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Abstract. The problem of analysing dynamically evolving textual data has arisen within the
last few years. An example of such data is the discussion appearing in Internet chat lines.
In this Letter a recently introduced source separation method, termed as complexity pursuit,
is applied to the problem of finding topics in dynamical text and is compared against several
blind separation algorithms for the problem considered. Complexity pursuit is a generalisation
of projection pursuit to time series and it is able to use both higher-order statistical measures
and temporal dependency information in separating the topics. Experimental results on chat
line and newsgroup data demonstrate that the minimum complexity time series indeed do cor-
respond to meaningful topics inherent in the dynamical text data, and also suggest the applic-
ability of the method to query-based retrieval from a temporally changing text stream.
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Abbreviations. ICA — Independent component analysis; LSI — Latent semantic indexing

1. Introduction

In times of huge information flow especially in the Internet, there is a strong need for
automatic textual data analysis tools. There are a number of algorithms and methods
developed for text mining from static text collections [2]. The WEBSOM' is a docu-
ment clustering and visualisation method [19]; its probabilistic counterpart has been
presented e.g. in [16]. Another basic algorithm is Latent Semantic Indexing (LSI) [7]
in which the data is projected onto a subspace spanned by the most important singu-
lar vectors of the data matrix; its probabilistic counterparts have been presented by
Hofmann [9] and Papadimitriou [27]. LSI is found to capture some of the underlying
semantics of textual data, resolving problems of synonymy and polysemy.

In recent years, the use of higher-order statistics and information-theoretic
measures has gained popularity in the data analysis community. LSI uses only
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second-order moments of the data and neglects any higher order correlations, so a
natural step forward is to apply more powerful methods. An important class of
higher order statistical methods are independent component analysis (ICA)-type
methods [6, 12, 14]. In ICA a set of multidimensional observations is presented as
a (linear) combination of some underlying latent features that are more or less inde-
pendent of each other.

First approaches of using ICA in the context of text data were presented by Isbell
and Viola [13], Kolenda et al. [22] and Kaban and Girolami [15]. In these approa-
ches, the textual data is not a dynamic time series but rather an instantaneous mix-
ture of independent topics. The underlying assumption which we also adopt is that
the textual data consists of some more or less independent topics. In the text retrieval
parlance, a topic is a probability distribution on the universe of terms; it is typically
concentrated on terms that might be used when discussing a particular subject. In
this paper, the word ‘topic’ also refers to a hidden, more or less independent random
variable with time structure. Thus we can analyze the ‘independent components’ of
text both by the terms they concentrate on, and by their activity in time.

Recently the issue of analyzing dynamically evolving textual data has arisen, and
investigating appropriate tools for this task is of practical importance. An example
of a dynamically evolving discussion is found in the Internet relay chat rooms. In
these chat rooms daily news topics are discussed and the topic of interest changes
according to participants’ contributions. The online text stream can thus be seen
as a time series, and methods of time series processing may be used to extract the
underlying characteristics — here the topics — of the discussion. Kolenda and Hansen
[20, 21] employ Molgedey and Schuster’s [23] ICA algorithm for the identification of
the dynamically evolving topics. Molgedey and Schuster’s algorithm is an early
separation algorithm which uses temporal information and does not require any
higher order moments for the source separation problem. Kaban and Girolami
[17] have recently presented a Hidden Markov Model (HMM)-type algorithm for
the topographic visualization of time-varying data.

In this Letter a recently introduced powerful separating method is applied to the
problem of extracting the topics of a dynamically evolving discussion. The method
presented by Hyvirinen, termed as complexity pursuit [11], is a generalization of
projection pursuit [8] to time series and it is able to exploit both higher-order and
temporal dependency information in separating the topics. Complexity pursuit is a
method for finding interesting projections of time series, the interestingness being
measured as a short coding length of the projection. Projection pursuit, on the other
hand, neglects any time-dependency information and defines interestingness as non-
gaussianity. Complexity pursuit uses both information-theoretic measures and time-
correlations of the data, which makes it more powerful and motivates its use in the
task approached in this paper.

