
Helsinki University of Technology

Department of Computer Science

Digital Systems Laboratory

Otaniemi, Otakaari 1

FIN�02150 ESPOO, FINLAND

HELSINKI UNIVERSITY OF TECHNOLOGY

DIGITAL SYSTEMS LABORATORY

Series B: Technical Reports ISSN 0783�540X

No. 15; March 1996 ISBN 951�22�2993�5

ReFlEx�AN EXPERIMENTAL TOOL FOR

SPECIAL-PURPOSE PROCESSOR CODE GENERATION

Eero Lassila

Digital Systems Laboratory

Department of Computer Science

Helsinki University of Technology

Otaniemi, FINLAND

HELSINKI UNIVERSITY OF TECHNOLOGY

DIGITAL SYSTEMS LABORATORY

Series B: Technical Reports ISSN 0783�540X

No. 15; March 1996 ISBN 951�22�2993�5

ReFlEx�An Experimental Tool for

Special-Purpose Processor Code Generation

Eero Lassila

Abstract: Code generation for embedded special-purpose processors is usually a

di�cult task for compiler writers as well as for assembly language programmers. This

report describes an experimental demonstration prototype of a code generation tool.

The tool is a retargetable assembly-code-level macro expander capable of program

�ow analysis. The main advantage o�ered by this macro expander is its strong

support for macro hierarchy. The enhanced modularity provided by hierarchical

macro libraries can make the code (produced either by the compiler writer or by the

assembly language programmer) more easily readable, maintainable, and reusable.

Still, a procedure written in the macro language retains its machine-speci�city and,

consequently, its e�ciency.

Keywords: Code generation, special-purpose processors, macro expansion, program

�ow analysis.

Printing: TKK Monistamo; Otaniemi 1996

Helsinki University of Technology Phone:

90

+358�0

4511

Department of Computer Science

Digital Systems Laboratory Telex: 125 161 htkk �

Otaniemi, Otakaari 1 Telefax: +358�0�465 077

FIN�02150 ESPOO, FINLAND E-mail: lab@saturn.hut.�

� i �

Contents

1 Introduction 1

1.1 Background . 1

1.2 Notion of �ow-sensitivity . 2

1.3 Overview of the proposed tool 4

1.4 Implications on target hardware 5

1.5 Outline of this report . 6

2 Tutorial 7

2.1 Overall rule base structure . 7

2.2 Expansion-time expression interpreter 7

2.3 Available data storage . 9

2.4 Machine instruction set . 9

2.5 Higher-level macros . 11

2.6 Generating code for macro calls 13

3 Target architecture model 16

3.1 Code storage . 16

3.2 Data storage . 16

3.3 Comparison with real machine instruction sets 17

3.4 Our machine instruction model 18

4 On syntactical conventions 20

4.1 Characters . 20

4.2 Tokens . 21

4.3 Structuring mechanisms . 21

� ii �

5 Constant expressions 22

5.1 Taxonomy of integer, cell, and label designators 24

5.2 Integer literals . 24

5.3 Form calls . 24

5.4 Integer, cell, and label references 25

5.5 Autonomous primitive forms 26

5.6 Context-sensitive primitive forms 27

5.7 Rigid compound forms . 30

5.8 Flexible compound forms . 32

6 Macro de�nitions 35

6.1 General structure of a macro de�nition 35

6.2 System macros . 37

6.3 Control transfer . 37

6.4 Macro parameters and arguments 38

6.5 Structure of a version de�nition 39

6.6 Test, assertion, and insist clauses 40

6.7 Macro temporaries . 42

6.8 Initialization of data variables 43

6.9 Safety declarations . 45

6.10 Form calls in macro de�nitions 46

7 Macro expansion procedure 48

7.1 Overall linking strategy . 48

7.2 Preliminary de�nitions . 49

7.3 Free cell analysis . 50

7.4 Variable binding . 52

7.5 Accepting or rejecting a macro version 53

� iii �

7.6 Safeguarding . 54

7.7 Merging phase . 54

8 Input and output 55

8.1 Expansion source . 55

8.2 Expansion result . 56

8.3 Intermediate tree structure . 58

9 Running ReFlEx 58

9.1 Invoking ReFlEx . 59

9.2 Command-line options . 59

9.3 Interactive control . 60

9.4 Exceptional conditions and exception messages 61

10 Installing ReFlEx 63

10.1 Technical information about ReFlEx 1.0 63

10.2 Obtaining a copy of ReFlEx . 63

A Rule �le syntax 64

B Expansion source syntax 67

C A sample code generator 70

Acknowledgements 77

References 77

� 1 �

1 Introduction

In this report, we propose a novel method for machine code generation. Ba-

sically, the tool we have implemented is a retargetable assembly-code-level

macro expander: it transforms a �higher-level� but still machine-speci�c pro-

gram description into assembly language. Governed by user-written rules (i.e.

macro de�nitions), the expander can generate code for di�erent target pro-

cessors. The prototype design documented here, ReFlEx 1.0, is intended for

demonstrative purposes only; it is not yet meant for coping with real proces-

sor architectures. However, we believe that a similar but considerably more

advanced tool might meet many of the challenges posed by modern embedded

special-purpose processor architectures. Currently, embedded processor code

generation [17] is a most demanding task for high-level language compiler

writers as well as for assembly language programmers. Our ultimate goal is

to support both of these two groups of software professionals in their work.

The name ReFlEx of the implemented program comes from a `Retargetable

Flow-sensitive macro Expander'. The idea of making a macro expander per-

form full program �ow analysis is the essence of our work. (To avoid con-

fusion, we speak of `macro expanders' instead of the more common `macro

processors'; by a `processor' we always refer to computer hardware.)

1.1 Background

In computer programs, abstraction through modularity improves readabil-

ity, maintainability, and reusability: the details of a module implementation

become hidden from the clients of the module. Object-oriented program-

ming is one of the popular modularity-promoting mechanisms at the high-

level language level; we try to convince you that the use of relatively powerful

modularity-promoting mechanisms may be justi�ed even at the assembly lan-

guage level.

Do we really need to bother much about the peculiarities of assembly lan-

guages? Is it not so that RISC-type microprocessors are speci�cally designed

to be programmedwith optimizing high-level language compilers? The answer

to the latter question is yes [19], of course, but there are also many important

special-purpose processors for which no compiler available seems to be good

enough. Typically, such processors are used in embedded real-time computing

systems: representative examples can be found among digital signal processors

(DSPs) [14]. In many telecommunication systems, for instance, compiled code

is currently ruled out by e�ciency requirements. Thus, the programmers get

themselves involved in the mess known as assembly language programming.

� 2 �

Special-purpose processor architectures present programmers with three in-

herent technical complications�all of which are closely related to the e�-

ciency requirement:

� Unconventional functionality with both limitations and extensions.

� Architectural irregularity: a heterogeneous register set and an idiosyn-

cratic instruction set.

� Fine instruction granularity.

Unconventional functionality and architectural irregularity are burdens to the

compiler writer. They stem from the utmost adaptation to the narrow �eld

of intended applications; the general-purpose RISC chips, in contrast, have

regular architectures. Because of the irregularity, the case analysis needed in

code generation soon becomes too enormous for compiler writers, as noticed

by Wulf in 1981 [23].

Fine instruction granularity, on the other hand, is the feature that makes the

work of the assembly language programmer laborious and error-prone: be-

cause individual instructions are relatively primitive, more code lines have to

be written. A representative example of �ne granularity is that in some pro-

cessor architectures loads and stores are the only possible forms of memory

access (for instance, prior to launching an addition instruction both the ad-

dends must be explicitly fetched from memory). Fine instruction granularity

(with hardwired control) seems to correlate with high execution speed: RISC

instructions are also �ne-grained.

1.2 Notion of �ow-sensitivity

Macro expansion [9, 18, 7, 4, 5] is a simple modularity-promoting mechanism

traditionally used at the assembly language level [20]. However, conventional

assembly language macros cannot be freely used hierarchically. For instance,

if some macro M

1

internally uses a certain register R as a temporary data

storage, the programmer has to take care when calling M

1

: the macro ex-

pander is not able to issue a warning that the value possibly already stored

in R will be lost during the execution of M

1

[13, pp. 15�17]. Additionally,

if M

1

, in turn, calls another macro, say M

2

, then the original caller of M

1

must take into consideration even similar restrictions that perhaps concern

M

2

. In general, such implicit restrictions e�ectively prevent the introduction

of macro hierarchy.

To support unrestricted macro hierarchy, the macro expander must not be a

simple text string substitution engine but a more sophisticated tool aware of

� 3 �

the control and data �ow of the underlying program. Optimizing compilers [1]

perform program �ow analysis [11]; we apply it even to macro expansion. The

usefulness of �ow-sensitivity becomes apparent with the following C code

fragment:

while (x < 0) { /* C code */

y = x + y;

w = liboper(z);

x = z + w;

}

Let us assume that the C compiler we use can hold all the variables x, y, z,

and w in registers. Furthermore, we assume that the compiler recognizes the

liboper library function and is able to treat it as a macro, that is, to replace

its call with inline assembly code [22, Ch. 13]. Finally, we suppose that the

compiler contains a non-trivial �precompiler� that allocates the registers re-

served for the register variables and expands such library macros as liboper.

Now, �ow-sensitivity would allow the precompiler to observe that when this

liboper macro call is expanded, the register allocated for x is free to be used

as a temporary storage but the one allocated for y is not (x is rewritten by

the last statement of the loop body, but y has to retain its value throughout

the last two loop body statements).

Accordingly, the essential advantage of �ow-sensitivity is that the expander

knows which registers are free at the point of each macro call. A register is

free if it is guaranteed not to contain data that should not be overwritten, i.e.

data earlier written into it and later to be read from it. Then, the suggested

division of labor is as follows: the human programmer (e.g. a compiler writer)

only chooses the optimum register class for each macro temporary; the macro

expander then tries to �nd a free member of the chosen class. Thus, the

programmer is released from a great deal of tedious bookkeeping.

If a macro expander could reach adequate �ow-sensitivity, we could at least in

principle construct hierarchical libraries with conditional macro de�nitions as

building blocks. Such libraries would, in turn, make the assembly code more

easily readable, maintainable, and reusable. Indeed, in later sections of this

report we are able to present concrete examples of multilevel macro hierarchy.

Our most severe problem lies in monitoring all the versatile equipment that

processors use to implement the control and data �ow. In this report, we have

had to adopt strong constraints on this equipment. Most importantly, we have

excluded the possibility of indirect addressing. Note, however, that often only

memory locations, and not CPU registers, can be addressed indirectly. (In

the future, we aim at programmer-assisted mechanisms for alias analysis [1,

Sec. 10.8].)

� 4 �

1.3 Overview of the proposed tool

We propose the �ow-sensitive macro expander as a tool for both assembly

language programmers and compiler writers�in other words, both as a stand-

alone macro assembler and as the �nal part of a compiler back-end.

Flow-sensitive macro expansion, as well as macro expansion in general, re-

quires two main components: the macro expander proper and a rule base

consisting of macro de�nitions. Because the tool must be taught the target

instruction set, we deem it appropriate to divide the rule base explicitly into

system macros and application macros, as shown in Figure 1. The machine

instructions of the target processor are visible to the application macro pro-

grammer only through the system macros, which constitute the basis of the

macro hierarchy�they are actually not genuine macros but mere placehold-

ers for individual machine instructions. Application macro de�nitions can be

hierarchical: in the de�nition of an application macro A, you may call any

macro B. The task of the macro expander is to convert each application

macro call in the input program into a sequence of system macro calls.

processor-speci�c

system library

processor-independent

macro expander

APPLICATION MACROS

SYSTEM MACROS

processor-speci�c

programming tool

processor-

speci�c

expansion

source

processor-

speci�c

expansion

result

APPLICATION

MACRO

CALLS

SYSTEM

MACRO

CALLS

processor-speci�c

utility library

�

& %

�

@

@

�

�

@

@

�

�

Figure 1: Operation of the proposed programming tool.

Although the macro expander proper is intended to be easily retargetable, we

do not expect that application programs would be portable across di�erent

target hardware. As implicitly expressed above, the purpose of the system

macro set is not to create a standard machine-independent programmer-visible

layer by hiding the machine-speci�c details. On the contrary, the system

macros exploit these very details in a controlled but still transparent fashion.

There should be a natural one-to-one mapping between the system macros

and the target machine instructions. For accuracy, the system macro set

� 5 �

should be speci�ed�and perhaps even the core of the application macro li-

brary should be written�by a single system manager (and not by application

macro programmers).

Macros of any kind typically do not have any prede�ned semantics, contrary

to the built-in elements of programming languages. The power of the pro-

posed approach is in the generality resulting from this lack. For a simpli�ed

example, suppose that the target processor instruction set contains an ADD

instruction that reads two registers and writes one register. Suppose also

that the programmer uses the ADD instruction (i.e. the corresponding sys-

tem macro) inside the de�nition of some application macro MAC. When the

macro expander, then, tries to expand some call of MAC, all that it has to

do concerning the ADD instance is to select three appropriate registers (in

particular, it must take care that the data possibly already present in the

output register is not prematurely overwritten). Thus, it can ignore a great

deal of information relevant to any high-level language compiler. Most im-

portantly, it need not even know whether ADD actually performs an addition

or something wholly di�erent.

To sum up, the lack of prede�ned semantics o�ers the following advantages:

� The macro expander proper can be made a relatively small program. It

is the rule base consisting of macro de�nitions that drives the expansion.

� With suitable macro de�nitions, the tool can be tailored to fully exploit

the particulars of the chosen target processor architecture.

� Operations not needed in the chosen application need not be supported.

1.4 Implications on target hardware

The �ow-sensitive macro expansion is aimed at tackling the case analysis

problem in code generation. Obviously, this problem is most severe when the

target architecture is an irregular one�when the register set is heterogeneous

and the instruction set is idiosyncratic. Accordingly, among the presently

marketed processors we spot the �xed-point DSP chips as our most promising

targets (admittedly, we need an additional postprocessor program for code

compaction [10]). In particular, even among DSPs we focus on processors

with narrowest functionality, highest speed, and lowest price (such as [3]).

We realize that the �ow-sensitive macro expansion approach can, even as its

best, be feasible only for a strongly restricted class of processor architectures

(see [2] for some challenging ones of the numerous intricacies typically found

� 6 �

in DSP architectures). Therefore, this class must be given a detailed charac-

terization. We believe that a prospective macro expander implementor should

at �rst be content with an unrealistically narrow characterization and only

after a successful prototype strive for step-by-step extensions. A signi�cant

reason for not attacking directly the commercial architectures is that even a

narrow characterization may perhaps serve as a constraint on future proces-

sor design; in a somewhat similar fashion, the RISC processors are designed

speci�cally to be programmed with optimizing high-level language compilers.

Adopting additional architectural constraints of the suggested kind might pay

especially in rapid prototyping [6] of embedded computer systems. Moreover,

our approach promotes customized application-speci�c instruction set pro-

cessors [16] as possible implementations for microelectronic systems with a

tight development schedule. For such a processor, the proposed macro ex-

pander could provide an almost ready-to-use code generation tool; with such

an application, the lack of portability across di�erent target hardware is often

insigni�cant.

1.5 Outline of this report

In Section 2 we present a tutorial that gives you a �rst impression of the

implemented �ow-sensitive macro expander ReFlEx 1.0. The overly simple

target processor architectures supported by ReFlEx 1.0 are characterized in

Section 3. Section 4 describes general notational conventions of the macro

de�nition language. Before the features of the macro de�nition language are

dealt with in detail in Section 6, Section 5 describes an essential supple-

mentary facility: a user-extensible interpreter for evaluating arithmetic and

�ow-sensitive expressions at expansion time.

