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ABSTRACT: An abstract generative string rewriting device is introduced for
modeling such practical program generation and optimization tools as macro
processors. The novel device is called a monosystem, and it differs from such
classical abstract generative devices as Chomsky grammars (which have more
applications in program analysis than in program generation) by being able
to operate on an infinite alphabet and by being sensitive to an unbounded
two-sided context. The infinite alphabet makes it conceptually simple to deal
with structured symbols (such as macro calls), and the unbounded context-
sensitivity promotes optimization. An extension (called a trisystem) of the
basic monosystem model is capable of emulating both type-1 Chomsky gram-
mars and a variety of Lindenmayer systems.

A monosystem divides into a rule base and a separate control mechanism.
The whole rule base is represented as a single function called a letter-refiner,
which is capable of replacing any symbol occurrence in any context with
an appropriate new substring. Since only one symbol occurrence is thus
rewritten at a time, it is natural to record the rewriting history in a tree form.
The rewriting context for each tree leaf is extracted from some cross section
of the same tree. The actual cross section is determined by a function called
a belt-selector, which is the single user-adjustable parameter of the control
mechanism.

The central problem with monosystems is to guarantee that the output
has the intended semantics. If nothing else is known about the letter-refiner
than that it is semantics-preserving, the belt-selector must not allow paral-
lelism (and more specifically, the rewriting context of any tree leaf must
equal the tree frontier, that is, the set of all the contemporary leaves). When
the letter-refiner fulfills a sufficiently strong additional constraint, synchro-
nous and even asynchronous parallelism become possible. Moreover, it then
becomes possible to switch between sequential and parallel rewriting (and
even between various subtypes of either one), without any need to modify
the letter-refiner. These switches may change the structure but not the se-
mantics of the output.

This preliminary report is best seen as a tutorial. However, a self-contained
formalization of the monosystem model and its properties is included as a set
of appendices. As yet, the main emphasis is on definitions rather than on
theorems, and all proofs are accordingly omitted.
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1 INTRODUCTION

Computerized information processing often involves manipulation of finite
strings of symbols. For example, computer programs themselves, when in-
terpreted as data, are finite instruction sequences, and their compile-time
generation and optimization may be seen as string manipulation. In addition
to atomic symbols like the characters in a character string, structured sym-
bols are accordingly allowed to occur in the strings considered: we defini-
tively want to be able to choose so high a level of abstraction that computer
programs are treated as instruction sequences rather than as character se-
quences.

We are especially interested in the case in which the elementary string
manipulation operations available are what we call refinements: one symbol
occurrence is replaced with an appropriate new substring, as depicted in
Figure 1.

Figure 1: A refinement.

By introducing an auxiliary root node, we are able to represent an arbitrary
series of successive refinements as a history tree, as suggested in Figure 2.
The particular tree in the figure is seen to be the result of five successive leaf
unfoldings, each of which records a single refinement. Obviously, the tree
representation partially hides the actual order in which the refinements are
performed.

Figure 2: A series of refinements represented as a history tree.

For the purpose of tasks like optimizing code generation, the refinements
should be context-sensitive, and furthermore, the effective context should
be unbounded in both directions. The string to be used as the refinement
context is extracted from such a cross section of the history tree that contains
the particular leaf to be unfolded; the selected cross section is called the
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unfolding context. (So our “unfolding context” is a sequence of tree nodes,
whereas our “refinement context” is a sequence of symbols. However, there
is little need to be afraid of mixing up these two terms, since whenever one
of them is used below, its denotation is usually obvious.) Even if it might
perhaps seem natural to require that the unfolding context always equals the
frontier, that is, the set of all the contemporary leaves of the history tree, we
specifically do not adopt this restriction.

EXAMPLE 1. ▽

Consider the tree in Figure 3, and suppose that the next leaf to be un-
folded is the only one with symbol M, marked with a black ring. Assuming
that the unfolding context of this leaf is constituted by the nodes marked
with white rings, we notice that the two sides of the refinement context of
this instance of M are PWT and UN.

The designated unfolding context obviously differs from the frontier. If the
unfolding context equaled the frontier, then the two sides of the refinement
context would be PWR and ZQQ. △

S

U

Z Y

Y S

R

MTP W

N

QQ

Figure 3: An unfolding context that differs from the frontier.

Next we look at three program generation tools. The unfolding context
used by the first tool always equals the frontier, which is not the case with the
other two tools.

• Consider macro processors [2, 4, 3, 5]. The expansion of each macro
call (which we interpret as a single structured symbol), that is, each re-
finement, may be sensitive to the current values of any global macro-
time variables [3, pp. 61–64], and these values customarily propagate
from left to right. This implies that at each tree leaf unfolding, all
the leaves on the left-hand side must possess terminal symbols rather
than other macro calls; otherwise, the values of the variables could
not be properly evaluated. Therefore, the leaf processing order is
strictly depth-first and left-to-right, and the unfolding context neces-
sarily equals the frontier (despite the fact that macro processors actu-
ally ignore the right-hand side of the refinement context).

Figure 4 depicts a representative example of the unfolding context
selection scheme: the cross section selected for the node with the
black ring is again indicated by white rings. (Notice that this particular
figure includes all the nodes of the final history tree, even if they are
not yet present when the designated node is unfolded.)
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Figure 4: The unfolding context used by macro processors.

Figure 5: The unfolding context used by Lindenmayer systems.

Figure 6: The unfolding context used by the ReFlEx prototype.
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• Parametric Lindenmayer systems [24, 23, 18, 17, 22, 21] output se-
quences of picture drawing commands and thus indirectly produce
high-quality graphics. They are perhaps the best-known example of
application-oriented extensions to the classical Lindenmayer system
model [8, 25, 9] of formal language theory: like macro processors but
unlike classical Lindenmayer systems, parametric Lindenmayer sys-
tems support the use of structured symbols.

With Lindenmayer systems (whether parametric or not), the tree
nodes are unfolded in a generation-by-generation fashion, and the
“horizontal” cross section constituted by all the nodes in the current
generation serves as the unfolding context. In practice, the nodes
within each single generation may well be unfolded sequentially in
any order, rather than simultaneously, but then it should be taken
care that the unfolding context is still given by the horizontal cross
section and not by the frontier.

The two trees of Figure 5 depict only the two extremes among the
possible unfolding moments of the leaf with the black ring.

• Figure 6 illustrates the unfolding context used by an utterly simplistic
prototype, called ReFlEx [10, 11, 12], of a still nonexistent tool pro-
posed by us for optimizing machine-level code generation [1, 14, 20,
19]. With this unfolding context, the leaf processing order becomes
completely free. The two trees of Figure 6 again depict only two of
the possible unfolding moments of the leaf with the black ring. (The
moment depicted on the left is of course the earliest possible.)

Our present goal is to devise a general abstract model to capture such con-
crete string generation tools as macro processors, parametric Lindenmayer
systems, and the ReFlEx prototype. The model is to have two main compo-
nents: a rule base specifying the acceptable refinements (which are typically
unboundedly context-sensitive); and a separate control mechanism driving
the application of the rules. Unlike the rule base, the control mechanism
should, in general, be aware of the history tree and, in particular, determine
the tree cross section to be used as the unfolding context. The following two
aspects of the unfolding context selection appear especially interesting.

• Progressiveness.
Macro processing is strictly sequential whereas the Lindenmayer re-
writing is synchronously parallel, and we claim that the ReFlEx re-
writing is asynchronously parallel. Which unfolding context selection
schemes enforce a sequential leaf processing order, and which ones
allow synchronous or even asynchronous parallelism? On the other
hand, can we find out whether a given scheme may result in prema-
ture halting, that is, halting before all the history tree leaves possess
terminal symbols?

• Soundness.
When the final string consisting of terminal symbols is interpreted
as, say, a program, can we be sure that it has the intended seman-
tics? If the unfolding context always equals the frontier (as with macro
processing), it seems sufficient that each single refinement rule is
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semantics-preserving: after each leaf unfolding, the string contained
by the new frontier still has the intended semantics. But what if the
unfolding context differs from the frontier (as with the Lindenmayer
rewriting or with the ReFlEx rewriting)?

1.1 Structure of this report

In the remaining Sections 2–7, we give a detailed but still somewhat informal
description of the abstract model suggested above. Section 2 first focuses on
the key component of the control mechanism of the model, and Section 3
then presents the structure and operation of the full model. The expressive
power of the model is examined in Section 4, where we return to the three
concrete string generation tools discussed above. Section 5 scrutinizes some
interesting internal properties (such as progressiveness and soundness) of the
model, and Section 6 sketches a possible extension to the model. Finally,
some concluding remarks are presented in Section 7.

A completely formal definition of the model is included but only as a set of
appendices, that is, Sections A–I. More specifically, the appendices provide a
backbone for Sections 2, 3, and 5; and each one of these three earlier sections
accordingly ends with a subsection called ‘Pointers into the appendices’. The
presentation in the appendices is self-contained but rather concise.

The emphasis of this report is on definitions rather than on theorems. As
yet, all our actual claims are preliminary conjectures only: even if they are
explicitly marked as ‘Theorems’ or ‘Propositions’, their proofs are omitted.
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2 TREES, TREE BELTS, AND BELT-SELECTORS

The control mechanism of our string generation tool model will be described
in its entirety in Section 3. Here we take a preliminary step by defining
belt-selectors: the control mechanism has a single user-adjustable parameter,
which is a belt-selector. Belt-selectors constitute a particular subclass of such
functions that take a given node in a given tree and return such a cross-
section-type subset, or a belt, of the tree nodes that contains the argument
node. (Belt-selectors were originally introduced in [13], where a proof of
Theorem 8 below can be found.)

2.1 Trees

A tree consists of a finite and non-zero number of nodes. Each tree is rooted
and ordered, as will soon be explained. (This denotation of the term ‘tree’
adopted here is a standard one; see [6], for instance.) Example 2A introduces
a sample tree, which will be utilized by several examples in the present Sec-
tion 2.

EXAMPLE 2A. ▽

Let the tree in Figure 7 be called A. By convention, “node a3”, for in-
stance, refers to the unique node in tree A labeled as ‘3’. The reason why
node a9 is distinguished is that we have, more or less arbitrarily, chosen it to
have an important role in some examples below. △

A

15

8 14

0

321

4

765 12

9 1110

13 16 17

Figure 7: Tree A.

The rootedness means that each tree has exactly one root. Every tree node
different from the root has exactly one father in the tree and is called a son of
the father. Such tree nodes that have no sons are leaves of the tree, and the
frontier of the tree is the set consisting of all the leaves.

We say that a given node n′ is an ancestor of a given node n if the pair
〈n′, n〉 belongs to the reflexive-transitive closure of the binary ‘is a father of’
relation. (By “a pair” we always mean an ordered pair.) If n′ is an ancestor of
n, then n is a descendant of n′. Moreover, n′ is a proper ancestor of n, and
n is correspondingly a proper descendant of n′, if n′ is an ancestor of n and
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n′ 6= n.

EXAMPLE 2B. ▽

The root of tree A is node a0, and the frontier of A consists of all the nine
leaves a5, a8, a7, a14, a13, a15, a16, a17, and a3.

The father of a9 is a2, and so a9 (like a10 and a11) is a son of a2. The
ancestors of a9 are a9, a2, and a0 (of which the last two are proper ancestors).

△

The orderedness means that there is a total “left-to-right” order among the
sons of any given tree node. If two distinct nodes have the same father, then
one of them is a left-brother of the other, and the latter is a right-brother of
the former.

We say that a given node n′ is a left-relative of a given node n if there
are such nodes n′

0 and n0 in the tree that n′
0 is a left-brother of n0, n′ is a

descendant of n′
0, and n is a descendant of n0. If n′ is a left-relative of n, then

n is a right-relative of n′.

EXAMPLE 2C. ▽

In tree A, node a9 has right-brothers a10 and a11, and a10 has a9 as a left-
brother and a11 as a right-brother.

Node a8 is an example of a left-relative of a9: a1, which is an ancestor of
a8, is a left-brother of a2, which is an ancestor of a9. Correspondingly, a9 is a
right-relative of a8. △

Note that for each two distinct nodes n1 and n2 in any given tree, exactly
one of the following statements holds: n1 is a proper ancestor of n2; n1 is a
proper descendant of n2; n1 is a left-relative of n2; or n1 is a right-relative of
n2.

2.2 Angles between tree nodes

Each tree node has a unique altitude, and each pair of tree nodes has a
unique angle.

Definition 1. The altitude of a given tree node is the number of its proper
ancestors.

Definition 2. The angle of a given tree node pair 〈n, n′〉 is denoted as
∢(n, n′) and defined as the unique integer triple 〈i, d, j〉 that meets the fol-
lowing conditions.
1. i [respectively, j] is the difference of the altitudes of n [respectively, n′]

and the one of the common ancestors of n and n′ that has the greatest
altitude.

2. d = 0 if one of n and n′ is an ancestor of the other, d = −1 if n′ is a
left-relative of n, and d = 1 if n′ is a right-relative of n.

Note that ∢(n, n′) = 〈i, d, j〉 always implies ∢(n′, n) = 〈j,−d, i〉. Note
also that a given triple 〈i, d, j〉 may appear as a node pair angle if and only
if all the following conditions are met: i ≥ 0, d ∈ {−1, 0, 1}, j ≥ 0, and
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d = 0 ⇔ i · j = 0.

EXAMPLE 2D. ▽

Table 1 lists the angles from node a9 to the other nodes of tree A. △

n ∢(a9, n) n ∢(a9, n) n ∢(a9, n)
a0 〈2, 0, 0〉 a6 〈2,−1, 3〉 a12 〈0, 0, 1〉
a1 〈2,−1, 1〉 a7 〈2,−1, 3〉 a13 〈0, 0, 1〉
a2 〈1, 0, 0〉 a8 〈2,−1, 4〉 a14 〈0, 0, 2〉
a3 〈2, 1, 1〉 a9 〈0, 0, 0〉 a15 〈1, 1, 2〉
a4 〈2,−1, 2〉 a10 〈1, 1, 1〉 a16 〈1, 1, 2〉
a5 〈2,−1, 3〉 a11 〈1, 1, 1〉 a17 〈1, 1, 2〉

Table 1: The angles from node a9 to the other nodes of tree A.

2.3 Belts and belt-selectors

Definition 3. A belt of a tree is any such subset of the tree nodes that each
leaf of the tree has exactly one ancestor in the subset.

In other words, a tree belt is a cross section of the tree. In any tree, both
the frontier and the set consisting of the sole root are belts. For some less
trivial belt instances, see Example 2E.

EXAMPLE 2E. ▽

Table 2 lists all such belts of tree A that contain node a9. △

{a1} ∪ {a9} ∪ {a10, a11, a3} {a5, a6, a7} ∪ {a9} ∪ {a10, a11, a3}
{a1} ∪ {a9} ∪ {a15, a11, a3} {a5, a6, a7} ∪ {a9} ∪ {a15, a11, a3}
{a1} ∪ {a9} ∪ {a10, a16, a17, a3} {a5, a6, a7} ∪ {a9} ∪ {a10, a16, a17, a3}
{a1} ∪ {a9} ∪ {a15, a16, a17, a3} {a5, a6, a7} ∪ {a9} ∪ {a15, a16, a17, a3}

{a4} ∪ {a9} ∪ {a10, a11, a3} {a5, a8, a7} ∪ {a9} ∪ {a10, a11, a3}
{a4} ∪ {a9} ∪ {a15, a11, a3} {a5, a8, a7} ∪ {a9} ∪ {a15, a11, a3}
{a4} ∪ {a9} ∪ {a10, a16, a17, a3} {a5, a8, a7} ∪ {a9} ∪ {a10, a16, a17, a3}
{a4} ∪ {a9} ∪ {a15, a16, a17, a3} {a5, a8, a7} ∪ {a9} ∪ {a15, a16, a17, a3}

Table 2: The sixteen belts of tree A that contain node a9.

It is easy to see that for every tree node n, there is at least one such belt
that contains n: for example, the node set that consists of n itself and of every
such leaf that is not a descendant of n is clearly a belt. Therefore, there exists
at least one belt-provider.

Definition 4. A belt-provider is any such two-argument function that takes a
tree and a node in the tree and returns one such belt of the tree that contains
the node.

8 2 TREES, TREE BELTS, AND BELT-SELECTORS



Definition 5 of a belt-selector, to be presented next, is illustrated by Fig-
ure 8: since ∢(n1, n

′
1) = 〈3, 1, 4〉 = ∢(n2, n

′
2) and ∢(n1, n

′′
1) = 〈3, 1, 2〉 =

∢(n2, n
′′
2), we have n′′

1 ∈ s(X1, n1) ⇒ n′′
2 ∈ s(X2, n2) for any such belt-

provider s that is a belt-selector.

n
1’’
n

1’
n

1

X 2

n
2

n
2’’
n

2’

X 1

Figure 8: Uniangularity.

