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Introduction: Latent variable models - why?

latent = hidden, unobserved

latent variable models ≈ multiple cause models, mixture
models, factor models, . . .

A small number of unknown (latent) variables combine to
explain a large data set

A natural framework for unifying statistical inference and
clustering
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Aspect Bernoulli (AB)

Joint work with Dr Ata Kabán

A probabilistic multiple cause model for 0-1 data

Novelty: some components explicitely account for noise

Suppose a separate noise process has turned some 0s to 1,
and vice versa

Detect the noise factors, and correct the data accordingly

Related methods: Mixtures of Bernoulli,
Probabilistic Latent Semantic Analysis “aspect Multinomial”,
Latent Dirichlet Allocation, Multinomial PCA
Logistic PCA
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AB detects and distinguishes between “true absences” and
“missing presences” (both of which coded as 0)

Examples: why a word is not present in a document;
why a mammal species is not found at a site of excavation

Similarly, between “true presences” and “added presences”
(both of which coded as 1)

Example: extra black pixels added to an image
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Notation:
n = 1, . . . ,N observations
t = 1, . . . ,T attributes
k = 1, . . . ,K latent aspects (=mixture components = factors)
xn T-dimensional observation;
xtn its value at attribute t

Data generation process:

(s1n, . . . ,sKn) is a distribution of latent aspects k for
observation n

At each attribute t of observation n, pick a component k from
this distribution with probability skn = prob(k|n)

Then generate 1 or 0 with atk = prob(1|t,k)
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Likelihood:

p(xn|model) = ∏
t

∑
k

sknaxtn
tk (1−atk)

1−xtn

= ∏
t

(∑
k

atkskn)
xtn(1−∑

k

atkskn)
1−xtn

Decomposes the Bernoulli mean!

Model estimated by EM algorithm

Noise is automatically factored into “phantom” components:
1 → 0 noise is modeled by a component k having
atk = prob(1|t,k) ≈ 0 at all t
0 → 1 noise is modeled by atk ≈ 1 at all t
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Experimental results
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Figure 1: Out of sample log likelihood in paleo data
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Parameters in paleo data
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Left: atk = P(1|k, t) at mammal genera t.
Right: skn = P(k|n) at sites of excavation n
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Topics in 4 Newsgroups

religious phantom cryptographic medical space-related

god 1.00 agre 1.3e-03 kei 1.00 effect 0.84 space 0.76

christian 1.00 sternlight 1.0e-11 encrypt 1.00 peopl 0.72 nasa 0.59

peopl 0.95 bless 3.2e-12 system 1.00 medic 0.66 orbit 0.49

rutger 0.81 truth 2.5e-15 govern 0.90 doctor 0.52 man 0.37

word 0.63 peopl 2.4e-15 public 0.89 patient 0.47 cost 0.35

church 0.63 comput 2.8e-16 clipper 0.84 diseas 0.42 system 0.34

bibl 0.61 system 8.6e-19 chip 0.83 treatment 0.40 pat 0.33

faith 0.60 man 1.1e-19 secur 0.82 medicin 0.40 launch 0.32

christ 0.59 nsa 1.0e-21 peopl 0.70 food 0.35 mission 0.30

jesu 0.56 shuttl 4.1e-22 comput 0.65 med 0.33 flight 0.28
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skn = P(k|n) vs number of words in document n. ◦: ’system’
’medicin’; �: ’peopl’ ’public’ ’system’ ’agre’ ’faith’ ’accept’ ’christ’
’teach’ ’clinic’ ’mission’ ’religion’ ’jesu’ ’holi’ ’doctrin’ ’scriptur’; B:
’govern’ ’secur’ ’access’ ’scheme’ ’system’ ’devic’
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“Query expansion”

govern secur access scheme system devic

kei 0.99 encrypt 0.99 public 0.98 clipper 0.92 chip 0.91 peopl 0.89 comput 0.84 escrow 0.83 algorithm 0.76

encrypt decrypt tap

system 1.00 kei 1.00 public 1.00 govern 0.98 secur 0.98 clipper 0.97 chip 0.97 peopl 0.96 comput 0.94

algorithm encrypt secur access peopl scheme system comput

kei 0.98 public 0.97 govern 0.92 clipper 0.87 chip 0.85 escrow 0.75 secret 0.63 nsa 0.63 devic 0.62

peopl effect diseas medicin diagnos

medic 0.98 doctor 0.77 patient 0.75 treatment 0.71 physician 0.66 food 0.66 symptom 0.65 med 0.65 diet 0.65

system medicin

effect 0.97 medic 0.96 peopl 0.96 doctor 0.92 patient 0.92 diseas 0.91 treatment 0.91 physician 0.89 food 0.89

peopl secret effect cost doctor patient food pain

medic 0.48 diseas 0.28 treatment 0.27 medicin 0.27 physician 0.24 symptom 0.24 med 0.24 diet 0.24 clinic 0.23
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Corrupted handwritten digits
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Other methods

MB, LPCA, PLSA, NMF

MB, LPCA, PLSA, NMF
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Conclusion

Multiple cause model for 0-1 data

More expressive power than in Bernoulli mixtures

Parameters easy to interpret

Noise explicitely factored into separate components

Ongoing work
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