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Abstract We present a probabilistic multiple cause
model for the analysis of binary (0-1) data. A distinctive
feature of the aspect Bernoulli (AB) model is its ability to
automatically detect and distinguish between “true absen-
ces” and “false absences” (both of which are coded as 0 in
the data), and similarly, between “true presences” and
“false presences” (both of which are coded as 1). This is
accomplished by specific additive noise components which
explicitly account for such non-content bearing causes. The
AB model is thus suitable for noise removal and data
explanatory purposes, including omission/addition detec-
tion. An important application of AB that we demonstrate
is data-driven reasoning about palaeontological recordings.
Additionally, results on recovering corrupted handwritten
digit images and expanding short text documents are also
given, and comparisons to other methods are demonstrated
and discussed.
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1 Introduction

In multivariate binary data, only the presence (1) or
absence (0) of each attribute is known, in contrast to count
data where the actual frequencies of attribute occurrences
are taken into account. Binary data arise in various appli-
cations, ranging from information retrieval, link analysis,
transaction analysis and telecommunications to bioinfor-
matics, to name a few. In this paper, we concentrate on
probabilistic latent variable modelling of multivariate
binary data, meaning that we aim at estimating the proper-
ties of the underlying system that has generated the
observed data. It is assumed that the data arise due to latent
(hidden) causes and their combinations. Revealing these
causes gives new insight into the underlying system, and
enables one to characterise the data in a compressed form.
Probabilistic latent variable modelling is typically unsu-
pervised, i.e. no “training data” with known latent causes
are available.

Multiple cause models, termed also as factor models or
distributed models ([1-5] and others) allow for several
explanatory variables for each observation vector. That is,
the elements of a vector-valued observation may have
different underlying causes. In terms of clustering, an
observation may belong to several clusters simultaneously.

We present a probabilistic, multiple-cause latent vari-
able model for binary data. The aspect Bernoulli (AB)
model, previously presented in a short preliminary version
[6], can formally be seen as a Bernoulli analogue of the
multinomial decomposition model known under the names
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of aspect model, PLSA [3], and their generative versions
such as latent Dirichlet allocation (LDA) [5] and multi-
nomial principal component analysis (MPCA) [7].
Contrarily to multinomial models, where the event space is
the set of attributes, for AB, the event space is the set
[presence (0), absence (1)]. For a comprehensive exposi-
tion of event models for discrete data focusing on the
difference between the independent Bernoulli and the
multinomial event models in the context of text encoding
see McCallum and Nigam [8]. A characteristic feature of
the AB model is that noise in this event space is separated
into one or a few distinct components, and this may further
be straightforwardly exploited for noise removal.
Multiple-cause models for binary data have been
devised before in the literature. Most notably, Saund’s
model [2] asserts an interaction model for the 1s in the
data, which takes the form of a noisy-OR. However, the Os
are suppressed this way, and observing Os remains a default
uninteresting event. By contrast, in a linear Bernoulli
model, the Os and s are interchangeable. Keeping our
model linear provides symmetry to AB enabling the ana-
lysis of the causes behind not only the ones (presences) but
also the zeros (absences) in the data. Indeed in many
applications it is of interest to model the zeros as well,
when it comes to inferring hidden causes, as the absence
(0) of an attribute might be indicative of an important
underlying cause of interest. To give an illustrative
example, the semantic content of two images that contain
the digits ‘3’ and ‘8’, respectively, differ by pixels that are
‘off” rather than ‘on’. In various situations we may also
encounter noise factors, which exclusively generate Os,
”wiping off“ some of the content-bearing 1s. This is the
case in text document data, where certain attributes (words)
are genuinely absent, i.e. they have no intersection with the
topical content of the observation (document) whereas
others are absent for no specific reason other than the
document is short. Similarly, black-and-white images may
contain corrosion which turns a black pixel (1) into white
(0). Stated briefly, there might be two kinds of zeros, which
of course look the same in the data: ”true absences” which
agree with the content of an observation, or “false absen-
ces” (omitted presences), which might well have been 1s
but due to some underlying cause remain unobserved. We
have no prior knowledge about whether or not a data set
under study contains such distorted observations and it is of
interest to infer this from the data. As we will see, this is
what the AB model is designed for. It enables us to auto-
matically detect and distinguish between these two types of
zeros under the AB model’s generative assumptions.
Detecting omitted presences may help, e.g. in query
expansion in which short documents can be augmented by
topically related words, or in image restoration by detect-
ing the corrupted pixels. Clearly, by symmetry, the AB
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model can also distinguish between “true presences”
(which are in accordance with the content of the observa-
tion) and “false presences” (which are due to a noise cause
which explicitly turns Os into 1s). This may be of use, e.g.
in text-based forensic investigations.

In addition to the mentioned potential uses, in this paper,
we demonstrate the abilities of the AB model in an actual
application, in the context of palaeontological data [9]
consisting of remains of mammal genera found at various
sites of excavation across Europe and Asia. We may con-
jecture that there are underlying causes that can explain
this data, such as those that reflect the communities of
genera. Furthermore, if remains of a mammal genus were
found on a site, we can infer that the mammal lived at or
near that site. However, if no remains of a mammal genus
were found, what can we infer? The palaeontological data
are inherently noisy: It might be that remains of a genus are
not recorded at a particular site even though the genus lived
in the location of the site. As such, the data demands a
model that is able to distinguish between true absences and
false absences, both of which are coded as “0”. We will
show that the AB model is suitable for these purposes.

In addition to the actual palacontological application, we
will also demonstrate results on black-and-white raster
images and binary coded text in order to assess the noise
detection and removal performance on systematic and
controlled experimental settings.

Our AB model can formally be seen as a special case of
a more general matrix factorisation theory discussed, e.g.
by Srebro [10]. It can also be seen as a special case of the
models proposed for collaborative filtering by Hofmann
and Puzicha [11] and Hofmann [12] and the URP model of
Marlin and Zemel [13], if the observations are to be
restricted to 0/1. A more complete review of related models
will be given in Sect. 2.4. However, while these frame-
works are formally closely related to our approach, our
inferential scope is rather different. Our purpose here is to
devise an appropriate model for reasoning about 0—1 data
by detecting and separating out interpretable content-
bearing factors, as well as “noise” factors in an automated
manner. Separating out noise factors is quite important
because when such factors are detected, they can subse-
quently be removed from the data. There is no readily
available algorithm for this task, since most of the deno-
ising literature is concerned with real-valued data.
Secondly, it is also of interest here to study how such a
specific instantiation of factorisation models compares to
other models of 0-1 data, in terms of prediction and genera-
lisation on real-world data.

Before proceeding, we make a note regarding the use of
a number of almost synonymous terms in the paper:
“aspect”, “cause”, “component”, “factor”, “prototype”
and “basis”. To avoid confusion, in this paper, we will
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follow certain guidelines in the term usage. First of all,
“cause” refers to a true underlying phenomenon in the
data. In general, the causes are modelled by ”components”
which can further be characterised as follows. A compo-
nent is called a “factor” in factor models, a group of
models in which aspect models belong to, and hence the
term “aspect” refers to a component of a linear convex
factor model. A “prototype” is a component that has an
interpretable representation, e.g. a cluster-centre. In turn,
the term “basis” refers to the coefficients of the linear
combination for a particular component, which may or may
not be directly interpretable.

This paper is organised as follows. We first describe the
model and place it in the context of various other models in
Sect. 2. Experimental results are shown in Sect. 3, and
Sect. 4 draws some conclusions and discusses possible
future directions.

2 The model

In this section, we first describe the data generation process
assumed in the AB model, and derive an implementation-
friendly algorithm for estimating the model parameters.
We then discuss related work and place AB in a broader
context.

2.1 Derivation of the algorithm

We start by describing the data generation process of the
aspect Bernoulli model. The indices n = 1,...,N,
t=1,...,Tand k = 1,...,K are used to index the observa-
tions, attributes and latent aspects, respectively. Let x,
denote a 7-dimensional multivariate binary observation
and x,, the value of its rth attribute. The elements x,,, may
be generated by different latent aspects k with probabilities
specific to observation n and aspect k. The nth observation
vector x,, is assumed to be generated as follows:

e Pick a discrete distribution p(1ln),...,p(Kln) over all the
latent aspects k = 1,...,K. The distribution is picked
uniformly from the set of all such distributions.

e Separately for each element x;,, of x,, the following two

steps are taken:
e Pick a latent aspect k with probability p(kln)

e Let the latent aspect k generate 1 (presence) or 0
(absence) of the tth attribute. The Bernoulli prob-
ability of generating 1, p(llk,f), only depends on k
and ¢ and not on the observation index n.

Thus, there are two sets of unknown probability para-
meters in the model. Let us denote by s, = p(kln) the

probability of choosing a latent aspect k in observation' n,
and by a, = p(llt,k) the Bernoulli probability of the rth
attribute being “on” conditioned on the latent aspect k.
As K is typically significantly smaller than N, the total
number (7 - K + K - N) of unknown parameters is smaller
than the size (T - N) of the original data set, allowing for
a compressed representation of the data.

In addition, a “dummy” indicator variable z,, will
denote which of the latent aspects generated the 0/1 event
at the rth attribute of the nth instance: d(z,, — k) will equal
one for exactly one aspect k, and d(z,, — k') = 0 for all
k' # k. We will use the shortcut z,,; = 6(z,,, — k).

Summarising the generative process, we have the fol-
lowing dependency structure in the complete data likelihood
of an instance n

T
P(XnsZn, S,la) = H (2anl$n)p (xinl 2, @) (1)
where s,, = (51,,-..,5k,) are the probabilities of selecting

one of the K aspects, @ = (ayi,...,drx) are parameters of the

model, consisting of the Bernoulli probabilities and
Zn = (Zin1s- - Z7n1s- - -»Zmnk)- Further, we have

p(sn) = Un(sn)

Ztn |sn H SZMk

P(xtn‘Zmyat) — H[ Xm(l _ alk)lfxm]ka

k

where U, is a uniform distribution on a simplex. The
graphical representation as a plate diagram is shown in
Fig. 1. The model assumes that the elements x,, of x,, are
conditionally independent given the latent variable s,,. This
is a standard assumption in generative modelling, and it
signifies that all dependencies that exist in the observations
are meant to be explained by the hidden variables of the
model.
Thus, the complete data likelihood (1) now reads as

Z/{A Sn H

t=1 k=1

p(xnazmsn|a vkn zk 1_a[k)l_xm]3mk (2)

and so the probability of a data point under the model is
obtained by marginalising the hidden variables:

p(xpla) = /ds Un(sy) ZHH Skndy (1 — ag)' e

Zn t=1 k=

! Note that at each attribute 7 of observation n, the latent aspect k is
sampled anew from the distribution p(lln),...,p(Kln).
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Fig. 1 Plate diagram representation of the aspect Bernoulli model.
The textured nodes represent observed variables, the white nodes are
unknown variables. Of these, those that have no parent nodes are
treated as parameters of the model

where the summation in the first row is taken over all
possible combinations of the z,,, and in the second row we
have used the fact that only one of z,,, equals 1 at each pair
t and n.