Section 7 discusses the general principles of the internal operation of ReFlEx.

Section 8 gives a detailed description of the input and output of the expander:

the expansion source and result. Section 9 describes how the expander is run,

and what kind of problems may consequently emerge. Finally, Section 10

contains some technical information. In particular, it speci�es how you can

obtain a copy of an up-to-date revision of ReFlEx and installation instruc-

tions for it. The program can be installed and used for any non-commercial

purposes without charge.

Appendices A and B serve as references covering the syntax of the macro

de�nitions and the expansion source, respectively. Appendix C contains a

sample set of macro de�nitions that constitutes a simple code generator. (This

last appendix also includes an exercise that can be used as a diagnostic self-

test.)

� 7 �

2 Tutorial

ReFlEx reads the macro de�nitions from a rule �le. In this section, we write�

step by step�a simple rule �le. Then, in the last subsection we are able

to run some elementary code generation examples. To be able to run the

examples yourself, you should have the ReFlEx program successfully installed;

see Section 10 for instructions.

This tutorial ignores some of the more advanced features of the macro de�ni-

tion language. Moreover, concerning even the basic features, the presentation

here is only introductory. Having read this section, you have most likely still

to learn more to be able to write your own rule �les. A complete description

of the macro de�nition language is given in Sections 5 and 6.

2.1 Overall rule base structure

The rule �le should be a plain ASCII �le. It is to be divided into four logical

parts (each of which typically extends over several lines):

HEADER { . . . }

STORAGE { . . . }

SYSTEM { . . . }

UTILITY { . . . }

Figure 2: Overall structure of the rule �le.

The HEADER part contains auxiliary de�nitions. In the STORAGE part we spec-

ify the available run-time data storage, i.e. the CPU registers and the data

memory. The system and application macros are described in the SYSTEM and

UTILITY parts, respectively.

Below, Section 2.2, which deals with the HEADER part, may well be read only

cursorily. It is included only because it contains some de�nitions without

which our rule �le would be technically incomplete, even if still an intuitive

one.

2.2 Expansion-time expression interpreter

In the HEADER part of the rule �le, we may de�ne new expressions for the built-

in expansion-time expression interpreter. For instance, here is the obvious

recursive de�nition for the factorial function:

Fact(a) = _If(_Lt(a,2), 1, _Mul(a,Fact(_Add(a,-1))));

� 8 �

The expressions recognized by the interpreter are called forms. The forms

_If, _Lt, _Mul, and _Add are primitive, that is, prede�ned. (As a rule, if

a primitive form has an alphanumeric name, then that name begins with

an underscore `_'). Not surprisingly, _Lt, _Mul, and _Add are �less-than�,

multiplication, and addition, respectively. As for _If, if its �rst argument is

nonzero, it returns the value of the second argument; otherwise, it returns

the value of the third argument. This special primitive form supports lazy

evaluation, because only the needed arguments are evaluated.

The forms de�ned by the user are called compound ones. A compound form

is either rigid or �exible. A rigid form always expects a �xed number of

arguments, whereas a �exible form may take any number of arguments. Like

all the forms dealt with in this section, Fact is rigid.

Then, Figure 3 introduces some more compound forms:

Not Is the argument zero?

Gte Is the �rst argument greater than or equal to the second one?

And2 Are the two arguments both nonzero?

Or2 Is at least one of the two arguments nonzero?

Eq Are the two arguments equal?

Int Is the argument an integer?

Zero Is the argument an integer equal to zero?

Not(a) = _Nand(a,a);

Gte(a,b) = Not(_Lt(a,b));

And2(a,b) = _If(a, _If(b,1,0), 0);

Or2(a,b) = _If(a, 1, _If(b,1,0));

Eq(a,b) = And2(Not(_Lt(a,b)), Not(_Lt(b,a)));

Int(a) = And2(Not(?(a)), Not(&(a)));

Zero(a) = And2(Int(a), Eq(a,0));

Figure 3: De�nitions of rigid compound forms.

There is an essential di�erence between the two forms Not and Zero: if the

argument turns out not to represent an integer, Not always returns a nonzero

value, but Zero returns zero. The explanation is that the virtual form ar-

guments (which are employed in the rule �le) may, in addition to integers,

designate storage cells or instruction labels, which are always interpreted as

zeros if they appear where an integer is expected. The `?' and `&' primitive

� 9 �

forms used in the Int de�nition check whether their arguments are storage

cells or instruction labels, respectively.

2.3 Available data storage

Our imaginary target processor architecture is utterly simpli�ed. As shown

in Figure 4, there are 1024 memory locations M[0]�M[1023], four auxiliary reg-

isters R[0]�R[3], and a single accumulator A (due to the singularity, `A' can

be used as a shorthand for `A[0]'). Thus, there are three distinct storage

classes, whose members are collectively called storage cells, or simply cells.

ReFlEx assumes that the members of each single storage class can be used

fully interchangeably.

STORAGE {

M[1024];

R[4];

A[1];

}

Figure 4: Declaration of data storage cells.

Note that ReFlEx itself need not to know the cell lengths (which may well be

di�erent for di�erent classes) in terms of bit positions. On the other hand, any

professional ReFlEx user should absolutely be familiar with this information.

(In accordance with the established compiler terminology, we say that Figure 4

contains a �declaration�. In general, a declaration introduces the name of an

entity without specifying the internal structure of the entity.)

2.4 Machine instruction set

Next, in Figure 5 we declare the system macros, which represent the machine

instructions of the target. What we de�ne is actually only the interface seen by

application macro programmers. ReFlEx cannot convert system macro calls

into real machine instructions; what it is able to do, is to convert application

macro calls into system macro call sequences. We claim that this latter task

is the interesting one, while the former task should be a routine matter and

therefore relegated to a ReFlEx-compatible assembler.

So there are, in all, ten system macros, among which there are one uncon-

ditional branch (JUMP) and three conditional branches (BRANCH). Most of the

system macros are provided with a test (TEST) that constrains their use.

ReFlEx does not know their full semantics, which must, of course, be known

� 10 �

SYSTEM {

set(c > r) {

TEST And2(And2(?R(r), Int(c)),

And2(Gte(c,-1024), _Lt(c,1024)));

}

load(m > r) { TEST And2(?R(r), ?M(m)); }

store(r > m) { TEST And2(?R(r), ?M(m)); }

move(s > d) {

TEST And2(Or2(?A(s), ?R(s)),

Or2(?A(d), ?R(d)));

}

add(a,r > a) { TEST And2(?A(a), ?R(r)); }

sub(a,r > a) { TEST And2(?A(a), ?R(r)); }

JUMP goto() [l] { }

BRANCH eq(a) [l] { TEST ?A(a); }

BRANCH gt(a) [l] { TEST ?A(a); }

BRANCH lt(a) [l] { TEST ?A(a); }

}

Figure 5: Declaration of system macros.

to the application macro programmer. With the information seen in Fig-

ure 5, even the following brief description should be fairly comprehensive for

a prospective application macro programmer:

� set �reads� a signed 11-bit integer and writes it into one of the auxiliary

registers (form ?R checks whether its arguments belong to storage class

R). Thus, set is for immediate addressing, for the value of the integer

is �xed at expansion time.

� load copies the contents of a memory location into an auxiliary register,

and store performs the opposite data transfer.

� move can move data between two storage cells, provided that each one

of the cells is either the accumulator or an auxiliary register.

� add adds the contents of one of the auxiliary registers into the accu-

mulator. Thus, it reads and writes the accumulator, and additionally

reads an auxiliary register. Similarly, sub performs a corresponding

subtraction.

� goto jumps to the speci�ed instruction label.

� eq, gt, and lt branch to the speci�ed label if the contents of the ac-

cumulator are, respectively, equal to zero, positive, or negative. Thus

� 11 �

they all read the accumulator.

From this rather restricted system macro set, we may infer that the actual

target processor instruction set is similarly restricted. Note in particular that

the accumulator cannot be loaded directly from memory.

2.5 Higher-level macros

Now we are ready to de�ne application macros, without which the rule �le

would not be of any use. Our �rst application macro, my_null shown in Fig-

ure 6, is most simple: it does not do anything. Still, it is a useful macro, as you

will see later. (Actually, the essential feature of my_null is the requirement

that the input and output arguments must be the same cell.)

my_null(x > x) {

null: { }

}

Figure 6: De�nition of the my_null application macro.

The my_move macro in Figure 7, then, implements a general data transfer

not subject to any storage class restrictions, contrary to the system macros

declared above. The macro de�nition consists of seven alternative versions,

each with a distinct name. The versions are listed in the order of decreasing

priority, i.e. in the order in which ReFlEx should try to apply them to each

my_move call.

Note that the as_set version, for instance, can be accepted only if the source

of the data transfer is an 11-bit signed integer and the destination is an

auxiliary register, because the test associated with the set macro in Figure 5

rejects calls of other kinds. In Figure 7, in contrast, all the tests are associated

with some version of the macro, not directly with the macro itself.

Let us look closely at each one of the my_move versions:

� same guarantees that the expansion result is an empty code sequence

when the source and the destination are the same cell. The empty

my_null call serves two purposes: it veri�es that parameters s and d

do represent the same cell, and it �writes� the output parameter d (see

Section 6.8 for the constraint concerned here).

� as_set, as_load, as_store, and as_move may only be converted into

the respective corresponding system macros.

� 12 �

my_move(s > d) {

same: { my_null(s > d); }

as_set: { set(s > d); }

INSIST Not(And2(Int(s), ?R(d)));

as_load: { load(s > d); }

as_store: { store(s > d); }

as_move: { move(s > d); }

clear_acc: TEST Zero(s); USE R[r]; {

INIT(> r); move(r > d); sub(d,r > d);

}

temp_is_needed: USE R[r]; {

my_move(s > r); my_move(r > d);

}

}

Figure 7: De�nition of the my_move application macro.

� clear_acc is used for resetting the accumulator without having to over-

write any auxiliary register: the auxiliary register represented by the

temporary r is only read and not written. The INIT pseudomacro is

speci�cally aimed at situations of this kind. (INIT is the only pseudo-

macro of the language.)

� temp_is_needed requires a free auxiliary register. This register is used

as an intermediate storage when, for instance, the contents of a memory

location are to be transferred into the accumulator. The version is

recursive, but the recursion depth can be seen to be at most one.

In Figure 7, the INSIST clause detects such integers that were too large for

the set system macro. Removal of this clause would allow non-terminating

recursion, instead of the controlled failure naturally preferred by the macro

writer.

Like my_move, our next example is also a storage-class-independent general-

ization. The my_zero macro, which is shown in Figure 8, is a branch that is

taken if the value represented by its argument is equal to zero. (The expansion

result of a sample my_zero call will be shown in Figure 10 in Section 2.6.)

Note that the empty next version of my_zero, which employs reserved word

NEXT, matches the case in which the branch target, i.e. the instruction labeled

by l, immediately follows the my_zero call.

Our fourth and �nal application macro, my_mswap shown in Figure 9, inter-

changes the contents of two memory locations. This is our �rst application

� 13 �

BRANCH my_zero(x) [l] {

next: TEST &(l,NEXT); { }

const_zero: TEST Zero(x); { JUMP goto() [l]; }

const: TEST Int(x); { }

acc: TEST ?A(x); { BRANCH eq(x) [l]; }

default: USE A[a]; { my_move(x > a); BRANCH eq(a) [l]; }

}

Figure 8: De�nition of the my_zero application macro.

macro with which a test (i.e. one that veri�es the storage class) is directly

associated. (Section 2.6 will also present the expansion result of a sample

my_mswap call, in Figure 11.)

my_mswap(m,n > n,m) {

TEST ?M(m,n);

two_aux_free: TEST Gte(#R(),2); USE R[r]; {

my_move(m > r); my_move(n > m); my_move(r > n);

}

acc_and_aux_free: USE A[a]; {

my_move(m > a); my_move(n > m); my_move(a > n);

}

}

Figure 9: De�nition of the my_mswap application macro.

To perform the swap, my_mswap requires two cells of free storage, because

direct transfers between memory locations are not supported by the system

macro set. At least one of these two cells must be an auxiliary register, while

the other one may alternatively be the accumulator. Accordingly, form #R,

seen in the my_mswap de�nition, returns the number of free cells in storage

class R. (The test associated with the two_aux_free version is necessary,

because in the version code only one auxiliary register, i.e. r, is written, but

the middle one of the lower-level my_move calls certainly needs another one.

Without the test, two_aux_free might be selected even in such a case that

the acc_and_aux_free version might be the only fully expandable one of

these two. This is because ReFlEx cannot backtrack from choices that only

at some later stage prove to be unsuccessful.)

2.6 Generating code for macro calls

Finally, in this last subsection of Section 2 we put our macro de�nitions into

use and produce some code for our target processor. We must start with

� 14 �

a single macro call: ReFlEx 1.0 expects that the expansion source can be

represented as one top-level macro call.

Suppose that ReFlEx has been installed on our workstation and our rule �le is

called simple.m. We can start ReFlEx by typing the following command (the

combination of options -t and -f provides us with some interesting optional

output):

reflex -t -f simple.m

If ReFlEx starts successfully, we may then type the following expansion source

as a response to the ReFlEx prompt, i.e. `>':

> BRANCH my_zero(M[5]) [L8]; {A,R[2]}

This means that we want to branch to label L8 if the contents of memory

location M[5] are zero, and we additionally specify that accumulator A and

auxiliary register R[2] are free at the macro call (an explicit speci�cation

like this is needed and allowed only in the expansion source). The expansion

result is shown in Figure 10. The intermediate output at the top reveals the

expansion-time tree structure, which is �attened in the �nal output at the

bottom. Each macro call is provided with a set containing the cells that are

free at it (normally, each cell written by the macro call is included in the set).

BRANCH my_zero(M[5]) [L8] {A,R[2]} {

my_move(M[5] > A) {A,R[2]} {

my_move(M[5] > R[2]) {A,R[2]} {

load(M[5] > R[2]); {A,R[2]}

}

my_move(R[2] > A) {A,R[2]} {

move(R[2] > A); {A,R[2]}

}

}

BRANCH eq(A) [L8]; {A,R[2]}

}

BRANCH my_zero(M[5]) [L8] {A,R[2]} {

load(M[5] > R[2]); {A,R[2]}

move(R[2] > A); {A,R[2]}

BRANCH eq(A) [L8]; {A,R[2]}

}

Figure 10: Expansion result of a my_zero macro call.

Second, we want to expand the following call of the my_mswap macro:

� 15 �

> my_mswap(M[8],M[6] > M[6],M[8]); {R[1],R[3]}

Observe that in this case we have marked two auxiliary registers as free ones.

The expansion result is now shown in Figure 11. (You might �nd it interesting

to try to �gure out by yourself what would happen if either one of the free

auxiliary registers were replaced with the accumulator. As a hint, we give the

fact that the new expansion result would consist of six system macro calls.)

my_mswap(M[8],M[6] > M[6],M[8]) {M[6],M[8],R[1],R[3]} {

my_move(M[8] > R[3]) {M[8],R[1],R[3]} {

load(M[8] > R[3]); {M[8],R[1],R[3]}

}

my_move(M[6] > M[8]) {M[6],M[8],R[1]} {

my_move(M[6] > R[1]) {M[6],M[8],R[1]} {

load(M[6] > R[1]); {M[6],M[8],R[1]}

}

my_move(R[1] > M[8]) {M[6],M[8],R[1]} {

store(R[1] > M[8]); {M[6],M[8],R[1]}

}

}

my_move(R[3] > M[6]) {M[6],R[1],R[3]} {

store(R[3] > M[6]); {M[6],R[1],R[3]}

}

}

my_mswap(M[8],M[6] > M[6],M[8]) {M[6],M[8],R[1],R[3]} {

load(M[8] > R[3]); {M[8],R[1],R[3]}

load(M[6] > R[1]); {M[6],M[8],R[1]}

store(R[1] > M[8]); {M[6],M[8],R[1]}

store(R[3] > M[6]); {M[6],R[1],R[3]}

}

Figure 11: Expansion result of a my_mswap macro call.