This paper is organized as follows. Section 2 describes the data and its preproces-
sing. Section 3 provides an introduction to complexity pursuit. Section 4 presents
experimental results on using the complexity pursuit algorithm on chat line and
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newsgroup data, and shows comparisons between several algorithms that have been
presented for separating time-correlated signals. Finally, some conclusions are
drawn in Section 5.

2. Dynamical Textual Data: Chat Line Discussion

Often the characteristics of the textual data of interest change over time. Such dyna-
mical data can be found e.g. in the online news services. Our example of dynamically
evolving text is chat line data, and later also newsgroup data that shares some simi-
larities to chat line data.

The discussion found in chat lines on the Internet is an ongoing stream of text gen-
erated by the chat participants and the chat line moderator. To analyze it using data
mining methods a convenient technique is to split the stream into windows that may
be overlapping if desired. Each such window can now be viewed as one document.
(In splitting the text stream, the boundaries between comment lines are not taken
into account, as this might result into windows of different lengths. Also, this kind
of partitioning is not always possible in other dynamical text streams, and we do not
wish to restrict our analysis to chat line discussions only.)

We employ the vector space model [28] for representing the documents, although
other models can be considered. In the vector space model, each document forms
one T-dimensional vector where 7 is the number of distinct terms in the vocabulary.
The i-th element of the vector indicates (some function of) the frequency of the i-th
vocabulary term in the document. The data matrix X, also called the term by docu-
ment matrix, contains the document vectors as its columns and is of size T x N
where N is the number of documents. We will write X when referring to the whole
set of data vectors and x when referring to one of them; thus X = (x(¢)), r =1, ..., N.

As a preprocessing step we compute the LSI of the data matrix X, that is,
the singular value decomposition (SVD)

X = UDV’” (1)

where orthogonal matrices U and V contain the left and right singular vectors of X,
respectively, and the pseudodiagonal matrix D contains the singular values of X. The
term by document matrix — which may be of very high dimension — is then projected
onto a smaller dimensional subspace spanned by K left singular vectors in Ug corres-
ponding to the K (K « T) largest singular values in the diagonal matrix Dg:

Z =D 'UXy = VI )

where Xk = UKDKV,€ is an approximation of X. Thus the observations in X are
represented as linear combinations of some orthogonal latent features. The new data
matrix Z = V,€ and its columns z(¢), t =1, ..., N are now the inputs for the algo-
rithm that will be described in Section 3.

The time-structure of the topics of the discussion, or the minimum complexity
projections, can be found by projecting Z onto the directions W = (w; - - - wy,) given
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by the complexity pursuit algorithm described in the following section. It is often
advantageous to compute the LSI projection onto a somewhat larger dimensionality
K > M and then to find M minimum complexity projections.

To represent the estimated topics in the term space, the transpose of the original
data is first projected onto the LSI term space by

Zierm = D' Vi X} = UL 3)

and then projected onto the directions W that were found earlier by feeding Z into
the algorithm.

The LSI (SVD) preprocessing is computationally the most demanding part of the
problem, of order O(NTc) for a sparse T x N data matrix with ¢ nonzero entries per
column (here, ¢ is the number of vocabulary terms present in one document). If new
data is obtained after the LSI has been computed, the decomposition can be easily
updated by folding-in [4] documents or terms: the LSI projection of a new document
Vector Xyew (a new column in X) is Zyey = xneWUKD}l. Similarly, the projection of a

