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a b s t r a c t

A method of complexity control in multinomial mixture modeling of multiple-marker
genotype data, imposing the Hardy–Weinberg equilibrium (HWE) between the genotype
values, is studied. This is a very natural restriction, and known to hold at population level
under modest assumptions. The hypothesis under study is that imposing this restriction
will prevent overfitting and lead to a better model. This is shown to indeed be case.
Experimental results on chromosomes 1 and 17 of the HapMap data demonstrate that the
restricted model generalizes better to unseen data, and also finds clusters that correspond
better to the ethnic groups of the HapMap, when comparedwith amodel without the HWE
restriction.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we discuss the problem of clustering genotype data that consists of multiple markers. We adopt the
statistical model-based approach, assuming that the data are generated by a multinomial mixture model, and further
assuming that the parameters of such a model can be identified by the maximization of the data likelihood.
We study the effect of requiring that the Hardy–Weinberg equilibrium (HWE) (Hardy, 1908; Weinberg, 1908) holds for

the genotype values. Our hypothesis is that imposing the HWE restriction acts as a means to complexity control, and helps
to reduce overfitting. Often in studies on genotype data, the number of observations (patients) is quite small compared with
the number of variables (markers) in the data, making model estimation prone to overfitting.
Genotype data of a diploid organism can be presented as unordered pairs of thematernal and paternal haplotypes: {A, A},

{a, a} and {A, a}. The data are thus categorical andwe do not assume any ordering between the values.Multinomialmixtures
is a well-known technique aimed at modeling such categorical data, similarly to Bernoulli mixtures for 0/1 data (Blekas and
Likas, 2004; Redner and Walker, 1984; Meilă and Heckerman, 2001; Song et al., 2007; Rufo et al., 2007; Patist, 2006).
Hardy–Weinberg equilibrium (HWE) is one of the key concepts in genetics. Let us denote the frequency of allele A by α;

then the frequency of allele a is 1−α. The Hardy–Weinberg equilibrium says that the frequency of {A, A} is α2, the frequency
of {a, a} is (1−α)2 and the frequency of {A, a} is 2α(1−α). Given amarker with any frequency distribution of the genotypes
{A, A}, {A, a}, and {a, a} in a large population, the simple assumptions of randommating and no selective effects lead to HWE
in one generation. The genotype frequencies will remain unchanged over successive generations.
In mixture modeling of genotype data of multiple markers, one can either enforce the HWE for the model parameters

or disregard it. Here we study the effect of this choice from the point of view of identifying populations. Using HapMap
data, http://www.hapmap.org, we show that enforcing the HWE leads to a multinomial mixture model that finds the
ethnic groups in the data more easily than a multinomial mixture model that disregards HWE. In addition to identifying
populations, we will also show that the HWE-enforced model, hereafter HWEmultinomial, fits better to unseen data. The
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original multinomial model, with no HWE imposed, has two unknown parameters for each marker: the probabilities of two
genotypes (the probability of the third genotype value is not a free parameter, as we know that the probabilities must sum
to 1). In contrast, the HWEmultinomial model has only one free parameter per marker. As a result, the HWEmultinomial
has less freedom in fitting to observed data, and does not overfit as easily to the possibly noisy details of the data. The
HWE restriction controls the flexibility of the HWEmultinomial model, leading into better generalization capability and less
overfitting.
Linkage disequilibrium, dependence between nearby markers, is another biological constraint in genotype data. We

concentrate our study on the effect of HWE, independently of linkage disequilibrium. To accomplish this, we select markers
randomly from a chromosome; as a result the markers are on average quite far from each other, and the effect of linkage
disquilibrium is small.
Multinomial models with HWE have been presented before in a single-attribute case, as opposed to our multivariate

approach. Glickman and Kao (2005) study the role of the Apo-E gene in the onset of cardiovascular diseases. They report
that imposing the HWE restriction results in poorer fit, which is not surprising as themodel has fewer free parameters. HWE
of HapMap data is studied in Wigginton et al. (2005) who give exact statistical tests, Barrett et al. (2005) who present an
analysis software, McCarroll et al. (2006) who discover common deletion polymorphisms, Fung et al. (2006) who study the
genotyping of Parkinson disease and Weinberg and Morris (2003) who comment on testing for HWE and possible reasons
for HWE violations. Monitoring deviations from HWE can be used as tools for quality control (Hosking et al., 2004), and for
identifying interesting genomic locations; see Kocsis et al. (2004) for a study on the use and underuse of HWE.
Methods for identifying population structure in multilocus genotype data have been presented by several authors.