Definition 5. A given belt-provider s is uniangular, and hence called a belt-
selector, if it meets the following condition.
• Let X1 and X2 be two trees. Moreover, let n1 be a node of X1, let

n′
1 be a leaf of X1, and let the unique ancestor of n′

1 in s(X1, n1) be
denoted as n′′

1 . Similarly, let n2 be a node of X2, let n′
2 be a leaf of X2,

and let the unique ancestor of n′
2 in s(X2, n2) be denoted as n′′

2. Then
∢(n1, n

′
1) = ∢(n2, n

′
2) implies ∢(n1, n

′′
1) = ∢(n2, n

′′
2).

The following two examples demonstrate some consequences of the uni-
angularity requirement.

EXAMPLE 3. ▽

Consider tree B in Figure 9. We argue that there is no such belt-selector
that can select belt {b1, b6, b3} for node b3. The reason is that ∢(b3, b5) =
〈1,−1, 3〉 = ∢(b3, b7) but ∢(b3, b1) = 〈1,−1, 1〉 6= 〈1,−1, 2〉 = ∢(b3, b6).

△

B

5

6

21

4

3

0

8

97

Figure 9: Tree B with a belt that no belt-selector can select for node b3.

EXAMPLE 4A. ▽

Now we look at four particular belts of tree C, on the left-hand side of
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Figure 10, and ask which ones of them may be selected for node c4 by some
belt-selector. (Of course, any belt selected must contain c4 itself.)

C D

10

11

8

3

124

1

9

65

7

0

2

1310

11

8

15

16

3

12 144

1

9

65

7

0

2

Figure 10: Trees C and D.

1. Consider belt {c4, c7, c9, c12}. In Example 4B below, we will argue
that there does exist such a belt-selector s for which s(C, c4) equals
this belt.

2. Consider {c4, c7, c6, c12}, which is the belt of case (1) with the broth-
erless c9 replaced by its father c6. There exists no such belt-selector s∗

for which s∗(C, c4) equals this belt.
Our following proof is by contradiction; suppose for a moment

that such s∗ exists. Tree D, on the right-hand side of Figure 10, is oth-
erwise fully isomorphic to tree C but has two additional branches, one
of which consists of node d13 only (and the other of nodes d14, d15,
and d16). Because ∢(c4, c8) = ∢(d4, d13) and ∢(c4, c7) = ∢(d4, d9),
uniangularity requires that d9 belongs to s∗(D, d4). (Hence, d6 in par-
ticular cannot belong to s∗(D, d4).) The contradiction desired is now
that ∢(c4, c11) = ∢(d4, d11) but ∢(c4, c6) 6= ∢(d4, d9), and so unian-
gularity is violated.

3. Consider {c4, c7, c10, c12}, which is the belt of case (1) with c9 re-
placed by its single son c10. Again, there exists no such belt-selector s∗

for which s∗(C, c4) equals this belt.
The proof is essentially the same as in case (2) above; suppose for

a moment that such s∗ exists. As in case (2), uniangularity requires
that d9 belongs to s∗(D, d4). (Hence, d10 in particular cannot be-
long to s∗(D, d4).) The contradiction desired is now that ∢(c4, c11) =
∢(d4, d11) but ∢(c4, c10) 6= ∢(d4, d9), and so uniangularity is violated.

4. Consider {c4, c7, c9, c3}, which is the belt of case (1) with the broth-
erless c12 replaced by its father c3. Once again, there exists no such
belt-selector s∗ for which s∗(C, c4) equals this belt.

Our proof is by contradiction; suppose for a moment that such
s∗ exists. Consider again tree D. Because ∢(c4, c8) = ∢(d4, d16)
and ∢(c4, c7) = ∢(d4, d15), uniangularity requires that d15 belongs to
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s∗(D, d4). This forces us to include even d12 in s∗(D, d4). The con-
tradiction desired is now that ∢(c4, c12) = ∢(d4, d12) but obviously
∢(c4, c3) 6= ∢(d4, d12), and so uniangularity is violated.

△

2.4 Combs

We let Z, N, and N
+ denote the sets of all integers, all nonnegative integers,

and all positive integers, respectively. The ‘less-than’ relation is extended
from Z to Z ∪ {∞} simply by stating that t < ∞ for every t ∈ Z and by
requiring that the relation remains irreflexive and transitive.

Definition 6. A comb is any function from N
+ × {−1, 1} to N

+ ∪ {∞}.

Definition 7. A given comb f is a characteristic comb of a given belt-
provider s if for every tree X , for every node n of X , and for every leaf n′ of
X , the following conditions are met when ∢(n, n′) is denoted as 〈i, d, j〉 and
the unique ancestor of n′ that belongs to s(X, n) is denoted as n′′.

1. Suppose d 6= 0 and j ≤ f(i, d). Then n′′ = n′.
2. Suppose d 6= 0 and j > f(i, d). Then n′′ is the unique proper ancestor

of n′ for which ∢(n, n′′) = 〈i, d, f(i, d)〉.

The following Theorem 8 indicates that the ‘is a characteristic comb of’
relation is actually a one-to-one correspondence between combs and belt-
selectors. In particular, the theorem implies that the set of belt-selectors is
non-empty, since the set of combs is obviously non-empty.

Theorem 8. Let the set of belt-providers [respectively, belt-selectors, combs]
be denoted as P [respectively, S, F ]. Furthermore, let R denote the set of
all such members 〈f, s〉 of F × P that f is a characteristic comb of s. Then
R ⊆ F × S, and moreover, R is a bijective function from F to S.

By Theorem 8, any given belt-selector s has exactly one characteristic
comb, and we denote this comb as φs. (Of course, the theorem also guaran-
tees that φs1 = φs2 implies s1 = s2.)

EXAMPLE 4B. ▽

By Theorem 8, there indeed exists a belt-selector realizing case (1) of Ex-
ample 4A. In fact, we may choose any such belt-selector s that φs(2, 1) = 3.

△

Consider what happens when a tree grows by successive leaf unfoldings.
Let n and n′ be such nodes of a given tree X that n′ ∈ s(X, n) for some
belt-selector s. Moreover, suppose that n′ is such a leaf that is about to be
unfolded. Then by Theorem 8 and Definition 7, the belt selected for n either
immediately occupies the new sons of n′ or forever remains stuck at n′.
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EXAMPLE 5. ▽

Figure 11 shows what happens when a belt-selector s defined as

φs(i, d) =

{

i if d = −1
i + 1 if d = 1

is applied to a node in a growing tree. (Of course, several successive leaf
unfoldings take place between each two of the five stages depicted in the
figure.) △

Figure 11: A single belt-selector applied to a node in a growing tree.

2.5 Four important belt-selectors: σE, σC, σI, and σE‖σI

The extroversive σE, the centroversive σC, and the introversive σI are three
belt-selectors defined as

φσE
(i, d) = ∞

φσC
(i, d) = i

φσI
(i, d) = 1.

The junction of a given belt-selector s1 with a given belt-selector s2 is de-
noted as s1‖s2 and defined as the unique belt-selector for which

φs1‖s2
(i,−1) = φs1(i,−1)

φs1‖s2
(i, 1) = φs2(i, 1).

Figure 12 depicts belt-selectors σE, σC, σI, and σE‖σI. Below, we will use
these four as our primary examples of individual belt-selectors.

2.6 On the chosen tree representation

Having now completed the description of belt-selectors, we want to stress
that all the previous parts of the present Section 2 have been independent of
our actual tree representation, whose details are revealed in this Section 2.6.
The choice of the tree representation is not insignificant, for we believe that it
strongly affects the approachability of some of the “higher-level” parts of our
formal framework. (This concerns especially Theorem 19 in Section 5.1.)
Notice, however, that this Section 2.6 is by no means a prerequisite for the
rest (that is, Sections 3–7) of this somewhat informal report but does facilitate
the absorption of the appendices (that is, Sections A–I).

We impose the following two requirements on the tree representation.
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σE

σI

σC

σE || σI

Figure 12: Four important belt-selectors.

• Each tree node should “know” its logical position in the tree. Other-
wise, the short notation ∢(n1, n2) for node pair angles is meaningless
as no tree is specified. Moreover, we regard the longer alternative
‘∢(X, n1, n2)’ that explicitly fixes the tree as impractical, since a leaf
unfolding always changes the tree but never the angle between any
two nodes present already in the old tree.

• It should be easy to find out whether a given tree may be expanded
into another given tree by successive leaf unfoldings. For us, this is a
fundamental relation between two trees.

Our chosen tree representation is as follows. A tree is a finite and non-
empty set of nodes. Moreover, each node is provided with an additional
component, called a tag, that uniquely determines the logical position of
the node in the tree. Let us define a unique “base tree” for each tree node
recursively as follows: the base tree of the root comprises the root itself; and
the base tree of a given non-root node n comprises the base tree of the father
of n, n itself, and every brother of n. In our tagging scheme, each node tag
encodes the structure of the base tree of the particular node, by fixing both
the amount of the base tree nodes and their logical positions.

EXAMPLE 6A. ▽

Consider tree E, on the left-hand side of Figure 13. Tree F, on the right,
happens to be isomorphic to the portion of E that constitutes the base tree of
node e7. Furthermore, our tag for e7 is [〈1, 2〉, 〈0, 0〉, 〈0, 1〉 ], which is to be
interpreted as follows.

Each tag is a finite sequence of pairs of nonnegative integers. The length
of this particular tag is three, which is the same as the altitude of e7. The first
pair 〈1, 2〉 indicates that of the sons of the root e0, one is a left-relative and
two are right-relatives of e7. Similarly, the second pair 〈0, 0〉 indicates that
there are neither left-relatives nor right-relatives of e7 among the sons of e2,
which is the son of e0 that is a proper ancestor of e7. Finally, the third pair
〈0, 1〉 indicates that the father e6 of e7 has exactly one additional son, which
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is moreover a right-brother of e7.

For further concrete tag instances, see Example 6B below. △

E F

13

9

0

321

7

6 11

8

5

4

12

10

0

32

7

6

8

41

Figure 13: Detecting the base tree of node e7.

Our claim is that due to the chosen tree representation, a given tree X

may be expanded into another given tree X∗ by successive leaf unfoldings if
and only if X ⊆ X∗. This appears rather elegant: the basic ‘is a subset of’
relation between two sets exactly corresponds to the basic ‘may be expanded
into, by successive leaf unfoldings’ relation between two trees of ours.

Admittedly, our tagging scheme may seem complicated. Its tags do in-
volve some redundant information, whereas a Dewey-type tagging scheme
(to be adapted from [6, p. 3]) would have been more economical while still
being able to fix the logical tree node positions. The redundancy is neces-
sary, however: since the “asymmetric” Dewey tags ignore every right-relative
in the base tree, by adopting them we would have lost the above-mentioned
strength of the ‘is a subset of’ condition.

EXAMPLE 6B. ▽

Table 3 gives both our actual tags and their Dewey counterparts for all the
nodes of tree F, on the right-hand side of Figure 13. (This particular Dewey
scheme uses 0-based indexing, whereas [6, p. 3] suggests 1-based indexing.)
Because the portion of tree E, on the left, that constitutes the base tree of
node e7 is isomorphic to F, each node in this portion has the same two tag
“alternatives” as the corresponding node of F. For instance, e7 has the same
tag alternatives as f7.

Notice the following “non-immunity” of the Dewey scheme: if tag [1, 1 ],
for instance, is added to the Dewey tag set of F, the new set still matches a
tree, but not such one that is obtainable from F by successive leaf unfoldings.
More specifically, the new tree is otherwise isomorphic to F but contains
a single extra leaf, which is a right-brother of the node with the tag of f6.
Furthermore, this non-immunity is not even symmetric: no single extra tag
can be added to the Dewey tag set of F to make it match such a tree in which
the node with the tag of f6 has a single extra left-brother. △
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n our tag for n Dewey tag for n

f0 [ ] [ ]

f1 [〈0, 3〉 ] [0 ]

f2 [〈1, 2〉 ] [1 ]

f3 [〈2, 1〉 ] [2 ]

f4 [〈3, 0〉 ] [3 ]

f6 [〈1, 2〉, 〈0, 0〉 ] [1, 0 ]

f7 [〈1, 2〉, 〈0, 0〉, 〈0, 1〉 ] [1, 0, 0 ]

f8 [〈1, 2〉, 〈0, 0〉, 〈1, 0〉 ] [1, 0, 1 ]

Table 3: Our tags for tree F and their Dewey counterparts.

2.7 Pointers into the appendices

Our formalization of the notion of a tree, sketched in Section 2.6 above, is
called an expansion tree and precisely defined in Section B. Each expan-
sion tree node knows its logical position in the tree by Proposition B.17; and
Proposition B.30 guarantees that ‘is a subset of’ and ‘may be expanded into,
by successive leaf unfoldings’ are the same binary relation in the case of ex-
pansion trees.

Expansion trees are indeed rooted and directed trees, and our argument
is as follows. By part (2) of Proposition B.8, each tree node has at most one
father and there is exactly one node without a father. Moreover, the transitive
closure of the binary ‘is a father of’ relation is irreflexive by part (1) of the
same proposition. Finally, Proposition B.10 confirms that the sons of any
given tree node are totally ordered by the binary ‘is a left-brother of’ relation.

In the present Section 2, when we speak of a tree and a node, we may
implicitly assume that the node belongs to the tree; similarly, when we speak
of a node set, we may implicitly assume that there is such a tree that contains
the whole set. No such implicit assumptions will be made in Sections A–I.

Section C presents belts and belt-selectors. The definition of the latter is
based on the definition of a node pair angle given already in Section B.4.

Combs are not introduced until Section E. The section also demonstrates
how conveniently many relations between belt-selectors may be specified by
using combs.
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3 MONOSYSTEMS

Our abstract model of a string generation tool is called a monosystem. The
prefix ‘mono’ stems from the fact that only one belt-selector is involved; the
more versatile trisystems will be briefly addressed in Section 6.

3.1 Letters and words

We assume that there is a countably infinite set U of letters. A word is any
finite sequence of letters. The empty word is denoted as Λ, and the set of all
words is denoted asW .

Suppose that two instances of a single structured symbol differ from each
other by having different values for some attribute of the symbol: for example,
two calls of a single macro may have different arguments. The infinity of
U now allows these two symbol instances to be treated as instances of two
different letters. Accordingly, on the monosystem level we are able to wholly
ignore any internal structure of the symbols we want to process.

We assume that exactly one letter instance is associated with each tree
node. (In fact, each tree node is represented simply as a pair consisting of a
tag, whose function was described in Section 2.6, and a letter.) Thus each
subset of each tree belt specifies a unique word, which is called the projection
of the belt subset. When a tree leaf is unfolded, in particular, the projection
of the unfolding context constitutes the refinement context of the letter in-
stance of the leaf.

EXAMPLE 7A. ▽

Consider the tree in Figure 14. The projection of the belt consisting of
the nodes surrounded by (white or black) rings is gVgTUTVh. The two subsets
of this belt that consist of the left-relatives and of the right-relatives of the leaf
with a black ring have projections gVgT and TVh, respectively. △

S

S

S

S

S Sh

g

T U

T SV h

Tg

V

Figure 14: A tree with explicit node letters.

3.2 Letter-refiners

Definition 9. A letter-refiner is any function fromW ×U ×W toW .
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Any letter-refiner may be seen as a single-function representation of a set
of refinement rules. By Definition 9, the refinement context must be finite
but is unbounded in both directions.

EXAMPLE 7B. ▽

Consider such a letter-refiner r that

r(T, U, T) = S

r(gVgT, U, TVh) = Vg.

Suppose that we are to refine the instances of U in TUT and gVgTUTVh. Then
r transforms TUT into TST, and gVgTUTVh into gVgTVgTVh. Specifically, r

does not transform gVgTUTVh into gVgTSTVh, even if TUT is a subword of
gVgTUTVh. △

Definition 9 above requires that all letter-refiners operate on the same
universal letter set U . In practice, however, most letter-refiners disregard
most members of U . A disregarded letter refines only to itself, cannot be
produced from other letters, and is always ignored in the refinement context.

Definition 10. A given letter-refiner r disregards a given letter c if the fol-
lowing conditions are met for every words w1 and w2.
1. r(w1, c, w2) = c.
2. c does not occur in r(w1, c0, w2) for any such letter c0 that c0 6= c.
3. r(wcw1, c0, w2) = r(ww1, c0, w2) and r(w1, c0, w2cw) = r(w1, c0, w2w)

for every letter c0 and for every word w.

3.3 Constituents of a monosystem

We are now ready to define the structure of a monosystem. (The monosys-
tem operation will be described in Section 3.5, which utilizes an important
auxiliary concept to be defined in the intermediate Section 3.4.)

Definition 11. A monosystem is any such quintuple 〈A, M, cS, r, s〉 that
meets the following conditions.
1. The alphabet A is a non-empty letter set.
2. M is a non-empty subset of A; the members of M and A \M are called

mutables and immutables, respectively.
3. The seed-letter cS is a member of M .
4. r is such a letter-refiner that meets the following subconditions.

a. r disregards every letter in U \ A.
b. r(w1, c, w2) = c for every letter c in A \M and for every words w1

and w2.
c. r(w1, c, w2) 6= Λ for every letter c and for every words w1 and w2.

5. s is a belt-selector.

Concerning the conditions of Definition 11, notice the following.