We would like to stress the crucial point of the expansion result shown in

Figure 11. When ReFlEx tries to expand the my_move(M[6] > M[8]) call at

the �rst level below the initial my_mswap call, it recognizes that the originally

free auxiliary register R[3] is not free any more. Thus, R[1] is the only

possibility for a temporary storage at the next-lower level. This deduction

rests on the �ow-sensitivity of ReFlEx.

� 16 �

3 Target architecture model

We claim that even the rudimentary ReFlEx 1.0 clearly favors some impor-

tant common features of low-cost embedded real-time processors such as the

DSPs. Typically, a DSP is a sequential uniprocessor, i.e. a processor with a

single instruction stream and a single data stream. Moreover, the DSPs are

prominent ReFlEx targets especially because of their heterogeneous register

set.

Still, the possible targets must be a great deal simpler than any real-world

processor�let alone any of DSPs, which indeed pose exceptionally di�cult

problems for code generators [2]. The most notable restriction concerns in-

direct addressing modes, which are completely unsupported by ReFlEx (we

hope that in forthcoming releases even this major de�ciency can be ade-

quately �xed). However, one should remember that with many processor

architectures indirect addressing applies only to memory locations, and not

to CPU registers.

3.1 Code storage

We assume that there is only a single instruction stream, which is determined

by the contents of the program memory. Furthermore, the program memory

has to be at least logically both unsegmented and separate from the data

memory. Accordingly, the program counter should hold full program memory

addresses.

We adopt the non-restrictive convention that a unique instruction label is

associated with each program memory location.

3.2 Data storage

We assume that the data storage is divided into distinct storage classes, each

of which consists of a �nite number of distinct storage cells; the largest storage

class is typically constituted by the data memory. ReFlEx expects that all the

cells in a single storage class are treated fully interchangeably by the machine

instruction set: if an occurrence of a certain instruction refers to some cell,

other occurrences of that instruction may refer to any cell in the same storage

class. The size, i.e. the number of bit positions, of the cells in a particular

storage class is irrelevant to ReFlEx. Accordingly, di�erent storage classes

may have di�erent cell sizes, but ReFlEx remains unaware of this di�erence.

� 17 �

ReFlEx is capable of automatic intraclass�but not interclass�cell alloca-

tion. The division of labour is as follows: the human programmer chooses

the optimum storage class for each macro temporary, and ReFlEx selects an

appropriate cell from the chosen class. In particular, ReFlEx usually has to

verify that the selected cell is free at the point of the macro call.

ReFlEx is not capable of autonomously spilling a non-free register into mem-

ory, even if its contents will be needed only in the distant future and a register

of that class is immediately needed for other purposes. Because such a spill

might be expensive when the target architecture is irregular, leaving the spill

decision under the explicit control of the programmer seems to be sound.

As implicitly expressed above, in regard to real-world processor architectures

our concept of data storage has two major drawbacks:

� Any two storage cells must be physically distinct, that is, they cannot

overlap.

� Neither hardware nor software stack is supported.

3.3 Comparison with real machine instruction sets

ReFlEx 1.0 imposes essential restrictions on the allowed machine instructions

of the target architecture. Most of all, the following features are not sup-

ported:

� Indirect addressing.

� Indirect jumps.

� Function calls.

� Mode control.

� VLIW-type �ne-grained parallelism.

Of the diverse addressing modes found in special-purpose processors, only

direct and immediate addressing are supported. Thus, instructions may only

explicitly refer to certain storage cells or instruction labels, or explicitly spec-

ify certain integer values. If indirect addressing of storage cells were allowed,

it would pose a problem in the data �ow analysis, because the macro expander

would then have to keep track of the possible values of the address registers.

Similarly, enabling indirect jumps would complicate the control �ow analysis.

� 18 �

In high-level programming languages such as C, functions serve two purposes:

they provide the source code with the basic structure, and their use reduces

the amount of memory consumed by the executable code. Even if at least in

principle the ReFlEx macros meet the �rst one of these two goals just as well

as C functions, their careless use may indeed waste memory space.

A representative example of mode control [2] would be a case in which the sat-

uration of addition operations is governed by a status register, whose contents

the programmer may modify only with dedicated instructions. Because ex-

traneous instructions are seldom cheap, the programmer must carefully keep

track of the current value of the status register to avoid redundant modi�ca-

tion instructions. This task could clearly be automated by applying program

�ow analysis, but ReFlEx 1.0 provides no explicit support for mode control.

(For any register, of course, such avoidance of redundant loads by register

value tracking would be useful�ReFlEx 1.0 can track which registers are in

use, but not their contents.)

Very long instruction word (VLIW) processors [8] contain multiple functional

units that may all be independently controlled by the di�erent bit �elds of a

single instruction word. Such �ne-grained parallelism supports fully static

compilation-time instruction scheduling, which is in many cases more at-

tractive than dynamic execution-time instruction scheduling (performed by

superscalar processors, for instance). In this fashion, individual DSP instruc-

tions may synchronously drive as many as six functional units, which include

an arithmetic-logic unit and a hardware multiplier. Programmer-controlled

pipelining of this kind is perhaps the most characteristic feature of the DSP

architectures.

3.4 Our machine instruction model

ReFlEx 1.0 assumes that the machine instructions are, in a sense, independent

of each other. More precisely, each instruction instance should explicitly and

unambiguously specify

� the set of storage cells it reads;

� the set of storage cells it writes; and

� the set of instruction labels it targets, that is, the labels that mark the

program memory locations to one of which the control is transferred

after its execution.

These sets may be empty (in practice, even an instruction implementing an

empty non-terminating loop may be handy when an external interrupt is

� 19 �

waited for). As a more general example, the hypothetical instruction (or

rather, system macro call) instance

BRANCH probe(M[2],M[3] > R[0],M[7]) [L5,L8];

reads cells M[2] and M[3], writes cells R[0] and M[7], and transfers the

control either to one of the locations labeled L5 and L8 or to the location

immediately following the instruction instance itself (or loops forever).

In e�ect, the above restriction prevents indirect addressing of any kind. In

addition to direct addressing, only immediate addressing is enabled: instruc-

tion instances may also �read� integer literals. This same restriction holds

for application macro calls, which are identical with the system macro calls

with respect to the syntax and semantics of the caller-visible interface.

Our meanings for the words `read' and `write' are perhaps not as simple as

one might hope. For example, how should an operation described by the C

language statement

if (x < 0) y = z; /* C code */

be modeled as (a call of) a ReFlEx system macro named, say, cond_copy?

The answer is

cond_copy(x,y,z > y);

and the explanation is as follows:

� Clearly, this cond_copy instance reads x.

� It may read z. Thus z should not be inadvertently corrupted prior

to the operation, which is indicated by including z among the input

arguments.

� It may write y, but because the writing may not take place, even y

should not be corrupted prior to the operation.

On the other hand, the longer C fragment

if (x < 0) y = z; else y = 1; /* C code */

can be modeled simply as

select_copy(x,z > y);

� 20 �

This distinction may at �rst seem confusing, but fortunately it concerns only

system macro implementors. They have to create a sound interface between

ReFlEx and some real target architecture, which is a task of little signi�-

cance in the case of the purely experimental ReFlEx 1.0. The application

macro de�nitions, in contrast, can be veri�ed in this respect by ReFlEx itself.

(You may test this �nal claim by adding an application macro behaving like

cond_copy to the rule �le presented in Section 2.)

4 On syntactical conventions

Creating a ReFlEx rule �le is easier if you are aware of some general syntactical

conventions, many of which resemble the ones enforced by the C programming

language [12]. However, a notable di�erence from C is that names of such

entities that will be introduced only later in the rule �le may freely be used:

no advance declarations whatsoever are needed. For instance, the storage

classes may be referred to in the compound form de�nitions in the HEADER

part, which must precede the STORAGE part in the rule �le.

The following description applies both to the rule �le and to the expansion

source.

4.1 Characters

Only the following characters are recognized:

� Alphanumeric characters: the underscore `_', the digits `0'�`9', the up-

percase letters `A'�`Z', and the lowercase letters `a'�`z'.

� Special characters: ! # () % & + , - . / : ; < = > ? [] { }

� White space characters: space, horizontal tab, and newline.

The two-character sequence `//' starts a comment, which ends with the end

of the current line. C-style multiline comments (/* . . . */) are not supported.

Here is an example of a comment:

my_macro(a > b); // This is a comment!

Other characters than the ones listed above may occur only inside a comment.

White space characters and comments are collectively called white space.

� 21 �

4.2 Tokens

Each occurrence of such a character that is not white space belongs to exactly

one token. Actually, the only signi�cance of white space is that it is often (but

not always) necessary for separating two consecutive tokens. This function of

white space becomes apparent with the following de�nition.

Each token must be exactly one of the following:

� A reserved word (see below).

� An identi�er, that is, a maximal sequence of alphanumeric characters

that does not begin with a digit and that is di�erent from the reserved

words.

� A number, that is, a maximal sequence of digits that is not immediately

preceded by any other alphanumeric character.

� An occurrence of a special character.

The distinction between upper and lower case is signi�cant. All the reserved

words consist of uppercase letters only (contrary to the C convention):

ASSERT JUMP STORAGE

BRANCH NEXT SYSTEM

HEADER SAFE TEST

INIT SEED THIS

INPUT SLEEP USE

INSIST STATE UTILITY

Here are three examples of valid identi�ers:

assert A_012 _____

And here are three examples of valid numbers:

0 007 12345

4.3 Structuring mechanisms

Concerning physical structuring, such �le inclusion as performed by the C pre-

processor is not supported by ReFlEx. Furthermore, ReFlEx does not allow

multiple translation units (as C does). Therefore, the rule �le must be a single

physical �le at the time when it is read by the macro expander.

� 22 �

Concerning logical structuring, the ReFlEx syntax employs heavily certain

special character pairs as list delimiters in order to create logical hierarchy in

the rule �le. Not surprisingly, these list delimiter pairs are (), [], and { }.

Lists generally use comma as an element separator; as an exception, certain

lists delimited by curly braces employ semicolon as an element terminator.

Here are simple examples of lists:

(a, b, c)

[a, b, c]

{ a, b, c }

{ a; b; c; }

Nevertheless, similarly to the compound statements of C, the right curly brace

is never followed by a semicolon:

{ a; b; { c; d; } }

Finally, parenthesizing arithmetic expressions is not a problem, since ReFlEx

provides no in�x operators. Parentheses should be used only for surrounding

argument lists of macro and form calls. For instance, a parenthesized integer

literal is no more a syntactically valid integer designator:

my_macro(5 > b); // my_macro((5) > b) would be invalid!

5 Constant expressions

ReFlEx includes a built-in expansion-time expression interpreter. Using a

simple notation, you may de�ne conventional shorthands for complicated

arithmetic expressions. Furthermore, the interpreter o�ers you certain primi-

tives for extracting information about the data and control �ow of the program

under expansion.

Why do we need such an interpreter? The reason is that ReFlEx lacks two

features found in the C language: the built-in preprocessor, and even more

importantly, the prede�ned set of (relatively) machine-independent run-time

operators such as `+' for addition and `*' for multiplication. (Most macro

assemblers provide some means for achieving goals similar to the ones of our

interpreter.)

Let us have an example. Suppose that someone asks us to write a program

that calculates the value of the formula a

3

bxy for any x and y, given that the

values of a and b are 29 and 41, respectively. First, we produce a straightfor-

ward C implementation:

� 23 �

z = 29 * 29 * 29 * 41 * x * y; /* C code */

Even if the above statement looks clumsy, it is an e�cient one: because the

prede�ned operator `*' is a part of the C de�nition, the C compiler can be

expected to be capable of folding the four constants into one [1, Sec. 10.2]

already at compilation time. Furthermore, we can make our implementation

look more elegant by utilizing the C preprocessor:

#define A_VAL 29

#define B_VAL 41

#define CUBE(a) ((a) * (a) * (a))

#define COEF (CUBE(A_VAL) * B_VAL)

z = COEF * x * y; /* C code */

Thus, in the case of C, having prede�ned operators enables compile-time

constant folding, while the preprocessor makes the code more easily readable

and maintainable. With ReFlEx, in contrast, machine-independent run-time

operators are ruled out for ultimate e�ciency, and therefore the folding of

constants must be performed by the expansion-time expression interpreter.

It is also our intention that the interpreter should be able to handle most

preprocessing-type tasks encountered (the possibly remaining ones of these

tasks have to be relegated to a fully independent text preprocessor).

As an instantaneous preview into the present Section 5, we provide here the

corresponding ReFlEx de�nitions for the above C preprocessor de�nitions:

A_val() = 29;

B_val() = 41;

Cube(a) = _Mul(a,_Mul(a,a));

Coef() = _Mul(Cube(A_val()),B_val());

However, we cannot construct a similar ReFlEx de�nition that would match

the C preprocessor de�nition that next comes to one's mind:

#define EXPR(x,y) (COEF * (x) * (y)) /* C code */

The reason is that now, according to the initial assignment given to us, the

multiplication operators represent calculations that cannot be performed until

execution time. For such calculations, we have to put into use the whole

ReFlEx macro de�nition facility to be described in Section 6.

� 24 �

5.1 Taxonomy of integer, cell, and label designators

An expression that may produce an integer is called an integer designator.

Integer designators are divided into integer literals, form calls, and integer

references; see Sections 5.2, 5.3, and 5.4, respectively.

Correspondingly, there are cell designators and label designators, which may

specify (storage) cells and (instruction) labels, respectively. Cell designators

are divided into cell literals and cell references, and label designators are

similarly divided into label literals and label references; no form call can act

as a cell or label designator. Cell and label literals can only be used in

the expansion source (see Section 8.1). For cell and label references, see

Section 5.4.

Whether a given expression is an integer, cell, or label designator, is actually

a property of each particular instance of the expression: if two syntactically

identical expression instances appear in di�erent contexts, it may be that only

one of them is a valid integer designator. Furthermore, as ReFlEx classi�es

the designators statically already before the macro expansion, a single expres-

sion instance may be, say, both an integer designator and a label designator.

Whether such an ambiguous designator really represents an object of the kind

that is anticipated by the dynamic expansion environment, cannot generally

be determined until expansion time.

5.2 Integer literals

An integer literal is any number (see Section 4.2) optionally preceded by

arbitrarily many instances of special characters `+' and `-'. The semantics of

integer literals is obvious. Here are �ve examples of valid integer literals:

7 + 7 - 7 + - 7 - - 7

5.3 Form calls

Form calls can be used in the rule �le but not in the expansion source. Each

form call is evaluated by the expansion-time expression interpreter according

to the de�nition of the particular form. There is a small set of prede�ned

primitive forms, which consists of nine autonomous forms and six context-

sensitive forms. Additionally, the user may de�ne new compound forms in

the HEADER part of the rule �le.

We say that a form is rigid if each instance of the form call requires the

� 25 �

same �xed number of arguments, and �exible if its calls accept any number

of arguments. Each form is either rigid or �exible.