This integral is analytically intractable for computing;
therefore, the posterior distribution p(s,lx,.a) is intractable
as well (since its normalisation factor is exactly the above
integral). A variety of approximate methods are available
to use, such as the maximum a posteriori (MAP) point
estimate, variational mean estimates or sampling-based
methods.

It is outside the scope of this paper to analyse or com-
pare the various possible estimation methods—for such a
comparison in a fairly general setting of discrete latent
variable models see Buntine and Jakulin [14]. For the
purposes of this paper, we derive MAP estimates. This is
the maximiser of the true posterior (the most probable s,
for each n) and it can be computed without requiring the
availability of the full posterior of s.

Of course, we should note that in general, one needs to
be careful and aware that MAP estimates are prone to
overfitting, especially when the data available for the
estimation are scarce. However, as we demonstrate in the
experimental section, AB being a factor-type model rather
than a mixture over high-dimensional data, we did not
encounter severe overfitting problems for a number of data
sets analysed. In situations of excessively scarce data in
turn, approximate Bayesian methods should be pursued to
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avoid overfitting. One could then treat the uniform density
as a Dirichlet with all hyperparameters equal to 1, and
employ the variational techniques developed in LDA [5],
URP [15] or MPCA [7]. Indeed, we pursued some of these
techniques for binary data analysis elsewhere [16, 17].

Since we have a uniform prior on s, the maximum
argument of the posterior coincides with the maximum
argument of the likelihood; in other words, the MAP
solution coincides with the maximum likelihood (ML)
solution:

s, = argmax p(s|x,,a) = argmax p(x,,s|a)
N s

(5)

= argmax p(x,|s,a) = argmax log p(x,|s,a)
s s

The same expression needs to be maximised also in a, for
parameter estimation. Expanding these expressions, we
need to maximise the following, as a function of @ and s,,, ¥V
n=1,....N:

K
k=

N N T
ZIng(xn|s,,,a) = E § log E St (1 — ag)' ™™
n=1

n=1 t=1 1
(6)

subject to the constraint > sz, = 1 and a,e€[0,1].

There is no closed-form solution and so we carry out this
maximisation iteratively, making use of the EM methodo-
logy. Details are given for completeness in Appendix A.

The resulting EM algorithm is then the following: ini-
tialise all s,, and a within the required range. Then, iterate
till convergence:

E-step:

Sedy (1 — ag)' "

S smayy (1 —ag)' ™
M-step:

Skn = Z qk,l,nﬁxm/T (8)
t

(7)

ik tnx, =

Zn Xnqk tnx, (9)
Zn Gk t,nxm

where qktnx, — P(Zm = k|xln7snaar)‘

Age =

2.2 Discussion and an implementation-friendly
rewriting

Let us now analyse the above model in more detail. To start
with, consider the likelihood of a single multivariate Ber-
noulli: [, pi(1 —p,)lfx’” where p, = p(x;,, = 1) is the
probability for observing 1 in the rth element of any
observation vector x,. A well-known extension of this

is the single-cause mixtures of Bernoulli (MB) model
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(18,191 3", m [, @ (1 — ag)' ™ where ay = p(1it,k) and
my is the prior probability of the kth mixture component.
Now let us instead extend the original simple parametric
model in another vein, giving each observation vector n its
own set of parameters p,, = p(x;, = 1). This is clearly an
over-parameterisation, so let us restrict it into a convex
combination p,, = > i dusSk, Where > 4 si, = 1 and 0 < ay
< 1 for all # and k. This is indeed the core of the AB model,
and we see this by rewriting:

H Z Stndy" (1 — ay) 1= (10)

=1

P(Xn|Sn,a)

K Xn K 1—xm
A ()
k=1

t=1

To see the equality between (10) and (11), note that when
X, = 1, then according to both (10) and (11) we have that
PXilS,) = Dk anSin; and for the case when x,,, = 0 we have
PXuls,) = >k (1 — ag)sy, from both (10) and (11). In
obtaining the latter equality, we have used the convexity of
the combination—note that 1 — > rausi, = > (1 — ag)sin-

The likelihood in (11) indeed resembles the well-known
Bernoulli likelihood if we denote by p,,: = p(x,, = lls,,) =
>k AusSk, the Bernoulli probability of obtaining 1. Thus,
the Bernoulli mean is factorised in a convex combination—
which is a useful insight for relating this model to other
distributed models of 0-1 data, as will be seen in the
experimental section.

We can also rewrite the (7)—(9) to gain savings in the
memory requirements and obtain a more convenient
implementation, using the following observations.

1. The M-step updates only require sums OVer g, -
Since the data are binary, we can re-write the E-step
update expression (7), by separating the terms in which
Xz, = 1 and those in which x,, = 0, yielding

X 1 - Xn

k. tnx, = Skn Ay + Skin ———=— (1 - azk)
! > 0 AutSin 1= awsm

(12)

2. From the theory of EM we know that each of the three
update equations of the EM algorithm, (7)-(9), taken
individually, is guaranteed not to decrease the
objective that we maximise, i.e. (6). In addition, note
that the M-step update of s;,, does not depend on any
other parameters except through ¢ and similarly, the
same holds for each a, update. We can therefore
choose to perform an E-step after each of the M-step
updates and we are still guaranteed not to decrease the
objective. Thus, in each iteration, we will perform the
list of updates (7) and (8), and (7) and (9), or
equivalently (12) and (8), and (12) and (9).

The reason why this is convenient is that we can then
express the effect of one E-step and one of the M-step updates
with a single equation simply by replacing the expression on
the r.h.s. of the E-step update (12) into the M-step update.
Doing this for both M-step updates, i.e. combining (12) and
(8) and again (12) and (9), yields the following:

1 —xp
_Skn{zzzazlsin 1 —Z[aw["( atk)}/T
(13)

Xin
Qe = Ay < Skn/Ci 14
= a E S s n/Ct (14)

where the denominator is

(1 —xp)
+ (1 - atk) Z 1 o Zé AoSin Skn -

(15)

As we see, the result is a multiplicative form update for
both sy, and ay, and by construction, both of these latter
updates are guaranteed not to decrease the maximisation
objective. Therefore, alternating these two multiplicative
form updates will necessarily converge to a local optimum
of the likelihood.

It may also be interesting to note that the obtained algo-
rithm can also be derived as an alternating optimisation
(details given in Appendix B). However, although this
simpler derivation yields the same multiplicative form fixed-
point equations, it does not reveal the convergence guaran-
tee. This guarantee comes from the EM interpretation.

The benefit of the so rewritten version of the algorithm
is that we need not explicitly compute and store the pos-
teriors i, for estimating s and a. Moreover, this
version can easily be expressed in matrix form, which is
more convenient to implement. This is justified by similar
arguments as discussed above: choosing to combine the
group of gi ., updates (performed for all k,z,n using all
parameter values fixed at their current values) with the
group of s, updates (performed for all k,n using all ¢
values fixed at their previously obtained current values);
then again the group of gy, ,, with that of the a,, updates
is still guaranteed not to decrease the likelihood, since
every single constitutive update has this guarantee.

Crk = atkzz
l

atfsfn

2.2.1 Algorithm

The summary of the obtained algorithm in a matrix-form
notation is listed below.

e Initialise A and S within the appropriate domains.
e Iterate until convergence
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A=1-A (16)
S=S® {AT[x@AS] +A"[(1 - X)QAS] } (17)
S = SOR (18)
A =A® {[XTAS]S"} (19)
A=A {[1-X)TAS]S"} (20)
A=AJ(A+A) (21)

where R denotes the matrix of normalisation factors of
elements Ry, = > ¢ ¢ »» V k, and ® and J denote element-
wise matrix product and division, respectively.

2.3 Scaling

The scaling per iteration of the ML estimation of an AB is
O(NTK). This is less convenient as the O(#(nonzero)K)
scaling of multinomial aspect models, which scale linearly
in the number of nonzero attribute occurrences in the data.
However, this is the price we have to pay for having an
independent Bernoulli likelihood model conditioned on a
and s. Independent Bernoulli component models, with very
few exceptions [20], typically do not scale better than AB:
The scaling per iteration of the Bernoulli mixtures is the
same O(NTK). Logistic PCA [21], a recently introduced
nonlinear distributed model for binary data, discussed in
some detail later, scales as O(NTK?) due to the matrix
inversions that it requires.

2.4 Relation to other models

So far we have seen that AB is a probabilistic linear
multiple cause model for 0—1 data that factorises the mean
of the Bernoulli distribution into a convex combination of
hidden causes, and explains both the Os and the 1s in the
data. Let us then contrast these properties to those of other
models.

Starting from the factorisation in (11), we can draw
parallels to a number of other multiple cause models in
which a somewhat similar factorisation of the mean of the
data distribution takes place. Perhaps, the most well-known
probabilistic model for binary data is the single cause
mixtures of Bernoulli (MB) model [18, 19], already men-
tioned in Sect. 2.1; however, as a single-cause model it
assumes that all elements of the multivariate observation
share the same latent cause. The Logistic PCA model [21]
and the models of Tipping [22] and Collins et al. [23]
decompose the so-called natural parameter 6 of the Ber-
noulli distribution as 0,,: = > x ag S, and the Bernoulli
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mean is then obtained using the logistic function p, =
1/(1 +e ). The nonlinear logistic function gives more
flexibility as the parameters a and s need not be probabi-
lities but can take any real values. For this reason, these
models fit well to the data. However, a disadvantage of
these models is the loss of interpretability of the parameters
a and s. In contrast, the parameters of the linear decom-
position in the AB model allow for insightful
interpretations, as will be demonstrated later in this paper.