• Condition (1): the monosystem alphabet may be infinite.
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• Conditions (2) and (4b): the immutables may be seen as terminal
symbols, since they cannot be further modified by the letter-refiner.

• Condition (3): the rewriting process starts from a letter (that is, from
the seed-letter) rather than from a word of arbitrary length.

• Condition (4c): the monosystem letter-refiner cannot replace any let-
ter instance with the empty word Λ. The reason for this restriction is
that Λ could not be represented in the history tree. (In practice, Λ
must be emulated by some dummy placeholder immutable.)

EXAMPLE 7C. ▽

Some forthcoming examples address such a monosystem 〈A, M, cS, r, s〉
whose other constituents than r are as follows.

A = {S, T, U, V, g, h}

M = {S, T, U, V}

cS = S

φs(i, d) =







1 if i = 1 and d = −1
∞ if i = 2 and d = −1
2 otherwise

Moreover, we assume that the monosystem letter-refiner r meets the same
two constraints as the letter-refiner of Example 7B. (Notice that this specifi-
cation of r is incomplete.) △

3.4 Belt-selector stagnancy

If a belt-selector is applied to such a tree node at which it is C-stagnant for
some letter set C, then each such node in the selected belt whose letter be-
longs to C will remain in the selected belt after any further leaf unfoldings.

Definition 12. Let C be a letter set, and let n be a node in a given tree
X . We say that a given belt-selector s is C-stagnant at n if each node n′ ∈
s(X, n) \ {n} meets at least one of the following conditions.
1. The letter of n′ does not belong to C.
2. φs(i, d) = j when ∢(n, n′) is denoted as 〈i, d, j〉.

EXAMPLE 7D. ▽

Consider the tree of Example 7A (in Figure 14). For the leaf with the black
ring, the belt-selector of the monosystem of Example 7C returns the belt
consisting of the nodes with white rings. (Notice that this belt differs from
the frontier.) Furthermore, the belt-selector is M -stagnant at this particular
leaf when M denotes the mutable set of the monosystem. △

3.5 Operation of a monosystem

A tree leaf that is ready to be unfolded is called fertile. The new tree that
results from a single leaf unfolding is directly derivable from the original tree.
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Moreover, any tree that is the result of a series of successive leaf unfoldings is
derivable from the original tree.

Definition 13. Let n be a tree node, let G be a monosystem, and let the
mutable set of G be denoted as M . We say that n is fertile on G if both the
following conditions are met.
1. The letter of n belongs to M .
2. The belt-selector of G is M -stagnant at n.

EXAMPLE 7E. ▽

Consider again the tree of Example 7A (in Figure 14). The leaf with the
black ring is the only leaf that is fertile on the monosystem of Example 7C.
(In contrast, all the non-leaf nodes happen to be fertile.) △

Definition 14. Let G be a monosystem, and let the letter-refiner and the
belt-selector of G be denoted as r and s, respectively. We say that a given tree
X ′ is directly derivable from a given tree X on G if there are such a node n,
such a finite and non-empty node set N , such a letter c, and such words w,
w1, and w2 that the following conditions are met.
1. n is such a leaf of X that is fertile on G.
2. X ′ = X ∪N , and every node in N is a son of n.
3. c is the letter of n, w is the projection of N , and w1 [respectively, w2]

is the projection of the subset of s(X, n) that consists of the left-relatives
[respectively, right-relatives] of n.

4. w = r(w1, c, w2).

EXAMPLE 7F. ▽

The tree in Figure 15 is directly derivable from the tree of Example 7A (in
Figure 14) on the monosystem of Example 7C. △

S

S

S

S

S Sh T U

T SV h

Tg

g

V

gV

Figure 15: A tree directly derivable from the tree in Figure 14.

We claim that if some tree X ′ is directly derivable from another tree X ,
then any fertile node of X is fertile even in X ′. (Although even a non-leaf
node may technically be fertile, fertileness has any significance only in the
case of a leaf.)

Definition 15. For each monosystem G, a binary relation ‘is derivable from,
on G’ is defined on trees as the reflexive-transitive closure of the ‘is directly
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derivable from, on G’ relation.

We still need to define the set of all derivatives of a given monosystem
before we are able to state whether a given word is an export-word, that is, a
word “generated” by the monosystem.

Definition 16. A given tree X is a derivative of a given monosystem G if X

is derivable on G from such a one-node tree whose single node possesses the
seed-letter of G.

Definition 17. A given word w is an export-word of a given monosystem G

if both the following conditions are met.
1. Some derivative of G has such a belt whose projection is w.
2. Every letter occurring in w is an immutable of G.

EXAMPLE 8. ▽

Consider a monosystem 〈A, M, cS, r, s〉 defined as follows.

A = {S, T, g, h}

M = {S, T}

cS = S

r(w1, S, w2) =

{

g if T occurs in w2

ST otherwise

r(w1, T, w2) =

{

hg if S occurs in w1

T otherwise
s = σI

Figure 16 shows all the derivatives of the monosystem. It is easy to see that
ghg is the only export-word of the monosystem; notice that condition (1) of
Definition 17 could be rewritten as “G has such a derivative that the projec-
tion of its frontier is w”. (The monosystem is actually confluent. Confluence
will be discussed in Section 5.1, where we claim that every monosystem is
confluent.) △

Definition 13 above states that leaves possessing immutables are never
fertile. This convention is only a simplification: we claim that the export-
word set would not change even if such leaves were treated as always fertile.

3.6 Pointers into the appendices

This Section 3 is matched by the formal Section D, with the following two
exceptions. On one hand, tree node letters and tree belt projections are in-
troduced already in Sections B.1 and C.2, respectively. On the other hand,
the topic of Section D.6 was touched by a parenthesized remark within Ex-
ample 8 above but is not properly discussed until Section 5.1 below.

Definition D.6 of a monosystem is a bit more stringent than its counterpart
Definition 11 above by requiring that the complement of the monosystem
alphabet must be infinite. This additional requirement simply guarantees
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Figure 16: All the derivatives of the monosystem of Example 8.

that new, hitherto unused letters may always be added to the alphabet, which
corresponds well with the intended practical applications of the monosystem
model.

Definition D.8 of belt-selector stagnancy is equivalent to Definition 12
above but looks different by not employing combs (which are not introduced
until Section E); Definition 12 is actually similar to Proposition E.21. In
addition, Definitions D.8 and D.11 are more accurate than their respective
counterparts Definitions 12 and 13 by explicitly fixing the tree with respect
to which stagnancy and fertileness are being defined.
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4 EMULATING OTHER DEVICES BY MONOSYSTEMS

We now set out to examine how well the monosystem model is capable of
emulating each one of the three program generation tools discussed in Sec-
tion 1. The term ‘emulation’ is intentionally left without a definition and
thus used in an intuitive sense only. Accordingly, the emulation capability is
ignored by the formal presentation constituted by the appendices.

4.1 Macro processors and σE‖σI

We suggest that macro processors may be emulated by using σE‖σI as the
monosystem belt-selector. Macro calls are interpreted as structured symbols,
and if two calls of a single macro have different arguments, then they are
treated as instances of two different letters. Macro definitions, which consti-
tute the letter-refiner, may freely contain even recursive macro calls.

In addition to the monosystem proper, the emulation nevertheless requires
a simple postprocessor that removes all directives from each export-word. Ev-
ery directive is an immutable, and the only such directive that has no exact
counterpart already on the macro processor level is the dummy placeholder
standing for the empty word, which cannot ever be returned by a monosys-
tem letter-refiner. A representative example of other directives is one that
updates the value of some global macro-time variable. This variable may
then later be used as an argument of some macro call, or more interestingly,
it may steer conditional macro expansion.

In the macro processor case, there are two differences between directives
and “regular” immutables: first, as suggested above, any directive occur-
rences should be removed from each export-word; second, the letter-refiner
actually ignores all other letters than directives occurring in the refinement
context. Therefore, one might ask why we have not made the role of the
directive set explicit by adding it as the sixth constituent to the monosystem
definition (Definition 11). Our reasons are as follows: the first difference
is conceptually a minor one since it concerns only postprocessing; and the
second difference is specific to the macro processor case. For example, Sec-
tion 4.3 below argues that the second difference is nonexistent in the case of
the ReFlEx prototype.

4.2 Parametric Lindenmayer systems and σC

Monosystem-based emulation of parametric Lindenmayer systems involves
two major problems, which originate with the classical Lindenmayer system
model.

• Lindenmayer systems have no terminal symbols but the projection
of each horizontal belt of the history tree is a valid output string.
Provided that each output string is interpreted as a picture-drawing
program, each single “run” of a parametric Lindenmayer system pro-
duces not only a single picture but a countably infinite series of pic-
tures.

• Lindenmayer systems are often nondeterministic: two identical in-

22 4 EMULATING OTHER DEVICES BY MONOSYSTEMS



stances of a single symbol may in principle be refined differently even
if their refinement contexts are also identical. Hence, two runs of
a single nondeterministic parametric Lindenmayer system may pro-
duce two different picture series. In contrast, the monosystem letter-
refiner is deterministic.

We nevertheless suggest that parametric Lindenmayer systems may, in a
restricted sense, be emulated by using σC as the monosystem belt-selector.
The restriction is that although every picture-drawing program generated by
a parametric Lindenmayer system may also be generated by an emulating
monosystem, each single emulating monosystem generates only a single pro-
gram. (See Section 6 on how we may extend the notion of a monosystem to
eliminate this restriction.)

A given parametric Lindenmayer system is converted into an emulating
monosystem along the following lines. Before the alphabet of the parametric
Lindenmayer system is imported to the monosystem level, all the alphabet
symbols have to be augmented with such an additional attribute whose value
the letter-refiner effectively always increments by one. This makes the alpha-
bets of the node generations (that is, the horizontal belts) of the monosystem-
level history tree disjoint: everywhere within a single node generation, the
additional attribute has the value specific to that particular generation. Any
nondeterminism may now be circumvented, since whenever two instances
of a single letter appear within a single monosystem-level history tree, they
are possessed by two distinct nodes within a single generation and thus have
different refinement contexts. As the final step of the conversion, a max-
imum value for the additional attribute is chosen, and the corresponding
monosystem-level subalphabet is established as the immutable set.

4.3 ReFlEx prototype and σI

We suggest that the ReFlEx prototype of a machine-level code generator
may be emulated by using σI as the monosystem belt-selector. Contrary
to the macro processor case, the monosystem-based emulation of ReFlEx
scarcely involves directives. The simple reason is that ReFlEx itself scarcely
uses directive-like symbols to pass forward information characterizing the re-
finement context. (Moreover, not a single additional directive needs to be
introduced on the monosystem level, since already ReFlEx itself has to use
some dummy placeholder for the empty word.)

The context-sensitivity in ReFlEx operation is based on “high-level” built-
in domain-specific knowledge rather than on “low-level” directive-like sym-
bols. This means in particular that ReFlEx knows that each symbol it pro-
cesses is actually a machine-level instruction: the real machine instructions
constitute the set of terminal symbols, and nonterminal symbols correspond
to macro instructions. ReFlEx furthermore recognizes the registers read and
written by each instruction. For example, suppose that register R5 is written
by some instruction c1 and read by another instruction c2. Moreover, sup-
pose that c is such a macro instruction that does not write R5. Then ReFlEx
is smart enough to notice that the instruction sequence replacing the occur-
rence of c in c1cc2 must not use R5 as a temporary data storage.
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5 PROPERTIES OF MONOSYSTEMS

We are especially interested in such monosystem properties that depend only
on the belt-selector of the monosystem. In other words, we want to examine
how the properties of a monosystem reflect the properties of its belt-selector.

5.1 Confluence

Example 8 in Section 3.5 indicated that not all belt-selectors are rigid in the
sense of Definition 18 immediately below. We assert that both σE and σE‖σI

are rigid but σC and σI are not; moreover, we assert that the belt-selectors of
Examples 5 and 7C above are both rigid.

Definition 18. A given belt-selector s is rigid if every derivative of every
such monosystem G whose belt-selector is s has at most one such leaf that is
fertile on G.

Even if the belt-selector of a given monosystem happens to be non-rigid,
it is fully insignificant which one of the fertile leaves is unfolded first. The
reason is that as hinted already by Example 8, every monosystem is confluent
by Theorem 19, which is depicted in Figure 17. In particular, confluence
means that every monosystem has at most one export-word. (We remark that
this notion of monosystem confluence is rather strong, as it not only guar-
antees the existence of such a third tree that is derivable from each one of
the two given derivatives but also gives out an effective procedure for the
construction of the third tree.)

Theorem 19. Let X1 and X2 be two derivatives of a given monosystem G.
Then X1 ∪X2 is such a tree that is derivable both from X1 and from X2 on
G.

X 1 X 2U

X 1

X 2

Figure 17: Monosystem confluence.

Theorem 19 clearly assumes that two trees may at least in some cases be
combined into one simply by taking the set union. This is indeed possible
due to the chosen tree representation described in Section 2.6.
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Theorem 19 has an important consequence. Even if the monosystem
operation (as specified in Section 3.5) is by definition strictly sequential, in
practice the operation of any monosystem with a non-rigid belt-selector may
safely be augmented with parallelism. In particular, the combination of the
subresults obtained in parallel is utterly simple, as we only need to take the set
union. (In Section 5.2.3 below, we argue that certain non-rigid belt-selectors
inherently support more parallelism than others.)

5.2 Progressiveness

The more “progressive” the monosystem belt-selector is, the more easily the
history tree leaves become fertile. In this Section 5.2, we present a hierarchy
of increasing progressiveness for belt-selectors. The hierarchy consists of four
main levels, and the fourth and final level moreover comprises a countably
infinite subhierarchy. Of each two consecutive hierarchy levels, the latter
(that is, the upper) is a non-empty proper subset of the former. Figure 18
already gives an advance sketch of the hierarchy: S is again the set of all belt-
selectors, while ‘P’ stands for ‘progressiveness’, ‘W’ for ‘weak’, ‘S’ for ‘strong’,
and ‘D’ for ‘distributive’.

. ...

. ...

. ...

0-DP

1-DP

2-DP

DP

SP

WP

S

Figure 18: Belt-selector hierarchy of increasing progressiveness.

5.2.1 Weak progressiveness

Weak progressiveness guarantees that the monosystem operation is never
blocked unless all the leaves possess immutables.

Definition 20. A given belt-selector s is weakly progressive if every deriva-
tive X of every such monosystem G whose belt-selector is s meets the follow-
ing condition.
• If X has such a leaf that possesses a mutable of G, then some leaf of X is

fertile on G.
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Theorem 21. A given belt-selector s is weakly progressive if and only if the
following conditions are met for every 〈i, d〉 ∈ N

+ × {−1, 1}.

1. If φs(i, d) > i, then φs(i,−d) ≤ i.
2. If φs(i, d) > i + 1, then φs(i

′,−d) ≤ i for every i′ > 0.

We assert that σE‖σI, σC, and σI are all weakly progressive but σE is not;
moreover, we assert that the belt-selectors of Examples 5 and 7C are both
weakly progressive.

It may be noticed that independently of the notion of a monosystem,
every such belt-selector as σE‖σI (or either one of the belt-selectors in Ex-
amples 5 and 7C) that is both rigid and weakly progressive uniquely deter-
mines a root-to-frontier tree node traversal strategy. More specifically, each
rigid and weakly progressive belt-selector s suggests traversing a given tree
in the order that the next node to be visited is always the unique such n

that every n′ meeting the following condition has already been visited: when
∢(n, n′) is denoted as 〈i, d, j〉, we examine whether d = 0 ⇒ i > 0 and
d 6= 0 ⇒ j < φs(i, d). By reversing the above root-to-frontier strategy, we
of course obtain a frontier-to-root strategy. (Two different rigid and weakly
progressive belt-selectors may well suggest the same traversal strategy. The
set of all the possible strategies is actually in one-to-one correspondence with
the class of ideal belt-selectors to be discussed in Section 5.4.1.)

5.2.2 Strong progressiveness

Whereas weak progressiveness ensures that always at least one of the mutable-
lettered leaves is fertile, strong progressiveness ensures that each mutable-
lettered leaf will eventually become fertile (provided that the choice of the
fertile leaf to be unfolded next is fair in the sense that each fertile leaf will
eventually become unfolded).

Definition 22. A given belt-selector s is strongly progressive if every de-
rivative X of every such monosystem G whose belt-selector is s meets the
following condition.

• If X has such a leaf n that possesses a mutable of G, then there is such a
tree X∗ derivable from X on G that n is fertile in X∗ on G.

Note that strong progressiveness does imply weak progressiveness.

Theorem 23. A given belt-selector s is strongly progressive if and only if the
following conditions are met for every 〈i, d〉 ∈ N

+ × {−1, 1}.

1. φs(i, d) ≤ i + 1.
2. If φs(i, d) = i + 1, then φs(i,−d) 6= i + 1.

We assert that σC and σI are strongly progressive but σE‖σI is not; more-
over, we assert that the belt-selector of Example 5 is strongly progressive but
the one of Example 7C is not.
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5.2.3 Distributive progressiveness

A strongly progressive belt-selector may moreover be distributively progres-
sive, which by definition means that it is k-distributively progressive for some
k ∈ N. The actual definition of k-distributive progressiveness (which we omit
here) implies that if the altitude of each descendant leaf of a given node n is
at least k greater than the altitude of n, then at least one of the descendant
leaves is fertile (unless they all possess immutables, of course). Hence, the
smaller the value of k is, the more fertile leaves there are.

