The Aspect Bernoulli model: multiple causes of presences and absences

Ella Bingham
ella@iki.fi

HIIT BRU

Itroduction: Latent variable models - why

- latent = hidden, unobserved
- latent variable models \approx multiple cause models, mixture models, factor models, ...

itroduction: Latent variable models - why

- latent = hidden, unobserved
- latent variable models \approx multiple cause models, mixture models, factor models, ...
- A small number of unknown (latent) variables combine to explain a large data set
- A natural framework for unifying statistical inference and clustering

Aspect Bernoulli (AB)

- Joint work with Dr Ata Kabán
- A probabilistic multiple cause model for 0-1 data

Aspect Bernoulli (AB)

- Joint work with Dr Ata Kabán
- A probabilistic multiple cause model for 0-1 data
- Novelty: some components explicitely account for noise
- Suppose a separate noise process has turned some 0s to 1 , and vice versa
- Detect the noise factors, and correct the data accordingly

Aspect Bernoulli (AB)

- Joint work with Dr Ata Kabán
- A probabilistic multiple cause model for 0-1 data
- Novelty: some components explicitely account for noise
- Suppose a separate noise process has turned some 0s to 1 , and vice versa
- Detect the noise factors, and correct the data accordingly
- Related methods: Mixtures of Bernoulli, Probabilistic Latent Semantic Analysis "aspect Multinomial", Latent Dirichlet Allocation, Multinomial PCA Logistic PCA
- AB detects and distinguishes between "true absences" and "missing presences" (both of which coded as 0)
- Examples: why a word is not present in a document; why a mammal species is not found at a site of excavation
- AB detects and distinguishes between "true absences" and "missing presences" (both of which coded as 0)
- Examples: why a word is not present in a document; why a mammal species is not found at a site of excavation
- Similarly, between "true presences" and "added presences" (both of which coded as 1)
- Example: extra black pixels added to an image
- Notation:
$n=1, \ldots, N$ observations
$t=1, \ldots, T$ attributes
$k=1, \ldots, K$ latent aspects (=mixture components $=$ factors)
\mathbf{x}_{n} T-dimensional observation;
$x_{t n}$ its value at attribute t
- Notation:
$n=1, \ldots, N$ observations
$t=1, \ldots, T$ attributes
$k=1, \ldots, K$ latent aspects (=mixture components $=$ factors)
\mathbf{x}_{n} T-dimensional observation;
$x_{t n}$ its value at attribute t
- Data generation process:
- $\left(s_{1 n}, \ldots, s_{K n}\right)$ is a distribution of latent aspects k for observation n
- Notation:
$n=1, \ldots, N$ observations
$t=1, \ldots, T$ attributes
$k=1, \ldots, K$ latent aspects (=mixture components $=$ factors)
\mathbf{x}_{n} T-dimensional observation;
$x_{t n}$ its value at attribute t
- Data generation process:
- $\left(s_{1 n}, \ldots, s_{K n}\right)$ is a distribution of latent aspects k for observation n
- At each attribute t of observation n, pick a component k from this distribution with probability $s_{k n}=\operatorname{prob}(k \mid n)$
- Notation:
$n=1, \ldots, N$ observations
$t=1, \ldots, T$ attributes
$k=1, \ldots, K$ latent aspects (=mixture components $=$ factors)
\mathbf{x}_{n} T-dimensional observation;
$x_{t n}$ its value at attribute t
- Data generation process:
- ($\left.s_{1 n}, \ldots, s_{K n}\right)$ is a distribution of latent aspects k for observation n
- At each attribute t of observation n, pick a component k from this distribution with probability $s_{k n}=\operatorname{prob}(k \mid n)$
- Then generate 1 or 0 with $a_{t k}=\operatorname{prob}(1 \mid t, k)$
- Likelihood:

$$
\begin{aligned}
p\left(\mathbf{x}_{n} \mid \text { model }\right) & =\prod_{t} \sum_{k} s_{k n} a_{t k}^{x_{t n}}\left(1-a_{t k}\right)^{1-x_{t n}} \\
& =\prod_{t}\left(\sum_{k} a_{t k} s_{k n}\right)^{x_{t n}}\left(1-\sum_{k} a_{t k} s_{k n}\right)^{1-x_{t n}}
\end{aligned}
$$