Virtual form arguments are those shown in the form calls in the rule �le. A

virtual form argument can be an integer designator, a cell reference, or a label

reference (thus, cell and label literals are ruled out). Furthermore, a macro

temporary (which is always either a cell reference or a label reference) can

never be used as a virtual form argument.

Actual form arguments are those integers, cells, and labels that replace the

virtual arguments at expansion time; each actual argument is the expansion-

time evaluation result of the corresponding virtual argument. (When we use

the plain `argument', we usually mean an actual argument; the exception

proving this rule is that we simply say `an argument is evaluated', with the

obvious interpretation.)

Next, in Section 5.4, we complete the characterization of the possible virtual

form arguments. In the rest of the present Section 5, we investigate all the

di�erent form types.

5.4 Integer, cell, and label references

Integer references are identi�ers or reserved words that possibly represent

integers. There are the following types of integer references:

� Each input parameter of a macro de�nition.

� The STATE pocket. (Pockets can only be employed in �exible compound

form de�nitions; see Section 5.8 for the details.)

� The INPUT pseudopocket.

� Each auxiliary pocket.

Cell references are identi�ers or reserved words that possibly represent cells.

There are the following types of cell references:

� Each data parameter of a macro de�nition.

� Each data temporary of a macro de�nition.

� The INPUT pseudopocket.

Label references are identi�ers or reserved words that possibly represent labels.

There are the following types of label references:

� 26 �

� Each label parameter of a macro de�nition.

� Each label temporary of a macro de�nition.

� The INPUT pseudopocket.

� Reserved words THIS and NEXT. (These can only be employed in macro

de�nitions; see Section 5.6 for the details.)

As speci�ed above, reserved word INPUT, for instance, is in an appropriate

context valid as an integer reference, as a cell reference, and as a label ref-

erence. Such con�icts cannot be resolved until expansion time. Obviously,

there are three possible cases of reference mismatch: if a supposed reference

to an integer actually turns out to represent a non-integer (i.e. a cell or a

label), ReFlEx simply takes zero as the value produced by the reference; for

the other two cases, see Section 5.6.

5.5 Autonomous primitive forms

All autonomous primitive forms are rigid. Their virtual arguments must be

integer designators. If the virtual argument still, at expansion time, turns out

not to represent an integer, then ReFlEx uses zero as the actual argument.

The autonomous primitive forms can be divided into three categories:

� _Abort(x,y,z), which raises an exception.

� _If(x,y,z), which implements lazy argument evaluation.

� Arithmetic primitive forms (see below).

Instead of returning, each call of _Abort aborts the expansion immediately.

No expansion result is produced, but the three arguments of the _Abort call

are passed to the user as an explanation.

The _If(x,y,z) call is processed similarly to the x?y:z expression of the C

language. That is, the following steps are taken:

1. The �rst argument is evaluated.

2. If the result is nonzero: the second argument is evaluated, and the

resulting value is returned as the value of the call.

3. Otherwise: the third argument is evaluated, and the resulting value is

returned as the value of the call.

� 27 �

Other autonomous primitive forms always evaluate all their arguments, but

either the second or the third argument of each _If call always remains un-

evaluated. Lazy evaluation of this kind makes even recursive compound form

de�nitions feasible.

There are, in all, seven arithmetic primitive forms, which are shown in Table 1.

The rightmost column of the table consists of C language expressions. These

expressions �x the semantics of the primitives. Still, the precise meaning

of each primitive is determined only by the particular C (or rather, C++)

compiler that is used for compiling the ReFlEx source code, including in

particular the expressions in Table 1 (see also Section 10.1).

_Add(x,y) addition x + y

_BNand(x,y) bitwise NAND ~(x & y)

_BShl(x,y) bitwise shift (y > 0) ? (x << y) : (x >> -y)

_Div(x,y) division x / y

_Lt(x,y) less-than (x < y) ? 1 : 0

_Mul(x,y) multiplication x * y

_Nand(x,y) logical NAND (x && y) ? 0 : 1

Table 1: Arithmetic primitive forms.

We also give brief verbal descriptions for the arithmetic primitive forms:

_Add(x,y) Addition of the two arguments.

_BNand(x,y) Bitwise NAND operation.

_BShl(x,y) The bitwise representation of x is shifted to the left by y

positions if y is positive, and otherwise to the right by �y positions.

_Div(x,y) Division of x by y.

_Lt(x,y) If x is less than y, 1 is returned; otherwise, 0 is returned.

_Mul(x,y) Multiplication of the two arguments.

_Nand(x,y) Logical NAND operation that results in either 1 or 0.

5.6 Context-sensitive primitive forms

The virtual arguments of context-sensitive primitive forms must be cell or

label references. However, if any virtual argument turns out to represent an

integer, then the whole form call is taken to return zero. The same happens

if an expected storage cell turns out to be an instruction label, or vice versa.

� 28 �

(Thus, one could say that �type checking� is here somewhat stricter than with

autonomous primitives.)

Except for #(), all the context-sensitive primitives are �exible. There is an

implicit conjunction between the arguments of any �exible context-sensitive

primitive. For instance, the ?M(x) form call checks whether x represents a

cell that belongs to storage class M, and ?M(x,y,z) checks whether all three

of x, y, and z belong to M.

A form call inside a macro de�nition produces always the same result that

would have been obtained if an identical form call had been evaluated as a

macro-speci�c test of the current macro (see Section 6.10). Remember also

that macro temporaries cannot be used as virtual form arguments.

There are six context-sensitive primitive forms, most of which may be further

parametrized with a storage class speci�er (such as `M' of the ?M(x) form call

above). The use of the context-sensitive primitives is explained below; the

individual form descriptions are followed by a concise summary.

Are the arguments cells (of a particular storage class)?

The ?(. . .) form is �exible. It returns 1 if all the arguments are storage cells,

and 0 otherwise.

Examples:

?(x) Does x represent a cell?

?(x,y,z) Do x, y, and z all represent cells?

?() Trivially, 1 is returned.

?A(x) Does x represent a cell that belongs to storage class A?

Are the arguments similar cells?

The %(. . .) form is �exible. It returns 1 if all the arguments are storage cells

belonging to a common storage class, and 0 otherwise.

Examples:

%(x,y,z) Do x, y, and z represent cells that belong to some single com-

mon storage class?

%A(x,y) The same as ?A(x,y).

� 29 �

Are the argument cells the same?

The =(. . .) form is �exible. It returns 1 if all the arguments are identical cells,

and 0 otherwise. (It cannot be used in safety declarations; see Section 6.9.)

Examples:

=(x,y,z) Do x, y, and z all represent the same cell?

=A(x,y) Do x and y represent a single common cell of storage class A?

Are the arguments free cells?

The !(. . .) form is �exible. It returns 1 if all the arguments are free stor-

age cells, and 0 otherwise. (It cannot be used in safety declarations; see

Section 6.9.) For the de�nition of a free cell, see Section 7.3.

Examples:

!(x,y,z) Do x, y, and z all represent free cells?

!A(x) Does x represent a free cell of storage class A?

How many free cells are there?

The #() form is rigid and expects no arguments. It returns the number

of distinct free storage cells. (It cannot be used in safety declarations; see

Section 6.9.)

Examples:

#() How many free cells are there?

#A() How many free cells of storage class A are there?

Are the argument labels the same?

The &(. . .) form is �exible. It returns 1 if all the arguments are equivalent

instruction labels, and 0 otherwise. It does not accept a storage class speci�er.

The reserved words THIS and NEXT are label references that can be used as

virtual arguments of this form. THIS represents the label of the current macro

� 30 �

call, whereas NEXT represents the label that immediately follows the current

macro call. Thus, the code produced from the current macro call will be

located between these two labels.

Label references can be fully resolved only at the �nal stage of the expansion.

Consequently, ReFlEx must be conservative in its decisions: even if such a

call as &(x,y) returns 0, it may still be so that x and y actually represent

equivalent labels. However, most importantly, if the call returns 1, then the

arguments are guaranteed to be equivalent.

Examples:

&(x,y,z) Do x, y, and z all represent equivalent labels?

&(x) Does x represent a label?

&(x,THIS) Does x represent the label of the �rst instruction of the code

segment resulting from the current macro call?

Summary of context-sensitive primitive forms

In Table 2, we summarize the use of the context-sensitive primitive forms.

From the table, you see that all these forms except &(. . .) accept a storage

class speci�er. Other forms than #() are �exible. Of the �exible forms, &(. . .)

expects labels for arguments, whereas the others expect cells. The rigid #()

takes no arguments and returns a non-negative integer. Other forms than #()

return either zero or one. Finally, forms =(. . .), !(. . .), and #() cannot be

employed in safety declarations.

Cells? ?(. . .) ?class(. . .) cells 0 or 1 SAFE

Similar cells? %(. . .) %class(. . .) cells 0 or 1 SAFE

Same cell? =(. . .) =class(. . .) cells 0 or 1 �

Free cells? !(. . .) !class(. . .) cells 0 or 1 �

How many free cells? #() #class() � n �

Equivalent labels? &(. . .) � labels 0 or 1 SAFE

Table 2: Context-sensitive primitive forms.

5.7 Rigid compound forms

Two most simple rigid compound form de�nitions read as follows:

Dozen() = 12;

Gross() = _Mul(Dozen(),Dozen());

� 31 �

More complicated de�nitions are of course possible:

Sub(x,y) = _Add(x,_Add(_BNand(y,y),1));

The above de�nition of subtraction captures precisely the details of the two's

complement representation for negative integers. (It is often important to

be able to faithfully emulate the operation of the target processor already at

expansion time. Still, the host processor, which executes the macro expander

program, may support a di�erent representation; in that case, we are likely

to need two subtraction variants�one for each processor. Actually, it seems

natural that the �host subtraction� would be the one more heavily utilized.)

As the �rst stage of the evaluation of a call of a rigid compound form, and

therefore even before the evaluation of the arguments, the interpreter replaces

the call with the de�nition of the form called. This strategy supports lazy

evaluation, because the de�nition may consist of an _If call.

Rigid compound forms may be recursive, again because of the special property

of the _If form. Here is a recursive de�nition for the factorial function:

Fact(x) = _If(_Lt(x,2), 1, _Mul(x,Fact(Sub(x,1))));

It is often convenient to hide the autonomous primitive forms inside a sepa-

rate �module� whose settings can be easily revised if necessary. (In particular,

we might need, say, a �target multiplication� in addition to the prede�ned

�host multiplication�; for an explanation, see the above discussion on subtrac-

tion variants.) Accordingly, we �rede�ne� the autonomous primitives (note

especially the de�nition of Div):

Abort(x,y,z) = _Abort(x,y,z);

If(x,y,z) = _If(x,y,z);

Add(x,y) = _Add(x,y);

BNand(x,y) = _BNand(x,y);

BShl(x,y) = _BShl(x,y);

Div(x,y) = _If(y,_Div(x,y),_Abort(100,x,y));

Lt(x,y) = _Lt(x,y);

Mul(x,y) = _Mul(x,y);

Nand(x,y) = _Nand(x,y);

With a few more de�nitions, we can extend our collection of basic forms into

a fairly useful one:

Not(x) = Nand(x,x);

Lte(x,y) = Not(Lt(y,x));

Gt(x,y) = Lt(y,x);

� 32 �

Gte(x,y) = Lte(y,x);

Eq(x,y) = If(Gte(x,y),Gte(y,x),0);

Neq(x,y) = Not(Eq(x,y));

In Figure 12, we de�ne some auxiliary forms that are utilized in the macro

de�nition examples of Appendix C. As you can see, we use as building blocks

even some context-sensitive primitive forms, in addition to the autonomous

ones. We assume that the available storage classes are M, R, and A (as shown

in Figure 4 on page 9). We give some comments concerning these auxiliary

forms:

Int checks whether its argument is an integer (that is, neither a cell nor

a label).

Type tells its caller exactly which kind of object its argument is.

Ordered can be very useful in �normalizing� the order of macro argu-

ments, as you can see by examining the macro de�nitions in Appendix C.

Int(x) = If(?(x),0,If(&(x),0,1));

Type(x) = If(?A(x),0,

If(?R(x),1,

If(?M(x),2,

If(Int(x),3,4))));

Ordered(x,y) = If(If(Int(x),Int(y),0),

Lte(x,y),

Lte(Type(x),Type(y)));

Figure 12: De�nitions of some auxiliary forms.

5.8 Flexible compound forms

Flexible compound form de�nitions have to be somewhat more complicated

than the ones for rigid compound forms, because of the variable number of

arguments. (In contrast, there are no di�erences in the call syntax.) Our �rst

�exible compound form is the logical disjunction:

Or {

SEED = 0;

STATE = If(STATE, 1, INPUT);

}

� 33 �

This Or de�nition consists of the subde�nitions of two pockets, SEED and

STATE; in general, these two subde�nitions, in this order, are obligatory. By

a `pocket', we denote a store capable of holding an integer at expansion time.

In addition to these two pockets, in the STATE subde�nition the INPUT pseu-

dopocket is referred to. The �volatile� INPUT pseudopocket points to each

form argument in turn. Thus, it may represent cells and labels as well as

integers.

An Or call is evaluated according to the following procedure (which is applied

to each call of each �exible compound form):

1. The integer designator that constitutes the SEED subde�nition is eval-

uated, and the resulting value is copied into the STATE pocket (as you

see, the SEED pocket itself is actually redundant).

2. From left to right, for each argument of the original call, the integer des-

ignator that constitutes the STATE subde�nition is evaluated according

to the following subprocedure:

(a) Each reference to the STATE pocket is (temporarily) replaced with

the current contents of STATE.

(b) If there are one or more references to the INPUT pocket that must

be evaluated (note that even If, through _If, implements lazy

evaluation), then the current argument of the original call is evalu-

ated, and the references to INPUT are (temporarily) replaced with

the resulting object (which is an integer, a cell, or a label).

(c) The integer that results from the evaluation of the whole modi�ed

STATE subde�nition is put in the STATE pocket (thus, the old value

of the pocket is lost).

3. The evaluation result of the original form call is determined by the �nal

value of the STATE pocket.

It should be noted that the above Or de�nition would represent logical disjunc-

tion even if the references to the STATE pocket and to the INPUT pseudopocket

in the STATE subde�nition were interchanged. However, if the change took

place, all the arguments of each Or call would always have to be evaluated.

The de�nition of the logical conjunction, And, is fairly similar to the Or de�-

nition:

And {

SEED = 1;

STATE = If(STATE, INPUT, 0);

}

� 34 �

Next we de�ne a �exible form that examines whether its arguments are all

integers. The Const de�nition closely resembles the And de�nition above:

Const {

SEED = 1;

STATE = If(STATE,Int(INPUT),0);

}

In addition the SEED and STATE pockets, the user may de�ne new pockets.

Such auxiliary pockets are always zero-initialized, and they are updated in

parallel and fully synchronously with the STATE pocket. Our last form, in Fig-

ure 13, checks whether all of its arguments are equal integers. This Equal def-

inition uses two auxiliary pockets, later and value (later indicates whether

the current argument is a non-�rst one, and value holds the value of the �rst

argument).

Equal {

SEED = 1;

STATE = If(STATE,

If(later,

And(Const(INPUT),Eq(value,INPUT)),

Const(INPUT)),

0);

later = 1;

value = If(later,value,INPUT);

}

Figure 13: De�nition of the Equal �exible compound form.

Finally, we collect the main points you should rememberwhen de�ning �exible

compound forms:

� The SEED and STATE subde�nitions, in this order, are obligatory; after

them, you may introduce auxiliary pockets. Furthermore, there is also

the prede�ned INPUT pseudopocket.

� In the SEED subde�nition, no pocket can be referred to. Conversely, the

SEED pocket itself cannot be referred to in any pocket subde�nition.