For example, suppose that all the leaves of the derivative in Figure 19
possess mutables, and that the monosystem belt-selector is 3-distributively
progressive. Then the derivative has at least four fertile leaves, one in each
class of the frontier partition depicted in the figure. (If the belt-selector were
2-distributively progressive, then at least eight fertile leaves would be guaran-
teed.) This example suggests that no distributively progressive belt-selector is
rigid, which is indeed our claim.

Figure 19: Tree leaves partitioned into four classes.

We assert that σC is not distributively progressive but σI is the only 0-
distributively progressive belt-selector. Consequently, when the monosystem
belt-selector is σI, every mutable-lettered leaf of every derivative is always fer-
tile.

Non-rigid belt-selectors support parallelism, whose degree varies between
highly synchronous and highly asynchronous. A prime example of extremely
synchronous parallelism is σC with its (restricted) capability to emulate para-
metric Lindenmayer systems. Next, we argue that distributive progressiveness
heavily supports extremely asynchronous parallelism.

The operation of a monosystem having a distributively progressive belt-
selector may be divided into asynchronously parallel processes as follows.
Suppose that a process has been assigned to the task of expanding some
branch of the history tree; originally, a single process is assigned to the task
of expanding the whole history tree. Distributive progressiveness then im-
plies that eventually (unless immutables are reached before) the process will
be able to fork into two or more such subprocesses that expand their respec-
tive subbranches and need no later resynchronization whatsoever. Thus, a
steadily growing treelike family of asynchronous processes arises. By Theo-
rem 19 above, the final combination of the results of the individual processes
is trivial.

5.3 Stableness

Suppose that the letter-refiner of a monosystem is modified so that the re-
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finement rule for one mutable is changed. How widely this change may
propagate within the history tree depends on the monosystem belt-selector.
For example, consider Figure 20, which contains three isomorphic history
trees, and suppose that the refinement rule for the mutable of the node with
a black dot is changed. The figure shows the possibly affected nodes (which
are the black ones) in the cases of belt-selectors σE‖σI, σC, and σI.

σ E σ I

σ C

Iσ

||

Figure 20: Change propagation with three different belt-selectors.

We say that a belt-selector is stable if it is k-stable for some k ∈ N. The
definition of k-stableness is as follows: if the change of the refinement rule for
the mutable of node n affects node n∗, then i ≤ k when ∢(n, n∗) is denoted
as 〈i, d, j〉. (Notice that i > 0 implies that either the refinement rules are
not context-free or the belt-selector is not strongly progressive.) Hence, the
smaller the value of k is, the smaller is the number of affected nodes. For
example, Figure 21 shows the maximal change propagation allowed by 1-
stableness, on the left, and by 2-stableness, on the right. (Of course, inward
propagation toward the root is never possible.)

Figure 21: 1-stableness and 2-stableness.

The human writer of the refinement rule base may utilize the possible
stableness by making such decisions that are most likely to change in the
future near the frontier of the final history tree, rather than near the root.

We claim that a weakly progressive belt-selector is stable if and only if it
is distributively progressive. Moreover, we assert that neither σE‖σI nor σC
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is stable, whereas σI is the only belt-selector that is both 0-stable and weakly
progressive. Consequently, when the monosystem belt-selector is σI, changes
in a context-sensitive letter-refiner do not propagate any more than changes
in a context-free letter-refiner.

5.4 Soundness

How freely may we select the monosystem belt-selector while still guaran-
teeing that the possible export-word has the intended semantics? Of course,
hardly anything can be guaranteed if the monosystem letter-refiner is such
a pathological one that deliberately disrupts the word semantics, and there-
fore we have to impose some constraints on the letter-refiner. First, in Sec-
tion 5.4.1 we only require the letter-refiner to be semantics-preserving. Then,
in Section 5.4.2 we examine whether the constraints on the belt-selector can
be relaxed if the constraints on the letter-refiner are tightened.

5.4.1 Assuming only letter-refiner soundness

Informally, a monosystem is sound if the possible export-word has the same
semantics as the seed-letter. Moreover, a letter-refiner is sound if it always
preserves the semantics of the word in which the letter instance to be refined
occurs. Finally, a belt-selector is sound if every monosystem that combines
it with a sound letter-refiner is sound.

Definition 24. A semantic classifier is any equivalence relation onW .

For any semantic classifier e, we write w1
e
∼ w2 to state that 〈w1, w2〉 ∈ e.

Definition 25. Let e be a given semantic classifier. We say that a given
monosystem G is e-sound if cS

e
∼ w for the seed-letter cS of G and for each

export-word w of G.

Definition 26. Let e be a given semantic classifier. We say that a given
letter-refiner r is e-sound if w1cw2

e
∼ w1r(w1, c, w2)w2 for every letter c and

for every words w1 and w2.

Definition 27. A given belt-selector s is sound if the following condition
is met for every such monosystem G whose belt-selector is s and for every
semantic classifier e.
• If the letter-refiner of G is e-sound, then G is e-sound.

Unfortunately, the following Theorem 28 implies that the class of sound
belt-selectors is severely restricted.

Theorem 28. Every sound belt-selector is rigid.

Understandably, we are especially interested in such rigid belt-selectors
that are not only sound but also weakly progressive. They may be character-
ized as follows.
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Definition 29. A given belt-selector s is ideal if it is weakly progressive and
rigid and if it meets the following further condition.
• φs(i + 1, d) ≥ φs(i, d) for every 〈i, d〉 ∈ N

+ × {−1, 1}.

Theorem 30. All the following three statements are equivalent for any weak-
ly progressive belt-selector s.

1. s is sound.
2. s is ideal.
3. The following condition is met for every such monosystem G whose belt-

selector is s, for every derivative X of G, and for every leaf n of X : if n is
fertile on G, then s(X, n) is the frontier of X .

We assert that σE‖σI is ideal, and therefore also sound, but that σC and
σI are neither ideal nor sound. Moreover, we assert that the belt-selector
of Example 7C is not sound, since it is not ideal even if it is both weakly
progressive and rigid. We also claim that in addition to σE‖σI, there are
infinitely (even uncountably) many ideal belt-selectors, one of which is the
belt-selector of Example 5. The distinguishing feature of σE‖σI is that with
it the letter-refiner may safely assume that mutables never occur on the left-
hand side of the refinement context.

5.4.2 Imposing legitimacy constraints on the letter-refiner

Theorem 28 above implies that with a non-rigid belt-selector, it is not enough
to use a sound letter-refiner. The letter-refiner has to fulfill an additional
legitimacy constraint sufficient for the particular belt-selector. Here suffi-
ciency simply means that any given monosystem is guaranteed to be sound
if it possesses the particular belt-selector and such a sound letter-refiner that
moreover fulfills the legitimacy constraint.

In Section H, we formulate a legitimacy constraint called semigentleness.
We claim that semigentleness is sufficient for a rather large belt-selector class
called subideal belt-selectors. For example, we assert that both σC and σI are
subideal.

Definition 31. A given belt-selector s is subideal if there are such two ideal
belt-selectors s1 and s2 that the following conditions are met.

1. s = s1‖s2.
2. φs1(i,−1) ≤ φs2(i,−1) and φs1(i, 1) ≥ φs2(i, 1) for every i > 0.

Note that every ideal belt-selector is also subideal. In addition to this fact,
Figure 22 sketches how the class of subideal belt-selectors relates to some
other belt-selector classes.

Notice especially that the monosystem belt-selector may be safely modi-
fied without any need to modify the monosystem letter-refiner as long as the
letter-refiner fulfills a legitimacy constraint sufficient even for the new belt-
selector. Such a belt-selector modification is able to change the structure but
not the semantics of the export-word. For example, if the letter-refiner fulfills
the semigentleness constraint, then each one of σE‖σI, σC, and σI produces
an export-word with the intended semantics (or no export-word at all). Since
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Figure 22: Some belt-selector classes.

the unfolding context given by σI is the least “greedy” possible, σI is the one
of these three that offers the most parallelism but its export-word typically
comes with the least “optimization”.

5.5 Coalescence

Macro processing is sensitive to the whole left-hand side of the refinement
context (but completely insensitive to the right-hand side) and still feasible
in practice. The reason is that the relevant information can be extracted
from the refinement context in an incremental fashion. In the monosystem
terminology, this means that the letter-refiner r may be implemented by such
functions t, t′, and t′′ that

r(w1, c, w2) = t′(t(w1), c)

t(w1c1) = t′′(t(w1), c1)

for every letters c and c1 and for every words w1 and w2. Moreover, it is es-
sential that both t′ and t′′ are “easy” to compute. The remaining function
t(w) is always computed through t′′ and may be seen as the “state” of the
macro processor after it has passed text w (which contains only terminal sym-
bols and still includes even the directive-like terminal symbols discussed in
Section 4).

In the case of σE‖σI (proposed in Section 4 for macro processor emula-
tion), it is indeed advantageous that the letter-refiner admits the suggested
decomposition, since the total number of t′′ calls required does not exceed
the final number of immutable-lettered leaves. This limit is obtained simply
as follows: the left-hand side of the unfolding context of any fertile leaf of
the history tree contains only immutable-lettered nodes; and whenever two
leaves of the history tree are unfolded consecutively, the left-hand side of
the refinement context of the former is a prefix of the left-hand side of the
refinement context of the latter.

Immediately above, we actually worked out the result that σE‖σI is an
example of a left-coalescent belt-selector, that is, a belt-selector capable of
exploiting the suggested letter-refiner decomposition. A more general view
of left-coalescence is given by Figure 23. Node n in the tree scheme of the
figure belongs to the left-hand unfolding contexts of both node n1 and node
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n2, of which n1 happens to be a non-leaf and n2 a leaf. Let N denote the
part of the unfolding context of n2 that consists of n and its left-relatives.
By left-coalescence, the whole N is also included in the unfolding context
of n1. When n1 was being unfolded, the expansion process perhaps had to
laboriously extract from N some relevant information, which is thus available
for free now when n2 is being unfolded.

n1

n2

n

Figure 23: Two tree nodes whose unfolding contexts coalesce.

In the general case, the monosystem letter-refiner is sensitive to both sides
of the refinement context. If it moreover admits the appropriate two-sided
decomposition, that is,

r(w1, c, w2) = t′(t1(w1), c, t2(w2))

t1(w1c1) = t′′1(t1(w1), c1)

t2(c2w2) = t′′2(c2, t2(w2))

with easy-to-compute t′, t′′1, and t′′2, then it is desirable that the belt-selector
is right-coalescent as well as left-coalescent. We claim that σE‖σI, σC, and σI

are all both left-coalescent and right-coalescent.

5.6 Pointers into the appendices

Monosystem confluence is dealt with in Section D.6, and belt-selector rigid-
ness in Section F.4. A practical exact condition for rigidness is given by The-
orem F.25.

The main emphasis in Section F is on the three types of belt-selector pro-
gressiveness. In particular, Definition F.15 characterizes k-distributive pro-
gressiveness; exact practical conditions for k-distributive progressiveness and
distributive progressiveness are given by Theorems F.20 and F.22, respec-
tively.

Section G considers belt-selector stableness.
Section H deals with soundness, but ideal belt-selectors have been defined

already in Section F.6. In Section H.1, the letter-refiner is only required to be
sound. Additional legitimacy constraints on the letter-refiner are considered
in the remaining Sections H.2—H.6 as follows.
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• A mechanism for specifying legitimacy constraints is presented in Sec-
tion H.2. The legitimacy constraints are specified not directly for
letter-refiners but for more general objects called rewriting maps. By
saying that a legitimacy constraint “fulfilled” by a letter-refiner is “suf-
ficient” for a belt-selector, we actually mean that the belt-selector is
m-wise sound (as detailed in Definition H.15) for such a rewriting
map m that both meets the particular constraint and subsumes (in
the sense of Definition H.12) the letter-refiner.

• Section H.3 introduces three simple legitimacy constraints: reflexiv-
ity, transitivity, and adjunctivity. By Theorem H.20, adjunctivity is
sufficient for σC but not for σI, whereas the conjunction of transitivity
and adjunctivity is sufficient for σI.

• Section H.4 introduces three further legitimacy constraints: civilness,
semicivilness, and semigentleness. Semigentleness is weaker than
civilness but stronger than semicivilness. By Theorem H.24, semi-
civilness is similar to adjunctivity by being sufficient for σC but not for
σI.

• In Section H.5, Theorem H.32 states that civilness is sufficient for the
class of smooth belt-selectors characterized by Definition H.29.

• Finally, Section H.6 presents the main claim of Section H as Theo-
rem H.39: semigentleness is sufficient for subideal belt-selectors.

The final Section I deals with coalescence. The actual Definition I.3 of
left-coalescence is somewhat weaker than the fact we established for σE‖σI

in Section 5.5 above. Consider function t′′ that was used in Section 5.5 and
whose second argument is a node letter. We argued that with σE‖σI, the
number of t′′ calls does not exceed the number of immutable-lettered nodes.
Actually, left-coalescence only guarantees that there is at most one t′′ call per
each mutable-lettered node, and so there may be multiple t′′ calls per each
immutable-lettered node. (Accordingly, it is assumed that the letter possessed
by node n in Figure 23 is a mutable.) To put it differently, left-coalescence
implies that if the left-hand sides of two unfolding contexts share a mutable-
lettered node, then these left-hand sides must unconditionally coalesce; but
when the shared node is immutable-lettered, there exists a loophole. It would
be possible to eliminate this loophole, but we believe that the definition of
left-coalescence would then become unnecessarily narrow for any practical
purposes.
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6 ON TRISYSTEMS

We propose a trisystem as an extension of the monosystem model discussed in
Sections 3–5. Trisystems are considered only here and not in the appendices
of this report.

6.1 Definition of a trisystem

The control mechanism of a trisystem employs three belt-selectors instead of
the single belt-selector of a monosystem. This belt-selector triple is called a
frame. For the purposes of the present Section 6, we refer to a given frame as
〈sT, sC, sE〉. The functions of sT, sC, and sE are as follows.

• The threshold-selector sT determines leaf fertileness in exactly the
same manner as the single belt-selector does on monosystems. Hence,
the explicitly addressed belt-selector in part (2) of the trisystem coun-
terpart of Definition 13 would be sT.

• The context-selector sC determines the actual unfolding context of
a fertile leaf in exactly the same manner as the single belt-selector
does on monosystems. Hence, the explicitly addressed belt-selector in
part (3) of the trisystem counterpart of Definition 14 would be sC.

• Part (2) of Definition 17 is wholly rejected and the export-selector sE

now determines the export-words in the manner explained immedi-
ately below.

The projection of a given belt B of a given trisystem derivative X is ac-
cepted as an export-word if such a new branch can be grafted onto some
node of X that both the following conditions are met for some node n∗ of
the additional branch and for the augmented tree X∗ (which need not be a
derivative) consisting of X and the additional branch.

• sE is M -stagnant at n∗ in X∗ when M denotes the mutable set.

• B = sE(X∗, n∗) \ {n∗}.

For example, suppose that the tree on the left-hand side of Figure 24 is a
derivative of such a trisystem whose export-selector is σC. By the existence of
the augmented tree (in which the additional branch consists of a single node)
on the right, UUU is an export-word of the trisystem. (The careful reader may
notice that due to the node tagging scheme presented in Section 2.6, the
tree augmentation may require that some node tags of the original tree are
adjusted. In particular, it is certain that at least one node tag in the “output
belt” referred to as ‘B’ above has to be adjusted.)

Note some direct consequences of the particulars of the export-word ex-
traction mechanism. First, the root-only belt never specifies an export-word.
Second, two important special cases are rather easily tackled as follows.

• Suppose sE = σE. Then a given belt specifies an export-word if and
only if it is such a frontier whose all node letters are immutables.

• Suppose sE = σC. Then a given belt B of a given derivative X speci-
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Figure 24: Detecting an export-word of such a trisystem whose sE is σC.

fies an export-word if and only if X contains such a non-root node n

that σC(X, n) = B and σC is M -stagnant at n for the mutable set M .
In particular, every horizontal belt different from the root-only belt
therefore specifies an export-word, as suggested already by Figure 24.

By the above, we are in a position to conjecture that the operation of
a given monosystem 〈A, M, cS, r, s〉 is identical with the operation of the
trisystem 〈A, M, cS, r, 〈s, s, σE〉〉. In particular, both the derivative set (as well
as the binary relations ‘is directly derivable from’ and ‘is derivable from’ on
trees) and the export-word set are preserved. For example, we are now able
to see from Section 4 that macro processors and the ReFlEx prototype may
be emulated by frames 〈σE‖σI, σE‖σI, σE〉 and 〈σI, σI, σE〉, respectively.

6.2 Properties of trisystems

Similarly to the monosystem case, we are especially interested in such trisys-
tem properties that depend only on the frame of the trisystem.