term : 1q plerm _ term -1
new term vector X, 2" (a new row in X) is 27 = X2 VgD

3. The Complexity Pursuit Algorithm

Complexity pursuit [11] is a recently developed, computationally simple algorithm
for separating interesting components from time series. It is an extension of projec-
tion pursuit [8] to time series data and also closely related to ICA. Projection pursuit
seeks for directions in which the data has an interesting, structured distribution,
the interestingness being understood as nongaussianity — neglecting any time-
dependency information that may exist in the data. ICA, on the other hand, finds
statistically independent directions. It is to be noted that under some restrictions,
it is also possible to estimate the independent components using the time dependency
information alone (see e.g. [3, 23]); however the early algorithms as that proposed in
[23] do not utilize the distribution of the data in obtaining the separation. A heuristic
way of combining both of these estimation criteria (nongaussianity and time-corre-
lations) has been proposed in the JADE7p algorithm [24]. However, complexity pur-
suit combines these criteria in a principled way by employing the information
theoretical concept of Kolmogoroff complexity [25] and developing a simple
approximation of it. In complexity pursuit the structure of the projected time series
is measured as the coding complexity. Time series which have the lowest coding com-
plexity are considered the most interesting. Another method of separating indepen-
dent sources in time series has recently been presented by Stone [30]; in his approach,
it is assumed that the source signals are more predictable than any linear mixture of
them. In Section 4 we shall present experimental results on using complexity pursuit,
JADEp, ordinary ICA and the methods presented in [30] and [20]. Some other
methods for detecting the semantics in a dynamical text stream are described e.g.
in [29].
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Our data model assumes that the observations x(f) are linear mixtures of some
latent components:

X = As “4)

where X = (x1, ..., x7) is the vector of observed random variables, s = (51, ..., sy) is
the vector of independently predictable latent components, and A is an unknown
constant mixing matrix. In the context of complexity pursuit we do not put any spe-
cial emphasis on the statistical independence of s;, even though the data model (4) is
similar to that of linear ICA.

A separate autoregressive model is assumed to model each component s; = w/x;
as a simple special case of the algorithm presented in [11], we employ a first order
autoregressive (AR) process §;(f) = a;s;(t — ) on each latent variable s;. The approxi-
mate Kolmogoroff complexity of the residuals ds(z) = s(¢) — 5(¢) (using the predictive
coding of the components) [11]

ROWTx(1)) = E{G(wa(x(z) —ox(t— r)))} + log as(w) (5)
a5(W)

is then minimized, where G is the negative log-density of the residuals. In the above
formula it is emphasized that the values of o and the residual standard deviation o,
depend on the projection vector w only. An additional constraint E{(w”x(¢))*} = 1 is
also required to fix the scale of the projection. In the right hand side of Formula (5)
the first term measures the contribution of the nongaussianity, and the second term
the contribution of the variance to the entropy of the residual. Minimizing the first
term would find the direction of maximal nongaussianity of the residual, and mini-
mizing the second term the direction of maximum autocovariances, i.e. maximum
time-dependencies [11].

In our application the latent time-components s; will model the evolving topics of
the discussion. To find the minima of (5), the data is first whitened by LSI as descri-
bed in the previous section. We denote by z(7) this preprocessed data, and w now cor-
responds to an estimate of a row of the inverse of the mixing matrix for whitened
data. At every step of the algorithm, the autoregressive constant a(w) for the time
series given by w’z(¢) is first found using [11]

& = wlE{z()z(t — 1)}w (6)
Then the gradient update of w that minimizes (5) is the following [11]:

W — W — pE{(z(t) — a(w)z(r — 1))g(w’ (2(1) — c(w)z(1 — 1))} (7)

W w/l[wl| ®)

The function g is chosen according to the probability distribution of the residual: to
be exact, g should be the negative score function p’/p of the density of the residual, as
g is the derivative of G in (5). In practice, the choice of g is quite flexible. Choosing
a linear g corresponds to neglecting the higher-order structure of the data, and
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analyzing the time-correlations of the signals only. This kind of complexity minimi-
zation is discussed e.g. in [26]. In general, a nonlinear g should be preferred for the
estimation of nongaussian latent variables or residuals.

To estimate several projections one can either use a deflation scheme, or estimate
all projections simultaneously in a symmetric manner and use orthogonal decorrela-

tion
W < /(WWDH)~lw )

instead of (8). In the deflationary approach, after the estimation of p projections, we
run the algorithm for w,,; and after every iteration step subtract from w, the pro-
jections of the previously estimated p vectors, and then renormalize w, ;. This kind
of Gram-Schmidt decorrelation is presented e.g. in [10].

