
On Tree Belts and Belt-SeletorsEero Lassila�AbstratSuh �nite trees are onsidered that are rooted and ordered: every treenode is a desendant of a unique root node; and the diret desendant nodesof eah node are linearly ordered. A rather general mehanism is presentedfor the spei�ation of suh two-argument funtions that take any tree andany node in the tree and return suh a ross-setion-type subset of the nodesof the argument tree that ontains the argument node itself.1 IntrodutionComputerized information proessing often involves manipulation of �nite strings ofsymbols. For example, omputer programs themselves, when interpreted as data, are�nite instrution sequenes, and their ompile-time generation and optimization anbe seen as string manipulation. (In addition to atomi symbols, like the haraters ina harater string, strutured symbols are allowed to our in the strings onsidered.)We are espeially interested in the ase in whih the lowest-level string manipulationoperations available are elementary re�nements: one symbol ourrene is replaedwith an appropriate new substring, as depited in Figure 1.
Figure 1: An elementary re�nement.By introduing an auxiliary root node, we are able to represent an arbitrary series ofsuessive elementary re�nements as a tree, as suggested in Figure 2. The partiulartree in the �gure is seen to reord �ve elementary re�nements. Obviously, the treerepresentation partially hides the atual order in whih the elementary re�nementshave been performed.�Helsinki University of Tehnology, Laboratory for Theoretial Computer Siene, P.O. Box5400, FIN-02015 HUT, Finland. E-mail address: eero.lassila�hut.�



Figure 2: A series of elementary re�nements represented as a tree.For the purpose of tasks like optimizing ode generation, the elementary re�nementsshould be unboundedly ontext-sensitive. Nevertheless, even if we normally wantto use a re�nement ontext that is maximally wide, we may often be satis�ed witha ontext that is not partiularly greedy : it may well be appropriate to use someother ross setion of the tree than the maximally deep ross setion onsisting ofthe urrent leaf sequene. In the following, we give three ode-generation-relatedexamples of a ontext seletion sheme.� Maro proessors [2, 4, 3, 5℄ use a ross setion whose left-hand side ismaximally deep. Moreover, the left-hand side must be onstituted byterminal symbols rather than by other maro alls. (Eah elementaryre�nement, that is, the expansion of eah maro all, may be sensitive tothe urrent values of any global maro-time variables, and these valuesustomarily propagate from left to right. In ontrast, the right-handontext is usually ignored.) Therefore, the leaf proessing order is stritlydepth-�rst and left-to-right, whih means that the ross setion even as awhole is neessarily maximally deep. Figure 3 shows a sample tree at theunique moment when the leaf marked with a blak ring is proessable;the re�nement ontext is indiated by white rings, and the hekerednodes in the left-hand ontext orrespond to terminal symbols.� Parametri Lindenmayer systems [20, 19, 14, 13, 18, 17℄ output sequenesof drawing ommands and thus indiretly produe high-quality graphis.They are perhaps the best-known example of appliation-oriented exten-sions to the basi Lindenmayer system model [7, 21, 8℄. With Linden-mayer systems (whether parametri or not), the tree nodes are proessedin a generation-by-generation fashion, and the \horizontal" ross setiononstituted by all the nodes in the urrent generation serves as the re�ne-ment ontext. In pratie, the nodes within eah single generation maywell be proessed sequentially, rather than simultaneously, but it shouldbe notied that the desired horizontal ross setion then di�ers from themaximally deep ross setion. The two trees of Figure 4 depit only thetwo extremes among the possible proessing moments for the leaf withthe blak ring.� Figure 5 illustrates a ontext seletion sheme that we have earlier em-



ployed in a simplisti prototype [9, 10, 11℄, alled ReFlEx, of a stillnonexistent tool proposed by us for optimizing mahine-level ode gen-eration [1, 12, 16, 15℄. Now the re�nement ontext is onstituted by theleast deep ross setion possible. Suh ungreediness is rewarded as theleaf proessing order beomes ompletely free. The two trees of Figure 5again depit only two of the possible proessing moments for the leafwith the blak ring. (The moment depited on the left-hand side of the�gure is of ourse the earliest possible.)
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������Figure 3: The re�nement ontext used by maro proessors.
Figure 4: The re�nement ontext used by Lindenmayer systems.