A frame is said to be confluent if every trisystem with it is confluent (in
the sense of Theorem 19). We conjecture that not all frames are confluent
but a sufficient condition for frame confluence is that φsT

(i, d) ≥ φsC
(i, d)

for every 〈i, d〉. This obviously means that contrary to the monosystem case,
not all trisystems are confluent; still, any trisystem with a context-free letter-
refiner is confluent.

Frame soundness in the trisystem case may be defined analogously to the
belt-selector soundness in the monosystem case. We conjecture that in con-
trast to Theorem 28 above, frame soundness does not require sT to be rigid
any more. For example, we suggest that sC = sE = σE guarantees frame
soundness, but the particular frame cannot be confluent provided that sT is
indeed non-rigid.

Some natural notions of frame equivalence arise. First, two frames are
weakly equivalent if replacing one with the other cannot change the export-
word set of the trisystem. Second, they are derivationally equivalent if re-
placing one with the other cannot change the derivative set of the trisystem.
Third and finally, they are strongly equivalent if they are both weakly and
derivationally equivalent. For example, it should be rather easy to see that
the following equivalences hold.
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• Frame 〈σE‖σI, σE‖σI, σE〉, which emulates macro processors, is strong-
ly equivalent to 〈σE‖σI, σE, σE〉.

• Frame 〈σI, σI, σE〉, which emulates the ReFlEx prototype, is weakly
but not derivationally equivalent to 〈σE‖σI, σI, σE〉.

• Any two frames are derivationally equivalent if they have both the
same sT and the same sC.

6.3 Emulating other devices by nondeterministic trisystems

For intuitively satisfactory emulation of Chomsky grammars [27, 7, 16] and
classical Lindenmayer systems, which are the two most famous abstract gen-
erative devices of formal language theory, we have to further relax the trisys-
tem definition by allowing the letter-refiner to be nondeterministic. Instead
of a single word to be used as the replacement, the letter-refiner should re-
turn a finite and non-empty word set to which the actual replacement must
belong. The finite refinement rule set of a context-sensitive (that is, type-1)
Chomsky grammar [16, pp. 29–30] or a classical Lindenmayer system may
then be represented as a single nondeterministic letter-refiner (which in this
case is effectively sensitive only to a bounded refinement context and effec-
tively operates on a finite alphabet). Of course, this introduction of nonde-
terminism means that frame confluence in the strictest sense becomes im-
possible.

A distinctive property of such a nondeterministic letter-refiner r that em-
ulates the finite rule set of a context-sensitive Chomsky grammar is that
r(w1, c, w2) ⊆ r(w′

1w1, c, w2w
′
2) for every letter c and every words w1, w2,

w′
1, and w′

2. In contrast, [25, p. 281] indicates that this property does not
carry over to the emulation of classical Lindenmayer systems.

6.3.1 Chomsky grammars and frame 〈σI, σE, σE〉

We suggest that context-sensitive Chomsky grammars may be emulated by
frame 〈σI, σE, σE〉. Since sT = σI, every mutable-lettered leaf is always fertile;
and since sC = σE, the leaf unfolding context always equals the frontier.
However, we have to set two additional restrictions on the rule set of the
context-sensitive Chomsky grammar.

• In general, a context-sensitive Chomsky grammar may contain a sin-
gle length-reducing rule of the form w1cw2 → w1w2 (see [27, p. 83]
for more on this anomaly), that is, c0 → Λ for the start symbol c0. We
forbid this rule, because the word set returned by the trisystem letter-
refiner must not contain the empty word. This simply means that for
a given context-sensitive language L, we are only able to generate the
similarly context-sensitive L \ {Λ}.

• There should be at least one rule of the context-free form c → w for
each nonterminal c, because the word set returned by the trisystem
letter-refiner must never be empty. This restriction has no effect on
the set of languages that can be generated, since we may always choose
w = c.
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We also suggest that this particular frame 〈σI, σE, σE〉 is sound. (The intro-
duction of nondeterminism does not affect frame soundness, provided that
the definition of letter-refiner soundness is adjusted in the reasonable way.)

Finally, let us consider relaxing the emulation scheme by permitting the
use of a dummy placeholder immutable for representing the empty word Λ.
Then by the above, any context-sensitive Chomsky grammar may trivially
be converted into such a nondeterministic trisystem that generates the same
language. More interestingly, [15, theorem 1.4] implies that any recursively
enumerable (that is, type-0) language can be generated by such a Chomsky
grammar whose every rule is either of the form w1cw2 → w1c

′w′w2 or of the
form c → Λ. Because of the relaxation of the empty word representation,
even this Chomsky grammar may now trivially be converted into a nondeter-
ministic trisystem.

6.3.2 Lindenmayer systems and frame 〈σC, σC, σC〉

We suggest that a variety of classical Lindenmayer systems may be emulated
by frame 〈σC, σC, σC〉. (More specifically, any such FPIL system [9, pp. 274–
275] whose start words do not include Λ can be coped with. Furthermore,
any FIL system can be coped with if it is permitted to use a dummy place-
holder letter for representing Λ.) This frame also emulates parametric Lin-
denmayer systems elegantly, whereas 〈σC, σC, σE〉 corresponds to the clumsy
emulation by monosystems suggested in Section 4.

We also suggest that even if this particular frame 〈σC, σC, σC〉 is not sound,
either one of adjunctivity and semicivilness mentioned in Section 5.6 is a
sufficiently strong legitimacy constraint for it.

Since the Lindenmayer rewriting starts from a word rather than from a let-
ter, a single extra letter (in addition to the possible empty word placeholder)
to be used as the seed-letter has to be included in the trisystem alphabet. Be-
cause the root-only belt of any trisystem derivative never specifies an export-
word, the extra letter does not occur in any export-word.

A Lindenmayer system may be emulated by a trisystem that has no im-
mutables, but a monosystem without immutables cannot have any export-
word. Accordingly, the distinction between weak and strong progressiveness
of sT is highly significant in the trisystem case: a strongly progressive sT

guarantees that every branch of the history tree grows beyond any predefined
limit provided that the immutable set is empty. In contrast, in the mono-
system case the distinction between these two progressiveness types has little
significance, due to the particulars of the inflexible export-word extraction
mechanism.

In conclusion, we feel that the basic principles of the parallel Linden-
mayer rewriting are satisfactorily captured by the trisystem model, even if the
trisystem operation is at least by definition strictly sequential.
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7 CONCLUSION

We have presented a monosystem as an abstract generative string rewriting
device aimed at modeling such practical program generation and optimiza-
tion tools as macro processors and parametric Lindenmayer systems. Mono-
systems differ from such classical abstract generative devices of formal lan-
guage theory as Chomsky grammars by being able to operate on an infinite
alphabet and by being sensitive to an unbounded two-sided context. The in-
finite alphabet makes it conceptually simple to deal with structured symbols
(such as macro calls), and the unbounded context-sensitivity furthers opti-
mization. We believe that these two relaxations make monosystems fit for
program generation: even if Chomsky grammars are traditionally specified as
generative devices rather than as recognizer devices (see [27, pp. 9–11] for a
simple reversal procedure giving the recognizer specification), their primary
application area has been program analysis rather than program generation.
Nevertheless, the trisystem extension of the basic monosystem model is ca-
pable of emulating both type-1 Chomsky grammars and a variety of classical
Lindenmayer systems.

We suggest that a practical monosystem-based tool should usually have a
letter-refiner that fulfills a legitimacy constraint such as semigentleness men-
tioned in Section 5.4.2. This scheme incorporates the following favorable
features.

• By tuning the belt-selector, we may opt for sequential, synchronously
parallel, or asynchronous parallel rewriting. For example, these three
forms of rewriting follow from the use of the ideal σE‖σI, the non-
rigid and strongly progressive σC, and the distributively progressive σI,
respectively. (As indicated in Section 5.4.2, each one of these belt-
selectors is subideal, and hence semigentleness is a sufficiently strong
legitimacy constraint for them all.) In particular, the 0-distributively
progressive σI allows any such two nodes that are not an ancestor-
descendant couple to be unfolded by two distinct asynchronously par-
allel processes.

• The monosystem remains sound independently of the degree of par-
allelism. Changing the belt-selector may change the structure but
not the semantics of the output, as long as the legitimacy constraint is
sufficiently strong even for the new belt-selector.

• Independently of the strength of the legitimacy constraint, parallelism
is promoted by monosystem confluence expressed in Theorem 19: the
results of any processes executed in parallel may always be safely and
effortlessly combined into one.

Immediately above, we essentially advocated that the letter-refiner of a
practical monosystem-based tool should provide built-in support for paral-
lelism. Using parallelism however involves some trade-offs. On one hand,
the advantages of parallelism may be recalled as follows.

• Parallel rewriting is in principle faster since it may be implemented
by a multiprocessor network. This holds in particular in the asyn-
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chronous case of distributively progressive belt-selectors: by “asyn-
chronousness” we always mean that no interprocess communication
or synchronization whatsoever is needed.

• Asynchronous parallelism (or rather, distributive progressiveness of
the belt-selector) results in stableness in the sense of Section 5.3.

On the other hand, the disadvantages of parallelism may be summarized
as follows.

• In addition to the very natural soundness requirement, the monosys-
tem letter-refiner indeed has to fulfill a further legitimacy constraint
and may thus be prevented from performing some optimizations.

• Even if the monosystem letter-refiner supports parallelism (by fulfill-
ing a sufficiently strong legitimacy constraint), the output with the
most optimization is typically still obtained when the particular letter-
refiner is driven strictly sequentially by some ideal belt-selector.
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A MATHEMATICAL PRELIMINARIES

A.1 General on notation and terminology

A.1.1 Sets

We let ∅, Z, N, and N
+ denote the empty set, the set {. . . ,−1, 0, 1, . . .} of all

integers, the set {0, 1, . . .} of all nonnegative integers, and the set {1, 2, . . .}
of all positive integers, respectively.

Let T be a set. We write t ∈ T or t 6∈ T if t is or is not a member of T ,
respectively. By saying “T contains t”, we mean that t ∈ T ; but by saying “T
consists of t”, we mean that T = {t}. We write T0 ⊆ T to state that T0 is a
subset of T , or equivalently, that T is a superset of T0. The set of all subsets
of T is denoted as 2T .

Let T1 and T2 be sets. The union and intersection of T1 and T2 are de-
noted as T1 ∪ T2 and T1 ∩ T2, respectively. (Rather than only to two sets, the
union and intersection operations may be applied to any non-zero number of
sets.) The set that consists of every such member of T1 that is not a member
of T2 is denoted as T1 \ T2.

A.1.2 Cartesian products, binary relations, and functions

The Cartesian product of two sets T0 and T1 is denoted as T0× T1. If t0 ∈ T0

and t1 ∈ T1, then 〈t0, t1〉 denotes a particular member of T0×T1. For any two
sets, the members of their Cartesian product are called pairs. Accordingly,
by “a pair” we always mean an ordered pair, as the Cartesian product is not
commutative.

The Cartesian product is associative. Suppose we have sets T0, . . . , Tk−1

for some positive integer k, and suppose again that ti ∈ Ti for every such i that
0 ≤ i < k. Then the Cartesian product of these sets is denoted as T0 × · · · ×
Tk−1, and a particular one of its members as 〈t0, . . . , tk−1〉. Furthermore, if
all the sets Ti are equal to some set T , then this Cartesian product may be
denoted shortly as T k. The members of the Cartesian product of k given sets,
with k ≥ 1, are called k-tuples. A k-tuple may optionally be called a pair, a
triple, a quadruple, a quintuple, or a sextuple, depending on the exact value
of k.

A binary relation on a given set T is any subset of T × T . When R is a
binary relation on T , and when T ′ is a subset of T , we say that the restriction
of R to T ′ is the binary relation on T ′ that equals R ∩ (T ′ × T ′).

A function f from a set T to a set U , which may be denoted as f : T → U ,
is any such subset of T×U that meets the following condition: for every t ∈ T

there is exactly one such u ∈ U that 〈t, u〉 ∈ f ; this unique u may be denoted
as f(t). The two sets T and U are called the domain and the codomain of f ,
respectively. The subset of U that consists of every such u ∈ U that f(t) = u

for at least one t ∈ T is called the image of f .

Let f : T → U be a function. We say that f is surjective if its image is U ,
and we say that f is injective if f(t1) = f(t2) ⇒ t1 = t2 for every t1 and t2
in T . Finally, we say that f is bijective if it is both surjective and injective.
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A.1.3 Finite sequences

A finite sequence z is technically a function whose domain is such a finite
subset {0, . . . , k−1} of N that consists of the k smallest nonnegative integers
for some k ∈ N. This k is called the length of z and denoted as |z|. We say
that z is empty if |z| = 0. We may give a simple representation for z by listing
its values as [z(0), . . . , z(|z| − 1) ]; thus, z is empty if and only if z = [ ].

Let two given finite sequences [ t′0, . . . , t
′
k′−1 ] and [ t′′0, . . . , t

′′
k′′−1 ] be de-

noted as z′ and z′′, respectively. The catenation of z′ and z′′ is denoted as
z′⊕z′′ and defined as the finite sequence [ t′0, . . . , t

′
k′−1, t

′′
0, . . . , t

′′
k′′−1 ], whose

length is the sum of the lengths of z′ and z′′. It is obvious that the catenation
operation is associative but not commutative.

A finite sequence z0 is a prefix of a finite sequence z if there is such a finite
sequence z∗ that z = z0 ⊕ z∗. Analogously, z0 is a suffix of z if there is such
a finite sequence z′ that z = z′ ⊕ z0.

A.2 Properties of binary relations

Definition A.1. Let R be a binary relation on a set T .

1. R is reflexive if 〈t, t〉 ∈ R for every t ∈ T .
2. R is irreflexive if 〈t, t〉 6∈ R for every t ∈ T .
3. R is symmetric if 〈t, t′〉 ∈ R ⇒ 〈t′, t〉 ∈ R for every pair 〈t, t′〉 ∈ T 2.
4. R is antisymmetric if {〈t, t′〉, 〈t′, t〉} ⊆ R ⇒ t = t′ for every pair
〈t, t′〉 ∈ T 2.

5. R is transitive if {〈t, t′〉, 〈t′, t′′〉} ⊆ R ⇒ 〈t, t′′〉 ∈ R for every triple
〈t, t′, t′′〉 ∈ T 3.

Definition A.2. Let R be a binary relation on a set T . The reflexive closure
[respectively, transitive closure, reflexive-transitive closure] of R is the bi-
nary relation on T that is the intersection of every such binary relation on T

that is reflexive [respectively, transitive, both reflexive and transitive] and a
superset of R.

Definition A.3. Let R be a binary relation on a set T .

1. R is an equivalence if it is reflexive, symmetric, and transitive.
2. R is a partial order if it is reflexive, antisymmetric, and transitive.
3. R is a partial strict-order if it is irreflexive, antisymmetric, and transitive.
4. R is a total order [respectively, a total strict-order] if it is a partial order

[respectively, a partial strict-order] and if for every such 〈t, t′〉 ∈ T 2 that
t 6= t′, it is the case that 〈t, t′〉 ∈ R or 〈t′, t〉 ∈ R.

Proposition A.4. A given binary relation on a given set is a partial strict-order
if and only if it is both irreflexive and transitive.

Proposition A.5. Let T be such a set whose all members are themselves sets.
Then the binary ‘is a subset of’ relation on T is a partial order.
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A.3 Letters and words

Specification A.6. There is a countably infinite set U of letters.

Definition A.7. For any letter set C, the complement of C is denoted as
¬C and defined as the set U \ C.

Proposition A.8. ¬(¬C) = C for any letter set C.

Definition A.9. A word is any finite sequence of letters. The set of all words
is denoted asW .

Notation A.10. The empty word may be denoted as Λ; and any other word
[c0, . . . , ck−1 ] may be written simply as c0 · · · ck−1. In particular, if c is a letter,
then the expression ‘c’ may also be interpreted as a word such that |c| = 1.
Moreover, the word w1⊕w2 may be written simply as w1w2 for any two words
w1 and w2; and even the catenation of more than two words may be written
equally simply, such as w1w2w3, by the associativity of catenation of finite
sequences.

Proposition A.11. W is a countably infinite set.
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B EXPANSION TREES

B.1 Structure of an expansion tree

◮ An expansion tree consists of a finite and non-zero number of nodes. The
concrete representation of an expansion tree is simply a node set; each node
in the set is, however, accompanied by a tag, which uniquely determines the
logical position of the node in the tree (as guaranteed by Proposition B.17).
Moreover, the tags are chosen in such a way that a tree is a subset of another
one if and only if the latter can be obtained from the former by a series of
successive leaf unfoldings (as guaranteed by Proposition B.30).

Definition B.1. A tag is any finite sequence of pairs of nonnegative integers.

Definition B.2. An expansion node, or simply a node, is any such pair
n = 〈y, c〉 that y is a tag and c is a letter. Moreover, these y and c may be
denoted as τ(n) and α(n), respectively.

Definition B.3. An expansion tree, or simply a tree, is any such finite and
non-empty set X of nodes that meets the following conditions.
1. Each two distinct nodes in X possess distinct tags.
2. Let y be a tag, and let y′ be a prefix of y. Now if X contains a node

whose tag is y, then X also contains a node whose tag is y′.
3. Let y be a tag, and let p1, p2, q1, and q2 be nonnegative integers. More-

over, suppose that X contains a node whose tag is y ⊕ [ 〈p1, q1〉 ]. Then
p1 + q1 = p2 + q2 if and only if X contains a node whose tag is y ⊕
[ 〈p2, q2〉 ].