The algorithm scales as O(NK>M) on preprocessed data; this is linear in the num-
ber of observations N as typically K <« N and M < K.

4. Experimental Results
4.1. EXPERIMENTAL SETTING

The chat line data used in our experiments was collected from the CNN Newsroom
chat line®. A contiguous stream of almost 24 hr of discussion of 3200 chat partici-
pants, contributing 25000 comment lines, was recorded on January 18th, 2001.
The data was cleaned by omitting all user names and non-user generated text. The
remaining text stream was split into windows of 12 rows (about 130 words); subse-
quent windows shared an overlap of 66%. From these windows a term histogram
was generated using the Bow toolkit®. Stemming, stop-word removal and tf-idf (term
frequency — inverse document frequency) term weighting were part of the process.
This resulted in a term by document matrix X of size 7'x N = 5000 x 7430.

The binary valued coding of the term by document matrix — ith entry of a docu-
ment vector was 1 if the ith vocabulary term was present in the document, and 0
otherwise — was used in the experiments. Binary coding avoids serious outliers in
the data and is computationally simple; also, it may be suitable for short documents
where the size of the vocabulary is large, such as short windows of chat line
discussion.

The text document data is typically very sparse; in our chat line data, on the aver-
age, each document had about 40 vocabulary terms and only 0.65% of the entries of
the data matrix X were nonzero. Sparsity gives additional computational savings, so
we did not make the data zero mean as is often done in the context of ICA-type

2http://www.cnn.com/chat/channel/cnn_newsroom
3http://www.cs.cmu.edu/~mccallum/bow/
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algorithms — that would have destroyed the sparsity and resulted in severe computa-
tional difficulties in the LSI preprocessing stage.

The choice of the number of estimated topics M is somewhat arbitrary®. It has
been proved in [27] that if the data has a clear clustered structure, it is enough to
choose M equal to the number of clusters. In our application the case is somewhat
more complex, because more than one topic may be discussed at any one time, and
real-life data may not have clear clusters.

The identified topics lend themselves easily to human evaluation if they are presen-
ted in the term space as described in the end of Section 2 and the most representative
words associated with each w;, i = 1, ..., M are listed. In the case of static data —e.g.
ICA of functional magnetic resonance imaging (fMRI) and image recognition, or
textual document analysis [15] — one can use both X and X7 for training (see [15]
for derivation); this is called spatio-temporal ICA. In our case, the documents evolve
dynamically but the terms have no time structure, and thus they will be employed in
the visualization phase only.

It should also be noted that the projections w’z(¢) that represent the latent topics
of discussion are found by the complexity pursuit algorithm up to permutation, sign
and scaling, as is always the case in the context of ICA-type algorithms. Therefore
some prior knowledge based post-processing is necessary for interpreting the results.
We know that the terms belonging to each topic should have a positively skewed dis-
tribution — there are often only a few terms that occur very frequently and corre-
spondingly a large number of seldom occurring terms. (Katz [18] studies the
distribution of words in phrases in more detail.) We must change the sign of the
negatively skewed projections w’z(7) so that their distribution becomes positively
skewed.

Our experiments showed that choosing a first order AR model §(¢) = as(t — 7) was
successful and that lags of e.g. T = 1 and t = 5 were the most suitable — in a typical
discussion in a chat line, the participants’ on-line contributions only depend on a few
previous comments which in our data are recorded in the preceding text windows.
AR models of order >1 did not bring substantial improvement in the results; also,
estimating an AR(1) model is computationally much simpler than more complex
AR models.