Figure 5: The re�nement ontext used by the ReFlEx prototype.Our present goal is to �nd a general mehanism with whih one an onvenientlyspeify the partiular ross setion to be used as the re�nement ontext. On onehand, the mehanism should be expressive by imposing only few onstraints on thehoie of the ross setion; on the other hand, well-designed onstraints would prob-ably be helpful by making the onsequenes of the hoie more easily tratable. Inthe following Setion 2, we formulate a simple onstraint on ross setion seletion,and in the �nal Setion 3, we then desribe suh a ross setion spei�ation meh-anism that exatly mathes the formulated onstraint. We suggest that the singleonstraint is not only simple but also a pratial one, even if we do not, as yet, tryto provide any onrete evidene for this laim.



2 De�nition of a belt-seletor2.1 TreesA tree onsists of a �nite and non-zero number of nodes. Figure 6 depits a sampletree, whih we all A. (By onvention, `node a3', for instane, refers to the uniquenode in tree A labeled as `3'. The reason why node a9 is distinguished in Figure 6is that we have, more or less arbitrarily, hosen it to have an important role insome examples below.) Eah tree is rooted and ordered, as will be explained next.(This denotation of the term `tree' adopted here is a standard one within the formallanguage ommunity; see [6℄, for instane.)
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Figure 6: Tree A.The rootedness means that eah tree has exatly one root : the root of A is a0. Everytree node di�erent from the root has exatly one father in the tree: the father of a9is a2, and so a9 (like a10 and a11) is a son of a2. Suh tree nodes that have no sonsare leaves of the tree: A has a total of nine leaves.We say that a given node n0 is an anestor of a given node n if the pair hn0; nibelongs to the reexive-transitive losure of the binary `is a father of' relation. (By`a pair' we always mean an ordered pair.) Hene the anestors of a9 are a9, a2, anda0. If n0 is an anestor of n, then n is a desendant of n0. Moreover, n0 is a properanestor of n, and n is orrespondingly a proper desendant of n0, if n0 is an anestorof n and n0 6= n.The orderedness means that there is a total \left-to-right" order among the sons ofany given tree node. If two distint nodes have the same father, then one of themis a left-brother of the other, and the latter is a right-brother of the former. Forinstane, a9 has right-brothers a10 and a11, and a10 has a9 as a left-brother and a11as a right-brother.We say that a given node n0 is a left-relative of a given node n if there are suhnodes n00 and n0 in the tree that n00 is a left-brother of n0, n0 is a desendant of n00,and n is a desendant of n0. If n0 is a left-relative of n, then n is a right-relative ofn0. For instane, a8 is a left-relative of a9 (sine a1 is a left-brother of a2), and a9 isa right-relative of a8.



Note that for eah two distint nodes n� and n�� in any given tree, exatly one of thefollowing statements holds: n� is a proper anestor of n��; n� is a proper desendantof n��; n� is a left-relative of n��; or n� is a right-relative of n��.2.2 Angles between tree nodesEah tree node has a unique degree, and eah pair of tree nodes has a unique angle.De�nition 1. The degree of a given tree node is the number of its proper anes-tors.De�nition 2. The angle of a given tree node pair hn; n0i is denoted as ^(n; n0)and de�ned as the unique integer triple hi; d; ji that meets the following ondi-tions.1. i [respetively, j℄ is the di�erene of the degrees of n [respetively, n0℄ and theone of the ommon anestors of n and n0 that has the greatest degree.2. d = 0 if one of n and n0 is an anestor of the other, d = �1 if n0 is a left-relativeof n, and d = 1 if n0 is a right-relative of n.Note that ^(n; n0) = hi; d; ji always implies ^(n0; n) = hj;�d; ii. Table 1 lists theangles from node a9 to the other nodes of our sample tree A.n ^(a9; n) n ^(a9; n) n ^(a9; n)a0 h2; 0; 0i a6 h2;�1; 3i a12 h0; 0; 1ia1 h2;�1; 1i a7 h2;�1; 3i a13 h0; 0; 1ia2 h1; 0; 0i a8 h2;�1; 4i a14 h0; 0; 2ia3 h2; 1; 1i a9 h0; 0; 0i a15 h1; 1; 2ia4 h2;�1; 2i a10 h1; 1; 1i a16 h1; 1; 2ia5 h2;�1; 3i a11 h1; 1; 1i a17 h1; 1; 2iTable 1: The angles from node a9 to the other nodes of tree A.De�nition 3. A given integer triple hi; d; ji is a link if there is suh a tree nodepair hn; n0i that ^(n; n0) = hi; d; ji.Note that hi; d; ji is a link if and only if all the following onditions are met: i � 0,d 2 f�1; 0; 1g, j � 0, and d = 0 , i� j = 0.2.3 Belts and belt-seletorsDe�nition 4. A belt of a tree is any suh subset of the tree nodes that eah leafof the tree has exatly one anestor in the subset.In any tree, both the set onsisting of the sole root and the set onsisting of allthe leaves are belts. For more spei� examples, Table 2 lists all suh belts of oursample tree A that ontain node a9.De�nition 5. A belt-provider is any suh two-argument funtion that takes anytree and any node in the tree and returns one suh belt of the tree that ontains thenode.