Notation B.4. The set of all nodes is denoted asN , and the set of all trees is
denoted as X .

Proposition B.5. Suppose that a tree X contains a node n. Then (X\{n})∪
{〈τ(n), c〉} is a tree for any letter c.

Proposition B.6. For any node n, there is such a tree that contains n.

B.2 Basic relations between tree nodes

Definition B.7. A node n1 is a father of a node n2 if τ(n1) is such a prefix
of τ(n2) that |τ(n1)| = |τ(n2)| − 1.

Proposition B.8. These statements hold.
1. The transitive closure of the ‘is a father of’ relation is irreflexive.
2. For any tree X , it is the case that each node of X has at most one father

in X , and there is exactly one such node in X that has no father in X .

Definition B.9. A node n1 is a left-brother of a node n2 if there are such a
tag y and such nonnegative integers p1, p2, q1 and q2 that meet the following
conditions.
1. p1 < p2 and p1 + q1 = p2 + q2.
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2. τ(n1) = y ⊕ [〈p1, q1〉 ].
3. τ(n2) = y ⊕ [〈p2, q2〉 ].

Proposition B.10. These statements hold.

1. The ‘is a left-brother of’ relation is a partial strict-order.
2. The following two substatements are equivalent for every two distinct

nodes n1 and n2 in any single tree X .
a. One of n1 and n2 is a left-brother of the other.
b. X contains such a node that is a father of both n1 and n2.

B.3 More relations between tree nodes

Definition B.11. Let n1 and n2 be two nodes.

1. n1 is a proper ancestor of n2 if the pair 〈n1, n2〉 belongs to the transitive
closure of the ‘is a father of’ relation.

2. n1 is an ancestor of n2 if 〈n1, n2〉 belongs to the reflexive-transitive clo-
sure of the ‘is a father of’ relation.

3. n1 is a left-relative of n2 if there are such nodes n∗
1 and n∗

2 that meet the
following conditions.
a. n∗

1 is a left-brother of n∗
2.

b. n∗
1 is an ancestor of n1.

c. n∗
2 is an ancestor of n2.

Proposition B.12. The ‘is an ancestor of’ relation is a partial order, whereas
both the ‘is a proper ancestor of’ and the ‘is a left-relative of’ relations are
partial strict-orders.

Definition B.13. Let X be a tree, and let n be a node.

1. n is a root of X if n ∈ X and n is an ancestor of every node in X .
2. n is a leaf of X if n ∈ X and n is a proper ancestor of no node in X .
3. The frontier of X is the set of all leaves of X .

Proposition B.14. Every tree has exactly one root and at least one leaf.

Definition B.15. Let n1 and n2 be two nodes.

1. n1 is a son [respectively, a proper descendant , a descendant] of n2 if n2

is a father [respectively, a proper ancestor, an ancestor] of n1.
2. n1 is a right-brother [respectively, a right-relative] of n2 if n2 is a left-

brother [respectively, a left-relative] of n1.

Proposition B.16. For any two nodes n1 and n2 in any single tree, exactly
one of the following statements hold.

1. n1 = n2.
2. n1 is a proper ancestor of n2.
3. n1 is a proper descendant of n2.
4. n1 is a left-relative of n2.
5. n1 is a right-relative of n2.

Proposition B.17. Let n1 and n2 be nodes of given trees X1 and X2, re-
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spectively. Then τ(n1) = τ(n2) if and only if the following conditions are
met.

1. n1 has exactly as many ancestors in X1 as n2 has in X2.
2. Let n∗

1 be such a node of X1 that is an ancestor of n1, and let n∗
2 be

such a node of X2 that is an ancestor of n2. Moreover, suppose that n∗
1

has exactly as many ancestors in X1 as n∗
2 has in X2. Then n∗

1 has both
exactly as many left-brothers and exactly as many right-brothers in X1 as
n∗

2 has in X2.

B.4 Node altitudes and node pair angles

Definition B.18. A nonnegative integer k is an altitude of a node n if there
is such a tree that contains both n and exactly k proper ancestors of n.

Proposition B.19. Each node has exactly one altitude, and this unique alti-
tude is the same as the length of the tag of the node.

Definition B.20. An integer triple 〈i, d, j〉 is an angle of a node pair 〈n, n′〉
if there is such a tree X that the following conditions are met.

1. Both n and n′ belong to X .
2. Let n∗ denote the one of the common ancestors of n and n′ in X that

has the greatest altitude. Then i [respectively, j] is the difference of the
altitudes of n [respectively, n′] and n∗.

3. One of the following, mutually exclusive subconditions is met.
a. d = −1, and n′ is a left-relative of n.
b. d = 0, and n′ is an ancestor or a descendant of n.
c. d = 1, and n′ is a right-relative of n.

Proposition B.21. An integer triple 〈i, d, j〉 is an angle of a node pair 〈n, n′〉
if and only if 〈j,−d, i〉 is an angle of 〈n′, n〉.

Proposition B.22. Each pair of nodes has at most one angle. For any given
tree X , it is the case that each pair of the nodes of X has exactly one angle.

Notation B.23. Let n1 and n2 be two nodes, and suppose that some tree
contains both n1 and n2. Then the unique angle of 〈n1, n2〉may be denoted
as ∢(n1, n2).

Definition B.24. Let k ∈ N. A given node n1 is k-close to a given node n2

if the pair 〈n1, n2〉 has such an angle 〈i, d, j〉 that both i ≤ k and j ≤ k.

Proposition B.25. If a node n1 is k-close to node n2 for some k ≥ 0, then
n1 is k′-close to n2 for any k′ ≥ k.

Proposition B.26. The ‘is k-close to’ relation is reflexive and symmetric for
any k ≥ 0, but it is not transitive for any k > 0.
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B.5 Tree orthoextensions

◮ Intuitively, the most natural way of tree growth is that a set of new nodes
appear as sons of some up-to-now leaf. We call this orthoextension.

Definition B.27. A tree X ′ is a direct orthoextension of a tree X if there
are such a leaf of X and such a non-empty set N of sons of this leaf that
X ′ = X ∪N .

Proposition B.28. Let n be a leaf of a given tree X .
1. For any positive integer k, there is such a direct orthoextension of X in

which n has exactly k sons.
2. For any son n′ of n, there is such a direct orthoextension of X that con-

tains n′.

Definition B.29. A binary relation ‘is an orthoextension of’ on trees is de-
fined as the reflexive-transitive closure of the ‘is a direct orthoextension of’
relation.

Proposition B.30. A tree X ′ is an orthoextension of a tree X if and only if
X ⊆ X ′.

Proposition B.31. The ‘is an orthoextension of’ relation is a partial order.

Proposition B.32. The following two statements are equivalent for any two
trees X1 and X2.
1. X1 ∪X2 is a tree.
2. There is such a tree X that meets the following conditions.

a. Both X1 and X2 are orthoextensions of X .
b. Each leaf of X is also a leaf of at least one of X1 and X2.
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C TREE BELTS AND BELT-SELECTORS

C.1 Belts

Definition C.1. A node set B is a belt if there is such a tree X that B ⊆ X

and each leaf of X has exactly one ancestor in B.

Proposition C.2. For any tree X , both the frontier of X and the one-node
set consisting of the root of X are belts.

◮ By Proposition C.3, it is not counterintuitive to say that “a node set B is a
belt of a tree X” when B is both a subset of X and a belt.

Proposition C.3. Suppose that a tree X includes a belt B. Then each leaf
of X has exactly one ancestor in B.

C.2 Belt projection

Proposition C.4. The restriction of the ‘is a left-relative of’ relation to any
belt is a total strict-order.

Definition C.5. Any subset of a belt is a subbelt .

Definition C.6. A word w is a projection of a subbelt N if there are such
k ≥ 0 and such k nodes n0, . . . , nk−1 that the following conditions are met.
1. N = {n0, . . . , nk−1}.
2. ni−1 is a left-relative of ni for every such i that 0 < i < k.
3. w = α(n0) · · ·α(nk−1).

Proposition C.7. Any subbelt has exactly one projection.

Notation C.8. The projection of a given subbelt N is denoted as π(N).

C.3 Belt wrapping

Definition C.9. A belt B′ wraps a belt B if each node of B′ has an ancestor
in B.

Proposition C.10. A belt B′ wraps a belt B if and only if each node of B

has a descendant in B′.

Proposition C.11. The ‘wraps’ relation on belts is a partial order.

Notation C.12. We may write B′ � B or, equivalently, B � B′ to state that
a given belt B′ wraps a given belt B.

Proposition C.13. Let the root of a given tree X be denoted as n0, and let
the frontier of X be denoted as B∗. Then B∗ � B � {n0} for any belt B of
X .

C TREE BELTS AND BELT-SELECTORS 49



C.4 Belt-selectors

◮ Belt-selectors are introduced here, and the examination of their properties
will continue in Section E.

Definition C.14. A belt-provider is any such function s : X × N → 2N

that meets the following conditions for every tree X and for every node n.
1. If n 6∈ X , then s(X, n) = ∅.
2. If n ∈ X , then s(X, n) is such a belt of X that contains n.

Proposition C.15. There exists a belt-provider.

Definition C.16. A belt-provider s is uniangular, and hence called a belt-
selector, if it meets the following condition.
• Let X1 and X2 be two trees. Moreover, let n1 be a node of X1, let

n′
1 be a leaf of X1, and let the unique ancestor of n′

1 in s(X1, n1) be
denoted as n′′

1 . Similarly, let n2 be a node of X2, let n′
2 be a leaf of X2,

and let the unique ancestor of n′
2 in s(X2, n2) be denoted as n′′

2. Then
∢(n1, n

′
1) = ∢(n2, n

′
2) implies ∢(n1, n

′′
1) = ∢(n2, n

′′
2).

Proposition C.17. There exists a belt-selector.

Theorem C.18. Let n1 and n′
1 be nodes in a given tree X1, and let n2 and n′

2

similarly be nodes in a given tree X2. Then for any belt-selector s, we have
n′

1 ∈ s(X1, n1) ⇔ n′
2 ∈ s(X2, n2) if the following conditions are met.

1. ∢(n1, n
′
1) = ∢(n2, n

′
2).

2. n′
1 is a leaf of X1 if and only if n′

2 is a leaf of X2.

Theorem C.19. Let s be a belt-selector, and let n be a node in a given tree
X . Then s(X∗, n) � s(X, n) for any orthoextension X∗ of X .

C.5 Wings of a belt-selector

Definition C.20. The left-wing [respectively, right-wing] of a given belt-
selector s, denoted as ←−s [respectively, −→s ], is the function from X × N to
2N defined as follows: for every tree X and for every node n, the set←−s (X, n)
[respectively, −→s (X, n)] consists of all such nodes in s(X, n) that are left-
relatives [respectively, right-relatives] of n.

Proposition C.21. These statements hold for any belt-selector s, for any tree
X , and for any node n in X .
1. s(X, n) =←−s (X, n) ∪ {n} ∪ −→s (X, n).
2. π(s(X, n)) = π(←−s (X, n))α(n)π(−→s (X, n)).

Proposition C.22. For any two belt-selectors s1 and s2, we have s1 = s2 if
and only if both←−s1 =←−s2 and −→s1 = −→s2 .
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D MONOSYSTEMS

◮ Monosystems and their operation are defined in Sections D.1–D.5. The
final Sections D.6 and D.7 discuss two basic properties of monosystems.

D.1 Letter-refiners

Definition D.1. A letter-refiner is any function fromW ×U ×W toW .

Definition D.2. A letter-refiner r is isolative [respectively, left-isolative,
right-isolative] if for every letter c and for every words w1 and w2, it is the case
that r(w1, c, w2) equals r(Λ, c, Λ) [respectively, r(Λ, c, w2), r(w1, c, Λ)].

◮ So an isolative letter-refiner is simply “context-free”.

Definition D.3. A letter-refiner r is vigorous if r(w1, c, w2) 6= Λ for every
letter c and for every words w1 and w2.

Definition D.4. A letter-refiner r freezes a letter c if r(w1, c, w2) = c for
every words w1 and w2.

Definition D.5. A letter-refiner r disregards a letter c if the following con-
ditions are met for every words w1 and w2.
1. r freezes c.
2. c does not occur in r(w1, c0, w2) for any such letter c0 that c0 6= c.
3. r(wcw1, c0, w2) = r(ww1, c0, w2) and r(w1, c0, w2cw) = r(w1, c0, w2w)

for every letter c0 and for every word w.

◮ So a disregarded letter is frozen, never produced from other letters, and
always ignored in the refinement context.

D.2 Constituents of a monosystem

Definition D.6. A monosystem is any such quintuple 〈A, M, cS, r, s〉 that
meets the following conditions.
1. The alphabet A is such a non-empty letter set that ¬A is countably infi-

nite.
2. M is a non-empty subset of A; the members of M and A \M are called

mutables and immutables, respectively.
3. The seed-letter cS is a member of M .
4. r is such a letter-refiner that meets the following subconditions.

a. r disregards every letter in ¬A.
b. r freezes every letter in A \M .
c. r is vigorous.

5. s is a belt-selector.

◮ The monosystem alphabet need not be finite. Because the complement
of the alphabet is still required to be infinite, there are always new, hitherto
unused letters that may be added to the alphabet (as confirmed by Propo-
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sition D.7 below). Such extensibility of course corresponds well with the
intended practical applications of the monosystem model but is admittedly
not crucial for the theoretical considerations included in the present report.

◮ We intentionally deviate from the standard terminology of formal lan-
guage theory: our mutables and immutables correspond to “nonterminals”
and “terminals”, respectively, and the seed-letter acts as the “start symbol”.

◮ The letter-refiner of a monosystem must freeze every immutable, but no-
tice that it may well freeze even mutables.

◮ The letter-refiner of a monosystem must be vigorous, because there is no
way to represent the empty word in an expansion tree: every expansion tree
node possesses exactly one letter.

Proposition D.7. For any given monosystem 〈A, M, cS, r, s〉, there is such a
letter set C that meets the following conditions.
1. C is countably infinite.
2. A ∩ C = ∅.
3. 〈A ∪ C, M, cS, r, s〉 is a monosystem.

D.3 Belt-selector stagnancy

Definition D.8. Let C be a letter set. A given belt-selector s is C-stagnant
at a node n in a tree X if n ∈ X and if for every orthoextension X∗ of X , it is
the case that s(X∗, n) = s(X, n) whenever the following condition is met.
• Each such leaf of X whose letter belongs to ¬C is still a leaf of X∗.

◮ Typically, the letter set referred to in Definition D.8 as ‘C ’ is chosen to be
the mutable set of the monosystem under consideration.

Definition D.9. Let C be a letter set. A given tree X is C-compliant if each
such node of X whose letter belongs to ¬C is a leaf of X .

Proposition D.10. Let C be a letter set, and let X and X∗ be such two
C-compliant trees that X∗ is an orthoextension of X . Now if a given belt-
selector s is C-stagnant at a given node n in X , then s is C-stagnant at n in
X∗ and s(X, n) = s(X∗, n).

D.4 Tree expansion by leaf unfolding

Definition D.11. A node n is fertile in a tree X on a monosystem G if
n ∈ X and the following conditions are met when the mutable set of G is
denoted as M .
1. α(n) ∈M .
2. The belt-selector of G is M -stagnant at n in X .

◮ For simplicity, Definition D.11 allows even non-leaf nodes to be fertile.
Still, the possible fertileness has any significance only when the node is a
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leaf.

Definition D.12. A tree X ′ is directly derivable from a tree X on a mono-
system G if there are such a node n and such a subbelt N that the following
conditions are met.
1. n is such a leaf of X that is fertile in X on G.
2. X ′ = X ∪N , and each node in N is a son of n.
3. π(N) = r(π(←−s (X, n)), α(n), π(−→s (X, n))) when r and s denote the

letter-refiner and the belt-selector of G, respectively.

Definition D.13. For each monosystem G, a binary relation ‘is derivable
from, on G’ is defined on trees as the reflexive-transitive closure of the ‘is
directly derivable from, on G’ relation.

Proposition D.14. If a tree X ′ is directly derivable [respectively, is deriv-
able] from a tree X on some monosystem, then X ′ is a direct orthoextension
[respectively, is an orthoextension] of X .

Proposition D.15. For each monosystem G, the ‘is derivable from, on G’
relation is a partial order.

Definition D.16. A tree X is a derivative of a monosystem G if X is on G

derivable from the one-node tree {〈[ ], cS〉} when cS denotes the seed-letter
of G.

Proposition D.17. Each monosystem has exactly one such derivative that
consists of exactly one node, and the only node is fertile in that derivative on
the monosystem.

Proposition D.18. Each derivative of a given monosystem is M -compliant
when M denotes the mutable set of the monosystem.

D.5 Output extraction

Definition D.19. A word w is an export-word of a monosystem G if the
following conditions are met.
1. Some derivative of G has such a belt whose projection is w.
2. Each letter occurring in w is an immutable of G.