Rannala and Mountain (1997) and Cornuet et al. (1999) discuss assigning individuals of unknown origin into potential
(known) source populations. Pritchard et al. (2000) and further Falush et al. (2003, 2007) give a Bayesian formulation
for finding the populations, and assigning individuals to them. The model is implemented as the structure program that
uses MCMC simulations to estimate the model parameters. Their model accounts for the presence of Hardy–Weinberg
disequilibrium by grouping individuals into populations within which the HWE more or less holds. We will discuss the
structure program in more detail in the experimental section, in which we show comparisons between it and the method
presented in this paper. Somewhat similar models are presented by Dawson and Belkhir (2001) and by Anderson and
Thompson (2002). Corander et al. (2003) give a Bayesian method for estimating hidden population substructure that uses
geographical sampling information and again assumes HWE and linkage equilibrium within populations. Excoffier et al.
(2005) use approximate Bayesian computation to estimate a model that is capable of explicitly handling mutations; their
model was defined previously by Bertorelle and Excoffier (1998) and (in a maximum likelihood formulation) by Wang
(2003).Wu et al. (2006) give amaximum likelihood approach, partially based on themethod presented by Tang et al. (2005),
and an efficient implementation.
This paper is organized as follows. In Section 2we presentmultinomial models, both the original and the HWE-restricted

version. In Section 3we show experimental results on both clustering and generalization, using the twomultinomialmodels
and the structure program. Section 4 concludes the paper with a brief discussion.

2. Models

We assume multivariate genotype data, and denote by t = 1, . . . , T the variables (attributes, markers, columns) and by
n = 1, . . . ,N the observations (individuals, rows) in the data. For brevity, we will use the symbols 1, 2 and 0 to denote the
genotype values {A, A}, {a, a} and {A, a}, respectively. Note that these are just symbols and we do not assume any ordering
between the values 1, 2 and 0. Thus xtn ∈ {0, 1, 2} is the value of the t-th marker of the n-th observation. Each marker
is considered separately of others, and hence observing, say, value 1 at one marker gives us no information of value 1 at
another marker. (The markers will be chosen far away from each other so that linkage disequilibrium can be neglected.)
Finally, we denote by k = 1, . . . , K the mixture components that are assumed to have generated the data. In practice, the
mixture components kwill correspond to different populations or groups to which the individuals belong.
Let
ptk = prob(variable t = 1|component k) = p(xtn = 1|k) (1)

for any n. Similarly,
rtk = prob(variable t = 2|component k) = p(xtn = 2|k) (2)

and
1− ptk − rtk = prob(variable t = 0|component k) = p(xtn = 0|k). (3)

Also let πk be the prior probability of mixture component k, and
∑
k πk = 1. The log likelihood of the multinomial mixture

model is then

L =
∑
n

log
∑
k

πk
∏
t

pI(xtn=1)tk r I(xtn=2)tk (1− ptk − rtk)I(xtn=0) − β

(∑
k

πk − 1

)
(4)

where I(xtn = `) is an indicator function, and β is a Lagrange multiplier, using which we ensure that the prior probabilities
sum to 1 (it is easily seen that β = N).
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In this reportwe restrict themultinomialmixturemodel by additionally requiring that theHWEholds. Using the notation
in Section 1, this translates to ptk = α2, rtk = (1−α)2 and 1− ptk− rtk = 2α(1−α). These equations can be combined into

rtk = (1−
√
ptk)2 (5)

which is the restriction we want to apply to our parameters. The log likelihood (4) then becomes

L =
∑
n

log
∑
k

πk
∏
t

pI(xtn=1)tk (1−
√
ptk)2I(xtn=2)(2

√
ptk − 2ptk)I(xtn=0) − β

(∑
k

πk − 1

)
. (6)

Wewill use an EM algorithm (Dempster et al., 1977) for estimating the parameters of themodel. The update equation for
the parameter πk is similar to the update rule in the original multinomial mixture model (Redner andWalker, 1984; Blekas
and Likas, 2004; Patist, 2006):