fa1g [ fa9g [ fa10; a11; a3g fa5; a6; a7g [ fa9g [ fa10; a11; a3gfa1g [ fa9g [ fa15; a11; a3g fa5; a6; a7g [ fa9g [ fa15; a11; a3gfa1g [ fa9g [ fa10; a16; a17; a3g fa5; a6; a7g [ fa9g [ fa10; a16; a17; a3gfa1g [ fa9g [ fa15; a16; a17; a3g fa5; a6; a7g [ fa9g [ fa15; a16; a17; a3gfa4g [ fa9g [ fa10; a11; a3g fa5; a8; a7g [ fa9g [ fa10; a11; a3gfa4g [ fa9g [ fa15; a11; a3g fa5; a8; a7g [ fa9g [ fa15; a11; a3gfa4g [ fa9g [ fa10; a16; a17; a3g fa5; a8; a7g [ fa9g [ fa10; a16; a17; a3gfa4g [ fa9g [ fa15; a16; a17; a3g fa5; a8; a7g [ fa9g [ fa15; a16; a17; a3gTable 2: The sixteen belts of tree A that ontain node a9.De�nition 6. A given belt-provider s is uniangular , and hene alled a belt-seletor , if it meets the following ondition.� Let X1 and X2 be two trees ontaining nodes n1 and n2, respetively. SupposethatX1 has a leaf n01, and let the unique anestor of n01 that belongs to s(X1; n1)be denoted as n001. Similarly, suppose that X2 has a leaf n02, and let the uniqueanestor of n02 that belongs to s(X2; n2) be denoted as n002. Then ^(n1; n01) =^(n2; n02) implies ^(n1; n001) = ^(n2; n002).2.4 An exampleBefore a more thorough analysis in Setion 3, let us briey look at some onsequenesof the uniangularity requirement. Spei�ally, we will onsider some belts of tree B,on the left-hand side of Figure 7, and ask whether there is suh a belt-seletor thatis able to selet the partiular belt for node b4. Of ourse, any belt seleted mustontain b4 itself, and we restrit ourselves to only three suh belts.
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17Figure 7: Trees B and C.Case 1: fb4; b7; b10; b13g. In Setion 3 below, we will prove that there exists suh abelt-seletor s for whih s(B; b4) equals this belt.



Case 2: fb4; b8; b10; b13g. (This is the belt of ase (1) with b7 replaed by itssingle son b8.) It is readily seen that there exists no suh belt-seletor s� forwhih s�(B; b4) equals this belt: uniangularity would otherwise be violated, sine^(b4; b9) = ^(b4; b12) but ^(b4; b8) 6= ^(b4; b10).Case 3: fb4; b7; b10; b3g. (This is the belt of ase (1) with the brotherless b13 replaedby its father b3.) Again, there exists no suh belt-seletor s� for whih s�(B; b4) equalsthis belt. Our following simple proof is by ontradition; suppose for a moment thatsuh s� exists. Consider tree C, on the right-hand side of Figure 7, whih is otherwisefully isomorphi to tree B but has a single additional branh onsisting of nodes14, 15, 16, and 17. Beause ^(b4; b12) = ^(4; 17) and ^(b4; b10) = ^(4; 15),uniangularity requires that 15 belongs to s�(C; 4). This fores us to inlude even13 in s�(C; 4). The ontradition desired is now that ^(b4; b13) = ^(4; 13) butobviously ^(b4; b3) 6= ^(4; 13), and so uniangularity is violated.3 More expliit haraterization of belt-seletorsWe let N+ denote the set f1; 2; : : :g of all positive integers. The `less-than' relationis extended from N+ to N+ [ f1g simply by stating that k <1 for every k 2 N+and requiring that the relation remains irreexive and transitive.De�nition 7. A omb is any funtion from N+ � f�1; 1g to N+ [ f1g.De�nition 8. A given omb f is a harateristi omb of a given belt-providers if for every tree X, for every node n of X, and for every leaf n0 of X, the followingonditions are met when ^(n; n0) is denoted as hi; d; ji and the unique anestor ofn0 that belongs to s(X; n) is denoted as n00.1. Suppose d 6= 0 and j � f(i; d). Then n00 = n0.2. Suppose d 6= 0 and j > f(i; d). Then n00 is the unique proper anestor of n0 forwhih ^(n; n00) = hi; d; f(i; d)i.Let us tentatively try to assoiate eah one of the three belt seletion shemesdepited in