◮ An export-word is a word “generated” by the monosystem. By condi-
tion (2) of Definition D.19, the belt of condition (1) must be the frontier.

Proposition D.20. Λ is not an export-word of any monosystem.

D.6 On confluence

Theorem D.21. Let G be a monosystem, and let the belt-selector of G be
denoted as s. Moreover, let X be a derivative of G, let n be a node of X , and
let X ′ be a tree derivable from X on G. Now if n is fertile in X on G, then n
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is fertile in X ′ on G and s(X, n) = s(X ′, n).

Theorem D.22. Let X1 and X2 be two derivatives of a given monosystem
G. Then X1 ∪X2 is such a tree that is derivable both from X1 and from X2

on G.

◮ The property guaranteed by Theorem D.22 might be called monosystem
confluence.

Proposition D.23. Each monosystem has at most one export-word.

D.7 On the infertileness of the immutables

◮ Definition D.11 above implies that immutable-lettered leaves are never
fertile. Here we argue that the export-word set would not change even if such
leaves were always fertile.

Definition D.24. Let C be a letter set. A given tree X is C-semicompliant
if each such node n of X whose letter belongs to ¬C meets one of the fol-
lowing, mutually exclusive conditions.
1. n is a leaf of X .
2. n has exactly one son in X , and this son possesses the same letter as n.

Proposition D.25. If a tree is C-compliant for a letter set C, then the tree is
also C-semicompliant.

Theorem D.26. Let C be a letter set, and let X and X∗ be such two C-
semicompliant trees that X∗ is an orthoextension of X . Moreover, suppose
that each such a leaf of X whose letter belongs to C is still leaf of X∗.
1. Let s be a belt-selector, and let n be a node in X .

a. s is C-stagnant at n in X if and only if s is C-stagnant at n in X∗.
b. π(←−s (X, n)) = π(←−s (X∗, n)) and π(−→s (X, n)) = π(−→s (X∗, n)).

2. A given word w is the projection of some belt of X if and only if w is the
projection of some belt of X∗.

◮ For a moment, suppose that immutable-lettered leaves were always fertile.
This means that for the mutable set M and for any derivative X , any such
M -semicompliant orthoextension X∗ of X that still has the same mutable-
lettered leaves as X would also be a derivative. Consider then what happens
to a given mutable-lettered leaf n of X in the larger X∗. Parts (1a) and (1b)
of Theorem D.26 guarantee that neither the fertileness nor the potential un-
folding result, respectively, of n would be affected. Therefore, part (2) of the
theorem is sufficient to guarantee that the export-word set of the monosystem
would not change.
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E MORE ON BELT-SELECTORS

◮ In this Section E, contrary to the later Sections F–I, we consider belt-
selectors as independent entities and not as constituents of monosystems.

E.1 Links

Definition E.1. An integer triple is a link if it is the angle of some node
pair.

Proposition E.2. An integer triple 〈i, d, j〉 is a link if and only if it meets the
following conditions.
1. i ≥ 0, d ∈ {−1, 0, 1}, and j ≥ 0.
2. d = 0 ⇔ i · j = 0.

Definition E.3. A link 〈i, d, j〉 is bipartite if d 6= 0, and it is isosceles if
i = j.

Definition E.4. A given link v′ is an antilink of a given link v = 〈i, d, j〉 if
v′ = 〈j,−d, i〉.

Proposition E.5. Each link has exactly one antilink.

Notation E.6. The antilink of a given link v is denoted as ¬v.

Proposition E.7. ¬(¬v) = v for any link v.

Proposition E.8. For any two nodes n and n′ in any single tree, we have
∢(n, n′) = ¬∢(n′, n).

E.2 Characteristic comb of a belt-selector

Specification E.9. There is such a set that is denoted as∞ but whose mem-
bers are left unspecified. (Moreover, it is assumed that∞ 6∈ Z.)
1. The binary ‘less-than’ relation is extended from Z to Z ∪ {∞} by stating

that t < ∞ for every t ∈ Z and by requiring that the relation remains as
a total strict-order.

2. The addition operation is extended from Z to Z ∪ {∞} by stating that
t +∞ =∞+ t =∞ for every t ∈ Z ∪ {∞}.

Definition E.10. A comb is any function from N
+×{−1, 1} to N

+∪{∞}.

Definition E.11. A comb f is a characteristic comb of a belt-provider s

if for every tree X , for every node n of X , and for every leaf n′ of X , the
following conditions are met when ∢(n, n′) is denoted as 〈i, d, j〉 and the
unique ancestor of n′ that belongs to s(X, n) is denoted as n′′.
1. Suppose d 6= 0 and j ≤ f(i, d). Then n′′ = n′.
2. Suppose d 6= 0 and j > f(i, d). Then n′′ is the unique proper ancestor

of n′ for which ∢(n, n′′) = 〈i, d, f(i, d)〉.
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Notation E.12. The set of belt-providers [respectively, belt-selectors, combs]
is denoted as P [respectively, S, F ].

Theorem E.13. Let R denote the set of all such members 〈f, s〉 of F × P
that f is a characteristic comb of s. Then R ⊆ F × S, and moreover, R is a
bijective function from F to S.

Notation E.14. The unique characteristic comb of a given belt-selector s is
denoted as φs.

Proposition E.15. Let s1 and s2 be two belt-selectors.

1. ←−s1 =←−s2 if and only if φs1(i,−1) = φs2(i,−1) for every i > 0.
2. −→s1 = −→s2 if and only if φs1(i, 1) = φs2(i, 1) for every i > 0.

E.3 Locks and hooks of a belt-selector

Definition E.16. Let s be a belt-selector, and let v = 〈i, d, j〉 be a link.

1. v is a lock of s if v is bipartite and φs(i, d) = j.
2. v is a hook of s if v is bipartite and φs(i, d) > j.

Notation E.17. The lock set [respectively, hook set] of a given belt-selector
s is denoted as λ(s) [respectively, χ(s)].

Proposition E.18. λ(s) ∩ χ(s) = ∅ for any belt-selector s.

Proposition E.19. Let s1 and s2 be two belt-selectors.

1. s1 = s2 if and only if φs1 = φs2 .
2. s1 = s2 if and only if λ(s1) = λ(s2).
3. s1 = s2 if and only if χ(s1) = χ(s2).

Proposition E.20. Let s be a belt-selector, and let n and n′ be nodes in a
given tree X . Then n′ ∈ s(X, n) if and only if one of the following, mutually
exclusive conditions is met.

1. n′ = n.
2. ∢(n, n′) ∈ λ(s).
3. ∢(n, n′) ∈ χ(s), and n′ is a leaf of X .

◮ Proposition E.21 paraphrases the original Definition D.8 in a more suc-
cinct form.

Proposition E.21. Let C be a letter set. Then a belt-selector s is C-stagnant
at a node n in a tree X if and only if n ∈ X and each node n′ ∈ s(X, n)\{n}
meets at least one of the following conditions.

1. α(n′) ∈ ¬C.
2. ∢(n, n′) ∈ λ(s).
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E.4 Operations on belt-selectors

E.4.1 Junction of two belt-selectors

Definition E.22. The junction of a given belt-selector s1 with a given belt-
selector s2 is denoted as s1‖s2 and defined as the unique belt-selector that
meets the following conditions for every i > 0.
1. φs1‖s2(i,−1) = φs1(i,−1).
2. φs1‖s2(i, 1) = φs2(i, 1).

Proposition E.23. Let s1, s2, and s3 be belt-selectors.
1. s1‖s1 = s1.

2.
←−−−
s1‖s2 =←−s1 and

−−−→
s1‖s2 = −→s2 .

3. (s1‖s2)‖s3 = s1‖(s2‖s3) = s1‖s3.

E.4.2 Mirror-image

Definition E.24. The mirror-image of a given belt-selector s is denoted as
⊥s and defined as the unique such belt-selector that φ⊥s

(i, d) = φs(i,−d)
for every 〈i, d〉 ∈ N

+ × {−1, 1}.

Proposition E.25. ⊥(⊥s) = s for any belt-selector s.

Definition E.26. A belt-selector s is symmetric if ⊥s = s.

Proposition E.27. Let s1 and s2 be belt-selectors.
1. ⊥(s1‖s2) = (⊥s2)‖(⊥s1).
2. If both s1 and s2 are symmetric, then ⊥(s1‖s2) = s2‖s1.
3. s1‖(⊥s1) is symmetric.

E.4.3 Incrementation

Definition E.28. The incrementation of a given belt-selector s is denoted as
△s and defined as the unique such belt-selector that φ△s(i, d) = φs(i, d) + 1
for every 〈i, d〉 ∈ N

+ × {−1, 1}.

Proposition E.29. A belt-selector s is symmetric if and only if △s is symmet-
ric.

E.4.4 Convexification

Definition E.30. A belt-selector s is convex if φs(i + 1, d) ≥ φs(i, d) for
every 〈i, d〉 ∈ N

+ × {−1, 1}.

Definition E.31. The convexification of a given belt-selector s is denoted as
⊙s and defined as the unique belt-selector that meets the following conditions
for every 〈i, d〉 ∈ N

+ × {−1, 1}.
1. If i = 1, then φ⊙s(i, d) = φs(i, d).
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2. If i > 1, then φ⊙s(i, d) is the maximum of φs(i, d) and φ⊙s(i− 1, d).

Proposition E.32. Let s and s′ be belt-selectors.

1. ⊙s is convex.
2. s is convex if and only if ⊙s = s.
3. s is convex if and only if ⊥s is convex.
4. s is convex if and only if △s is convex.
5. If both s and s′ are convex, then s‖s′ is convex.

E.5 Belt-selector wrapping

Definition E.33. A belt-selector s′ wraps a belt-selector s if for every node
n of every tree X , we have s′(X, n) � s(X, n).

◮ So we say that one belt-selector wraps another if the belt selected by the
former always wraps the belt selected by the latter.

Proposition E.34. Let s and s′ be two belt-selectors.

1. s′ wraps s if and only if φs′(i, d) ≥ φs(i, d) for every 〈i, d〉 ∈ N
+ ×

{−1, 1}.
2. s′ wraps s if and only if χ(s) ⊆ χ(s′).

Proposition E.35. The ‘wraps’ relation on belt-selectors is a partial order.

Notation E.36. We may write s′ � s or, equivalently, s � s′ to state that a
given belt-selector s′ wraps a given belt-selector s.

Proposition E.37. Let s1 and s2 be two belt-selectors. Then there are
unique such belt-selectors s∗ and s∗∗ that χ(s∗) = χ(s1)∪χ(s2) and χ(s∗∗) =
χ(s1) ∩ χ(s2). Moreover, these s∗ and s∗∗ are the unique belt-selectors that
meet the following conditions.

1. s∗ � s1 � s∗∗ and s∗ � s2 � s∗∗.
2. The following subconditions are met for every belt-selector s′.

a. If s′ � s1 and s′ � s2, then s′ � s∗.
b. If s1 � s′ and s2 � s′, then s∗∗ � s′.

Proposition E.38. Let s, s′, s0, and s′0 be belt-selectors.

1. △s � s.
2. ⊙s � s.
3. s � s′ if and only if ⊥s � ⊥s′.
4. s � s′ if and only if △s � △s′.
5. If s � s′, then ⊙s � ⊙s′.
6. If s � s′ and s0 � s′0, then s‖s0 � s′‖s′0.

Proposition E.39. Let s and s∗ be such two belt-selectors that s∗ � s. Now
if s∗ is C-stagnant at a given node n in a given tree X for a given letter set C,
then s is also C-stagnant at n in X .
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E.6 Some individual belt-selectors

Definition E.40. Let k ∈ N
+. The extroversive [respectively, centroversive,

k-tubuloversive, introversive] belt-selector is denoted as σE [respectively, σC,
σT(k), σI] and defined uniquely by the appropriate one of the following re-
quirements, which concern every 〈i, d〉 ∈ N

+ × {−1, 1}.
1. Extroversive: φσE

(i, d) =∞.
2. Centroversive: φσC

(i, d) = i.
3. k-tubuloversive: φσT(k)

(i, d) is the minimum of i and k.
4. Introversive: φσI

(i, d) = 1.

Definition E.41. A belt-selector is tubuloversive if it is k-tubuloversive for
some k ∈ N

+. The set of all tubuloversive belt-selectors is denoted as ΣT.

Proposition E.42. σI = σT(1) ∈ ΣT.

Proposition E.43. Any member of {σE, σC} ∪ ΣT is both symmetric and
convex.

Proposition E.44. The following statements hold for any k ≥ 1.
1. σE

� σC
� σT(k+1) � σT(k).

2. σE 6= σC 6= σT(k+1) 6= σT(k).

Proposition E.45. σE
� s � σI for any belt-selector s.
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F PROGRESSIVENESS

F.1 Weak progressiveness

Definition F.1. A belt-selector s is weakly progressive if every derivative
X of every such monosystem G whose belt-selector is s meets the following
condition.
• If X has such a leaf that possesses a mutable of G, then some leaf of X is

fertile in X on G.

Definition F.2. A finite sequence z of links is a circuit if it meets the follow-
ing conditions.
1. |z| ≥ 2.
2. Each link occurring in z is bipartite.
3. There are such a tree X and such |z|+1 leaves n0, . . . , n|z| of X that the

following subconditions are met.
a. n0 = n|z|.
b. ∢(ni, ni+1) = z(i) for every 0 ≤ i < |z|.

Proposition F.3. If z is such a circuit that |z| = 2, then z(0) = ¬z(1).

Definition F.4. A circuit z is rudimentary if |z| = 2 and the two links z(0)
and z(1) are both isosceles.

Definition F.5. A circuit is a trap of a given belt-selector if each link occur-
ring in the circuit is a hook of the belt-selector.

Proposition F.6. Let z be such a finite link sequence that |z| ≥ 2, let i be
such an integer that 0 < i < |z|, and let zi denote the finite link sequence
[z(i), . . . , z(|z| − 1) ]⊕ [z(0), . . . , z(i− 1) ].
1. z is a circuit if and only if zi is a circuit.
2. z is a trap of a given belt-selector if and only if zi is a trap of the same

belt-selector.

Proposition F.7. A belt-selector s has a rudimentary trap if and only if there
is such i > 0 that both φs(i,−1) > i and φs(i, 1) > i.

Theorem F.8. For each k ≥ 2, there is such a convex belt-selector sk that
has a trap whose length is k but no such trap whose length is smaller than k.

Theorem F.9. A belt-selector s has a trap if and only if at least one of the
following conditions is met.
1. s has a rudimentary trap.
2. There is such a hook 〈i, d, j〉 of s that i < j and that 〈i′,−d, i〉 is a hook

of s for some i′ > 0.

Theorem F.10. The following three statements are equivalent for any belt-
selector s.
1. s is weakly progressive.
2. s has no traps.
3. The following conditions are met for every 〈i, d〉 ∈ N

+ × {−1, 1}.
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a. If φs(i, d) > i, then φs(i,−d) ≤ i.
b. If φs(i, d) > i + 1, then φs(i

′,−d) ≤ i for every i′ > 0.

F.2 Strong progressiveness

Definition F.11. A belt-selector s is strongly progressive if every derivative
X of every such monosystem G whose belt-selector is s meets the following
condition.
• If X has such a leaf n that possesses a mutable of G, then there is such a

tree X∗ derivable from X on G that n is fertile in X∗ on G.

Proposition F.12. Every strongly progressive belt-selector is weakly progres-
sive.

Theorem F.13. A belt-selector s is strongly progressive if and only if s has
no rudimentary trap and △σC

� s.

F.3 Distributive progressiveness

Theorem F.14. σI is the only such belt-selector s that every derivative X

of every such monosystem G whose belt-selector is s meets the following
condition.
• Every such leaf of X that possesses a mutable of G is fertile in X on G.

Definition F.15. Let k ∈ N. A given belt-selector s is k-distributively pro-
gressive if every derivative X of every such monosystem G whose belt-selector
is s meets the following condition.
• For every such leaf n of X that possesses a mutable of G, there is such a

leaf of X that is both fertile in X on G and k-close to n.

Proposition F.16. If a belt-selector is k-distributively progressive for some
k ≥ 0, then it is k′-distributively progressive for any k′ ≥ k.

Proposition F.17. σI is the only 0-distributive belt-selector.

Definition F.18. A belt-selector is said to be distributively progressive if it
is k-distributively progressive for some k ∈ N.

◮ By comparing Definitions F.15 and F.1, one easily sees that distributive
progressiveness implies weak progressiveness. The following Proposition F.19
is a stronger claim.

Proposition F.19. Every distributively progressive belt-selector is strongly
progressive.

Theorem F.20. Let k ≥ 0. Then a strongly progressive belt-selector s is
k-distributively progressive if and only if it meets the following condition.
• Suppose that s has a hook 〈i, d, j〉. Then s also has such a hook 〈i∗, d, j〉

that i∗ ≤ k.
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◮ The following Proposition F.21 guarantees that the countably infinite
hierarchy within the class of distributively progressive belt-selectors does not
collapse.

Proposition F.21. The following statements hold.