πk =
1
N

∑
n

skn (7)

where skn is the posterior probability of component k having created observation n. The update rule of skn in turn is different
from its update rule in the original multinomial mixture model; this time it is computed as

skn =
πk
∏
t
pI(xtn=1)tk (1−

√
ptk)2I(xtn=2)(2

√
ptk − 2ptk)I(xtn=0)∑

k
πk
∏
t
pI(xtn=1)tk (1−

√
ptk)2I(xtn=2)(2

√
ptk − 2ptk)I(xtn=0)

. (8)

The update equation for the parameter ptk is in turn

√
ptk =

∑
n
skn(I(xtn = 1)+ 1

2 I(xtn = 0))∑
n
skn

. (9)

For comparison, the update equation in the original multinomial mixture model is

ptk =

∑
n
sknI(xtn = 1)∑
n
skn

. (10)

Also for curiosity let us see how the update equation for rtk would look like, derived from (5):

√
rtk =

∑
n
skn(I(xtn = 2)+ 1

2 I(xtn = 0))∑
n
skn

. (11)

An EM algorithm for genotype data, taking into account the Hardy–Weinberg equilibrium, is now given by (7)–(9).
Our hypothesis is that incorporating the HWE restriction is a convenient and biologically well motivated way to reduce

overfitting. The experimental section gives supporting evidence for this.

3. Results

We show clustering and generalization results on both the original multinomial model and the HWE-restricted
multinomial model. The experiments are conducted on Matlab, in which the two multinomial models are implemented.
In addition, we will show clustering results on the structure program (Pritchard et al., 2000), using the implementation
given at http://pritch.bsd.uchicago.edu. Let us start by describing the data sets used in the experiments.

3.1. Basic properties of the data

In the HapMap project (The International HapMap Consortium, 2003), http://www.hapmap.org, the complete genotype
information of 270 persons was identified and delivered in the public domain. The 270 persons consist of 90 European, 90
African and 90 Asian individuals. More specifically, the ‘‘European’’ samples are Utah residents with ancestry from northern
and western Europe; the ‘‘African’’ samples are from the Yoruba people of Ibadan, Nigeria; and the ‘‘Asian’’ samples consist
of 45 Japanese individuals from Tokyo and 45 Han Chinese individuals from Beijing. We used the phase II data, release 21.
We took chromosome 1 and screened the markers such that all markers having missing values in any of the individuals

were removed. We then selected T = 20, 50, 150 or 500 markers randomly along the chromosome. We repeated this 200
times, ending up with 200 data sets of randommarkers at each T . Similar samples were drawn from chromosome 17.



Author's personal copy

1714 E. Bingham, H. Mannila / Computational Statistics and Data Analysis 53 (2009) 1711–1719

Fig. 1. Histogram of the minimum allele frequency in the markers of chromosome 1 (left) and chromosome 17 (right). In total, there are 46468 markers
in chromosome 1 and 18611 markers in chromosome 17 in our data.

There are some issues of data quality that one should keep inmind. TheMAF, minimum allele frequency, is quite small at
some markers, meaning that the value of the marker is nearly constant. This kind of a marker does not help differentiating
between the rows (persons) of data. However, we do not remove such markers from the data. Fig. 1 (left panel) shows the
histogram of the MAF values in chromosome 1. We see that out of a total of 46468 markers, about 13000 or 28% have MAF
≤ 0.05. In chromosome 17 the MAF is not as small on the average, but still out of 18611 markers, about 19% have MAF ≤
0.05 (Fig. 1, right panel).
Moreover, the Hardy–Weinberg equilibrium does not always hold in the data. We test the HWE at each marker by the