The choice of the nonlinearity g in Formula (7) is another issue. The best results
were obtained when g was chosen as g(u) = tanh(u), corresponding to imposing a
‘cosh’ prior on the residuals s(¢) — as(t — 7). We have also previously [5] had good
results with the simple g(u) = sign(u) nonlinearity that corresponds to a Laplace
prior on the residuals. In the ICA of static text documents, a nonlinearity
g(u) = u*> has been found successful in e.g. [15], corresponding to the skewed
distribution of terms in documents. For dynamical text data, g(u) = tanh(u) was

“In a recent paper, Kolenda et al. [21] give a Bayesian method for choosing the number of estimated topics.
We became aware of their work during the review process of this paper.
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nevertheless better. Also, choosing a linear g (which neglects the non-gaussian,
higher-order structure of the data) did not prove successful in our experiments.

4.2. RESULTS ON CHAT LINE DATA

The LSI of order K = 100 was computed as a preprocessing step as described in (2).
Smaller K would also suffice, as we will demonstrate on another data set in the next
section. We estimated M = 10 topics of chat line discussion simultaneously, using
the orthogonal decorrelation presented in the end of Section 3. Figure 1 shows
how different topic time series wl.T Z,i=1,..., M are activated at different times.
We can see that the topics clearly are autocorrelated in time. The time span of
Figure 1 is almost 24 hr; some topics are more or less persistent during the whole per-
iod and some will come up again after a few hours. The same fact can also be seen in
the original text stream.

We now turn to analyze the projections W/ Z,, of the terms onto minimum com-
plexity directions. This information is complementary to that revealed by analyzing
the document projections w/Z, and offers an informative way of visualizing the
results. By listing the terms corresponding to the highest values of W/ Zm we get
a list of keywords for the i-th topic. The keywords are listed in Table I in the order
of decreasing importance. It is seen that each keyword list indeed characterizes one
distinct topic quite clearly. Due to polysemy, the same word may appear in more
than one topic. Topic 1 deals with Jesse Jackson and his illegitimate child, topic 2
is about parental control over children’s web usage and topic 3 is a general discussion
about G. W. Bush. Topic 4 is a religious discussion, topic 5 deals with problems
of the youth such as violence and drug abuse, and topic 6 is about the controversial
flag of the state of Georgia, US, due to which the NCAA basketball games risked

. Ll —

Figure 1. Activity of topics (vertical axis) in each chat window (horizontal axis). g(z) = tanh(u) and t = 5
were used in Formula (7). The uppermost time series corresponds to topic 1, the second to topic 2 etc.
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Table I. Keywords of chat line discussion topics related to the time series in Figure 1.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
jackson site bush religion violenc
sharpton web ashcroft god report
child net vote jesu youth
stori word kennedi bibl children
drudg parent presid religi gun
rainbow nanni cnn life point
monei internet time follow home
mistress block gore read drug
coalition kid question stori famili
tonight system elect univers satcher
pregnant access god exist health
affair child senat faith risk
black base power man factor
chenei chat thing book surgeon
jessi page fact earth prevent
Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
flag california join tax free
move power discuss cut liber

citi electr est exempt opinion
ncaa energi tonight monei religion
offici blackout room gop form
atlanta state studio hous polit
count deregul cnn congress conserv
game compani conserv pay birth
night crisi american interest philosophi
georgia price nea recess establish
chang plant union payer narrow
lose util keen secur restrict
confeder order type henri independ
hehe home chat hypocrit orthodox
chenei cost newsroom hyde bound

cancellation in Atlanta. Topic 7 involves the energy shortage in California, topic 8
corresponds to comments given by the chat line moderator, topic 9 is about taxation
and topic 10 is a short discussion dealing with the values of the politicians in the US.

One can compare the activities of the topic time series in Figure 1, and the term by
document matrix frequencies of the first few keywords of each topic; the frequencies
of the keywords nicely follow the activities of the time series.

The choice of the number of estimated topics is somewhat flexible. For example,
estimating M = 6 topics would have given keyword lists similar to topics 2, 3, 4, 5, 6
and 7 in Table I.

The evaluation of the results based on the keywords is rather subjective. Numeri-
cal measures are hard to find as the chat line discussion data is not labeled. For this
reason we present results on labeled data in the next section.
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Figure 2. Activity of topics (vertical axis) in each newsgroup window (horizontal axis). g(u) = tanh(uz) and
7t = 5 were used in Formula (7). The asterisks denote the newsgroup borders: sci.crypt, sci.med, sci.space
and soc.religion.christian. The uppermost time series corresponds to topic 1, the second to topic 2 etc.