Figures 3, 4, and 5 with a harateristi omb. Consider any i 2 N+ .Maro proessors seem to require that f(i;�1) = 1 but f(i; 1) = 1; Lindenmayersystems and the ReFlEx prototype seem to require that f(i;�1) = f(i; 1) = i andf(i;�1) = f(i; 1) = 1, respetively.Notation 9. The set of belt-providers [respetively, of belt-seletors, of ombs℄ isdenoted as P [respetively, S, F ℄.Our following main result indiates that the `is a harateristi omb of' relationis atually a one-to-one orrespondene between ombs and belt-seletors. In par-tiular, the theorem implies that the set of belt-seletors is non-empty, sine theset of ombs is obviously non-empty. Notie also that it now beomes evident thatthere does exist a belt-seletor realizing ase (1) of the example in Setion 2.4: wemay hoose any belt-seletor whose harateristi omb f has the property thatf(2; 1) = 3.



Theorem 10. Let R denote the set of all suh members hs; fi of P �F that f is aharateristi omb of s. Then R � S � F , and moreover, R is a bijetive funtionfrom S to F .We will be able to prove Theorem 10 after �rst obtaining some auxiliary results.Lemma 11. Eah omb is a harateristi omb of at least one belt-provider.Proof. Let f , X, and n be a given omb, a given tree, and a given node of the tree,respetively. We de�ne two subsets N1 and N2 of the nodes of X in the followinginremental fashion.1. N1 = fng [ N 0 when N 0 onsists of all suh nodes n0 of X that ^(n; n0) =hi; d; f(i; d)i for some hi; di 2 N+ � f�1; 1g.2. N2 = N1[N� when N� onsists of all suh leaves of X that have no anestorin N1.By the two de�nitions above, neither set N1 nor set N2 ontains suh a nodethat is a proper anestor of some other node in the same set. Consequently, N2 iseasily seen to be suh a belt that ontains n. Hene, the above two-stage node setonstrution proedure serves as a belt-provider, and it is straightforward to verifyfrom De�nition 8 that f is indeed a harateristi omb of that belt-provider. 2Lemma 12. Eah omb is a harateristi omb of at most one belt-provider.Proof. (By ontradition.)Assume that a omb f is a harateristi omb of two distint belt-providerss1 and s2. Beause s1 6= s2, there must be a tree X with suh a node n thats1(X; n) 6= s2(X; n).However, De�nition 8 piks for eah leaf a unique anestor that must belong tothe belt returned by any suh belt-provider whose harateristi omb is f . (Foreah suh leaf of X that is a desendant of n, the unique anestor is obviously nitself, already by the de�nition of a belt-provider.) Hene, we must have s1(X; n) =s2(X; n), whih is a ontradition. 2Lemma 13. Eah belt-provider has at most one harateristi omb.Proof. (By ontradition.)Assume that a belt-provider s has two distint harateristi ombs f1 and f2.Beause f1 6= f2, there must be suh hi; di 2 N+ � f�1; 1g that f1(i; d) 6= f2(i; d).Without loss of generality, we may further assume f1(i; d) < f2(i; d).We learly have f1(i; d) <1. Consider then any tree X with suh nodes n andn00 that ^(n; n00) = hi; d; f1(i; d)i and n00 is a father of some leaf n0 of X.First, sine f1 is a harateristi omb of s, ondition (2) of De�nition 8 requiresthat n00 2 s(X; n). Seond, sine f2 is a harateristi omb of s, ondition (1) ofDe�nition 8 requires that n0 2 s(X; n). This is obviously a ontradition. 2Lemma 14. Let R� denote the set of all suh members hf; si of F � P that f is aharateristi omb of s. Then R� is an injetive funtion from F to P.Proof. Lemmas 11 and 12 together imply that the spei�ed R� is a funtion from Fto P, and Lemma 13 moreover implies that the funtion is injetive. 2Lemma 15. If a belt-provider has a harateristi omb, then the belt-provider isa belt-seletor.