chi squared goodness-of-fit test, and find that the P value of the test is often small: in chromosome 1, 18% of markers have
P < 0.05, and still 9% of markers have P < 0.001. In chromosome 17, the violations are evenmore frequent: 25% of markers
have P < 0.05 and 13% of markers have P < 0.001. However, the issue of multiple testing has to be taken into account:
when performing tens of thousands of tests, it may well be that some of them produce a very small P value just by chance.
After Bonferroni correction, there are still 3%–5% of markers having P < 0.05 and 2%–3% of markers having P < 0.001
in chromosomes 1 and 17. So the data do not always obey the Hardy–Weinberg equilibrium. This is perhaps due to finite
population size and nonrandom mating, or to genotyping errors. Indeed, many other methods for finding the population
structure (Pritchard et al., 2000; Dawson and Belkhir, 2001; Anderson and Thompson, 2002; Corander et al., 2003) use the
HWE violations. For a discussion on the detection of genotyping errors by HWE violations see Hosking et al. (2004). Still,
in our experiments shown in the sequel it is seen that the HWE is a useful constraint. In particular, we do not remove the
markers that are in Hardy–Weinberg disequilibrium, but keep them in the data.

3.2. Choosing the number of components

Themodel order, that is, the number of multinomial components must be chosen by the user. Popular ways to do this are
the Bayesian Information Criterion (BIC) (Schwarz, 1978), Akaike Information Criterion (AIC) (Akaike, 1973) and the peak
of the out-of-sample likelihood curve. BIC and AIC consider the ability of the model to fit to the training data; this is well
motivated when the aim is to study the properties of the data at hand and obtain a parsimonious data explanatory model,
instead of predicting the behavior of unseen data. Ripley (1996) motivates the use of AIC in models estimated by likelihood
maximization. The BIC and AIC optimal numbers of multinomial components in our data are typically 3 or 4. This is not
surprising, as the HapMap data are known to contain observations of 4 ethnic groups, two of which might be similar to each
other (the Japanese in Tokyo and Han Chinese in Beijing).
On the other hand, the prediction or out of sample performance is often considered important. In this case the model

order is selected based on the maximum of the cross validated out of sample likelihood. Smyth (2000) gives a nice analytic
motivation for this. Again, not surprisingly, the optimal number of multinomial components in our data sets falls to 3 or a
few more.
In the experiments we show results for K = 3, . . . , 8 components.

3.3. Clustering accuracy with respect to the HapMap ethnic groups

3.3.1. HWE-restricted multinomial versus ordinary multinomial
We cluster the individuals into K groups using themultinomial models. More specifically, we select for each individual n

the component (that is, cluster) k for which the posterior probability skn is the largest over k = 1, . . . , K . For each cluster, we
check which of the 3 ethnic groups of the HapMap project it best represents. (For simplicity of the presentation of results,
we will merge the Japanese and Chinese groups together, to get 3 groups of equal size. However, the multinomial models
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Fig. 2. Classification error in HapMap ethnic groups. Number of classification errors in the HWEmultinomial model minus number of classification errors
in the multinomial model. The difference is statistically significant. The box plot shows the distribution of the difference: the boxes have lines at the lower
quartile, median, and upper quartile values. The whiskers are lines extending from each end of the boxes out to the most extreme data value within 1.5
times the interquartile range of the sample. 200 data sets of HapMap chr 1 (top) and chr 17 (bottom), each containing 50 (top) or 20 (bottom) markers at
random locations. Horizontal axis: number of components in the multinomial models.

have no intrinsic preferences towards equal group sizes.) Thenwe count the number of individuals that do not belong to the
chosen group, and interpret them as erroneously classified. Let us emphasize that the clustering is completely unsupervised,
and the information on the ethnic groups is only used to assess the results.
The estimation of the model parameters by the EM algorithm is prone to local maxima of the likelihood, and depends

on the initialization of the model parameters. A way to overcome this was suggested by Blekas et al. (2003) who propose
an incremental learning scheme. However, as the estimation of a single model is computationally quite simple, we rely on
repeated runs of the EM algorithm using random initializations. We then simply choose the set of parameters which yields
the highest in-sample log likelihood. In the experiments presented in this subsection, we initialized the EM algorithm 10
times and chose the best parameters among those runs.
Both multinomial models are reasonably good in identifying the populations. One can conclude that the data lend

themselves easily to clustering, and the peculiarities of the data discussed in Section 3.1 do not pose difficulties. Markers
having a very small minimum allele frequency, and thus having almost a constant value over the individuals, are not
problematic, and neither are the markers whose values violate the Hardy–Weinberg equilibrium.
In the framework of identifying the HapMap populations, the HWE-restricted multinomial model outperforms the

original multinomial model; see Fig. 2 for results for marker sets of T = 20 and T = 50 markers. The results for other
sizes of marker sets are similar (data not shown). The box plot shows the distribution of the difference between the number
of erroneously classified individuals in the HWEmultinomial model and the multinomial model.
We also used the t test on the difference between the number of erroneously classified individuals in the