- Likelihood:

$$
\begin{aligned}
p\left(\mathbf{x}_{n} \mid \text { model }\right) & =\prod_{t} \sum_{k} s_{k n} a_{t k}^{x_{t n}}\left(1-a_{t k}\right)^{1-x_{t n}} \\
& =\prod_{t}\left(\sum_{k} a_{t k} s_{k n}\right)^{x_{t n}}\left(1-\sum_{k} a_{t k} s_{k n}\right)^{1-x_{t n}}
\end{aligned}
$$

- Decomposes the Bernoulli mean!
- Model estimated by EM algorithm
- Likelihood:

$$
\begin{aligned}
p\left(\mathbf{x}_{n} \mid \text { model }\right) & =\prod_{t} \sum_{k} s_{k n} a_{t k}^{x_{t n}}\left(1-a_{t k}\right)^{1-x_{t n}} \\
& =\prod_{t}\left(\sum_{k} a_{t k} s_{k n}\right)^{x_{t n}}\left(1-\sum_{k} a_{t k} s_{k n}\right)^{1-x_{t n}}
\end{aligned}
$$

- Decomposes the Bernoulli mean!
- Model estimated by EM algorithm
- Noise is automatically factored into "phantom" components: $1 \rightarrow 0$ noise is modeled by a component k having
$a_{t k}=\operatorname{prob}(1 \mid t, k) \approx 0$ at all t
$0 \rightarrow 1$ noise is modeled by $a_{t k} \approx 1$ at all t

Experimental results

Figure 1: Out of sample log likelihood in paleo data

Parameters in paleo data

Left: $a_{t k}=P(1 \mid k, t)$ at mammal genera t.
Right: $s_{k n}=P(k \mid n)$ at sites of excavation n

Topics in 4 Newsgroups

religious	phantom	cryptographic	medical	space-related
god 1.00	agre 1.3e-03	kei 1.00	effect 0.84	space 0.76
christian 1.00	sternlight 1.0e-11	encrypt 1.00	peopl 0.72	nasa 0.59
peopl 0.95	bless 3.2e-12	system 1.00	medic 0.66	orbit 0.49
rutger 0.81	truth 2.5e-15	govern 0.90	doctor 0.52	man 0.37
word 0.63	peopl 2.4e-15	public 0.89	patient 0.47	cost 0.35
church 0.63	comput 2.8e-16	clipper 0.84	diseas 0.42	system 0.34
bibl 0.61	system $8.6 \mathrm{e}-19$	chip 0.83	treatment 0.40	pat 0.33
faith 0.60	man 1.1e-19	secur 0.82	medicin 0.40	launch 0.32
christ 0.59	nsa 1.0e-21	peopl 0.70	food 0.35	mission 0.30
jesu 0.56	shuttl 4.1e-22	comput 0.65	med 0.33	flight 0.28

$s_{k n}=P(k \mid n)$ vs number of words in document n. ०: 'system' 'medicin'; \square : 'peopl' 'public' 'system' 'agre' 'faith' 'accept' 'christ' 'teach' 'clinic' 'mission' 'religion' 'jesu' 'holi' 'doctrin' 'scriptur'; \triangleright : 'govern' 'secur' 'access' 'scheme' 'system' 'devic'

"Query expansion"

govern secur access scheme system devic
kei 0.99 encrypt 0.99 public 0.98 clipper 0.92 chip 0.91 peopl 0.89 comput 0.84 escro
encrypt decrypt tap
system 1.00 kei 1.00 public 1.00 govern 0.98 secur 0.98 clipper 0.97 chip 0.97 peopl
algorithm encrypt secur access peopl scheme system comput
kei 0.98 public 0.97 govern 0.92 clipper 0.87 chip 0.85 escrow 0.75 secret 0.63 nsa 0 .
peopl effect diseas medicin diagnos
medic 0.98 doctor 0.77 patient 0.75 treatment 0.71 physician 0.66 food 0.66 symptom
system medicin
effect 0.97 medic 0.96 peopl 0.96 doctor 0.92 patient 0.92 diseas 0.91 treatment 0.91
peopl secret effect cost doctor patient food pain
medic 0.48 diseas 0.28 treatment 0.27 medicin 0.27 physician 0.24 symptom 0.24 me

Corrupted handwritten digits

$4747595894362 \square 0$
 ,
 4 5

 $\stackrel{\square}{5}$
 4

Other methods

MB, LPCA, PLSA, NMF

Conclusion

- Multiple cause model for 0-1 data
- More expressive power than in Bernoulli mixtures
- Parameters easy to interpret
- Noise explicitely factored into separate components
- Ongoing work