Apart from these Bernoulli-type models, the PLSA
(probabilistic latent semantic analysis) [3], LDA (latent
Dirichlet allocation) [5] and MPCA (multinomial PCA) [7]
models for multinomial data have been quite popular over
the past few years. Similarly to AB, these can be viewed as
models that factorise the mean-parameter vector of a
multinomial sampling model into a convex combination of
‘latent causes’. The generative process of AB is almost
identical to that of LDA, except that rather than a multi-
nomial sampling, AB employs a conditionally independent
Bernoulli sampling (conditioned on the parameters).
Although from the technical point of view this may seem
like a rather small difference, it dramatically affects the
type of data that AB is suited to analyse and thus the sort of
inferences that it is meant to accomplish. In a multinomial
sampling model over some attribute space, at each draw,
the attribute that gets drawn is present, all others are nec-
essarily absent. In turn, in our independent Bernoulli
sampling model, given a and s, the presence or absence
information is sampled independently for each attribute. In
other words, conditioned on the model parameters, the
presence of an attribute does not tell us anything about the
presence of another attribute, and several attributes can be
present in the same time. Therefore, despite the formal
similarity between AB and the PLSA, LDA or MPCA
models, AB needs to model and ‘explain’ both the presence
and the absence events for each attribute and each datum
instance. Most of this paper is concerned with demon-
strating what sort of useful information we can learn from
binary data by doing such an analysis.

As already mentioned, AB could formally be seen as a
special case of the URP model [15]. The URP model was
designed for collaborative filtering, and it posits several
conditionally independent multinomials (to model some
discrete set of ratings), one for each product. Thus, with
ratings restricted to 0/1, URP would reduce to AB—how-
ever, such a model has not been previously investigated.
Previous related collaborative filtering methods have also
been studied by Hofmann and Puzicha [24] and Hofmann
[12]; the model presented in the latter can be used for
arbitrary response scales.

Saund’s model [2] is one of the first multiple cause
models for binary data. It does not perform a linear
decomposition of the Bernoulli mean parameter but instead
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it identifies a nonlinear “noisy-OR” relationship between
the hidden causes. A closed-form solution is not available
but a gradient algorithm maximising the likelihood is given
[2] and a mean-field approximate solution has been pro-
vided later [25]. A somewhat similar model is the topic
model presented by Seppédnen et al. [26]; there the rela-
tionship between latent causes is described by a discrete
logical OR function. The problem of finding an optimal
topic assignment is shown to be NP-hard, and approxi-
mative iterative algorithms for the estimation of the
parameters are given [26]. A discrete logical OR function
is also discussed by Jaakkola [27] who gives upper and
lower bounds for the likelihood.

Early approaches to multiple cause models have been
presented by Barlow et al. [28], Foldiak [29], Schmidhuber
[30] and Zemel [31]; in these models the data are not
necessarily assumed binary valued. Later, Dayan and
Zemel [25] have presented a model where the latent
components compete with each other and thus ensure that
they account for representing different parts of the binary
data space. Yet another formulation is given by Marlin and
Zemel [13] in their multiple multiplicative factor models,
also allowing different components to specialise to a subset
of the data space; their models are given for multinomial
data but can be easily adapted for binary. Recently, an
interesting approach of latent class modelling in relational
binary data has been presented by Kemp et al. [32].

Non-probabilistic methods for the analysis of binary
data include the method of frequent sets [33] which as such
does not give a model of the data but instead reveals local
patterns of co-occurrence of attributes. Subspace cluster-
ing, also known as co-clustering or double clustering [34],
analyses the structure of binary data and partitions the data
both on the level of observations and on the level of
attributes; in contrast to latent variable methods, no
underlying causes are assumed to have generated the data,
and no overlap between the clusters are allowed. Yet
another method of unsupervised learning from 0-1 data is
the famous Boltzmann machine [35].

Apart from binary data, well-known methods for fac-
toring continuous data include principal component
analysis (PCA) [36], independent component analysis
(ICA) [4] and nonnegative matrix factorisation (NMF)
[37-39]. Of these, NMF is perhaps the closest to our
approach, as its decomposition reads x,, = > i AuSin
where a, and s, are nonnegative but not restricted to be
probabilities. A probabilistic version of PCA is given by
Tipping and Bishop [40] and further discussed, e.g. by
Dahyot et al. [41].

Srebro and Jaakkola [42, 10] and Gordon [43] discuss
the general class of matrix factorisations and give an
overall view to the problem. Haft et al [44] present a latent
variable model with binary sources and continuous data.

Having placed our approach in the more general context of
matrix factorisation and multiple cause modelling literature,
we now turn to further analyse and experimentally demon-
strate the use of AB on real world data sets, contrasting it to
some of the related models reviewed here. In particular, AB
turns out to be well suited to modelling high-dimensional 0-1
data and noise removal from 0-1 data. We will also analyse
the representational tendencies of AB and other models
through a number of examples and this contributes to better
understanding of different matrix factorisation models in
general and the AB model in particular.

3 Experiments

In this section, we first describe the data sets used in the
experiments. Model selection in terms of choosing an
optimal number of latent aspects is then addressed, fol-
lowed by detailed analyses of the representation tendencies
of the AB model, the interpretability of model parameters
and model’s ability to detect and remove discrete 0—1
noise, such as ‘omissions’ and ‘additions’ of presences or
absences.

In the experiments, the AB model is compared to mix-
tures of Bernoulli (MB) [18, 19], probabilistic latent
semantic analysis (PLSA) [3], logistic PCA (LPCA) [21]
and nonnegative matrix factorisation (NMF) [39], when
appropriate. Of these, the first two are estimated using an
EM algorithm; the LPCA model is estimated by alternating
least-squares optimisation; and NMF is estimated by a
multiplicative update scheme that optimises an Euclidean
distance. The methods are implemented in Matlab, in the
form presented in the respective references.

3.1 Data sets

The data sets used to demonstrate the performance of the
aspect Bernoulli model are quite distinct in their nature:
palaeontological findings of mammals at various sites of
excavation; black-and-white images of handwritten digits;
and binary coded newsgroup documents.

3.1.1 Palaeontological data
Our palaeontological data come from the NOW database, a

public resource based on a collaboration between mammal
palaeontologists.2 The NOW data derive from the published

2 NOW: Neogene of the Old World, http://www.helsinki.fi/science/
now/.
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Fig. 2 Palaeontological data: rows correspond to genera and columns
to sites of excavation

literature as well as from unpublished compilations by
contributors.

The data set we use comes from NOW public release
030717. We have excluded small mammals (orders
Insectivora, Chiroptera, Lagomorpha and Rodentia), and
limited the geographic coverage to Europe, arbitrarily
truncated towards Asia at 60° eastern longitude. Our data
set consists of 501 sites (localities where fossils have been
recovered, usually by excavation), in which occurrences of
139 genera are observed. Genera with less than 10 occur-
rences and sites with single genera have been excluded. We
interpret the fossil sites as observations and the genera as
attributes. The data are quite sparse: 5.08% of the entries
are 1. The data matrix is seen in Fig. 2.

In addition, we have access to the ages of the fossil sites.
The age is estimated from all available evidence, including,
at best, radiometric dating and palacomagnetism, but the
majority of the sites are dated by means of mammal bio-
chronology, i.e., the evolutionary change observed in the
mammals themselves. For technical details of how age is
handled in NOW see Fortelius et al. [9] or the NOW web
site. The age estimates in our data set vary between 2 and
23 million years. The age information will be used to
validate and visualise the results shown later.

The palaeontological data are inherently noisy: it might
be that remains of a genus are not recorded at a particular
site even though the genus lived in the location of the site.
There are a number of reasons why an observation may not
be recorded in the data. Sampling plays a major role: in
small samples, only the most common genera tend to be
recorded, and the number of rarer genera present continues
to increase with sampling for most represented sample
sizes [9]. The preservation, recovery, and identification of
fossils are all random to some extent; in addition, there are

@ Springer

more systematic reasons for spurious absences. Mammals
differ in size and anatomy, and as a result some are more
likely than others to be preserved and correctly identified.
Sometimes, only one group of genera (e.g. the primates, the
pigs) has yet been studied from a site. Similarly, the dis-
covery of remains of common genera is rarely published
without some particular reason, such as new discoveries of
more rare ones. A third systematic reason is that a rare
genus might not be recognised because no specialist was
available. All these phenomena incur absences of attributes
in the data.

The NOW data used here are quite typical of palaeon-
tological data sets; if anything, most data sets are even
more sparse. From a palaeontologist’s point of view, the
possibility to distinguish between “true absences” and
“false absences” therefore has great appeal, along with
other methods that strive to compensate for the low level of
sampling (e.g. [45, 46]). Our AB analysis may provide new
insights into this issue, as will be demonstrated in the
following.

3.1.2 Black-and-white raster images

Another data set considered for studying the performance
of the aspect Bernoulli model is a collection of 2000 binary
digit images of handwritten numerals.> There are 200
instances from each digit category (‘0’, ‘1°,...,‘9’), each
image containing 15 x 16 pixels, each of which can be
either “on” (1) or “off” (0). In the original setting, any
pixel that is off can be explained by the content of the
image and is thus a “true absence”. We later add corro-
sion-like new causes to the observed pixel values in the
data, by randomly turning some pixels off or on. This data
set is thus suitable as a basis for controlled experimental
validation. Especially, we will demonstrate the perfor-
mance of AB and several other methods in correcting for
such corrosion.

3.1.3 Binary coded text

The third real-world data set is a subset of the 20 newsgroup
corpus:* short Usenet messages from four newsgroups
‘sci.crypt’, ‘sci.med’, ‘sci.space’ and ‘soc.religion.chris-
tian’. We selected 100 consecutive documents from each
newsgroup and converted them into a binary term by docu-
ment matrix using the Bow toolkit.” Text document data
inherently contains omitted presences of words—not all

* http://www.ics.uci.edu/ ~ mlearn/MLSummary.html.
* http://www.cs.cmu.edu/ ~ textlearning/.
s http://www.cs.cmu.edu/ ~ mccallum/bow/.
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words that may express a topic are covered in a document
about that topic. Some documents are really short, made up
by just a few words, and some longer ones utilise a richer
dictionary. Typically, there is a dispersion of the richness
from very concise to quite extensive documents in a col-
lection, and of course, not the same words are omitted each
time when expressing a given topic. Thus, obviously there
may be different reasons why words do not appear—as well
as there may be different reasons why they do. Revealing
such ambiguities can be useful in, e.g. query based search.
We note that previous statistical text modelling approaches
have only been concerned with ambiguities created by
presences of terms (not their absences!), such as synonymy
and polysemy.