HWEmultinomial model and the multinomial model. For each number of markers T and number of components K we
tested 200 data sets, over which the behavior of the difference is systematic. The difference is statistically significant for
most combinations of T and K : in chromosome 1, the P values given by the t tests are ≤ 9 × 10−4. The only exceptions



Author's personal copy

1716 E. Bingham, H. Mannila / Computational Statistics and Data Analysis 53 (2009) 1711–1719

Fig. 3. Left: Out of sample log likelihood in a data set of 150 randomly selected markers of HapMap chr 17. The error bars show one standard error in both
directions. Horizontal axis: number of mixture components. Right: the same, zoomed in.

are the cases T = 150 and T = 500 for which the smallest K are not enough to yield statistical significance. A general
observation is that the larger the K , the smaller the P values. Similarly, in chromosome 17, at T = 20, 50 or 150, the P values
of the t tests are≤0.0452 at all K . In the most difficult setting having T = 500, at K = 3 the twomodels perform identically
but at K ≥ 4 the HWEmultinomial model is statistically significantly more accurate.

3.3.2. HWE-restricted multinomial versus structure
As a comparison, we also clustered the data using the structure program (Pritchard et al., 2000; Falush et al., 2003). To

allow faithful comparisons to the multinomial models, we did not use the admixture nor the correlated allele frequency nor
linked loci options, although they are available in the current version of the program. (We would like to emphasize that our
aim in this study was to see the effect of complexity control in the clustering accuracy of a multinomial model, and not to
devise a widely applicable method such as structure.) The structure program uses MCMC simulations to fit a probabilistic
model to the data, and again the results are dependent on a successful initialization. We initialized the simulation 10 times
at each data set and chose the in-sample likelihood optimal parameters among those 10 initializations. The lengths of both
the burn-in and actual simulation were 40000 steps.
In the case of chromosome 1, for T = 50markers, the structure programwas able to find the populations of HapMap data

better than the HWEmultinomialmodel, at K = 3 populations, over 100 data sets. At K = 4 and K = 5 the HWEmultinomial
model was slightly better, but not statistically significantly. At chromosome 17, for T = 20 markers, over 90 data sets, the
structure program was statistically significantly better (P value of t test 8 × 10−4) at K = 3 populations, but at K = 4
and K = 5 the HWEmultinomial model was better (P values 0.0217 and 0.0260). As a conclusion one can say that the
HWEmultinomial model is comparable to the structure program in recognizing populations in HapMap data. In addition,
the HWEmultinomial model is much simpler to implement and faster to estimate than structure: the time required for
estimating the HWEmultinomial model by an EM algorithm is less than 1% of the time required for the MCMC simulations
in structure.

3.3.3. Choosing the number of markers
A further question is the choice of the number of markers T . Irrespective of the method, it seems that the larger the T

the better, in terms of clustering accuracy. However, increasing T will increase the number of parameters in the model,
making the estimation slower and prone to local minima. At T = 20, the amount of erroneously clustered individuals is
about 10%–20% at all models; at T = 50 it decreases to 1% or 2%, and at T = 150 all models mostly perform flawlessly.
Among these, T = 50 is a suitable compromise.

3.4. Out-of-sample log likelihood

The out-of-sample (that is, test data) log likelihood (OSLL) measures how well the model is able to generalize to unseen
observations. Typically models that tend to overfit have poor out-of-sample likelihood.
We used 10-fold cross validation on each data set. That is, we split the observations into 10 parts such that 9/10 of the

observations were used to estimate themodel. The likelihood of the remaining 1/10 observations given themodel was then
computed. This was repeated at each part of the data, to get the standard error. At each part, the model was estimated only
once, andwe did not select any in-sample optimal parameter values as was done in Section 3.3 at the clustering experiment.
An example of one data set of 150 randomly selected markers in chromosome 17 is given in Fig. 3.
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Fig. 4. Difference in the out of sample log likelihoods (OSLL): OSLL of HWEmultinomialminus OSLL ofmultinomial. The difference is statistically significant
at all K . Results over 200 data sets, each containing 150 (top) or 500 (bottom) randomly selected markers of HapMap chr 1 (top) or chr 17 (bottom).
Horizontal axis: K , number of mixture components.