Proof. Suppose that a belt-provider s has a harateristi omb f . Let X1 and X2be given trees, let n1 and n2 be given nodes of X1 and X2, respetively, and let n01and n02 be given leaves of X1 and X2, respetively. Let n001 denote the unique anestorof n01 that belongs to s(X1; n1), and let n002 similarly denote the unique anestor ofn02 that belongs to s(X2; n2). By De�nition 6, it is now suÆient to demonstratethat ^(n1; n01) = ^(n2; n02) implies ^(n1; n001) = ^(n2; n002).So we assume that ^(n1; n01) and ^(n2; n02) are both equal to some link hi; d; ji,and try to show that ^(n1; n001) = ^(n2; n002). We divide the task into three ases.� Suppose d = 0. By the de�nition of a belt-provider, we now have n001 = n1and n002 = n2, and so indeed ^(n1; n001) = h0; 0; 0i = ^(n2; n002).� Suppose d 6= 0 and j � f(i; d). By ondition (1) of De�nition 8, we nowhave n001 = n01 and n002 = n02, and so indeed ^(n1; n001) = hi; d; ji = ^(n2; n002).� Suppose d 6= 0 and j > f(i; d). By ondition (2) of De�nition 8, we nowindeed have ^(n1; n001) = hi; d; f(i; d)i = ^(n2; n002). 2Lemma 16. Let n1 and n001 be nodes in a tree X1, and suppose that n001 is not aleaf. Similarly, let n2 and n002 be nodes in a tree X2, and suppose that n002 is nota leaf. Suppose also ^(n1; n001) = ^(n2; n002). Then for any belt-seletor s, we haven001 2 s(X1; n1) , n002 2 s(X2; n2).Proof. We suppose exatly what is suggested above in the text of the lemma andset out to verify that for any s, it is the ase that n001 2 s(X1; n1) , n002 2 s(X2; n2).As depited in Figure 8, we let n01 [respetively, n02℄ denote any suh leaf of X1[respetively, X2℄ that is also a proper desendant of n001 [respetively, n002℄. (Beauseneither n001 nor n002 is a leaf, suh n01 and n02 do exist.) It is now easy to see that thereexists a tree X0, skethed on the right-hand side of Figure 8, with suh nodes n0,n000, n00;1, and n00;2 that meet the following onditions.1. n000 is not a leaf.2. ^(n0; n000) = ^(n1; n001).3. ^(n0; n000) = ^(n2; n002). (This is a trivial onsequene of the previous ondi-tion, sine it is supposed that ^(n1; n001) = ^(n2; n002).)4. Both n00;1 and n00;2 are suh leaves that are proper desendants of n000.5. ^(n0; n00;1) = ^(n1; n01).6. ^(n0; n00;2) = ^(n2; n02).First, by the uniangularity stated in De�nition 6, onditions (5) and (2) abovetogether ensure that n000 2 s(X0; n0) , n001 2 s(X1; n1). Seond, again by uniangu-larity, onditions (6) and (3) ensure that n000 2 s(X0; n0) , n002 2 s(X2; n2). Thelaim now trivially follows from the ombination of these two fats. 2De�nition 17. Let s be a given belt-seletor, and let L denote the link set thatonsists of every suh link hi�; d�; j�i that meets the following ondition: there aresuh a treeX and suh nodes n and n00 ofX that ^(n; n00) = hi�; d�; j�i, n00 2 s(X; n),and n00 is not a leaf. We say that a given omb f is a natural omb of s if thefollowing onditions are met for every hi; di 2 N+ � f�1; 1g.1. f(i; d) =1 if and only if hi; d; ji 62 L for every j 2 N+ .2. If f(i; d) <1, then hi; d; f(i; d)i 2 L.
