly G grows as its argument increases, the more ro-
bust is the estimator. For the choice of G we propose
three different functions:

G1(y) =+va1 +y, a1 = 0.1, (5)
G2 (y) =log(as +v), a2 = 0.1, (6)
Galw) = 5™ g

Of these, G1 and G2 grow more slowly than G35 and thus
they give more robust estimators. G is motivated by
kurtosis: for complex random variables, kurtosis may be
defined e.g. as [11]

kurt(y) = E{ly|*} — 2(B{ly"})* - |E{y*}* (8
= E{ly|*} -2 9)

where y is white; i.e. the real and imaginary parts of
y are uncorrelated and their variances are equal. This
definition of kurtosis is intuitive since it vanishes if y is
Gaussian.

2.2 Consistency

Any nonlinear learning function G divides the space of
probability distributions into two half-spaces. In the
ICA of real valued signals, the independent components
can be estimated by either maximizing or minimizing a
function similar to (4), depending on which half-space
their distribution lies in [8]. This idea can be general-
ized to complex valued signals. We have the following
theorem on the local consistency of the estimators, the
proof of which is omitted due to space limitations:
Theorem. Assume that the input data follows the

model (1). The observed variables =y, k = 1,... ,n in
x are prewhitened using E{xxf} =T and the indepen-
dent component variables si, kK = 1,... ,n in s have unit

variances and uncorrelated real and imaginary parts of
equal variances. Also, G : Rt U {0} — R is a suffi-
ciently smooth even function. Then the local maxima



(resp. minima) of E{G(|lw¥x|?)} under the constraint
E{|wfx|?} = ||w||> = 1 include those rows aj of the
inverse of the mixing matrix A such that the correspond-
ing independent components sy, satisfy

E{g(|sk|?) + Isk|* o' (Isl*) — [sx]? 9(|sx[*)} < O
(> 0, resp.). (10)

where g() is the derivative of G() and ¢'() is the deriva-
tive of g(). The same is true for the points —ay. O

A special case of the theorem is when g(y) = y,
g'(y) = 1. Condition (10) reads now

E{|sk* + |skl* = |sl?|s*} = —E{[se['} +2 <0
(> 0, resp.). (11)

Thus the local maxima of E{G(|lwfx|?)} are found
when E{|sg|*} — 2 > 0, i.e. the kurtosis (9) of si is
positive.

3 FIXED-POINT ALGORITHM

We now give the fixed-point algorithm for complex sig-
nals under the ICA data model (1). The algorithm
requires a preliminary sphering or whitening of the
data such that E{xxf} = I. The algorithm searches
for the extrema of E{G(|wx|?)} under the constraint
E{|jwTx|?} = ||w||> = 1. Details of the derivation are
omitted due to lack of space.
The fixed-point algorithm for one unit is

wh = B{x(w"x)"g(w"x|")} -
E{g(w"x*) + |w"x|¢' (|w"x|*) }w

wt
W. =
T lw]

(12)

The one-unit algorithm can be extended to the esti-
mation of the whole ICA transformation s = W#x. To
prevent different neurons from converging to the same
maxima, the outputs wiix, ... wHx are decorrelated
after every iteration, using e.g. a Gram-Schmidt-like
decorrelation [5], [7].

Sometimes it is preferable to to estimate all the in-
dependent components simultaneously, and use a sym-

metric decorrelation. This can be accomplished e.g. by
W = W(WHW)~1/2 (13)
where W = (wy - - - w,,) is the matrix of the vectors.

4 SIMULATION RESULTS

Complex signals were separated to test the performance
of the fast fixed-point algorithm and the Theorem. The
data were artificially generated complex random signals
s; = rj(cos¢; + ising;) where for each signal j the
radius r; was drawn from a different distribution and
the phase angle ¢; was uniformly distributed on [0, 27],

which implied that real and imaginary parts of the sig-
nals were uncorrelated and of equal variance. These as-
sumptions are quite realistic in practical problems. Also,
each signal was normalized to unit variance. There were
a total of 8 complex random signals and 50 000 samples
per signal at each trial.

Source signals s were mixed using a randomly gen-
erated complex mixing matrix A. The mixed signals
Xoda = As were first whitened using x = Qx,;; and
then fed to the fixed point algorithm. A complex un-
mixing matrix W was sought so that s = WHx. The
result of the separation can be measured by W (QA).
It should converge to a matrix where in each row and
each column there is one nonzero element v € C of unit
modulus; i.e. in the end, [WH(QA)| should be a permu-
tation matrix. Qur error measure is the sum of squared
deviation of |[WH(QA)| from the nearest permutation
matrix.

All three contrast functions (5-7) were successful in
that the Theorem was always fulfilled and |WH (QA)|
converged to a permutation matrix in about 6 steps.
Figure 1 shows the convergence using G (6).

4.5

Figure 1: Convergence of the fixed-point algorithm us-
ing contrast function G2(y) = log(az + y), az = 0.1;
average result over 10 runs. About 6 iteration steps
were needed for convergence.

5 RELATION TO SUBSPACE METHODS

Our complex ICA closely resembles independent sub-
space methods [6] and multidimensional ICA [2]. In
both methods, the components s; can be divided into
m-tuples such that the components inside a given m-
tuple may be dependent on each other but independent
of other m-tuples. Each m-tuple corresponds to m ba-
sis vectors that are orthogonal after prewhitening. In
[6] it was proposed that the distributions inside the m-
tuples could be modeled by spherically symmetric distri-



butions. This implies that the contrast function (for one

subspace) should be of the form E{G(3X,(w]x)?)}

where Wijk =0,j #k.
In our complex ICA, the contrast function operates on

. - T~ ~T.
|wHx|? which may be expressed as (W) + (w' %)2.

Here w = (w1, + W14,y , Wep + 1Wy;), X = (T1, +

ixli:"' 7-7371,7“ + im’n’i)a w = (w1T7w1i7"' 7wn7‘7wni)7
~.! —_ e J—
w = (w14, Wipy oo, —Wpi,Wn) and X =
(T1ryT1iy- -+ s Tnr,Tni). Thus the subspace is two-

dimensional (real and imaginary parts of a complex
number) and there are two orthogonal basis vectors:
w!w' = 0. In contrast to subspace methods, one of the
basis vectors is determined straightforward from the
other basis vector.

In independent subspace analysis, the independent
subspace is determined only up to an orthogonal m x m
matrix factor [6]. In complex ICA however, the indeter-
minacy is less severe: the sources are determined up to
a complex factor v, |v| = 1.

It can be concluded that complex ICA is a restricted
form of independent subspace methods.

6 CONCLUSION

We have presented a fixed-point type algorithm for the
separation of linearly mixed, complex valued signals in
the ICA framework. Our algorithm is based on a de-
flationary separation of independent components. The
algorithm is robust against outliers and computationally
simple, and the estimator given by the algorithm is lo-
cally consistent. We have also shown the computational
efficiency of the algorithm by simulations.
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