The OSLL of the HWE-restrictedmodel is statistically significantly better than the OSLL of the originalmultinomialmodel.
Box plots of the results over 200 data sets with the number of markers T = 150 and T = 500 are shown in Fig. 4. Results for
other values of T are similar. We also conducted a t test on the difference between the OSLL’s and saw that the difference
is statistically significant: in both chromosomes 1 and 17, at T = 20, 50, 150 and 500, at all numbers of components
K = 3, . . . , 8, the P values are extremely small (the largest being 3 × 10−62.) A general observation is that the P values
get smaller as K increases or T decreases. Of course, the P values in a t test are highly dependent on the number of samples,
which in our case is quite large, resulting from 10-fold cross validation on 200 data sets.
In terms of the out of sample likelihood it is particularly interesting to see the behavior of the models at a very large

number of markers T : the number of parameters of the model is then large compared to the number of observations, and
overfitting can be a problem. We see that the HWEmultinomial model outperforms the original multinomial model also at
the largest T .
It is not straightforward to compare the out-of-sample likelihoods of the multinomial models and the structure program

(Pritchard et al., 2000; Falush et al., 2003), as themodels are quite different;we have thus chosen not to report out-of-sample
likelihoods of structure.

3.5. Perlegen data

We also ran experiments on the Perlegen data (Hinds et al., 2005) containing the genotypes of 71 individuals, given
at http://genome.perlegen.com/browser/download.html. The OSLL of the HWE-restricted multinomial model was clearly
better than the OSLL of the original model, the difference being statistically significant. This again shows that the restricted
model generalizes better to unseen data. In terms of clustering the data into populations— the Perlegen data contain 3 ethnic
groups — we did not get statistically significant results, due to the small size of the data.
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4. Conclusions

We have studied the use of the Hardy–Weinberg equilibrium (HWE) as a means of complexity control in mixture
modeling of genotype data. We have presented a multinomial mixture model that takes into account the HWE between the
frequencies of marker values. The HWE is a natural biological constraint that is known to hold at population level, assuming
random mating and no selective effects. Our hypothesis was that HWE provides a way of regularization or complexity
control, preventing overfitting when the number of markers is quite large compared to the number of observations. Our
findings indicate that this is indeed the case: the multinomial model incorporating the HWE fits better to unseen data than
an ordinary multinomial model. Interestingly, our model is also able to identify the ethnic groups of HapMap data more
accurately than the ordinary model.
We have compared our model with one of the state-of-the art methods for identifying populations, namely the structure

program (Pritchard et al., 2000) and found the methods comparable with each other in HapMap data. In addition, the
proposed model is simpler, and therefore significantly faster to estimate than structure. A topic of an interesting follow-
up study would be to compare the two methods on a data set containing many more populations than the HapMap data.
We wanted to concentrate on the effect of using HWE as a constraint in a multinomial mixture model, and we thus

made some simplifying assumptions. Our model is a single-cause model: we assume that each individual originates from
one population (one mixture component) only. In the case of admixture populations this does not hold, but instead, the
genotype of an individual consists of material from several populations. Probabilistic methods that take this into account
include the structuremodel by Pritchard et al. (2000) and themodels by Dawson and Belkhir (2001), Bertorelle and Excoffier
(1998), Wang (2003), Corander et al. (2004) and Anderson and Thompson (2002). Various multiple-cause latent variable
models for multinomial data such as PLSA (Hofmann, 2001), LDA (Blei et al., 2003) and MPCA (Buntine, 2002) could also be
used or extended to handle this kind of data.
Another simplifying assumption in our proposed model is that it does not take linkage disequilibrium, or dependence

betweenneighboringmarkers into account. A possible future directionwould be to incorporate this, too. In the presentwork,
we chose the markers randomly along the chromosome, assuming that the distance between randomly chosen markers is
quite large and the effect of linkage disequilibrium is thus small. However, it might be possible to include the dependency
structure of the markers in the model.
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