4.3. RESULTS ON NEWSGROUP DATA

In this section we present experimental results on newsgroup data where consecutive
newsgroup articles are divided into overlapping windows similarly to what was done
with the chat line data. Newsgroup data is often similar to chat line data in the sense
that subsequent articles share a vague topic and the topic changes in time. The news-
group data is labeled (as articles are from distinct newsgroups) and so we are able to
quantitatively assess the separation results obtained by our algorithm and some
other methods. The data is from four newsgroups of the 20 Newsgroup corpus’:
sci.crypt, sci.med, sci.space and soc.religion.christian. The newsgroup articles, about
1000 from each group, were split to windows of 20 rows (excluding the headers) with
50% overlap between neighboring windows. Again, a binary representation of the
documents was chosen but this time no stemming was used as newsgroup language
tends to be quite precise, in contrast to chat line discussions. The size of the data
matrix X was 5000 terms by 4695 documents.

LSI (2) of order K = 50 was computed as a preprocessing step. 6, 8 or 10 mini-
mum-complexity directions w were estimated — discussion in a newsgroup can well
be divided into subgroups, if more than one topic is dealt with. Figure 2 shows
the topic time series w’ Z in the case of 10 estimated topics. The asterisks in Figure
2 denote the borders between different newsgroups. It can be seen that each estima-
ted topic time series corresponds to one of the newsgroups, or part of it. The key-
words are seen in Table II, and they also nicely correspond to newsgroup labels:
topics 1, 2 and 3 characterize different aspects discussed in sci.med, topics 4, 8, 9
and 10 in sci.space, topics 5 and 6 in sci.crypt and topic 7 is the only topic from
soc.religion.christian.

Shttp://www.cs.cmu.edu/~textlearning
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Table II. Keywords of newsgroup topics related to the time series in Figure 2.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
human problem bank design kei
effect diseas skeptic power chip
food scienc intellect station govern
studi medic chastiti control encrypt
brain studi surrend shuttl secur
glutam result shame orbit clipper
review food won option public
level effect patient human system
singl treatment mar provid algorithm
paper lot medic flight david
diet test blood engin bit
industri doctor pittsburgh modul phone
blood patient comput capabl data
real experi practic addition nsa
high medicin migrain system escrow
Topic 6 Topic 7 Topic 8 Topic 9 Topic 10
phone god space earth matter
drug christian launch venu burst
commun church satellit soviet rememb
kei christ market planet star

life sin project probe black
dealer jesu commerci mission galaxi
assum bibl servic surfac red
crimin approv plan mile grb
discov scriptur orbit kilomet dark
hold lord cost atmospher gamma
motiv homosexu vehicl venera galact
terrorist arami note lander shift
compromis faith develop orbit object
system love fund craft show
polic paul nasa balloon energi

The classification error of the newsgroup documents is computed in the following
way: The topic time series w! Z are first normalized to unit variance. Then a time ser-
ies is mapped to the newsgroup whose documents have the highest sum of time series
values in this particular time series. This is done at each time series separately. Now
on the other hand, each document ¢ is classified to that topic time series i in which the
document projection w/ Z(7) attains the maximum value. If the document is classified
to a time series representing a different newsgroup than where the document was
taken from, we consider the document misclassified. The total error is the percentage
of misclassifications.

The results are seen in Table III which shows average results over 20 trials with
different initial values for w. Complexity pursuit is compared to ordinary ICA
(FastICA [10]; this corresponds to complexity pursuit without the autoregressive
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Table III. Results of estimating 10, 8 or 6 topics on dynamical text document data (news-
group data) using complexity pursuit (with g = tanh), JADEzp [24], ordinary FastICA (with
g = tanh), delayed decorrelation [20] and temporal predictability maximization [30]. Average
results over 20 independent trials with different initial values for w.