3.2 Model order selection

Here we consider the issue of how many components is
the optimal choice. A number of model selection criteria
are available to use. However, the optimal model order
may depend on the application [47] and this is often
overlooked in the machine learning literature. Of foremost
importance in nearly all cases is the out-of-sample per-
formance. Smyth [48] emphasises the use of cross
validation for this reason. Generally, a model selection
that reflects the objective of the modelling process should
be adopted. For prediction problems, the model selection
criterion should be based on the quality of predictions,
whereas in data-explanatory tasks the aim is often related
to Occam’s philosophical principle, namely to finding the
most parsimonious model that explains the data, but not
simpler than that. The choice between prediction and
explanation as the purpose for model selection is also
discussed by Heckerman and Chickering [49] in the
Bayesian model selection framework. We will consider
two methods to cover both of these considerations within
our frequentist approach.

3.2.1 Cross-validation-based model selection for data
prediction

Let us first consider a model selection criterion for pre-
dictive purposes. Figure 3 shows the ten-fold cross-
validated out-of-sample log likelihoods of the models
investigated here, for all data sets. The out of sample
likelihood is a measure that reflects the predictive capa-
bilities of the models on these data. The procedure we are
using is known as “empirical Bayes” and so we compute
the empirical Bayes test likelihood, which is the
following:

PALAEONTOLOGICAL DATA

;
-0.15} 1
-0.16 1
017} 1

-0.18 |-

-0.19}t m— 1
LPCA

—— PLSA
-0.21 1

-0.22 b

OUT OF SAMPLE LOG LIKELIHOOD

-0.23 ]

0244 5 10 15 20 25

K

HANDWRITTEN DIGITS DATA

-0.35

-0.45

OUT OF SAMPLE LOG LIKELIHOOD

05| E
-0.55 | E
5 10 15 20 25 30 35 40 45 50
K
-0.18} :
[m]
o)
o)
I 02} 1
.
¢
= —— AB
o -022} LPCA ,
le) —~< MB
a —— PLSA
4
T -0.24f ]
s
<
w
W -0.26 1
o
[
)
O _o28} 1
0 5 10 15 20 25 30 35 40 45

Fig. 3 Out-of-sample log likelihood for AB, LPCA, MB and PLSA,
measuring the predictive capabilities of the models on the palaeon-
tological data (top panel), handwritten digit data (middle panel) and
newsgroup document data (bottom panel). Horizontal axis Model
order (number of estimated components K). Error bars show one
standard error on both sides of the mean of the folds in 10-fold cross-
validation. In the middle panel, PLSA is below —3 and thus not
shown
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tog [ plials,a)p(s)ds (22)
s

where p(s)x 1/Nyain Y n 0(s — s,,) is the empirical sample

density of the estimates of s as obtained from the training

data of size Ny, [50, 5]. For AB, the empirical Bayes test

log likelihood associated with one test point is computed as

the following:

Xt test 1 =X test
log Ntram Z H <Z Clszkn> (1 — Z atkskn> ;
! k

(23)

for PLSA it reads

log N[ram > H (Z awm) | (24)
n

and for LPCA, respectively

1 1 Xt test
Nirain zn: H <1 + eXp(— Zk atkskn)>
1 1 1= est
X — .
1+ eXp(— > azkskn)

For MB, the test log likelihood does not involve a density
over s:

log Z T Ha (L —ag) 1 Tntest (26)

In the above formulae, n ranges over the training points;
specifically, sy, are obtained for the training point x,.
Instead, x;s is the rth dimension of a new, previously
unseen test point. The empirical test likelihood for an out
of sample set of test points is then simply the average of the
test likelihoods obtained for the individual test points.

Figure 3 shows the 10-fold cross-validated test likeli-
hoods over a range of model orders. From these results, it is
clear that AB consistently and significantly outperforms
MB, except for the newsgroup data, in which the AB
likelihood is higher but the error bars overlap. PLSA
remains the poorest in this comparison, partially because
its likelihood is computed differently: the zero entries of
data do not contribute to the log likelihood (24) as
log Ok ausi,)” = 0 when x = 0. One might expect NMF to
behave similarly to PLSA (see Buntine [7] for a discussion
of the similarity of NMF and PLSA)—in general, com-
paring the likelihoods of multinomial and Bernoulli models
is problematic.

Interestingly, AB does not over-fit on these data sets
over a wide range of model orders considered. (In the
palaeontological data, over-fitting has been experienced
after 30 components only.) In comparison with LPCA, AB

log
(25)
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requires more components but it achieves comparable
performance. Given the cubic scaling of LPCA versus the
multi-linear scaling of AB, as discussed in Sect. 2.3, AB
may then be a preferable choice for modelling and analysis
of binary data matrices. In addition, the most important
advantage of AB is its intuitive data explanatory capability,
which will be demonstrated in the next few sections. This
is a consequence of the constrained nature of the AB
parameters, which are all positive and probabilistic quan-
tities, and thus easy to interpret. In turn, the LPCA
parameters are unconstrained, resulting in a greater com-
pression capacity but lack of interpretability.

3.2.2 AIC-based model selection for data explanation

Contrarily to prediction tasks, one often prefers a parsi-
monious data explanatory model. Following the arguments
given by Ripley [47], a procedure designed to achieve this
objective, in models estimated by maximum likelihood, is
the Akaike Information Criterion (AIC) [51]:

AIC(K) = —L(K) + P(K) (27)

where K is the number of latent components, £ is the in-
sample log likelihood of the model and P is the number of
free parameters that need to be estimated. In the AB model,
P(K) =TK + (K — 1)N. The optimal model order is then
found by minimising (27) under K.

For the palaeontological data, the AIC suggests K = 4
components; for the newsgroup data K =5 and for the
handwritten digit data K = 15.

3.3 Omission/addition detection by “phantom” latent
aspects: an analysis

Here we provide some insights into the representational
properties of the AB decompositions. In particular, we
discuss the ability of the AB model to detect and distin-
guish between two types of zeros (”true absences” and
“false absences”) and similarly between two types of ones
("true presences” and “false presences”). These abilities
were not discussed above when the model and algorithm
were presented, and indeed the abilities are not “hard-
coded” into the model. Instead, the detection of values that
disagree with the topical content of an observation, namely
false absences or presences, is accomplished by factors that
we will call “phantom” latent aspects. A “white phantom”
is a latent aspect which has a negligible probability of
generating a value 1 at any attribute, meaning a, =~ 0 at all
t, and thus it explicitly generates zeros in the data and can
be used to detect and distinguish false absences from true
absences. In contrast, a “black phantom” generates the
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Fig. 4 Top Log likelihood of data (Formula 6). Bottom The weighted sum of parameter entropies (Formula 31). Horizontal axis EM iterations

value 1 at all attributes, a; &~ 1 at all ¢, and it can be used
to distinguish added presences from true ones. We would
like to stress that the phantoms are never imposed but
instead found in the learning procedure when appropriate.

To provide an insight into this representation scheme,
we analyse the implications of the optimisation performed
by the EM algorithm, in terms of the entropies of the
parameters involved.

At the stationary point of the log likelihood, using for-
mulae (8)—(9), the sum of conditional expectations of the
joint likelihood of the data and latent variables z,,, condi-
tioned on s, and a—i.e. the first part of the F-term in
Eq. (38) in Appendix A—is the following.

>0 au(zi) logp(xa, zalsn, a) (28)
n Zn
= Z IOg Skn Z Gt xm T Z 10g (2973 Z XtnGknt xp,
nk t k.t n
(29)
+ Z IOg(l - atk) Z(l - xtn)qk,n,t,xm
kit n
=T Z Skn 10g Sty + Z ay log ag Z Gkt xm
nk k.t n
(30)

+ Z(l — agy) log(1 — ax) Z Gicnit.xin
kit n

= —TZH(sn) - ZH([atk, 1 — ayl) ZQk,n,r,xm (31)
n k.t n

which is a weighted sum of the entropies of the model
parameters. Here we have used ¢,(-) = p(lx,.s,, a) and

p(xmzn‘sma) = Ht Hk[sknafl;n(l - ark)l—xm]zm and Zz,, 4qn

(2n)Zink = Qkyinyx,- The latter equality is obtained as
detailed in Appendix A.

It is of interest now to follow how this weighted sum of
entropies modifies during the EM iterations (7-9). Figure 4
shows the monitoring of (31) and the data likelihood (6)
against iterations, for the data sets analysed.

We observe that the weighted sum of entropies
decreases monotonically with the EM iterations. The
decrease is very similar to the increase of the data log
likelihood. This behaviour intuitively explains two repre-
sentational tendencies of the model:

e a tendency towards a sparse distribution of s, (only a
few latent aspects are active at a time), due to the first
sum of terms in (31)

e atendency towards extreme binary values in ay, due to
the second sum of terms in (31)

Specifically, in the extreme case when the data support
that only one latent cause is active at a time, the
representation reduces to a single-cause mixture; this
implies that the bases a, are local averages of data.
Averaging black and white (which is the case when a
varying degree of omissions or additions are present in the
data at random locations) would result in grey values in ay,
i.e. high entropy Bernoullis—this is not preferable in the
light of (31), so the method chooses to keep two active
causes, namely one content-bearing aspect and one
“phantom” aspect. The reduction of grey values in ay this
way obtained compensates for the slight increase in the
entropy of s, when more than one s;,, become active for a
given n.
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Fig. 5 a Values of the (a)
parameters a, = p(llk,f) given
by the AB model at latent
aspects k = 1,...,4 and attributes 40
(genera, sorted by their ages)
t = 1,...,39. b Distributions of 60
weighted ages of genera in 80 E
different latent aspects

k = 1,...,4. The age of genus ¢ is 100 |
weighted by the probability a,
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A somewhat similar analysis has been useful for
understanding the behaviour of other discrete variable
models too [52-54].