� The initial value of the STATE pocket is determined by the SEED subdef-

inition, and the initial value of each auxiliary pocket is 0.

� For each form argument, the STATE pocket and the possible auxiliary

pockets are updated in parallel and fully synchronously.

� 35 �

6 Macro de�nitions

As depicted already in Figure 2 on page 7, a ReFlEx rule �le consists of four

main parts:

HEADER { . . . }

STORAGE { . . . }

SYSTEM { . . . }

UTILITY { . . . }

In this section, we concentrate on the UTILITY part, which contains the appli-

cation macro de�nitions. Additionally, the system macro declarations of the

SYSTEM part can be seen as reduced variants of application macro de�nitions;

the di�erences are described in Section 6.2.

The compound form de�nitions of the HEADER part were discussed in Sec-

tions 5.7 and 5.8. In this and the forthcoming sections, we assume that all

the forms of Section 5 are de�ned in our HEADER part. Furthermore, we as-

sume the STORAGE part de�ned in Figure 4 on page 9: we have an accumulator

A, four auxiliary registers R[0]�R[3], and 1024 data memory locations M[0]�

M[1023]. Finally, we also assume the SYSTEM part shown in Figure 5 on

page 10.

In this section, our examples are short and simple; slightly more elaborate

macro de�nitions can be seen in Appendix C. We adopt the convention that

any macro whose name begins with a `t_' pre�x is only for a momentary use.

Often, no de�nition is provided for such a macro.

6.1 General structure of a macro de�nition

The UTILITY part of a ReFlEx rule �le consists of a sequence of macro de�-

nitions (whose mutual order is insigni�cant). The general structure of such a

de�nition is shown in Figure 14. As indicated in the �gure, some of the items

are optional.

The meaning of the items in Figure 14 is as follows:

deviation Is the macro a branch of any kind? See Section 6.3.

name Name of the macro being de�ned.

params Macro parameters (which represent integers, storage cells, and

instruction labels). See Section 6.4.

� 36 �

deviation

opt

name params {

safety

opt

test

opt

temp

opt

version

version

. . .

assertion

opt

version

. . .

insist

opt

version

. . .

}

Figure 14: Structure of a macro de�nition.

safety Safety declaration (a promise by the macro writer). See Sec-

tion 6.9.

test Macro-speci�c test clause. See Section 6.6.

temp Declaration of macro-speci�c temporaries. See Section 6.7.

version De�nition of a macro version. See Section 6.5.

assertion An assertion clause. See Section 6.6.

insist An insist clause. See Section 6.6.

The macro de�nition can be divided into the following parts:

� The macro exterior contains the deviation, name, params, safety and

test items. It can be seen as the external interface of the macro.

� The macro head is a subset of the macro exterior. It consists of

the deviation, name, and params items.

� The macro interior contains the temp, version, assertion, and insist

items. It can be seen as the internal implementation of the macro.

Here is a simple macro de�nition which contains a single version:

� 37 �

JUMP t_switch(a,c) [l1,l2] {

TEST And(?A(a), Const(c));

USE R[t1], M[t2,t3];

implem: {

t_pre(a,c > t1,t2,t3);

JUMP t_post(t1,t2,t3) [l1,l2];

}

}

If a macro de�nition includes several alternative versions, they must be listed

in the order of decreasing priority: at expansion time, ReFlEx traverses

through the versions in the order speci�ed by the macro writer.

6.2 System macros

The SYSTEM part of the rule �le contains the system macro declarations (see

Figure 5 on page 10 for an example). A system macro declaration consists of

a macro exterior only:

BRANCH eq(a) [l] { TEST ?A(a); }

However, unlike an application macro exterior, a system macro declaration

cannot contain a safety declaration (see Section 6.9). (Here the macro lan-

guage designer had to choose between simplicity and uniformity, and simplic-

ity was chosen.)

6.3 Control transfer

Concerning the control transfer after execution, ReFlEx macros are, for code

readability, divided into four types by three distinct deviation quali�ers. All

these quali�ers can be found in the macro calls shown in Figure 15.

t_trans1(x > y);

BRANCH t_trans2(x > y) [l1,l2];

JUMP t_trans3(x > y) [l3];

l1: SLEEP t_trans4(x > y);

Figure 15: The deviation quali�ers.

Macros of the BRANCH and JUMP types are the only ones that can transfer

the control to a remote location (speci�ed by a label parameter); macros of

the default and BRANCH types are the only ones that can transfer the control

� 38 �

to the location immediately following (the code resulting from) the macro

call itself. Thus BRANCH and JUMP macros are conditional and unconditional

branches, respectively, whereas SLEEP macros can represent non-terminating

loops. Supposing that the macro calls in Figure 15 constitute a code fragment,

the t_trans4 call would be unreachable if it were not provided with the l1

label temporary.

Each macro call instance must be explicitly provided with the same deviation

quali�er that is speci�ed already in the de�nition of the particular macro.

6.4 Macro parameters and arguments

Macro variables are divided into parameters and temporaries (for the tempo-

raries, see Section 6.7). Because ReFlEx 1.0 does not support global variables,

macro parameters are the only means for passing information across macro

boundaries at execution time. There are both data parameters and label pa-

rameters. A data parameter may be an input one, an output one, or an

input-output one. Label parameters represent branch targets.

The macro head speci�es the parameters. We present some examples in Fig-

ure 16.

t_param1(x,y,x > y,z) { . . . }

BRANCH t_param2(i,j) [l,l,m] { . . . }

t_param3(> s) { . . . }

JUMP t_param4() [t] { . . . }

Figure 16: Declarations of macro parameters.

Note the following concerning the examples in Figure 16:

� Output parameters are separated from input ones by the `>' special

character, which divides the data parameter list into two sublists. Un-

derstandably, input-output parameters must occur in both these sub-

lists: y is an input-output parameter of t_param1. The `>' separator is

omitted if there are neither output nor input-output parameters.

� If there are no label parameters, the label parameter list is omitted. In

contrast, even if there are no data parameters, an empty data parameter

list must still be present.

� Parameter x appears twice in the input parameter sublist of t_param1,

and parameter l appears twice in the label parameter list of t_param2.

� 39 �

No parameter should appear twice in an output parameter sublist; du-

plicate input or label parameters are seldom useful, although they are

fully supported by ReFlEx.

� For each macro de�nition, the set of data parameters and the set of

label parameters must be distinct.

When a macro is called, macro arguments stand for the macro parameters.

With macro arguments, we do not employ such a special notion as the notion

of an input-output parameter with macro parameters�an output argument

may simply simultaneously be even an input argument.

When a macro is called inside a de�nition of another macro, the macro writer

provides the call with virtual arguments that represent the actual arguments,

i.e. integers, storage cells, and instruction labels. The virtual arguments must

meet the following constraints:

� A label parameter must be matched by a label variable (the reserved

words THIS and NEXT cannot do).

� In general, a data parameter must be matched by a data variable; alter-

natively, an input (but not an input-output) parameter may be matched

by an integer designator.

Not surprisingly, if a parameter appears multiple times in the parameter lists,

the corresponding actual arguments should also be identical. The satisfac-

tion of this constraint is not veri�ed until expansion time�the corresponding

virtual arguments need not be identical.

Here we provide sample calls for the macros of Figure 16:

t_param1(5,a,Add(2,3) > a,b);

BRANCH t_param2(u,v) [k,k,k];

t_param3(> a);

JUMP t_param4() [k];

6.5 Structure of a version de�nition

The macro de�nition contains an ordered sequence of version de�nitions; op-

tionally, there may also be assertion clauses or insist clauses between the

version de�nitions (see Section 6.6). The overall structure of each version

de�nition is shown in Figure 17.

� 40 �

name : test

opt

temp

opt

{

statement

statement

. . .

}

Figure 17: Structure of a version de�nition.

The meaning of the items in Figure 17 is as follows:

name Name of the version being de�ned. (This name is more like a

comment; it is never referred to.)

test Version-speci�c test clause. See Section 6.6.

temp Declaration of version-speci�c temporaries. See Section 6.7.

stmt A statement. See below.

A statement consists of a unique label temporary, a macro or pseudomacro

call (for pseudomacros, see Section 6.8), and a terminating semicolon. Both

the temporary and the call are optional. A statement is empty if it does not

contain a macro (or pseudomacro) call. The statement sequence of a version

de�nition is called the version body.

Simple examples of version de�nitions can be found, for instance, in Figure 18

in Section 6.6, and in Figure 19 in Section 6.7.

6.6 Test, assertion, and insist clauses

Sometimes the user needs to tell ReFlEx explicitly whether it should or should

not take a particular course of action at expansion time. A directive of this

kind is typically a conditional one: the course should be taken if and only if

a given constraint is satis�ed. Such constraints can be represented by integer

designators: by convention, the constraint is taken as being satis�ed if the

integer designator evaluates to a nonzero value.

The user writes conditional directives by inserting the constraint in an ap-

propriate clause. If the constraint of the clause is satis�ed, we say that the

clause itself is also satis�ed. In a macro de�nition, you may �nd four di�er-

ent types of clauses: macro-speci�c test clauses (TEST), version-speci�c test

clauses (TEST, again), assertion clauses (ASSERT), and insist clauses (INSIST).

� 41 �

In Figure 18 we show all the four clause types. In the t_amacro de�nition,

there is a macro-speci�c test, two version-speci�c tests, a single assertion, and

a single insist.

t_amacro(x > y) {

TEST And(Or(?A(y),?R(y)), Gte(#R(),2)); USE R[t];

implem1: TEST ?A(y); USE R[u]; {

t_am0(x > t,u); t_am1(t,u > y);

}

INSIST Not(?A(y));

implem2: TEST ?R(y); {

t_am0(x > t,y); t_am2(t,y > y);

}

ASSERT 0;

}

Figure 18: The di�erent clause types.

The meaning of the clauses is as follows:

� The macro-speci�c test determines whether a call of the current macro is

acceptable as a part of the expansion-time realization of an upper-level

macro call.

� The version-speci�c test determines whether the particular macro ver-

sion can be considered as an expansion-time realization of a call of

the current macro. (Even if the clause is satis�ed, the version will be

rejected if ReFlEx cannot allocate cells for the data variables of the

version, or if the macro-speci�c tests of the macros called in the version

body cannot be satis�ed.)

� During the version selection, if ReFlEx reaches an assertion that is not

satis�ed, the whole expansion is immediately aborted and an error mes-

sage is issued. Furthermore, no expansion result (not even a failing one)

is produced.

� During the version selection, if ReFlEx reaches an insist that is not

satis�ed, the re�nement of the current macro call fails, as if there were

no more versions (an insist clause is useless if it is not succeeded by at

least one more version). Moreover, because at this stage backtracking is

no more possible, the whole expansion result of the original expansion

source becomes a failure.

Note that there is at most one macro-speci�c test per macro de�nition, and at

most one version-speci�c test per version, but there may be arbitrarily many

� 42 �

assertions and insists in the version sequence of a macro de�nition. Still, there

is an important property that all the four clause types have in common: a

missing (macro-speci�c or version-speci�c) test can be considered as a satis�ed

one, and missing assertions and insists could trivially be �replaced� with ones

that are guaranteed to be always satis�ed.

6.7 Macro temporaries

The set of macro variables may include macro temporaries, in addition to

macro parameters. Similarly to the macro parameters, the macro tempo-

raries are divided into data temporaries and label temporaries. Data and label

temporaries are valid as cell and label references, respectively, but invalid as

virtual form arguments (see also Section 6.10). A data temporary is intro-

duced in a temporary declaration (USE), and a label temporary is introduced

by including it as a pre�x in some statement. The temporaries must be dif-

ferent from the parameters and unique up to the particular macro version.

The macro writer must select the storage class for each data temporary. When

the macro expander links an appropriate realization to a macro call, it binds

each data temporary permanently to some �xed cell of the user-selected class.

Data temporaries cannot be made �static�: none of them can retain its con-

tents between di�erent execution times of the expansion result.

Data temporaries may be either macro-speci�c or version-speci�c, while la-

bel temporaries are always version-speci�c. The only purpose of introducing

macro-speci�c data temporaries is making the macro de�nition shorter and

thus more easily readable. Examples of both macro-speci�c and version-

speci�c temporaries can be found in Figure 19.

t_bmacro(x > y) { TEST ?(x,y); USE A[a], M[t1,t2];

implem1: TEST ?R(x); USE R[t3]; {

t_bm1(x > t1,t3);

t_bm2(t1,t3 > y);

}

implem2: USE M[t3]; {

BRANCH t_bm3(x > a,t2,t3) [l0];

t_bm4(t3 > t2);

l0: t_bm5(a,t2 > y);

}

}

Figure 19: Declaration of macro temporaries.

In the example in Figure 19, temporary l0 is speci�c to version implem2.

� 43 �

Temporaries a, t1, and t2 are macro-speci�c ones from storage classes A, M,

and M, respectively. Version implem1 has a version-speci�c temporary t3 of

class R, and version implem2 happens to have a temporary with the same

name of class M.

There remains one important temporary-related feature, whose use may some-

times signi�cantly shorten the text of a macro de�nition. The storage class

for each temporary has to be selected by the macro writer, but this selec-

tion can actually be delayed until expansion time. Consider the de�nition of

the my_swap macro shown in Figure 20; the macro is a generalization of the

my_mswap macro introduced in Figure 9 on page 13.

my_swap(x,y > y,x) {

body: USE A<And(?M(x,y),Lt(#R(),2))>

.A<And(?R(x,y),Lt(#R(),3))>

.R[t];

{

my_move(x > t); my_move(y > x); my_move(t > y);

}

}

Figure 20: Delayed data temporary classi�cation.

Even the restricted my_mswap needed two separate versions�why is a single

version now enough for my_swap? The answer is that the version-speci�c

temporary t of my_swap is not classi�ed before expansion time. If both the

arguments are from class M and there is at most one cell from class R free, or

if both the arguments are from class R and there is no additional cell from

class R free, t is taken from class A; otherwise, it is taken from class R.

If the macro writer wishes to specify several alternative storage classes for a

temporary, as with t of my_swap, all of them but the last one (i.e. the one

with the lowest priority) must be provided with an adjunct clause. In general,

an adjunct clause, as well as a clause, consists of an integer designator that

is evaluated at expansion time: if the evaluation result is nonzero, ReFlEx

takes the action with which the adjunct clause is associated. In fact, the use of

adjunct clauses di�ers from the use of the �proper� clauses only syntactically:

the adjunct clauses are embedded in larger declarations. (See Section 6.9 for

another context that embraces adjunct clauses.)

6.8 Initialization of data variables

Usually, a statement consists of a macro call. However, a statement may

alternatively consist of a call of the INIT pseudomacro (there are no other

� 44 �

types of pseudomacros). The use of this pseudomacro is closely related to

two constraints on version body structure, which aim to catch some mistakes

possibly made by the macro writer:

� No data temporary or output parameter can be read before it is written

or initialized.

� Each output parameter must be written or initialized (neither this nor

the preceding constraint concerns input-output parameters).

INIT is directive-like and never produces any machine instructions. It requires

one virtual output argument, which should be the data variable to be initial-

ized. By such an initialization, the macro writer indicates that the current

contents of the cell represented by the data variable are fully insigni�cant

from the viewpoint of the present macro de�nition. (Still, ReFlEx carefully

protects the contents if they are signi�cant to some upper-level macro of the

expansion-time environment.)