1. σT(1) is 0-distributively progressive.
2. (△σT(1))‖σT(1) is 1-distributively progressive but not 0-distributively pro-

gressive.
3. Let k ≥ 2. Then both σT(k) and (△σT(k))‖σT(k) are k-distributively pro-

gressive, but neither one is (k − 1)-distributively progressive.

Theorem F.22. A belt-selector s is distributively progressive if and only if s

has no rudimentary trap and △σT(k) � s for some k ≥ 1.

F.4 Rigidness

Definition F.23. A belt-selector s is rigid if every derivative X of every such
monosystem G whose belt-selector is s has at most one such leaf that is fertile
in X on G.

Proposition F.24. No distributively progressive belt-selector is rigid.

Theorem F.25. A belt-selector s is rigid if and only if every bipartite link
〈i, d, j〉meets at least one of the following conditions.

1. At least one of 〈i, d, j〉 and its antilink is a hook of ⊙s.
2. There are such positive integers i′ < i and j′ < j that both 〈i′, d, j′〉 and

its antilink are hooks of s.

F.5 Further results

Proposition F.26. Let s and s′ be such two belt-selectors that s � s′. Now
if s is weakly progressive [respectively, strongly progressive, distributively pro-
gressive, not rigid], then even s′ is weakly progressive [respectively, strongly
progressive, distributively progressive, not rigid].

Proposition F.27. Let G = 〈A, M, cS, r, s〉 be a given monosystem, and let
n be a node in a given derivative X of G. Then n is fertile in X on G if and
only if n is fertile in X on the monosystem 〈A, M, cS, r, ⊙s〉.

◮ Let us briefly recall trisystems, and in particular, equivalence of their
frames, which was discussed in Section 6.2. It follows rather directly from
Proposition F.27 that two trisystem frames are strongly equivalent if one is
obtained from the other by replacing the threshold-selector with its convexi-
fication.

Proposition F.28. Let s be a belt-selector. Now if one of s, ⊥s, and ⊙s is
weakly progressive [respectively, strongly progressive, distributively progres-
sive, rigid], then so are even the other two.

62 F PROGRESSIVENESS



Proposition F.29. These statements hold.
1. σE is rigid but not weakly progressive.
2. σE‖σI is weakly progressive and rigid but not strongly progressive.
3. (△σC)‖σC is strongly progressive and rigid.
4. σC is strongly progressive but neither distributively progressive nor rigid.
5. Both σT(k) and (△σT(k))‖σT(k+1) are distributively progressive for every

k ≥ 1.

◮ By Proposition F.29, the four-level hierarchy constituted by unrestricted,
weakly progressive, strongly progressive, and distributively progressive belt-
selectors does not collapse.

F.6 Idealness

Definition F.30. A belt-selector is ideal if it is convex, weakly progressive,
and rigid.

Proposition F.31. A belt-selector s is ideal if and only if ⊥s is ideal.

Proposition F.32. Both σE‖σI and (△σC)‖σC are ideal.

Theorem F.33. A belt-selector s is ideal if and only if the following condi-
tions are met.
1. For every bipartite link v, exactly one of v and ¬v is a hook of s.
2. s has no such lock 〈i, d, j〉 that j > i + 1.

Proposition F.34. No ideal belt-selector is symmetric.

Theorem F.35. A belt-selector s is ideal if and only if s is weakly progres-
sive and the following further condition is met for every such monosystem G

whose belt-selector is s, for every derivative X of G, and for every leaf n of
X .
• If n is fertile in X on G, then s(X, n) is the frontier of X .

Theorem F.36. A belt-selector s is ideal if and only if there are such t∗ ∈
N

+ ∪ {∞}, such d∗ ∈ {−1, 1}, and such a function b∗ : N
+ → {−1, 1} that

the following conditions are met for every i > 0.
1. If i < t∗, then φs(i,−b∗(i)) = i and φs(i, b

∗(i)) = i + 1.
2. If i ≥ t∗, then φs(i,−d∗) = t∗ and φs(i, d

∗) =∞.

Theorem F.37. For each weakly progressive [respectively, strongly progres-
sive] belt-selector s, there is such an ideal [respectively, ideal and strongly
progressive] belt-selector that wraps s.
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G STABLENESS

Definition G.1. Let c be a letter. A given monosystem G∗ is a c-alteration
of a given monosystem G = 〈A, M, cS, r, s〉 if there is such a letter-refiner r∗

that the following conditions are met.
1. G∗ = 〈A, M, cS, r

∗, s〉.
2. r∗(w1, c

′, w2) = r(w1, c
′, w2) for every such letter c′ that c′ 6= c and for

every two words w1 and w2.

◮ So a c-alteration differs from the original monosystem in no other way
than by perhaps having a different refinement rule for letter c. (In practice,
the notion of a c-alteration is thus meaningful only when c is a mutable.)

Definition G.2. Let k ∈ N. A given belt-selector s is k-stable if the following
condition is met for every such monosystem G whose belt-selector is s, for
every derivative X of G, and for every mutable c of G.
• Suppose that X contains exactly one such node n that possesses c. More-

over, let N∗ be the set of all the nodes of X that have no such ancestor in
X that is k-close to n. Then each c-alteration of G has such a derivative
that includes N∗.

Proposition G.3. If a belt-selector is k-stable for some k ≥ 0, then it is
k′-stable for any k′ ≥ k.

Definition G.4. A belt-selector is said to be stable if it is k-stable for some
k ∈ N.

Theorem G.5. Let s be a weakly progressive belt-selector.
1. s is 0-stable if and only if s = σI.
2. Let k ≥ 1. Then s is k-stable if and only if △σT(k) � s.

Theorem G.6. A weakly progressive belt-selector is stable if and only if it is
distributively progressive.
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H SOUNDNESS

H.1 Basic definitions and results

Definition H.1. A semantic classifier, or simply a classifier, is any equiva-
lence relation onW .

Definition H.2. Let e be a classifier. Two given words w1 and w2 are e-
equivalent , which is denoted as w1

e
∼ w2, if 〈w1, w2〉 ∈ e.

Definition H.3. Let e be a classifier. A given monosystem G is e-sound if
cS

e
∼ w for the seed-letter cS of G and for each export-word w of G.

◮ Of course, each monosystem has at most one export-word by Proposi-
tion D.23, contrary to what the wording of Definition H.3 might suggest.

Definition H.4. Let e be a classifier. A given letter-refiner r is e-sound if
w1cw2

e
∼ w1r(w1, c, w2)w2 for every letter c and for every words w1 and w2.

Definition H.5. A belt-selector s is sound if the following condition is met
for every such monosystem G whose belt-selector is s and for every classifier
e.
• If the letter-refiner of G is e-sound, then G is e-sound.

Theorem H.6. Every sound belt-selector is rigid.

Theorem H.7. A weakly progressive belt-selector is sound if and only if it is
ideal.

H.2 Rewriting maps

Definition H.8. A rewriting map, or simply a map, is any subset of W4.
When m1 and m2 are such two maps that m1 ⊆ m2, we say that m1 is a
submap of m2, and that m2 is a supermap of m1.

Notation H.9. Suppose that a given word quadruple 〈w∗, w1, w, w2〉 belongs
to a given map m. We denote this fact as w∗

� m⌊w1, w, w2⌋.

Definition H.10. Let e be a classifier. A given map m is e-sound if the
following condition is met for every words w, w1, w2, and w∗.
• If w∗

� m⌊w1, w, w2⌋, then w1ww2
e
∼ w1w

∗w2.

Proposition H.11. If a map m is e-sound for a classifier e, then every submap
of m is e-sound.

Definition H.12. Let m be a map. A given letter-refiner r is m-legitimate if
r(w1, c, w2) � m⌊w1, c, w2⌋ for every letter c and for every words w1 and w2.

Proposition H.13. If a letter-refiner r is m-legitimate for a map m, then r is
m∗-legitimate for every supermap m∗ of m.
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Proposition H.14. Let r be a letter-refiner, let m be a map, and let e be a
classifier. Now if r is m-legitimate and m is e-sound, then r is e-sound.

Definition H.15. Let m be a map. A given belt-selector s is m-wise sound
if the following condition is met for every such monosystem G whose belt-
selector is s and for every classifier e.
• If the letter-refiner of G is m-legitimate and if m is e-sound, then G is

e-sound.

Proposition H.16. A belt-selector is sound if and only if it is m-wise sound
for every map m.

H.3 Reflexive, transitive, and adjunctive maps

Definition H.17. A map m is reflexive if it meets the following condition
for every words w1, w, and w2.
• w � m⌊w1, w, w2⌋.

Definition H.18. A map m is transitive if it meets the following condition
for every words w1, w, w2, w∗, and w∗∗.
• If both w∗

� m⌊w1, w, w2⌋ and w∗∗
� m⌊w1, w

∗, w2⌋, then even w∗∗
�

m⌊w1, w, w2⌋.

Definition H.19. A map m is adjunctive if it meets the following condition
for every words w11, w1, w2, w22, w∗

1, and w∗
2.

• If both w∗
1 �m⌊w11, w1, w2w22⌋ and w∗

2 �m⌊w11w1, w2, w22⌋, then even
w∗

1w
∗
2 � m⌊w11, w1w2, w22⌋.

Theorem H.20. Let k ≥ 1.
1. σC is m-wise sound for every such map m that is adjunctive but σI is not.
2. σT(k) is m-wise sound for every such map m that is transitive and adjunc-

tive.
3. (△σT(k))‖σT(k+1) and σT(k+1)‖(△σT(k)) are m-wise sound for every such

map m that is reflexive, transitive, and adjunctive.

H.4 Civil, semicivil, and semigentle maps

Definition H.21. A map m is left-civil [respectively, right-civil] if the fol-
lowing condition is met for every words w11, w1, w, w2, w22, w∗

1, and w∗
2.

• If both w∗
1 � m⌊w11, w1, ww2w22⌋ and w∗

2 � m⌊w11w1w, w2, w22⌋, then
the appropriate one of the following statements holds.
a. Left-civilness: w∗

1 � m⌊w11, w1, ww∗
2w22⌋.

b. Right-civilness: w∗
2 � m⌊w11w

∗
1w, w2, w22⌋.

Definition H.22. Let m be a map.
1. m is semicivil if m is left-civil or right-civil.
2. m is civil if m is both left-civil and right-civil.

Theorem H.23. Suppose that a belt-selector s is m-wise sound for every
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adjunctive map m. Then s is m∗-wise sound for every semicivil map m∗.

Theorem H.24. σC is m-wise sound for every semicivil map m but σI is not.

Definition H.25. A map m [respectively, m′] is left-gentle [respectively,
right-gentle] if it has such a supermap m′ [respectively, m] that the following
condition is met for every words w11, w1, w, w2, w22, w∗

1, and w∗
2.

• If both w∗
1 � m⌊w11, w1, ww2w22⌋ and w∗

2 � m′⌊w11w1w, w2, w22⌋, then
both w∗

1 � m⌊w11, w1, ww∗
2w22⌋ and w∗

2 � m′⌊w11w
∗
1w, w2, w22⌋.

Definition H.26. A map is semigentle if it is left-gentle or right-gentle.

Proposition H.27. Every left-gentle [respectively, right-gentle, semigentle]
map is also left-civil [respectively, right-civil, semicivil].

◮ By Theorem H.28, there is no need to give the conjunction of left-
gentleness and right-gentleness any special name (such as “gentleness”).

Theorem H.28. A map is civil if and only if it is both left-gentle and right-
gentle.

H.5 On smooth belt-selectors

Definition H.29. A belt-selector s is smooth if the following condition is
met for every tree X and for every nodes n and n′ in X .
• If n is a leaf of X and if n′ has a proper descendant in s(X, n), then

s(X, n) � s(X, n′).

Proposition H.30. A belt-selector s is smooth if and only if ⊥s is smooth.

Theorem H.31. These statements hold.
1. Every smooth belt-selector is convex.
2. Every such belt-selector that is convex and strongly progressive is smooth.
3. There is such a convex and weakly progressive belt-selector that is not

smooth.
4. Every ideal belt-selector is smooth.

Theorem H.32. Every smooth belt-selector is m-wise sound for every civil
map m.

H.6 On subideal belt-selectors

Definition H.33. A belt-selector s is subideal if there are such two ideal
belt-selectors s1 and s2 that s = s1‖s2 � s2‖s1.

Proposition H.34. A belt-selector s is subideal if and only if ⊥s is subideal.

Proposition H.35. A belt-selector is subideal if and only if it can be ex-
pressed as s1‖s2 for such two ideal belt-selectors s1 and s2 that s1‖σE

�
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s2‖σE.

Proposition H.36. These statements hold.
1. Every ideal belt-selector is subideal.
2. Every member of {σC} ∪ ΣT is subideal.
3. (△σT(k))‖σT(k+1) is subideal for every k ≥ 1.

Proposition H.37. Every subideal belt-selector is convex and weakly pro-
gressive.

Theorem H.38. Every subideal belt-selector is smooth.

Theorem H.39. Every subideal belt-selector is m-wise sound for every semi-
gentle map m.
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I COALESCENCE

Definition I.1. Let N be a subbelt, and let n be a node. The left-tail of
the pair 〈N, n〉 is denoted as N�n and defined as the subbelt that consists of
every such node that both belongs to N and is a left-relative of n.

Proposition I.2. For any tree X , for any node n in X , and for any belt-
selector s, we have s(X, n)�n =←−s (X, n).

Definition I.3. A belt-selector s is left-coalescent if the following condition
is met for every tree X , for every nodes n1 and n2 in X , and for every node n

in←−s (X, n1) ∩←−s (X, n2).
• Let the two angles ∢(n1, n) and ∢(n2, n) be denoted as 〈i1,−1, j1〉 and
〈i2,−1, j2〉, respectively. Then φs(i1,−1)− j1 = φs(i2,−1)− j2 implies
←−s (X, n1)�n =←−s (X, n2)�n.

Proposition I.4. A belt-selector s is left-coalescent if and only if s‖s∗ is left-
coalescent for every belt-selector s∗.

Definition I.5. Let s be a belt-selector.

1. s is right-coalescent if ⊥s is left-coalescent.
2. s is coalescent if it is both left-coalescent and right-coalescent.

◮ By Definition I.5, any result we may achieve on left-coalescence easily
carries over to both right-coalescence and coalescence. Hence, defining the
left-tail (in Definition I.1 above) but not its right-hand counterpart is indeed
sufficient for our present purposes.

Proposition I.6. A belt-selector s is coalescent if and only if ⊥s is coales-
cent.

◮ Of course, the following Theorem I.7 is important because of Theo-
rem D.21.

Theorem I.7. Let G be a monosystem, let X be a derivative of G, and let n1

and n2 be two nodes of X . Moreover, suppose that both n1 and n2 are fertile
in X on G. Finally, let the belt-selector of G be denoted as s. Then for any
node n in←−s (X, n1) ∩←−s (X, n2), we have←−s (X, n1)�n =←−s (X, n2)�n if at
least one of the following conditions is met.

1. ←−s ∈ {←−σE,
←−σI }.

2. s is left-coalescent, and α(n) is a mutable of G.
3. s is left-coalescent, α(n) is an immutable of G, and at least one of the

following subconditions is met when ∢(n1, n) and ∢(n2, n) are denoted
as 〈i1,−1, j1〉 and 〈i2,−1, j2〉, respectively.
a. φs(i1,−1) = φs(i2,−1) =∞.
b. φs(i1,−1)− j1 = φs(i2,−1)− j2.

Theorem I.8. A belt-selector s is left-coalescent if and only if the following
conditions are met by every positive integers i1 and i2.

1. Suppose φs(i1,−1) = ∞. Then we have φs(i
∗,−1) = ∞ for every
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i∗ ≥ i1.
2. Suppose φs(i1,−1) = φs(i2,−1). Then we have φs(i1 + k,−1) =

φs(i2 + k,−1) for every k > 0.
3. Suppose φs(i1,−1) < φs(i2,−1) <∞. Then we have φs(i

∗ + 1,−1) =
φs(i

∗,−1)+1 for every such i∗ that i1 ≤ i∗ < i1+φs(i2,−1)−φs(i1,−1).

Proposition I.9. Any member of {σE, σC} ∪ ΣT is left-coalescent.

Proposition I.10. A belt-selector s is left-coalescent if and only if △s is left-
coalescent.

Theorem I.11. A belt-selector s is both ideal and coalescent if and only
if there are such t∗ in N

+ ∪ {∞} and such d∗
1 and d∗

2 in {−1, 1} that the
following conditions are met for every i > 0.
1. If i < t∗, then φs(i,−d∗

1) = i and φs(i, d
∗
1) = i + 1.

2. If i ≥ t∗, then φs(i,−d∗
2) = t∗ and φs(i, d

∗
2) =∞.

Theorem I.12. An ideal belt-selector is left-coalescent if and only if it is
right-coalescent.

Theorem I.13. A belt-selector s is both subideal and coalescent if and only
if there are such belt-selectors s1 and s2 that meet the following conditions.
1. s = s1‖s2 � s2‖s1.
2. Both s1 and s2 are ideal.
3. Both s1 and s2 are coalescent.

Proposition I.14. There is such a coalescent belt-selector that is distribu-
tively progressive but not convex.
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