Interestingly, an analogous derivation can be performed
in the single-cause Bernoulli mixture model: the corre-
sponding lower bound of the complete data likelihood can be
writtenas Q = — NH(n) — D i, H([ag | — agl)) _n Sin
where n = (my,...,mg) is a vector of the prior probabilities
of the mixture components and s, is the posterior proba-
bility of component k causing observation n. However,
phantom-type components cannot arise as only one mixture
component is allowed per observation and a phantom alone
cannot explain both the ones and the zeros in the
observation.

3.4 Parameter interpretability in palaeontological data

In this section, we will demonstrate that the modelling
assumptions of AB give rise to quite intuitive and inter-
pretable representations.

On the basis of the Akaike Information Criterion, the
model order of K =4 latent aspects was chosen for the
analysis of palaeontological data. We now estimate the
corresponding AB model. Figure 5a shows the values of
the parameters a, giving the probability that the latent
aspect k generates a value 1 at attribute (genus) . White
corresponds to zero probability and black to one. We can

see that the aspects concentrate on distinct time intervals
(the attributes in the data set are roughly ordered based on
their ages). Also, there is one blank aspect to explain
unknown false absences, giving a zero probability for all
attributes. We call this kind of aspect a “white phantom”.
It generates zeros in the data, in contrast to other latent
aspects that generate both zeros and ones.

To avoid ending up in a local minimum of likelihood,
we estimate the model repeatedly with random initialisa-
tions and choose the in-sample likelihood-optimal values
for presentation. A phantom such as the one in Fig. 5 was
found in 28 out of 30 randomly initialised restarts.

Let us visualise the grouping of genera by drawing a box
plot of the ages of genera captured by different latent
aspects. Figure 5b shows for each latent aspect k the distri-
bution of the ages of genera t weighted by the probabilities
ax. We can see that different latent aspects indeed concen-
trate on different periods in time. The Wilcoxon rank sum
test applied on all pairs of distributions indicates that they
are distinct: the P values range between 0.0000 and 0.0201
for the null hypothesis of median equality.

The latent aspects can be viewed from a different angle if
we consider the distributions sy, giving the probability of
latent aspect k being present in observation (site) n. The
distributions are shown in Fig. 6a. The fourth aspect, the
“phantom”, is again different in its behaviour: it seems to
have a nonzero probability in most observations. Thus, the
model proposes that a phantom cause is present in a number

Fig. 6 a Distributions (a) T 1 T (b) 407,
Sin = p(kin) given by the AB 1 0.1 sl
s |

model at latent aspects _ 02 = .
k =1,...,4 and observations 03 'é&’ 30
(sites of excavation, sorted by 2 oa & 2 P
their ages) n = 1,...,501. b The | o5 Eﬁ :
value of sy, versus the number R
of attribute occurrences in 3 06 5%
observation n for the phantom o7 & 3 S
aspect k s 23 -
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of observations; by its presence, it generates absences of
attributes, as seen in Fig. 5a. The varying probability of the
phantom has a negative correlation with the number of ones
per observation: The observations having only a few attri-
bute occurrences have a large probability of the phantom
being present, as seen in Fig. 6b.

The parameters a, and sy, given by the LPCA, MB,
PLSA and NMF models in turn (not shown) do not separate
any blank cause to explain unknown false absences.
Instead, the parameters given by MB, PLSA and NMF
merely group with respect to time, quite similarly to the
non-phantom parameters of the AB. The parameters given
by LPCA, as well as the bias term included in the model,
range across positive and negative values as they are not
restricted to be probabilities but instead give the decom-
position of the natural parameter 6 of the Bernoulli
distribution, up to rotation; the parameters are thus difficult
to interpret.

3.5 Text document representation

We now turn to the newsgroup document data and dem-
onstrate the latent aspects found by the AB model. The
latent aspects can be visualised by listing for each aspect k
the terms ¢ having the largest probability a, of being
generated by the aspect. We estimate K = 5 aspects sug-
gested by the Akaike Information Criterion (27). Table 1
lists the keywords and their probabilities in descending
order. The second aspect is a “phantom” aspect which
gives a zero probability for the presence of any term. The
other four are clearly related to the various topics of dis-
cussion. The model was estimated repeatedly, with random
initialisations, and a phantom was found in 28 out of 30
initialisations.

The probabilities a, and s, in the newsgroup data
behave quite similarly to those in the palaeontological data:
for each aspect k, a group of terms ¢ has a large probability
ay of being “on”, except for the phantom aspect.
Respectively, each aspect k is active mainly in a subset of
documents n, represented by the distributions sy,, except
for the phantom aspect which is active in most documents.
This is seen in Table 1: the figures on top of each column k
give >, s, the sum of the probabilities of the kth aspect
in all documents; we see that the “phantom” aspect has a
large overall probability compared to the other aspects.

In Table 1 we also note that in addition to the ambi-
guities regarding absences of terms, solved in the AB
model in an original manner with the aid of “phantom”
aspects, AB is also able to capture the well-known ambi-
guities that are associated with presences of terms—
synonymy and polysemy. An example of synonymy can be
noted in the given example within the medical aspect,
where both ‘medic’ and ‘doctor’ are terms whose presence
is highly probable. Polysemy is captured by that the pres-
ence of the same word may be generated by several topical
aspects, e.g. the presence of the word ‘system’ is generated
by both the space-related and cryptographic aspects. The
aspect identifiers, shown in the table header, have inten-
tionally been chosen as adjectives, in order to emphasise
that the keyword lists represent in fact common features
extracted from the corpus and are in general not cluster-
centres. Naturally, if the corpus consists of well separated
clusters then the main features will consequently be close
to the cluster-centres, due to the clustering tendency of the
model. However, the clustered structure is not artificially
imposed, as in the case of single-cause mixtures. Indeed,
e.g. the omission of words is a common feature of all text-
based documents and this has been accounted for by the
phantom topic.

Table 1 Five aspects k in a document collection of Usenet newsgroups sci.crypt, sci.med, sci.space and soc.religion.christian, presented as lists

of terms ¢ having the largest probabilities a, (shown after the terms)

Religious 45.1 Phantom 152.9 Cryptographic 42.9 Medical 48.2 Space-related 59.0
god 1.00 agre le-03 kei 1.00 effect 0.84 space 0.76
christian 1.00 sternlight le-11 encrypt 1.00 peopl 0.72 nasa 0.59
peopl 0.95 bless 3e-12 system 1.00 medic 0.66 orbit 0.49
rutger 0.81 truth 3e-15 govern 0.90 doctor 0.52 man 0.37
word 0.63 peopl 2e-15 public 0.89 patient 0.47 cost 0.35
church 0.63 comput 3e-16 clipper 0.84 diseas 0.42 system 0.34
bibl 0.61 system 9e-19 chip 0.83 treatment 0.40 pat 0.33
faith 0.60 man le-19 secur 0.82 medicin 0.40 launch 0.32
christ 0.59 nsa le-21 peopl 0.70 food 0.35 mission 0.30
jesu 0.56 shuttl 4e-22 comput 0.65 med 0.33 flight 0.28

Besides four aspects representing the topical features of discussion, there is an additional “phantom” aspect common to all documents,
explaining absences of words which are not due to real topical causes. The top row gives Y, sy, reflecting the overall probability of aspect k
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Fig. 7 The probability s, of the individual aspects (topics) plotted
against the number of different words in document n (horizontal axis).
The probability of the phantom-topic (aspect no. 2) is negatively
correlated with the richness of the documents, whereas the real-topics
are positively correlated with the richness. Three documents are
highlighted: circle “system” “medicin”—a very short document;
square “peopl” “public” “system” “agre” “faith” “accept” “christ”
“teach” “clinic” “mission* “religion* “jesu” “holi” “doctrin”
“scriptur”—a fairly long document with rich heterogeneous topical
content; and arrowhead “govern” “secur” “access” “scheme”
“system” “devic”’—a medium size document focused on a single
topic

Figure 7 depicts scatter plots of the probabilities sy, of
each aspect k against the number of distinct words which
appear in the documents n, one subplot for each k. The
probability of the phantom correlates negatively with the
richness of the document. All real topical aspects in turn
correlate positively with the richness of the documents.
Also, as an example, three documents are highlighted. It is
seen that despite sy, sums to one w.r.t. k at each n, it is still
possible to represent multiple causes of the same document
n by letting sy, take values in the whole range [0,1]. In
contrast, in a single-cause model, we would have s, = 1
for one k = k' and O for other k # k.

The analysis of individual documents is continued in
Table 2. The first column lists the words ¢ which are
present in the document n, and in the second column the
most probable aspects k for each word are given along with
their posterior probabilities gy ; ».x,, (7) where k €{1,...,5} in
this experiment. Small probability values are omitted for
brevity; however, a complete list in each row would of
course sum to one. We can observe that some of the more
common words share a number of topic-aspects which
explain them with a certain probability.

In addition we show how documents can be augmented
with terms suggested by the phantom. Table 3 lists the
terms ¢ for which gy, is the largest for the phantom
aspect k in a document n. The results are given for ten
randomly selected documents in the corpus. The terms are
not present in the corresponding document; however, they
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Table 2 Analysis of three heterogeneous newsgroup documents

Words Latent aspects and their posterior probabilities
system medical 0.55, cryptogr. 0.44, space 0.01
medicin medical 1.00

peopl religious 0.75, cryptogr. 0.08, medical 0.13, space 0.04
public cryptogr. 0.58, religious 0.42

system cryptogr. 0.44, medical 0.19, space 0.37
agre religious 0.95

faith religious 1.00

accept religious 0.88

christ religious 1.00

teach religious 0.97

clinic medical 1.00

mission space 1.00

religious religious 1.00

jesu religious 1.00

holi religious 1.00

doctrin religious 1.00

scriptur religious 1.00

govern cryptogr. 1.00

peopl cryptogr. 0.66, medical 0.13, space 0.20
christ religious 1.00

food medical 1.00

rutger cryptogr. 1.00

church religious 1.00

atho religious 1.00

The first column lists the words # which are present in the document 7.
In the second column, the most probable aspects k are given along
with their posterior probabilities gx,.,. Note the uncertainty in
explaining some of the more common words

fit nicely to the topical content of the original document,
suggesting the possible use of this method for query
expansion, as queries are typically short and incomplete.