The macro de�nition in Figure 21 contains a version employing INIT. The

whole my_movemacro de�nition appeared (in a slightly di�erent guise) already

in Figure 7 on page 12 (see Figure 6 on page 11 for the de�nition of the

empty my_null macro; the version-speci�c test of the same version is actually

redundant). It implements a general data transfer from an arbitrary source

to an arbitrary destination.

my_move(s > d) {

same: TEST =(s,d); { my_null(s > d); }

as_set: { set(s > d); }

INSIST Not(And(Const(s),?R(d)));

as_load: { load(s > d); }

as_store: { store(s > d); }

as_move: { move(s > d); }

clear_acc: TEST Equal(s,0); USE R[r]; {

INIT(> r); move(r > d); sub(d,r > d);

}

temp_is_needed: USE R[r]; {

my_move(s > r); my_move(r > d);

}

}

Figure 21: The my_move macro.

The clear_acc version of my_move is used for resetting the accumulator to

zero. The version uses an auxiliary register, whose arbitrary contents are �rst

� 45 �

copied into and then subtracted from the accumulator. Because this register

is thus not overwritten, clear_acc can be used even when there are no free

auxiliary registers. However, the fact that the original value of the register is

insigni�cant must be explicitly indicated with an INIT call.

6.9 Safety declarations

A safety declaration is a macro-speci�c promise by the author of the macro

de�nition saying that some output is left unwritten: ReFlEx can �rst uti-

lize and later verify this promise. One might regard safety declarations as a

secondary and perhaps the most complicated feature of the ReFlEx macro

de�nition language. On the other hand, their use often shortens macro de�-

nitions and is itself fairly �safe�.

The safety declaration provides the particular output (or input-output) pa-

rameter with an adjunct clause (see the end of Section 6.7) specifying the

conditions of the promise. However, there is an essential restriction: in such

an adjunct clause, context-sensitive forms =(. . .), !(. . .), and #() cannot be

even indirectly referred to. This is because ReFlEx evaluates the conditions

already before the intraclass cell allocation; in contrast, the evaluation result

of, say, %(. . .) does not depend on the intraclass allocation.

The rest of this subsection deals with a simple but fundamental example. The

my_snullmacro in Figure 22 contains a safety declaration (SAFE). This empty

macro unconditionally promises not to write its input-output parameter; this

promise is clearly ful�lled by the single version of the macro. (The motivation

behind this macro de�nition will soon become obvious.)

my_snull(x > x) {

SAFE x<1>;

null: { }

}

Figure 22: Macro my_snull with a safety declaration.

Then, the my_smove macro in Figure 23 both calls my_snull and includes a

safety declaration of its own. Provided that s and d represent cells belonging

to the same storage class, my_smove promises not to write output parameter

d (but at the same time requires that the two parameters are mapped to a

single common cell). By combining the information from the macro-speci�c

test and the null version de�nition, you notice that my_smove calls can indeed

be successful even under this promise (because the my_snull call is known

not to write d).

� 46 �

my_smove(s > d) {

SAFE d<%(s,d)>;

TEST Or(=(s,d),Not(%(s,d)));

null: { my_snull(s > d); }

move: { my_move(s > d); }

}

Figure 23: Macro my_smove that calls my_snull.

Next, the my_double macro in Figure 24 is a multiplier-by-two. The call of

my_smove in the macro de�nition saves us from one additional version: as it

is, the default version works �ne regardless of whether input parameter x

represents a cell of class R or M.

my_double(x > y) {

USE R[r], A[a];

const: TEST Const(x); { my_move(Add(x,x) > y); }

acc: TEST ?A(x); {

my_move(x > r); add(x,r > x); my_move(x > y);

}

default: {

my_smove(x > r); my_move(r > a);

add(a,r > a); my_move(a > y);

}

}

Figure 24: Macro my_double that calls my_smove.

Finally, ReFlEx expands a sample my_double call

my_double(R[2] > A); {R[0],R[1],R[3]}

in the manner shown in Figure 25. Note that ReFlEx has accepted the

default version of my_double, and moreover, mapped temporary r to cell

R[2]�which is the optimum one�although the my_smove call writes r and

R[2] is the only cell of class R that is not free. Without the safety declara-

tion of my_smove, this optimum mapping could not have been found (though

even then the macro-speci�c test of my_smove would have been su�cient for

rejecting the non-optimum mappings).

6.10 Form calls in macro de�nitions

Unlike macro parameters, macro temporaries cannot be used as virtual form

arguments. The only allowed virtual form arguments inside a macro de�nition

� 47 �

my_double(R[2] > A) {A,R[0],R[1],R[3]} {

my_smove(R[2] > R[2]) {A,R[0],R[1],R[3]} {

my_snull(R[2] > R[2]) {A,R[0],R[1],R[3]} {

}

}

my_move(R[2] > A) {A,R[0],R[1],R[3]} {

move(R[2] > A); {A,R[0],R[1],R[3]}

}

add(A,R[2] > A); {A,R[0],R[1],R[3]}

my_move(A > A) {A,R[0],R[1],R[3]} {

my_null(A > A) {A,R[0],R[1],R[3]} {

}

}

}

my_double(R[2] > A) {A,R[0],R[1],R[3]} {

move(R[2] > A); {A,R[0],R[1],R[3]}

add(A,R[2] > A); {A,R[0],R[1],R[3]}

}

Figure 25: The expansion result of a my_double call.

are macro parameters, integer literals, form calls, and the two reserved words

THIS and NEXT.

You should remember that even if a form call serves as a virtual macro argu-

ment, its value is evaluated as if it constituted the macro-speci�c test of the

current macro de�nition. For instance, in the macro de�nition

t_cmacro(x > x) {

impl: { t_cm1(x > x); t_cm2(!(x)); t_cm3(x > x); }

}

the !(x) form call is guaranteed to return 1, even if at the call of t_cm2

the parameter x is certainly not free. The reason is that because x is in-

cluded in the output parameter list (and there is no safety declaration), the

corresponding argument is free at each call of t_cmacro.

Finally, we repeat that the context-sensitive forms ?(. . .), !(. . .), and #()

cannot be called in safety declarations, not even indirectly.

� 48 �

7 Macro expansion procedure

In this section, we give a concise systematic description of the macro expansion

procedure. Despite its technical nature and its total lack of examples, the

description may help you to understand the ReFlEx operation as a whole.

However, you can use ReFlEx even without reading this section.

The macro expansion begins from an expansion source and produces an ex-

pansion result. The expansion source always consists of a single macro call,

and the expansion result is a sequence of macro calls. The macro expansion

procedure comprises two main phases: a linking phase and a merging phase.

First, during the linking phase a tree structure is built upon the source macro

call. Each node of this expansion tree contains a macro call; the node that

contains the source macro call is the root. The nodes of the tree can be

divided into stock nodes and leaf nodes. To the macro call of each stock node

a realization has already been linked, while the macro calls of the leaf nodes

have not yet been provided with a realization. The realization of a macro call

is selected from the versions of the called macro. The linking phase is ended

when there is no more room for further re�nement, that is, when each leaf of

the tree is either a system macro call (which need not be further re�ned) or

such an application macro call that cannot be successfully re�ned. Second,

the merging phase linearizes the tree into a macro call sequence by removing

the stock nodes.

The merging phase is fairly trivial. Its details are brie�y addressed �nally in

Section 7.7. The rest of this Section 7 deals with the linking phase.

7.1 Overall linking strategy

The linking phase comprises a number of successive steps: each step links

a realization to an application macro call, which thus changes from a leaf

node into a stock node. How should the leaf node to be processed next be

selected? The answer is that this selection is fully insigni�cant, as explained

in Section 7.3.

Suppose that we have somehow selected a leaf node. Then, a suitable realiza-

tion version for its macro call must be selected from the versions of the partic-

ular macro. ReFlEx traverses the versions in the order speci�ed by the macro

writer. The criteria according to which each one of the alternative versions is

either accepted or rejected are cumulatively formulated in Sections 7.2�7.5.

In particular, the notion of a free cell is crystallized in Section 7.3.

It is possible that the constructed expansion tree contains an application

� 49 �

macro call leaf for which no suitable macro version exists. This means that

the whole task originally given to ReFlEx, i.e. the expansion of the expansion

source, has irreversibly failed: ReFlEx 1.0 does not support backtracking.

The linking phase is guaranteed to end, since in�nite recursion is disabled:

the user must set a limit on the number of nodes in the expansion tree (and,

correspondingly, on the allowed form call recursion depth).

7.2 Preliminary de�nitions

We aim at generality and brevity in our discussion; in particular, we want that

some crucial notions apply to both macro de�nitions and expansion trees. We

begin with some simple generalizing conventions:

� Cells and data variables are collectively called markers.

� We assume that ReFlEx quietly associates a unique implicit label tem-

porary with each such statement in a macro version body that the user

has not explicitly provided with a label temporary.

� The macro head is a syntactically valid macro call; since we want to be

able to treat it as a statement, we assume that ReFlEx provides even it

with an implicit label temporary.

Because of the implicit label temporaries, no macro version body can contain

two identical statements. Next, we give our main umbrella de�nition:

� A macro scope, or more shortly, a scope consists of a scope head, which

is a statement, and a scope body, which is a sequence of statements.

Intuitively, the scope body is an implementation of the scope head. We in-

troduce two scope types, de�nition scopes and expansion scopes:

� For a macro de�nition, there are as many de�nition scopes as there are

macro versions. The head of each de�nition scope is the macro head

statement, and the scope body is the body of one of the macro versions.

� For an expansion tree, there are as many expansion scopes as there

are stock nodes. The head of each expansion scope is the macro call

statement of the stock node, and the scope body is the realization of

that macro call. Thus, any stock node statement other than the root

statement both is a head of an expansion scope and belongs to the body

of another expansion scope.

� 50 �

We also introduce some notions related to execution-time control propagation.

First, concerning intrascope control propagation, we adopt the following ter-

minology:

� Each statement in a scope body has a set of immediate successor state-

ments associated with it. For instance, a two-way branch typically has

two immediate successors.

� A path in a scope body is a chain of statements that is glued together

by the immediate successorship.

Second, concerning interscope control propagation, we adopt two more terms:

� Each scope body has exactly one entry point, which is the �rst statement

in the scope body, i.e. the statement that receives the control from the

outside.

� Each scope body has a set of exit points: any statement in the scope

body that may relinquish the control outside the scope is an exit point.

(The last statement in the scope body is an exit point unless the de-

viation quali�er of its macro call is JUMP or SLEEP; additionally, any

statement whose macro call has a label argument in common with the

scope head is an exit point.)

7.3 Free cell analysis

In this subsection, we formulate a precise de�nition for the notion of a free

marker, that is, a free cell or a free data variable. We begin by making three

fairly intuitive conventions explicit:

� Each macro call reads its input arguments.

� Each macro call writes its output arguments.

� Each INIT pseudomacro call initializes its output argument.

We also say that a statement reads, writes, or initializes a marker if the macro

or pseudomacro call of the statement reads, writes, or initializes, respectively,

the marker. Now, we are ready to de�ne life paths, which indicate data

dependencies that span over statements in the code.

A path is a life path of a marker if all the following conditions are met:

� 51 �

� No statement in the path writes or initializes the marker.

� The �rst statement of the path meets at least one of the following sub-

conditions:

� It reads the marker.

� It is an immediate successor of some statement that writes the

marker.

� It is an entry point of the scope body, and the scope head reads

the marker.

� The last statement of the path meets at least one of the following sub-

conditions:

� It has an immediate successor that reads the marker.

� It is an exit point of the scope body, and the scope head writes the

marker.

Finally, we are able to de�ne the set of free markers for each statement in any

scope. Below, you may choose to neglect the bracketed references to safe-

guarding, which are relevant only when the macro de�nitions contain safety

declarations; the notion of safeguarding is explained in Section 7.6.

We start with the simple case of de�nition scopes:

1. Every data variable is free at the de�nition scope head (this part is

included only for the sake of completeness).

2. A data variable is free at a statement in a de�nition scope body if the

statement belongs to no life path of the data variable.

The case of expansion scopes is more complicated. We assume that the user

explicitly provides the expansion source with a disposal set, which lists the

cells that can be used as an auxiliary storage. The de�nition is recursive:

3. A cell is free at the root statement of an expansion tree if the cell [is not

safeguarded by the root statement and] either belongs to the disposal

set or is written by the root statement.

4. A cell is free at a statement in an expansion scope body if both the

following subconditions are met:

� [The cell is not safeguarded by the statement and] the statement

belongs to no life path of the cell.

� 52 �

� The cell is free at the expansion scope head.

Note in particular that the freedom in expansion scopes depends only on the

structure of the current scope and the enclosing upper-level scopes, and on the

disposal set. E�ectively, this means that the order in which the appropriate

realizations are linked to the leaves of the expansion tree is indeed insignif-

icant, as we claimed already in Section 7.1. (It does not matter whether

safeguarding is taken into consideration or not.)

Often when there is no room for misunderstanding, we simply say that a cell

or a data variable is free at some macro call and actually mean freedom at

the statement that contains the macro call.

7.4 Variable binding

When a macro version body is about to be linked to a leaf macro call, each

macro variable is mapped to a single integer, cell, or label. This variable

binding must respect a number of constraints. For instance, the parameter

lists of the macro de�nition establish certain requirements on the correspond-

ing argument lists of the leaf macro call. We specify now all the constraints

on variable binding (again, you may choose to neglect the references to safe-

guarding):

1. Each data parameter must be bound to the cell or integer that is the

corresponding argument of the leaf macro call.

2. No input parameter that is written by some macro call in the version

body can be bound to an integer.

3. Each label parameter must be bound to the label that is the correspond-

ing argument of the leaf macro call.

4. Each data temporary must be bound to a cell of the indicated storage

class.

5. Each data variable that is written [without safeguarding] by some macro

call in the version body must be bound to a cell that is free at the leaf

macro call.

6. If two distinct data variables are bound to a single common cell, and if

one of them is written by some macro call in the version body, then the

other one must not be written by that macro call.

� 53 �

7. If two distinct data variables are bound to a single common cell, and if

one of them is written [without safeguarding] by some macro call in the

version body, then the other one must be free at that macro call.

There may be several successful but still essentially di�erent data temporary

bindings available; in contrast, the label temporaries can trivially be bound

to unique labels that do not previously occur in the expansion tree. We

intentionally leave it unspeci�ed how ReFlEx 1.0 chooses among alternative

successful data temporary bindings. Still, a wrong choice may later prove to

be a fatal mistake: the whole expansion may result in a failure that could

have been prevented by a better choice.

If ReFlEx �nds a successful variable binding, variable replacement can take

place: in the version body, each occurrence of each variable is replaced with

an occurrence of the integer, cell, or label to which the particular variable is

bound. In addition to the variable replacement, some further modi�cation in

the macro version body must be simultaneously carried out:

� Each INIT pseudomacro call statement is removed if it initializes such

a variable that is either bound to an integer or bound to the same cell

as some other variable that is not free at that INIT call.

7.5 Accepting or rejecting a macro version

The expansion tree is not complete as long as there are leaves consisting of

application macro calls. For each such leaf, the versions of the appropriate

macro de�nition are traversed until an acceptable version is found. Once the

version selection is made, it cannot ever be canceled, not even in the case

that a blind alley is later met. In other words, ReFlEx 1.0 does not sup-

port backtracking in version selection. Therefore, the ordering of the macro

versions and the content of their version-speci�c tests should be orchestrated

very carefully.

Each macro version is accepted or rejected according to the following criteria:

1. The version-speci�c test must be successful.

2. A successful variable binding must be found (see Section 7.4 for the

details).