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’Figure 8: Proving Lemma 16.Lemma 18. Eah belt-seletor has at least one natural omb.Proof. Obvious from De�nition 17. (Notie that for any given link set L, even ifit is di�erent from the partiular link set onstruted in De�nition 17, there is atleast one suh omb f that meets the two onditions (1) and (2) of De�nition 17 forevery hi; di 2 N+ � f�1; 1g.) 2Lemma 19. If a belt-seletor has a natural omb, then the natural omb is also aharateristi omb of the belt-seletor.Proof. Let a omb f be a natural omb of a belt-seletor s. To �nd out whetherf is neessarily also a harateristi omb of s, we set out to examine whether theonditions of De�nition 8 are met for a given tree X, for a given node n of X, and fora given leaf n0 of X. We denote ^(n; n0) as hi; d; ji and the unique anestor of n0 thatbelongs to s(X; n) as n00. The examination may be divided into the following threeases. (Of the two onditions of De�nition 8, ondition (1) is overed by ases (1)and (2) below, and ondition (2) is overed by ase (3).)1. Suppose d 6= 0 and j < f(i; d) = 1. By ondition (1) of De�nition 17, wemust have n00 = n0. Hene, the appropriate ondition (1) of De�nition 8 isindeed met.2. Suppose d 6= 0 and j � f(i; d) < 1. By ondition (2) of De�nition 17,there are suh a tree X0 and suh nodes n0 and n000 of X0 that ^(n0; n000) =hi; d; f(i; d)i and n000 2 s(X0; n0). (Here we need not be interested in whethern000 is or is not a leaf.) This means that for any proper anestor n� of n0,there is suh a proper anestor n�0 of n000 that the following onditions aremet.� ^(n; n�) = ^(n0; n�0).� Neither n� nor n�0 is a leaf.� n�0 62 s(X0; n0).



Lemma 16 now implies that n00 6= n� for any n�, and so we must haven00 = n0. Hene, the appropriate ondition (1) of De�nition 8 is indeed met.3. Suppose d 6= 0 and f(i; d) < j < 1. By ondition (2) of De�nition 17,there are, again, suh a tree X0 and suh nodes n0 and n000 of X0 that^(n0; n000) = hi; d; f(i; d)i, n000 2 s(X0; n0), and n000 is not a leaf. Lemma 16now implies that n00 must be the unique proper anestor (whih obviouslyannot be a leaf) of n0 for whih ^(n; n00) = ^(n0; n000) = hi; d; f(i; d)i.Hene, the appropriate ondition (2) of De�nition 8 is indeed met. 2Proof of Theorem 10. By Lemmas 18 and 19, every belt-seletor has a harateristiomb; and by Lemma 15, no suh belt-provider that is not a belt-seletor has aharateristi omb. Hene, a belt-provider has a harateristi omb if and only ifthe belt-provider is a belt-seletor, and so the laim now follows from Lemma 14. 2Referenes[1℄ A. V. Aho, R. Sethi, and J.D. Ullmann. Compilers: Priniples, Tehniques,and Tools. Addison-Wesley, 1986.[2℄ P. J. Brown. A survey of maro proessors. Annual Review in Automati Pro-gramming, vol. 6, part 2, pp. 37{88. Pergamon Press, 1969.[3℄ P. J. Brown. Maro Proessors and Tehniques for Portable Software. Wiley,1974.[4℄ M. Campbell-Kelly. An Introdution to Maros. Madonald, London (UK),1973.[5℄ A. J. Cole. Maro Proessors (seond edition). Cambridge University Press,1981.[6℄ F. G�eseg and M. Steinby. Tree languages. In [22℄, vol. 3, pp. 1{68.[7℄ G. T. Herman and G. Rozenberg. Developmental Systems and Languages.North-Holland, 1975.[8℄ L. Kari, G. Rozenberg, and A. Salomaa. L systems. In [22℄, vol. 1, pp. 253{328.[9℄ E. Lassila. ReFlEx|an experimental tool for speial-purpose proessor odegeneration. Report B15, Digital Systems Laboratory, Helsinki University ofTehnology. Espoo (Finland), Marh 1996.[10℄ E. Lassila. A maro expansion approah to embedded proessor ode genera-tion. Proeedings of the 22nd EUROMICRO Conferene, pp. 136{142. IEEEComputer Soiety Press, 1996.[11℄ E. Lassila. Towards optimizing ode generation by domain-sensitive maro ex-pansion. Report A42, Digital Systems Laboratory, Helsinki University of Teh-nology. Espoo (Finland), January 1997.[12℄ P. Marwedel and G. Goossens (eds.). Code Generation for Embedded Proes-sors. Kluwer, 1995.
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