The above analyses cannot be computed for MB, LPCA,
NMF or PLSA because no single component accounts for
the missing terms.

3.6 Detecting and removing “false absences” and
“false presences”: an evaluation

In this section, we measure the performance of the AB
model in detecting non-content-bearing causes. It should be
stressed that there is no “clean” data available for training,
instead the algorithm only sees the possibly corrupted data,
without knowing about the existence of noise processes
a priori.

Note that the use of factor models for noise separation
and removal is not recent. PCA and ICA have both been
used for this purpose quite extensively, in continuous-
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Table 3 Expansion of ten
randomly selected documents
from the four newsgroups
collection

For each document, the first line
contains the terms present in the
document, followed by the top
list of terms that the phantom-
topic is responsible for, along
with the posterior probability

govern secur access scheme system devic

kei 0.99 encrypt 0.99 public 0.98 clipper 0.92 chip 0.91 peopl 0.89 comput 0.84 escrow 0.83

encrypt decrypt tap

system 1.00 kei 1.00 public 1.00 govern 0.98 secur 0.98 clipper 0.97 chip 0.97 peopl 0.96 comput 0.94
algorithm encrypt secur access peopl scheme system comput

kei 0.98 public 0.97 govern 0.92 clipper 0.87 chip 0.85 escrow 0.75 secret 0.63 nsa 0.63 devic 0.62
peopl effect diseas medicin diagnos

medic 0.98 doctor 0.77 patient 0.75 treatment 0.71 physician 0.66 food 0.66 symptom 0.65 med 0.65
system medicin

effect 0.97 medic 0.96 peopl 0.96 doctor 0.92 patient 0.92 diseas 0.91 treatment 0.91 physician 0.89
peopl secret effect cost doctor patient food pain

medic 0.48 diseas 0.28 treatment 0.27 medicin 0.27 physician 0.24 symptom 0.24 med 0.24 diet 0.24
peopl effect doctor

medic 0.98 patient 0.87 diseas 0.85 treatment 0.84 medicin 0.84 physician 0.81 food 0.81

peopl sin love christ rutger geneva jesu

god 0.99 christian 0.99 church 0.79 word 0.79 bibl 0.78 faith 0.78 agre 0.74 accept 0.73 scriptur 0.73
peopl public system agre faith accept christ teach clinic mission religion jesu holi doctrin scriptur
god 0.05 christian 0.05 rutger 0.04 word 0.03 church 0.03 bibl 0.03 love 0.03 man 0.03 truth 0.03
govern peopl christ food rutger church atho

god 0.74 christian 0.74 word 0.66 accept 0.64 bibl 0.64 faith 0.64 jesu 0.63 agre 0.63 effect 0.63

Gk, Of the phantom

valued signal processing. Denoising of gene expression
arrays [55] and denoising EEG signals [56] are two of the
most known examples.

However, noise removal from discrete domains has not
been attempted so far, up to the best of our knowledge, and
the use of discrete factor models or aspect models to this
task has not been studied. This is what we attempt in the
remainder of this section, in the binary data setting.

Interestingly, in the natural binary data considered, we
only encounter noise factors that create attribute absences
by turning a 1 into a 0. Nevertheless, in order to show that
our model is not restricted to detect this type of noise factor
but also the symmetrical counterpart of it (when some of
the zeros are randomly flipped to ones), we will create such
situations artificially in some of the presented examples.

3.6.1 Detection of missing or added remains
from palaeontological data

3.6.1.1 Filling in false absences We assume that a genus
(an attribute) is absent in a site (an observation) either
because the genus did not live in the area, or because it did
but no remains were recorded. The former is a true absence
and the latter a false absence. Reasons for the missingness
were discussed in Sect. 3.1.1. One might quite safely
assume that in case a genus is observed at several sites, the
sites should be consecutive in their ages. That is, observing
a genus at sites n and n + [, [ > 1 implies that the genus
should also have been observed at all intermediate sites

n+ 1,...,n + [ — 1, if the sites are sorted according to their
ages. Not observing the genus ¢ at an intermediate site n’
means that the zero at x,,-, is a false absence.

In the experiments that follow, the original data is fed to
the AB model, without labels indicating the type of zeros.
We would like to stress that the order of the observations is
by no means utilised in the AB model or in the estimation
procedure.

As the missingness is largely identified by one latent
aspect as shown in Sect. 3.4, we can correct for the miss-
ingness by post-processing the data by removing the
“phantom” aspect and reconstructing the data again. More
precisely, first identify the phantom aspect by looking at
the values of a, and finding the k for which a, ~ 0 Vr;
denote this by k*. Then remove the phantom aspect k* by
setting s+, = 0 Vn and normalise all sy, such that >
Sin = 1 holds again for all n. Then compute the recon-
struction of the data as p,, = > ; dusw, where s, was
updated as described above. Finally, round the p;, to 0 or 1.

For comparison, we also reconstruct the data by other
methods: MB, LPCA, NMF and PLSA. In MB, LPCA and
NMF, the reconstruction is computed similarly by rounding
Pm to 0 or 1, except that no component is removed, as the
missingness in these methods is not separated by any one
component but instead the components collaborate in
explaining the data as it is. NMF and PLSA are not
designed for binary data and are thus somewhat problem-
atic to employ, due to the lack of suitable probabilistic
interpretation. With NMF, values above 1 are possible as
NMF does not treat the values as probabilities, so we

@ Springer



Pattern Anal Applic

Table 4 Decrease in the number of missing values when the palae-
ontological data are reconstructed using the model parameters

AB post-proc. AB MB LPCA NMF PLSA

745 47 54 155 75 -39

Generation of new missing values is possible, as indicated by the
negative decrease of PLSA. “AB post-proc.” refers to post-process-
ing the data by removing the phantom

simply turn those to 1. The data model of PLSA is quite
different too, as already discussed in Sect. 2.4. The
parameters give p(#ln), the probability of generating word ¢
into any word position of document n having L, words. In
the palaentological setting, “words” now correspond to
genera, and “documents” correspond to sites. We resort to
interpreting a 0—1 vector in the light of PLSA as follows.
Let L, be the unknown length of document 7, and compute
the probability of word ¢ appearing at least once in the
document—this corresponds to binary coding of the docu-
ment. The probability is then

p(‘attribute ¢ appears at least once in observation n’)
=1 — (1 p(tln))"
(32)

in which we assume the unknown document length L, to be
the number of ones in the observation.® The probability
thus obtained is again rounded to O or 1.

Table 4 shows the decrease in the number of missing
presences (false absences) when the data are reconstructed
using AB, MB, LPCA, NMF and PLSA. The decrease is
largest in AB when the data are post-processed by
removing the phantom as described above; the result of
plain AB without the post-processing is also given for
comparison. It is well possible that new false absences are
generated in the reconstruction process, if new Is are
inserted outside the original range of the observations of a
genus. Indeed, such new missing values are generated
especially at PLSA. The results shown are optimal among
50 random initialisations.

3.6.1.2 Detecting added noise A more challenging set-
ting is obtained by artificially introducing an extra noise
factor by randomly adding extra presences (ls) into the
original data. In this case, not only the Os have two under-
lying explanations (a “true absence” or a “false absence”)
but also the 1s may be true or false. We corrupt the data

S Another way would be to average over L,, assuming that L, ranges
uniformly between the number of ones in the observation and some
manually chosen upper limit; in Table 4 this would give inferior
results for many choices of the upper limit.
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such that the proportion of extra’ ls in each observation
(site) is distributed according to Uniform[0,0.4]; in the
original data the percentage of 1s is 5.08% and in the cor-
rupted data it is 12.5%—more than doubled. We then
estimate K =5 latent aspects in the corrupted data and
obtain one “white phantom” having a negligible probability
of generating any genus, and one “black phantom” having a
large probability of generating any genus, and three real
aspects.

The posterior probability gy, that the aspect k has
generated the observation x,, is computed as in Formula
(7). The histograms of the posteriors gy, for true Is,
added 1s and Os are seen in Fig. 8. They are computed as

p(k|true ones) Z it nxm (33)
t,n:xy, =1 originally

p(k|added ones) Z Gkt v (34)
t,n:x, =1 added

p(k|zeros) o Z Gktn (35)

t,n:x, =0

The quantities (33)—(35) are normalised such that each of
them sums to 1 over k. We can see in Fig. 8a that the
“white phantom” (the leftmost bar in all plots) has a very
small or zero probability in true or added 1s and corres-
pondingly a high probability at zeros. The “black
phantom” (the third bar in all plots) has a large posterior
probability in the added 1s and a very small probability at
zeros. The real aspects behave in an opposite manner.
For comparison, Fig. 8b, ¢ give the corresponding val-
ues for MB and PLSA. The number of components is
chosen such that the total number of parameters is equal in
all models considered—this gives K =19 for MB and
K =5 for PLSA. At each model, the parameters used are
from an in-sample log likelihood-optimal run over 10
repeated runs. No latent component differentiates between
Os and true and added 1s either in MB or in PLSA. Using
K =5 in MB would not result in a “white phantom” or a
“black phantom” either. For LPCA and NMF, the quan-
tities (33)—(35) cannot directly be computed, as the
posterior of a component is not a well defined concept.

3.6.2 Detecting and correcting distortions in raster images

The data set of raster images of handwritten digits origi-
nally has no inherent pixel omissions or additions;
therefore, it can be used for objective and controlled
assessment. We create the two types of distortion studied in

7 This is indeed not the proportion of Os turned to Is, but instead
includes new s superimposed at existing 1s, which have no effect.
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Fig. 8 Posterior probabilities of

) (a) PKTRUE 1) P(KIADDED 1) P(k0) (b) PKTRUE 1) P(kIADDED 1) P(IO)
the latent aspects k in corrupted 07 07 07 035 0.35 0.35
palaeontological data. a AB,
b MB, ¢ PLSA. At each case, 06 0.6 06 0.3 03 0.3
the leftmost plot shows the
probabilities at true 1s (33), the 05 05 05 0.25 0.25 025
mlddle one at added 1s (34) and 04 04 04 02 02 02
the rightmost at Os (35). The
number of components is 03 03 0.3 0.15 0.15 0.15
chosen such that the total
number of parameters is the 02 02 02 01 01 0.1
same in all models. Ip AB, ‘ o4 04 04 0.05 0.05 0.05
aspects k = 1 and 3 differentiate
between the three cases 0 0 0 0 0 0
12345 12345 12345 0 10 20 0 10 20 0 10 20

(¢) PKTRUEY) P(kIADDED 1) P(kIO)

03 03 0.3

0.25 0.25 0.25

0.2 02 0.2

0.15 0.15 0.15

0.1 0.1 0.1

0.05 0.05 0.05

0 0
12345 12345 12345

this section artificially and measure the ability of AB in
detecting them.