Error Flops Error Flops Error Flops
Method M=10 -10° M=3 -10° M=6 -10°
Compl. purs. 7 =1 0.1515 9.29 0.1230 8.48 0.1081 8.01
Compl. purs. =5 0.1495 8.33 0.1423 7.82 0.1922 7.57
Compl. purs. 7 =10 0.1737 8.27 0.1933 8.05 0.2760 7.53
JADEp t=1 0.1774 0.69 0.2043 0.55 0.2204 0.37
JADErp t=5 0.1774 0.79 0.2043 0.55 0.2204 0.37
JADErp =10 0.1774 0.69 0.2043 0.55 0.2204 0.39
FastICA 0.4905 7.40 0.5460 7.16 0.6083 6.92
Del. decorr. 1 =1 0.6591 1.38 0.6603 1.08 0.6920 0.77
Del. decorr. =5 0.6356 1.40 0.6700 1.08 0.6709 0.78
Del. decorr. 7 =10 0.6688 1.38 0.6675 1.10 0.6852 0.77
Temp. pred. maxim. 0.4843 6.82 0.5442 6.82 0.6116 6.81

modeling of s(¢)), JADE7p [24], Kolenda’s delayed decorrelation [20] and Stone’s
temporal predictability maximization [30]. All these methods except ordinary ICA
and the temporal predictability maximization consider the data at the current time
instant and at some time lag t; we present here results on t = 1, 5 and 10. The tem-
poral predictability maximization instead considers short-time and long-time fluc-
tuations in the data simultaneously.

As seen in Table III, complexity pursuit yields the smallest error of classifica-
tion. Ordinary ICA, delayed decorrelation and temporal predictability maximiza-
tion are not as successful as complexity pursuit and JADE7p, giving evidence that
both the temporal structure and information-theoretic measures of the data need
to be taken into account. In all methods except JADEsp and delayed decorrela-
tion, the data matrix is first reduced to K = 50 dimensions using LSI (SVD) and
then M =10, 8 or 6 topics are estimated. In the cases of JADE7, and delayed
decorrelation, the LSI of order K= M was computed in the beginning. This
makes these two methods computationally less demanding than the other meth-
ods, as seen in Table III where the number of Matlab’s floating point operations
is given.

A new paper by Kolenda et al. [21] gives a method for determining the optimal lag
parameter t; this method is not applied here. The values for 7 found in [21] are some-
what larger (naturally, this is data dependent) than those used in Table III, but test-
ing e.g. values of © = 20, 50 or 100 in the delayed decorrelation method did not give
any improvements on the results.

Figure 3 is an example of a box plot of the results, showing the variation in the
results between different runs of the algorithms. All methods except JADE, are
sensitive to the initial choice of the vectors w.
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Figure 3. Box plot of the error in the case of M = 10 estimated topics and lag parameter t = 5. Methods
from left to right: complexity pursuit, JADEp, ordinary FastICA, delayed decorrelation and temporal
predictability maximization.

5. Conclusions

In this paper we have shown experimental results on how independent minimum
complexity projections of a dynamic textual data identify some underlying latent
or hidden topics in a dynamically evolving text stream. As an example of such dyna-
mically evolving data we used chat line discussions. The method we used for finding
the latent topics, complexity pursuit [11], is a generalization of projection pursuit to
time series and amounts to estimating projections of the data whose approximative
Kolmogoroff complexity is minimized. In our experiments the complexity pursuit
algorithm was able to find distinct and meaningful topics of the discussion. We com-
pared the complexity pursuit method to ordinary ICA and to ICA-type methods for
time-dependent data: JADE7p [24], delayed decorrelation [20] and temporal predict-
ability maximization [30]. In order to obtain numerical results we used labeled dyna-
mical newsgroup data; complexity pursuit was the most successful in recognizing
topically different newsgroup articles. Our results suggest that the method could
serve in queries on temporally changing text streams, e.g. complementing other topic
segmentation and tracking methods [1].
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