3. The macro-speci�c test of each macro call in the version body must be

successful. (To evaluate these tests, ReFlEx has to create a provisional

link between the leaf node and an appropriately modi�ed copy of the

� 54 �

version body.) An implicit supplement to each macro-speci�c test is

the requirement that if two elements of the macro parameter lists are

identical, then the two corresponding (now provisionally �xed) macro

arguments must also be identical.

If a particular macro version is accepted, an appropriately modi�ed copy of

the version body is linked to the leaf node and thus irreversibly attached to

the expansion tree. Because of the new link, the leaf node becomes a stock

node and the number of expansion scopes in the tree is incremented by one.

Note that we have not yet speci�ed the time at which the root macro call has

to undergo its macro-speci�c test. Now, we straighten out even this defect:

the whole linking phase begins with the evaluation of this test.

7.6 Safeguarding

Above, we have mentioned `safeguarding'. A macro call may safeguard only

its own output arguments. More precisely, we specify the meaning of the term

as follows (for safety declarations, see Section 6.9):

� In an expansion tree, a macro call statement safeguards a cell written

by it if the macro de�nition contains a safety declaration that provides

the corresponding output (or input-output) parameter with an adjunct

clause that is satis�ed at that macro call statement.

Clearly, the above formulation concerns only expansion trees; however, in

Section 7.4 we spoke of safeguarding even in de�nition scope bodies. We

give an intuitive explanation: what we meant is such an expansion tree that

could be constituted by linking the particular macro version body to the leaf

node in question, according to any such variable binding that meets the �rst

four of the seven constraints listed in Section 7.4. Because the �most pow-

erful� ones of the context-sensitive primitive forms cannot be employed in a

safety declaration, the adjunct clauses in the declaration may be accurately

evaluated even against such premature information about the expansion-time

environment. The reason for this look-ahead is rather obvious: if an instance

of safeguarding is detected in the version body, the consequences of the re-

maining constraints (speci�cally, 5 and 7) may well become less restrictive.

7.7 Merging phase

The merging phase linearizes the expansion tree into an expansion result,

which is a sequence of macro calls. This linearization means that all the

� 55 �

following nodes are dropped o� from the tree:

� All the stock nodes.

� Each remaining INIT pseudomacro call node.

� Each unreachable leaf node. (Such nodes may exist, because macro

de�nitions may well include versions that do not refer to every label

parameter.)

Technically, the expansion result does not constitute a macro scope; never-

theless, the macro calls in it are provided with explicit free cell information

inherited from the expansion tree (in which the free cell information is im-

plicit, on condition that safeguarding is excluded).

8 Input and output

The input to ReFlEx should be a speci�cation of the expansion source, while

the output produced by ReFlEx is a listing of the expansion result. The

expansion source is a macro call and the expansion result is a sequence of

macro calls. The expansion can be considered as a success if the expansion

result contains no application macro calls.

Optionally, you can also view the intermediate tree structure built by ReFlEx

during the expansion. This tree shows the links between the individual macro

calls and the macro version bodies that are their respective realizations.

In the examples below, we will consistently use the my_zero macro de�ned in

Figure 9 on page 13 in Section 2.5.

8.1 Expansion source

An expansion source line should contain a macro call statement:

BRANCH my_zero(M[5]) [L7]; // hopeless!

Here, ReFlEx is required to produce code that branches to label L7 if the

value in cell M[5] is zero. Note that the possible deviation quali�er cannot

be dropped out and the macro call must be ended with a semicolon `;'. Note

also that a comment is allowed (comments may be useful especially when the

expansion sources are not given interactively but as a batch).

Our next, slightly extended example

� 56 �

BRANCH my_zero(M[5]) [L7]; {A}

permits ReFlEx to use accumulator A as a temporary data storage: the dis-

posal set is seen to consist of cell A[0]. Note that because storage class A has

only one member, `A' can stand for `A[0]'.

Our third example

L3: BRANCH my_zero(M[5]) [L7]; >L7

provides the source macro call with label L3, and moreover, speci�es label L7

as the follower label. The follower label is the label associated with the code

location immediately following the source macro call (or rather, its expansion

result). Additional information of this kind may be useful when the follower

label is also a label argument of the source macro call (as in the example).

Finally, our fourth and last example

L3: BRANCH my_zero(M[5]) [L7]; {A,R[2]} >L9

presents a �normal� case that produces a successful expansion result (see

Section 8.2). (Note that if both the disposal set and the follower label are

given, then the disposal set speci�cation must come �rst.)

More generally, the expansion source is subject to following restrictions:

� The source statement must consist either of an application macro call

or of a system macro call (and thus not of an INIT call).

� The input arguments must be cell or integer literals. Form calls are not

accepted.

� The output arguments must be distinct cell literals.

� Any syntactically valid identi�er is a potential label literal and can thus

be used as a label argument.

8.2 Expansion result

Here we show the expansion results for the examples presented in Section 8.1.

In addition to the expansion result, the ReFlEx output always includes a

heading that lists the source statement, the disposal set (augmented with the

cells written by the source macro call), and the possible follower label.

The �rst example, that is,

� 57 �

BRANCH ?my_zero(M[5]) [L7] {} {

BRANCH ?my_zero(M[5]) [L7];

}

is an expansion with a failing result. By default, the disposal set is empty,

and thus ReFlEx �nds no free cells. As shown above, such application macro

calls that cannot be provided with a realization are preceded with a ques-

tion mark `?'. (A system macro call is treated similarly if it constitutes the

expansion source but does not satisfy the appropriate macro-speci�c test.)

The second example, with a non-empty disposal set,

BRANCH my_zero(M[5]) [L7] {A} {

?my_move(M[5] > A);

BRANCH eq(A) [L7];

}

shows another failing expansion result. In this case, the source can be provided

with a realization, but no realization is found for the lower-level my_move call:

a free auxiliary register is still wanting.

The next example is somewhat anomalous. Because here the target of the

conditional branch is the follower label, the expansion result

L3: BRANCH my_zero(M[5]) [L7] {} >L7 {

}

is empty (but successful).

Finally, the fourth and last example gives us a non-empty successful expansion

result:

L3: BRANCH my_zero(M[5]) [L7] {A,R[2]} >L9 {

load(M[5] > R[2]);

move(R[2] > A);

BRANCH eq(A) [L7];

}

Actually, the expansion result contains also the set of free cells for each macro

call. Safe estimates for the free cell sets can be computed even from listings

such as the above one, but Section 9.2 tells you how to view the very sets

(inherited from the expansion tree) themselves:

L3: BRANCH my_zero(M[5]) [L7] {A,R[2]} >L9 {

load(M[5] > R[2]); {A,R[2]}

� 58 �

move(R[2] > A); {A,R[2]}

BRANCH eq(A) [L7]; {A,R[2]}

}

8.3 Intermediate tree structure

The intermediate tree structure built by ReFlEx is often very informative.

The expansion tree records the expansion history: the realizations for the

macro calls that are not present in the expansion result any more. Instructions

for tracing it are given in Sections 9.2 and 9.3. For the �nal expansion source

example considered above, that is,

L3: BRANCH my_zero(M[5]) [L7]; {A,R[2]} >L9

the tree is as follows:

L3: BRANCH my_zero(M[5]) [L7] {

my_move(M[5] > A) {

my_move(M[5] > R[2]) {

load(M[5] > R[2]);

}

my_move(R[2] > A) {

move(R[2] > A);

}

}

BRANCH eq(A) [L7];

}

You can easily spot the leaves because of the trailing semicolons. Again, you

could include the free cell sets in the listing. In this case, however, they

are redundant, that is, deducible from the listing above. This also holds for

expansion trees in general�on condition that the possibly safety declarations

of the application macros are additionally known.

9 Running ReFlEx

Suppose you have successfully installed ReFlEx, along the guidelines given in

Section 10. This section, then, tells you how to run ReFlEx.

A ReFlEx session can be outlined as follows. After loading the given rule �le

containing macro de�nitions, ReFlEx prompts for the �rst expansion source.

Once you have typed it in, ReFlEx responds by producing the expansion

result, and prompts again for the next expansion source.

� 59 �

9.1 Invoking ReFlEx

You start ReFlEx by giving the command

reflex <rule-�le>

at the operating system shell level. ReFlEx assumes that <rule-�le> is a

reference to the operating system �le that should be taken as the rule �le.

(The reference cannot begin with a minus sign `-'.)

Additionally, there are several command-line options, which are described in

Section 9.2. Some of the options are useful especially when the standard input

or output stream is redirected so that ReFlEx reads the expansion sources

from or writes the expansion results into some operating system �le.

When ReFlEx has started successfully, it prints its own prompt, `>'.

9.2 Command-line options

The rule �le must be speci�ed on the ReFlEx command line. Additionally,

there are a few possible command-line options. Each option begins with a

minus sign `-' and contains no spaces. The options are:

-s Omits printing the `>' prompt (`s' is for silent). This is useful if the

input stream is redirected from an operating system �le.

-e Inserts a copy of the expansion source at the beginning of the output

(`e' is for echo). This may be useful in the case of input or output stream

redirection.

-t Outputs even the intermediate tree structure, in addition to the ex-

pansion result (`t' is for tree).

-f Includes in the output the set of free cells for each macro call (`f' is

for free).

-n:<int> Sets a limit on the total number of recursively generated

macro calls for each expansion source, in order to cut o� in�nite re-

cursion (`n' is for number). The default limit is 128, and this option can

be used for enabling larger expansion trees. The <int> �eld can be any

unsigned decimal number; however, the limit is automatically increased

to at least 16.

� 60 �

-d:<int> Sets a limit on the form call recursion depth, in order to cut

o� in�nite recursion (`d' is for depth). The default limit is 1024, and this

option can be used for enabling deeper recursion. The <int> �eld can

be any unsigned decimal number; however, the limit is automatically

increased to at least 16.

-r:<�le> Enables you to select interactively the expansion sources from

an operating system �le (`r' is for read). Furthermore, you can edit this

�le with you favorite text editor during a single ReFlEx session. See

Section 9.3 for more information.

-w:<�le> Starts recording the expansion sources to be processed into

an operating system �le (`w' is for write). The generated �le can be fed

back into ReFlEx, even during the same interactive session by using the

-r:<�le> option.

These options may also be given interactively (see Section 9.3). You may

even issue several instances of a single option during a ReFlEx session, either

on the command line or interactively. On the command line, the rightmost

instance is the e�ective one. However, the -s, -e, -t, and -f options are

toggles: for example, a second -s cancels the e�ect of the �rst one.

9.3 Interactive control

Normally, you respond to the ReFlEx prompt `>' by typing an expansion

source on the input line:

> my_move(7 > A); {R[2]}

However, there are also some possible control buttons available for you. To

exit ReFlEx, type a full stop:

> .

To receive a brief help message on the expansion source syntax, type a question

mark:

> ?

You can also update any command-line option (but only one at a time):

> -n:1000

Having updated an option, you may wish to process the previous expansion

source again. To achieve this, type an exclamation mark:

� 61 �

> !

By using the -r:<�le> option, you may select an operation system �le.

ReFlEx assumes that this �le consists of lines containing expansion sources.

A positive integer k such as

> 5

is a control button that tells ReFlEx to process the kth expansion source from

the �le (the expansion sources recorded through the -w:<�le> option are

provided with comments that explicitly build up the appropriate indexing).

You can freely edit the �le between issuing instances of this control button.

9.4 Exceptional conditions and exception messages

There are several reasons why the expansion might break up without pro-

ducing even a failing result. We believe that ReFlEx can detect most of such

exceptional conditions and provide you with appropriate error messages. Still,

an unguarded run-time stack over�ow, for instance, may sometimes arise (see

below).

Every type of exception message that may be issued by ReFlEx has a unique

message number; see Section 10.2 for obtaining more information by means

of the message number. The exception messages are divided into three cate-

gories:

� Fatal errors cause ReFlEx to terminate immediately.

� Errors prevent the processing of the current expansion source.

� Warnings indicate less severe but still unsatisfactory conditions that

should be polished by the user.

Below, we list some exceptional conditions.

Errors in the rule �le and in the expansion source

The possible syntactical and semantical errors in the rule �le are detected

already when ReFlEx is started, and they cause a premature program termi-

nation. Similarly, syntactical and semantical errors in the expansion source

are detected before the actual expansion.

ReFlEx 1.0 cannot recover from syntactical errors: no more than the �rst

syntactical error can be pointed to the user. Semantical errors, in contrast,

can be recovered from.

� 62 �

Assertion failure in version selection

When ReFlEx is selecting a macro version for some macro call, an assertion

clause may be reached. If the assertion clause fails, an error message is pro-

duced and the current expansion source is discarded. See Section 6.6 for more

information on assertion clauses.

Abortion in form call evaluation

Because of the lazy evaluation, the actual set of form calls that have to be

evaluated is normally not fully predetermined. If a call of the _Abort(x,y,z)

primitive form is ever encountered during the macro expansion, an error mes-

sage containing the evaluated arguments x, y, and z is produced, and the

current expansion source is discarded.

In�nite recursion

In principle, both macro and form de�nitions may su�er from in�nite recur-

sion. In practice, however, the recursion depth is always limited. If the limit

is reached, an error message is produced and the current expansion source is

discarded. The recursion limits can be changed by using the -n:<int> and

-d:<int> command-line options (see Section 9.2).

Stack over�ow

If the limits on recursion depth are too large, the software stack (probably set

up by the compiler that created the ReFlEx executable) may over�ow. The

over�ow is not detected by ReFlEx and may therefore have unpredictable

consequences. The recursion limits can be changed by using the -n:<int>

and -d:<int> command-line options (see Section 9.2).

Heap over�ow

During its execution, ReFlEx may ask the operating system for more dynamic

memory for new run-time data structures. If no more memory can then be

allocated, a premature program termination takes place.

� 63 �

Bugs and internal errors

Obviously, there may be bugs in the ReFlEx 1.0 implementation. It is pos-

sible that some bugs are detected by ReFlEx itself; these internal errors are

understandably fatal ones. We would greatly appreciate any information on

bugs and internal errors you may encounter; please see Section 10.2.

10 Installing ReFlEx

Any non-commercial use of ReFlEx is free of charge. You may install ReFlEx

on your local workstation. The operating system should support ASCII char-

acter code and unsegmented virtual memory (as yet, we have not tried to port

ReFlEx to MS-DOS). The practical details are referred to in Section 10.2.

10.1 Technical information about ReFlEx 1.0

ReFlEx 1.0 source code is written in the C++ programming language [21].

The original compiler was GNU g++. Other programming tools utilized were

the flex lexical analyzer generator and the GNU bison parser generator [15].

The integer range supported by ReFlEx 1.0 is �32768 . . . 32767. Still, the

C++ compiler must implement the long integers as at least 32-bit entities,

as required by the ANSI C de�nition.

As mentioned in Section 5.5, the semantics of the arithmetic primitive forms

is determined by the C++ compiler used for compiling the ReFlEx source

code. Indeed, ReFlEx simply converts calls of these primitive forms into the

C++ (or equivalently, C) expressions shown in Table 1 on page 27. This

means, for instance, that on di�erent platforms calling the _Div form with

zero as the divider may have di�erent consequences.

10.2 Obtaining a copy of ReFlEx

ReFlEx can be obtained through the Internet by anonymous ftp: contact

ftp server saturn.hut.fi, move into directory pub/reflex, and look for

�le README. Alternatively, if you have a World Wide Web browser, you may

directly view the location

ftp://saturn.hut.fi/pub/reflex/README

File README speci�es how you can �nd the following items:

� 64 �

� Description of the possible changes made to the ReFlEx documentation.

� ReFlEx source code and instructions for compiling it.

� A listing of ReFlEx exception messages.

� A sample ReFlEx rule �le (which also constitutes Appendix C) and a

companion �le with sample expansion sources.