First we add a corrosion cause into the data: we turn
“off” a uniformly varying amount of pixels that were “on”
in the original images. In the original data, any pixel that is
“off” (0) is a “true absence” and can be explained by the
content of the image. In the corrupted data, however, a 0 is
either a true absence as before, or a false absence,
explained by the corrosion.

3.6.2.1 Noise removal We then demonstrate the use of
the AB model in noise removal. As the noise is identified
by one latent aspect, we can correct for the noise by
removing the noise aspect and reconstructing the data
again. Similarly to what was described in Sect. 3.6.1, we
identify k* as the aspect corresponding to noise, by a .«
0V .3 We then set Six , = 0V n and normalise all sy, by
requiring » x Sz, = 1. The reconstruction of the data is then
computed by rounding p,, = > x dusSi, to 0 or 1.

Figure 9 shows the success in reconstructing corrupted
digits where some pixels are turned to O: the proportion of
extra Os is drawn from a Uniform[0,0.4] distribution. The
noise removal rate is measured as 1 — (fp + fn)/2 where fp
is the rate of false positives, occurring if a true 0 is turned

~
~

8 At large K, several aspects may correspond to noise, but for
simplicity we only select the one having the smallest value of Y, ay.

to 1, and fn is the rate of false negatives, occurring if a false
0 is not turned to 1. At MB, LPCA, NMF and PLSA, the
reconstruction is computed as described in Sect. 3.6.1
related to Table 4.

In Fig. 9 we see that aspect Bernoulli is very successful
in binary noise removal when the parameters are post-
processed by removing the aspect corresponding to noise,
as described above. Without such post-processing (not
shown), AB behaves quite similarly to NMF. LPCA is
comparable at very small K only, and PLSA is not very
successful: in both methods, the rate of false negatives is
quite large even though false positives are rare. The error
bars give the standard error on both sides of the mean, over
5 disjoint subsets of the data.

3.6.2.2 Multiple causes of presences and absences Let us
then see how the basis images combine to reconstruct
instances of observed digit images. As an example we
analyse the corrupted digit data where the proportion of
extra Os was drawn from a Uniform [0,0.4] distribution; the
same data set was used to create Fig. 9. The number of
latent aspects was chosen based on the AIC as K = 14. The
top row of Fig. 10 shows the 14 bases (parameters a,)
obtained for this data set; these are in-sample log likelihood
optimal values over 30 random initialisations. In addition
to bases that look like prototypical images as they contain
high probabilities on corresponding pixels, we also have

@ Springer



Pattern Anal Applic
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Fig. 9 Noise removal in artificially corrupted binary handwritten
digit images. The parameters of AB are post-processed by removing
the component explaining the noise, re-normalising the parameters,
and reconstructing the data. In the other methods, the data are
reconstructed from the original estimated parameters, as no single
component explains the noise. Horizontal axis Number of compo-
nents. Vertical axis 1 — (fp + fn)/2 where fp = false-positive rate,
fn = false-negative rate

one phantom basis for which a, is almost zero at all pixels
t. To demonstrate the role of the phantom and the way the
aspects may combine, we then analyse 6 observed images,
shown in the leftmost column. For each image n and aspect
k, the posterior probability g .., that the kth aspect
explains the observed value (0 or 1) of all pixels
t = 1,...,240 is then given. On all these plots, the level of
darkness of a pixel is proportional to the probability of it
being “on”.

The ‘5’ depicted on the first data instance (second row of
Fig. 10) is largely explained by the basis image which is a
prototype of ‘5’. In addition, the basis ‘6’ explains the
pixels that are left unexplained by the basis ‘5°. A similar
phenomenon is seen in the second and third data instances
where a ‘6’ and an ‘8’ are analysed. The pixels that are

on” have multiple causes and so several bases contribute
to explaining the observed data.

The fourth data instance is a ‘2’ that has suffered cor-
rosion. It is well explained by the basis ‘2, except for the
pixels which are off due to the artificially created corro-
sion. These pixels are explained by the phantom with the
highest probability. A similar case is seen in the fifth data
instance where a corrupted ‘1’ is analysed.

The last example does not directly resemble any one of
the basis images, and it is explained by a combination of
bases *7’ and ’6’ and the phantom.

The bases given by MB, LPCA, PLSA and NMF are
shown in Fig. 11. No single basis corresponds to the cor-
ruption, instead the bases resemble parts of digits. For the

@ Springer

L8426"10 7&:963

G /3]
A ¥
e

=
!e‘;:‘,

r

«F
AN

S < 1 0o ON U

4 B

Fig. 10 Results on artificially corrupted binary handwritten digit
images where some pixels have been turned to white. The images on
the top line depict the reshaped parameters a, as basis images. Some
examples from this data set are shown in the first column, and their
analysis as provided by the AB model in the next columns. For each
datum instance n and each aspect k, the probability values gy, , are
shown for each pixel ¢ €{1,...,240}. On all these plots, the level of
darkness of a pixel is proportional to the probability of it being ‘on’

ease of comparison, K = 14 bases are estimated; however,
the results at different K are quite similar.

Similarly, using AB in the case of added 1s (not shown)
we get one “black phantom” which has a high posterior
probability of having created the non-content-bearing black
pixels. The content-bearing pixels (both white and black)
are explained by one or a few content-bearing latent
aspects.

3.6.3 Detecting added words from Usenet text messages

In Sect. 3.5 we have seen that term occurrences in text
messages naturally contain a factor of word omission and
AB is able to detect that factor. However, for text, the
goodness of this detection can only be assessed in a sub-
jective manner. In order to conduct an objective evaluation
we create an artificial setting, in the same way as with the
palaeontological data. We randomly add 1s in the data such
that the proportion of extra 1s in each document is dis-
tributed according to Uniform[0,0.4]; in the original data
the percentage of 1s is 6.3% and in the added data it is
13.7%. We then estimate K = 6 latent aspects in the cor-
rupted data, and obtain four aspects reflecting the four

98024963254747
S8FEZAENPEENEA
‘4"%.ﬂ“ 2% 64T

J e TRV S0 4L DT
Fig. 11 Basis images estimated by MB (top row), LPCA (second

row), PLSA (third row) and NMF (bottom row) in artificially
corrupted binary handwritten digits
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Fig. 12 Posterior probabilities (a) P(KITRUE 1) P(KIADDED 1) P(kl0) (b) P(KITRUE 1) P(kIADDED 1) P(KI0)
of the latent aspects k = 1,...,6 0.25 0.95 025
in corrupted newsgroup data. a 0.7 107 0.7 ’
AB, b MB, ¢ PLSA. At each 06 06
case, the leftmost plot shows the ' ' 0.6 02 02
probabilities at true 1s (33), the 05 105 05
middle one at added 1s (34) and 0.15 0.15
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newsgroups; in addition there is a “white phantom” having
a negligible probability of generating any term, and a
“black phantom” having a large probability of generating
any term. The black phantom explains the artificially
added terms which do not fit the topical contents of the
documents.

We can also measure the degree to which the models are
able to distinguish between different 1 s. Figure 12 shows
the normalised histograms of the posterior probabilities of
latent aspects k. For each k, we compute p(kltrue 1),
p(kladded 1) and p(kl0) similarly as before by AB (a), MB
(b) and PLSA (c). At MB and PLSA, the number of
components is chosen such that the number of parameters
in all methods are equal. The results shown are in-sample
log likelihood optimal results over 10 random initialisa-
tions. In Fig. 12 (a) in the first histogram we see that the
“white phantom” (k = 5) of AB explains none of the true
Is. Correspondingly, the “black phantom” (k = 1) explains
the added 1s to a high degree, as seen in the second his-
togram. The third histogram shows that the white phantom
(k =5) explains most of the zeros whereas the black
phantom (k = 1) only explains a small fraction of them. In
text document data, the zeros might be “true absences” or
“false absences” but we cannot manually distinguish
between them, and so the numerical accuracies cannot be
measured in this respect. In Fig. 12b, the sixth Bernoulli
mixture component explains the added 1s to a high degree,

but it also explains the true 1s and Os to a large degree. In
Fig. 12c, none of the PLSA components deviates.

4 Conclusions

This paper presented a probabilistic multiple cause model
for 0—1 data. The AB model analyses the causes behind not
only the presences (1) but also the absences (0) of attri-
butes, and produces interpretable explanations to these,
which is in contrast to all existing models for 0—1 data. A
distinctive feature of the aspect Bernoulli model is its
ability to separate binary noise factors (both omissions and
additions) in the data by automatically creating specific
“phantom” latent aspects. A “white phantom” gives a
negligible probability of appearance to any attribute and
thus it is used to explain omissions in the data; in contrast,
a “black phantom” generates occurrences of all attributes
with probability close to 1 and as such it explains additions
in the data. The phantoms are not hard-coded into the
model but arise automatically.

We have also demonstrated how the AB model outper-
forms related models in the task of noise removal from
binary data. In addition we studied and contrasted AB to
related Bernoulli models in several settings in terms of
scaling, out-of-sample likelihood and parameter interpret-
ability: AB scales equally to the mixtures of Bernoulli
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model and outperforms that in terms of out-of-sample
likelihood; AB scales favourably compared with logistic
PCA while their out-of-sample likelihoods tend to be
similar; finally, AB gives interpretable parameters whereas
logistic PCA does not.

In addition to the variety of related factorisation models
discussed, let us briefly mention a few models that hard-
wire the presence of a common (noise-)component. The
mixture of Gaussians model of Law et al. [57] has one
content-bearing latent cause for each observation; then for
each attribute, the value of the attribute is either generated
from a distribution specific to the latent cause chosen, or
from a common cause. The models of Hofmann [58],
Barnard et al. [59, 60] and Blei et al. [61] present hierar-
chical architectures where the latent components are
arranged into a tree; the root node is a common component
that may participate in the generation of all observations.
Recently a somewhat similar tree-construction has been
considered explicitly for finding uninformative features by
Wang and Kaban [62].

An intermediate model between Logistic PCA and aspect
Bernoulli could also be constructed for completeness. The
likelihood of such a model reads p(x|s,a)=1],1I,
(X amsia)™ (1 — g(Xp awsin)) =% where the parameters
ay and s, are not restricted to probabilities. In our studies (not
shown), using g(u) = (exp(u) — 1)/(exp(u) + 1), the results
of such a model have indeed consistently been between those
of LPCA and AB in all respects. However, the data repre-
sentation is similar to NMF, and the noise is not separated out
into any specific components.

In this paper, we have shown how the AB model can
successfully analyse both noisy and noiseless 0—1 data in a
variety of application areas, of which the palacontological
setting is perhaps the most demanding. From a palaeon-
tologist’s point of view, the possibility to distinguish
between true and false absences has great appeal, as there
are several systematic and random sources of bias in the
data collection process. In addition to studies involving
palaeobiodiversity and turnover, the method has potential
applicability in palaecoecology, including the generation of
“proxy” data for palaeoenvironment reconstruction, for
palaecocommunity reconstruction, and for the study of
evolutionary dynamics at the community and metacom-
munity levels. A very practical use of the method is to
characterise and summarise the taxonomic deficiencies of
the palaeontological data: for example, a group of genera
(attributes) having a lot of false absences can be concluded
as too noisy to be included in further studies.

Acknowledgments The authors wish to thank Professor Heikki
Mannila for insightful discussions regarding the model and the palae-
ontological data, and for suggesting Fig. 7. The authors would also
like to thank the anonymous reviewers for their useful comments and
suggestions.

@ Springer

Appendix A

The following holds for any distributions g,(-):

> logp(x,lss.a)
= Z Z Gn(zn)log p(x,|s,, @)

Zn

= ZZ% (zn log

n Zn

= Z Z qn (Zﬂ) logp(xnazn \sn,a
n Zn
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(37)

) — an(zn) loggn(zn)

Zn

(38)

We can recognise that the first term of F in (38) is the sum
of conditional expectations of the joint likelihood of the
data and latent variables z,,, conditioned on s,,. The second
term is the sum of entropies of g,. Finally, the last term is
the sum of Kullback—Leibler distances between the (so far
arbitrary) distributions g,, over z,, and the true conditional
posterior distributions of z,, conditioned on s,,.

Since the KL divergence is always positive [63] (which
can easily be shown by using Jensen’s inequality), F is
always a lower bound to the log likelihood log p(x,ls,.a),
irrespective of the distributions ¢,(-). When ¢,(-)=
p(-lx,.8,.a), Vo = 1,....N, then the KL divergence becomes
zero and, therefore, the lower bound approaches the log
likelihood exactly.

The iterative EM procedure is then: In the E-step, hav-
ing some fixed estimates of s,, n=1,....N and a, we
maximise  Fy, _sva®1,.. 28 @), qn(0)) with
respect to all g,(-). This is achieved by setting these to the
true conditional posteriors p(-lx,.s,, @), for all n = 1,...,N,
which—from Bayes’ rule—are the following:

P(X4|20,@)p(2Znlsn)

P(ZalXn, 50, @) = (39)
Zz,,P(xn |zn,a)p(zn\s,,)
_ILTLda (1~ a5 T1, Tsw™ (0
T1, Sk snay (1 — ag) '™
Hk[skna.tx]:l(l — atk)lixm]zmk (41)
Zk Sindl m(l _ ark)lfxfn
= HP(Zm|in7Sn,at) (42)

t

In (39), we used that p(x,lz,..@) = p(x,ls,.z,..a), which fol-
lows from the dependency structure of AB, namely that x,,
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depends on s,, only through z,,, therefore, knowing z,, makes
x, independent of s,,.

It may be interesting to note that the above conditional
posterior distribution p(z,lx,.s,.a) factorises naturally,
without having imposed a factor form. Of course, as we
know, this posterior is conditioned on the value of s,, so
even though it is an exact conditional posterior quantity,
there is no tractable exact posterior over the joint distri-
bution of all hidden variables of the model, which would
be p(s,.z2.x.a) = p(s,lx,, a)p,x,.s,, a). The latter term
is what we just computed, while the former term is
intractable as discussed earlier in the main text, and so a
point estimate for s, will be obtained as part of the
M-step.

In the M-step, we keep the posterior distributions g,,(-)
fixed at the values computed in the previous E-step, and
compute the most probable value of s,, for each x,, as well
as the parameters a. This is achieved by maximising
Fs, o sva(®1, - xn; qi1(4), ..., gqn(-)) with respect to all s,

To ensure the constraint Y ; sz, = 1 is met, we add a
Lagrangian term. Denoting

Sy (1 — a,k)lfx”‘

Zé s/na Xin (1 _ Clﬂ/)lixm
(43)

qkt.nx, EP(Zzn = k‘xtmsnaal) =

where the last equality follows from (41), and replacing the
result obtained from the previous E-step into F, the
expression to maximise, up to a constant term, is

> [Z 4n(2n) 108 (X1, ZalSn, @) = 4 <Z Skn — 1)1
n n -

(44)
B Z [Z Z [Z qn Zn Ztnk]
) (45)
x log[suay (1 — aw) ™) = (Z Skn — 1)]
k
"2 [Z S G, loglsuaay (1= an)' ]
e (46)

g

where A, are Lagrange multipliers, and the second term of
F (the entropy term) was omitted for being a constant w.r.t.
the variables of interest. Eq. (45) was obtained by
expanding  p(x,2ulsn, @) = [, [Te[sunay (1 — afk)l_x’"]mk
and grouping together the terms with z,,,. To obtain (46),
we used the result (42) and the notation (43), so that

Zz,, qn (zn)ztnk = ZZn H,P(Zm |xtn; Sn, at)ztnk = P(Zm = klxmv
snaaf) = Gkt nxy,-
The terms that depend on elements of s, are

Qs = > Gisn, 1085t — I (Z Skn — 1) + const.
[ k
(47)

Now, we solve the system of stationary equations w.r.t. s,
which are the following.

00, ,
Wlm = Z Qk,t,n,xm/skn = /n (4’8)

Multiplying both sides by sy, we obtain

Z qkitnx, = ;Lnskn (4’9)
t

from which we have that

Skn = Z qk‘l,n,xm/)vn (50)
t

The value of /, is obtained by summing both sides, and
using > i Si, = 1. This gives A, = >, > Gkins, =T,
since by its definition, >, qksnx, = 1.

To complete the M-step, we now maximise Q w.r.t. a.
The terms that depend on elements of @ up to constants, are
the following.

Qu = Z Z Z Gk t.ny Xt 10g age 4 (1 — X1
n k t

(51)
X log(l _ atk)}
The stationary equations are then the following.
a X n 1 — X n
O = Z Gkt (L _ —;>
aatk ik 1 — Ay
— ik
- . " i
qut n l_atk) ( )

The denominator is the variance of the Bernoulli and
always non-negative, it can be simplified and by isolating
ay we have the solution:

Z Xk tn x,
[ —————
Z qk,t.nxm

Note that the constraint a,, € [0,1] needed not be explicitly
imposed in this model setting, as it is automatically satis-
fied for binary data.’

(53)

° This also fallows from the first moment identity for exponential
family of distributions, of which the Bernoulli distribution is a
member [50].
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Appendix B

The derivation of the fixed point equations (13)—(15) as an
alternating optimisation of >, p(x,| s,.a) (or equivalently
> P, s,la)) is as follows.

Denote a; = 1 — ay. The log likelihood (11) is maxi-
mised, subject to the constraints Y z sz, = 1anday + ax = 1.
The corresponding Lagrangian is thus the following:

L= Z Z X log Z AycSin + 1 - xln) lOg Z a_tkskn
n t k k

_Clk(a[k + @ - 1) — ln ZSkn — 1
k

(54)

where ¢, and A, are Lagrangian multipliers, and we have
rewritten (1 — > ¢ auSi,) a8 D, GSw. The stationary
equations of £ with respect to both a, and @y are

oL X
dag Z p ansm

Ga,k Z ZZ

Multiplying the first of the above equations by a, and the
second by ay, we obtain

—cx=0 (55)

— =0 56
Tse T (56)

=S — Cikag = 0 (57)

n— Ciag =0 (58)

Summing both sides and using ay + @y = 1 provides the
Lagrangian multiplier Cai:

Skn + an Atk Z Z
0

—X n
Ctk — atk Z Z ! (59)
l

AgSen 7 Sén

as in (15). From (57) we have the solution for a, in the
form of a fixed point equation:

Xin
ak:akzisk Cik 60
DD S L (60)

as in (14). Solving for sy, proceeds similarly: the stationary
equation is

oL Xin 1 — X _)
—= ag + ——ax | — 4, =0 61
OSk Z (Z[; awsen S dusin " (61)

Multiplying both sides by s;,, we obtain

1 — xp

Xin J—
§ < AncSin + atkskn) = /lnskn (62)
>0 AnSin > 0 ArtSin

Summing over k and using > ; s, =1 we have the
Lagrange multiplier 4,

@ Springer

— Xin
atks kn

AarSin %

Z Zz ArSin ; kSt Z Zz

IS SRR (64)

Having computed 4, from (62) we obtain the fixed point
equation for sy,, identical to (13):

Skn = Skn

Xin —Xm __
v o/ T 65
ZZe @usen” Z/ T / (65)

As discussed in the text, this derivation is simpler and yields
the same multiplicative updates (13)—(15), obtained also via
rewriting the EM algorithm (7)—(9). However, the fact that
we need not iterate each multiplicative fixed point update to
convergence separately before alternating these inner loops,
but we can actually just alternate them while still obtainining
a convergent algorithm, is less apparent from the derivation
given in this section. Instead, this is a consequence of the EM
interpretation presented in Appendix A. Indeed, recall that
every single multiplicative update is a combination of a full
E-step and an M-step update for one (group of) variables,
hence it is guaranteed not to decrease the likelihood.
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