� An o�-the-record exercise for prospective ReFlEx programmers (see also

Appendix C).

Finally, we would greatly appreciate any comments, questions, bug reports,

and suggestions for improvements. The README �le records some convenient

ways to contact us.

A Rule �le syntax

In this appendix, we present a de�nition for the ReFlEx rule �le syntax. You

can absorb this de�nition easily if you are familiar with the syntax of lex and

yacc input �les. (These two programs are widely used compiler-generation

tools: lex is a lexical analyzer generator and yacc is a parser generator [15].)

Token structure

First, we present the required token structure by using a formalism that

closely resembles the lex input formalism. (Consult [15] if you are not familiar

with lex.)

letter [A-Za-z_]

digit [0-9]

id {letter}({letter}|{digit})*

int {digit}+

%%

" " { }

\t { }

\n { }

\r { }

"//".* { }

ASSERT { return(ASSERT); }

� 65 �

BRANCH { return(BRANCH); }

HEADER { return(HEADER); }

INIT { return(INIT); }

INPUT { return(INPUT); }

INSIST { return(INSIST); }

JUMP { return(JUMP); }

NEXT { return(NEXT); }

SAFE { return(SAFE); }

SEED { return(SEED); }

SLEEP { return(SLEEP); }

STATE { return(STATE); }

STORAGE { return(STORAGE); }

SYSTEM { return(SYSTEM); }

TEST { return(TEST); }

THIS { return(THIS); }

USE { return(USE); }

UTILITY { return(UTILITY); }

{id} { return(ID); }

{int} { return(INT); }

. { return yytext[0]; }

Overall structure

Second, we present the overall hierarchical structure of the rule �le by us-

ing a context-free grammar formalism. Some of the terminal symbols (i.e.

the uppercase ones) of the grammar appeared already in the token structure

de�nition above.

rulebase ::= header storage system utility

header ::= HEADER '{' form0 '}'

form0 ::= form form0

::=

form ::= ID '(' id0 ')' '=' const ';'

::= ID '{' fseed fstate fother0 '}'

item0 ::= item1

::=

item1 ::= item ',' item1

::=

item ::= STATE

::= INPUT

::= THIS

::= NEXT

::= ID

� 66 �

id0 ::= id1

::=

id1 ::= ID ',' id1

::= ID

fseed ::= SEED '=' const ';'

fstate ::= STATE '=' const ';'

fother0 ::= fother fother0

::=

fother ::= ID '=' const ';'

storage ::= STORAGE '{' class0 '}'

class0 ::= class class0

::=

class ::= ID '[' const ']' ';'

system ::= SYSTEM '{' instr0 '}'

instr0 ::= instr instr0

::=

utility ::= UTILITY '{' macrodef0 '}'

macrodef0 ::= macrodef macrodef0

::=

stmt0 ::= stmt stmt0

::=

instr ::= ihead '{' test '}'

macrodef ::= ihead '{' save test local choice0 '}'

stmt ::= ID ':' shead ';'

::= shead ';'

ihead ::= ID '(' inlist outlist ')' dstlist

::= dev ID '(' inlist outlist ')' dstlist

shead ::= ID '(' clist outlist ')' dstlist

::= dev ID '(' clist outlist ')' dstlist

::= INIT '(' '>' ID ')'

::=

dev ::= JUMP

::= BRANCH

::= SLEEP

inlist ::= id0

clist ::= const0

outlist ::= '>' id1

::=

dstlist ::= '[' id1 ']'

::=

save ::= SAFE savedecl1 ';'

::=

savedecl1 ::= savedecl ',' savedecl1

� 67 �

::= savedecl

savedecl ::= ID '<' const '>'

test ::= TEST const ';'

::=

local ::= USE tempdecl1 ';'

::=

tempdecl1 ::= tempdecl ',' tempdecl1

::= tempdecl

tempdecl ::= ID '<' const '>' '.' tempdecl

::= ID '[' id1 ']'

const0 ::= const1

::=

const1 ::= const ',' const1

::= const

const ::= ID '(' const0 ')'

::= item

::= integer

::= dsym classid '(' item0 ')'

::= '&' '(' item0 ')'

integer ::= '+' integer

::= '-' integer

::= INT

classid ::= ID

::=

dsym ::= '='

::= '!'

::= '#'

::= '?'

::= '%'

choice0 ::= choice choice0

::=

choice ::= ASSERT const ';'

::= INSIST const ';'

::= ID ':' test local '{' stmt0 '}'

B Expansion source syntax

In this appendix, we present a syntax de�nition for a ReFlEx expansion

source, which is to be typed on the input line as a response to the ReFlEx

prompt. You can absorb this de�nition easily if you are familiar with the

syntax of lex and yacc input �les. (These two programs are widely used

compiler-generation tools: lex is a lexical analyzer generator and yacc is a

� 68 �

parser generator [15].)

Token structure

First, we present the required token structure by using a formalism that

closely resembles the lex input formalism. (Consult [15] if you are not familiar

with lex.)

letter [A-Za-z_]

digit [0-9]

id {letter}({letter}|{digit})*

int {digit}({digit})*

%%

" " { }

\t { }

\n { return(END_LINE); }

\r { }

"//".* { }

ASSERT { return(NO_GOOD); }

BRANCH { return(BRANCH); }

HEADER { return(NO_GOOD); }

INIT { return(NO_GOOD); }

INPUT { return(NO_GOOD); }

INSIST { return(NO_GOOD); }

JUMP { return(JUMP); }

NEXT { return(NO_GOOD); }

SAFE { return(NO_GOOD); }

SEED { return(NO_GOOD); }

SLEEP { return(SLEEP); }

STATE { return(NO_GOOD); }

STORAGE { return(NO_GOOD); }

SYSTEM { return(NO_GOOD); }

TEST { return(NO_GOOD); }

THIS { return(NO_GOOD); }

USE { return(NO_GOOD); }

UTILITY { return(NO_GOOD); }

{id} { return(ID); }

{int} { return(INT); }

. { return yytext[0]; }

� 69 �

Overall structure

Second, we present the overall hierarchical structure of the expansion source

by using a context-free grammar formalism. Some of the terminal symbols (i.e.

the uppercase ones) of the grammar appeared already in the token structure

de�nition above.

inputline ::= stmt free next END_LINE

stmt ::= ID ':' shead ';'

::= shead ';'

shead ::= ID '(' ilist outlist ')' dstlist

::= dev ID '(' ilist outlist ')' dstlist

dev ::= SLEEP

::= BRANCH

::= JUMP

ilist ::= const0

outlist ::= '>' item1

::=

dstlist ::= '[' id1 ']'

::=

free ::= '{' item0 '}'

::=

next ::= '>' ID

::=

const0 ::= const1

::=

const1 ::= const ',' const1

::= const

const ::= item

::= integer

integer ::= '+' integer

::= '-' integer

::= INT

item0 ::= item1

::=

item1 ::= item ',' item1

::= item

item ::= ID '[' integer ']'

::= ID

id1 ::= ID ',' id1

::= ID

� 70 �

C A sample code generator

This appendix presents a self-contained ReFlEx rule �le. It can be seen as a

simple code generator for the same simple hypothetical processor architecture

that is dealt with in the examples in the text. (See Section 10.2 for obtaining

an electronic copy of this rule �le.)

At this point, you might be interested in trying to solve a non-trivial macro

writing exercise. Therefore, we ask you to extend the rule �le as follows:

� Write a macro left_shift(s,n > d) that transfers data from an arbi-

trary source s into an arbitrary destination d and, most of all, simulta-

neously shifts the data to the left by n bit positions (you can require that

n represents a non-negative integer�and not a cell). In other words,

the macro should implement the C language expression d = s << n.

We would be pleased to answer any questions concerning this exercise. (Again,

see Section 10.2 for a pointer to our contact information.)

// ******************************

// ** A ReFlEx 1.0 rule file **

// ******************************

HEADER {

Abort(x,y,z) = _Abort(x,y,z);

If(x,y,z) = _If(x,y,z);

Add(x,y) = _Add(x,y);

BNand(x,y) = _BNand(x,y);

BShl(x,y) = _BShl(x,y);

Div(x,y) = If(y,_Div(x,y),Abort(100,x,y));

Lt(x,y) = _Lt(x,y);

Mul(x,y) = _Mul(x,y);

Nand(x,y) = _Nand(x,y);

Not(x) = Nand(x,x);

BNot(x) = BNand(x,x);

Lte(x,y) = Not(Lt(y,x));

Gt(x,y) = Lt(y,x);

Gte(x,y) = Lte(y,x);

Eq(x,y) = And(Gte(x,y),Gte(y,x));

� 71 �

Neq(x,y) = Not(Eq(x,y));

Sub(x,y) = Add(x,Add(BNot(y),1));

And {

SEED = 1;

STATE = If(STATE,INPUT,0);

}

Or {

SEED = 0;

STATE = If(STATE,1,INPUT);

}

Const {

SEED = 1;

STATE = And(STATE,Not(?(INPUT)),Not(&(INPUT)));

}

Equal {

SEED = 1;

STATE = If(STATE,

If(later,

And(Const(INPUT),Eq(value,INPUT)),

Const(INPUT)),

0);

later = 1;

value = If(later,value,INPUT);

}

Type(x) = If(?A(x),0,

If(?R(x),1,

If(?M(x),2,

If(Const(x),3,4))));

Ordered(x,y) = If(Const(x,y),

Lte(x,y),

Lte(Type(x),Type(y)));

} // HEADER

STORAGE {

M[1024];

R[4];

� 72 �

A[1];

}

SYSTEM {

set(c > r) {

TEST And(?R(r), Const(c), Gte(c,-1024), Lte(c,1023));

}

load(m > r) { TEST And(?R(r), ?M(m)); }

store(r > m) { TEST And(?R(r), ?M(m)); }

move(s > d) {

TEST And(Or(?A(s), ?R(s)), Or(?A(d),?R(d)));

}

add(a,r > a) { TEST And(?A(a), ?R(r)); }

sub(a,r > a) { TEST And(?A(a), ?R(r)); }

JUMP goto() [l] { }

BRANCH eq(a) [l] { TEST ?A(a); }

BRANCH gt(a) [l] { TEST ?A(a); }

BRANCH lt(a) [l] { TEST ?A(a); }

}

UTILITY {

my_null(x > x) {

// do not do anything

null: { }

}

my_move(s > d) {

// move data from s into d

same: TEST =(s,d); { my_null(s > d); }

as_set: { set(s > d); }

INSIST Not(And(Const(s),?R(d)));

as_load: { load(s > d); }

as_store: { store(s > d); }

as_move: { move(s > d); }

clear_acc: TEST Equal(s,0); USE R[r]; {

INIT(> r); move(r > d); sub(d,r > d);

}

temp_is_needed: USE R[r]; {

my_move(s > r); my_move(r > d);

}

}

� 73 �

my_snull(x > x) {

// do not do anything;

// safeguard x

SAFE x<1>;

null: { }

}

my_smove(s > d) {

// move data from s into d;

// if s and d belong to a common class,

// they are forced to be aliases of each other

SAFE d<%(s,d)>;

TEST Or(=(s,d),Not(%(s,d)));

null: { my_snull(s > d); }

move: { my_move(s > d); }

}

my_double(x > y) {

// y is set to the value of x multiplied by 2

USE R[r], A[a];

const: TEST Const(x); { my_move(Add(x,x) > y); }

acc: TEST ?A(x); {

my_move(x > r); add(x,r > x); my_move(x > y);

}

default: {

my_smove(x > r); my_move(r > a);

add(a,r > a); my_move(a > y);

}

}

my_swap(x,y > y,x) {

// swap the contents of x and y

body: USE A<And(?M(x,y),Lt(#R(),2))>

.A<And(?R(x,y),Lt(#R(),3))>

.R[t];

{

my_move(x > t); my_move(y > x); my_move(t > y);

}

}

BRANCH my_zero(x) [l] {

// is x zero?

next: TEST &(l, NEXT); { }

� 74 �

zero: TEST Equal(x,0); { JUMP goto() [l]; }

const: TEST Const(x); { }

default: USE A[a]; { my_smove(x > a); BRANCH eq(a) [l]; }

}

BRANCH my_pos(x) [l] {

// is x positive?

next: TEST &(l, NEXT); { }

pos: TEST Gt(x,0); { JUMP goto() [l]; }

const: TEST Const(x); { }

default: USE A[a]; { my_smove(x > a); BRANCH gt(a) [l]; }

}

BRANCH my_neg(x) [l] {

// is x negative?

next: TEST &(l, NEXT); { }

neg: TEST Lt(x,0); { JUMP goto() [l]; }

const: TEST Const(x); { }

default: USE A[a]; { my_smove(x > a); BRANCH lt(a) [l]; }

}

BRANCH my_gt(x,y) [l] {

// is x greater than y?

TEST Or(#A(),&(l,NEXT),=(x,y),Const(x,y),

And(?A(x),Equal(y,0)),And(?A(y),Equal(x,0)));

USE A[a], R[r];

swap: TEST Not(Ordered(x,y)); { BRANCH my_lt(y,x) [l]; }

INSIST Ordered(x,y);

next: TEST &(l,NEXT); { }

same: TEST =(x,y); { }

const: TEST Const(x,y); { }

y_zero: TEST Equal(y,0); {

my_smove(x > a); BRANCH gt(a) [l];

}

x_to_acc: {

my_smove(x > a); my_smove(y > r);

sub(a,r > a); BRANCH gt(a) [l];

}

y_to_acc: {

my_smove(y > a); my_smove(x > r);

sub(a,r > a); BRANCH lt(a) [l];

}

}

� 75 �

BRANCH my_lt(x,y) [l] {

// is x less than y?

TEST Or(#A(),&(l,NEXT),=(x,y),Const(x,y),

And(?A(x),Equal(y,0)),And(?A(y),Equal(x,0)));

USE A[a], R[r];

swap: TEST Not(Ordered(x,y)); { BRANCH my_gt(y,x) [l]; }

INSIST Ordered(x,y);

next: TEST &(l,NEXT); { }

same: TEST =(x,y); { }

const_eq: TEST Equal(x,y); { }

const: TEST Const(x,y); { JUMP goto() [l]; }

y_zero: TEST Equal(y,0); {

my_smove(x > a); BRANCH lt(a) [l];

}

x_to_acc: {

my_smove(x > a); my_smove(y > r);

sub(a,r > a); BRANCH lt(a) [l];

}

y_to_acc: {

my_smove(y > a); my_smove(x > r);

sub(a,r > a); BRANCH gt(a) [l];

}

}

my_add(x,y > z) {

// add x to y, and put the result into z

TEST Or(#A(),Const(x,y),Equal(y,0),=(x,y));

USE A[a], R[r];

swap: TEST Not(Ordered(x,y)); { my_add(y,x > z); }

INSIST Ordered(x,y);

both_const: TEST Const(x,y); { my_move(Add(x,y) > z); }

one_zero: TEST Equal(y,0); { my_smove(x > z); }

same: TEST =(x,y); { my_double(x > z); }

default: {

my_smove(x > a); my_smove(y > r);

add(a,r > a); my_smove(a > z);

}

}

my_sub(x,y > z) {

// subtract y from x, and put the result into z

USE A[a], R[r];

� 76 �

both_const: TEST Const(x,y); { my_move(Sub(x,y) > z); }

same: TEST =(x,y); { my_move(0 > z); }

y_zero: TEST Equal(y,0); { my_smove(x > z); }

y_reg_x_zero: TEST And(?R(y),Equal(x,0)); {

my_move(y > a); sub(a,y > a);

sub(a,y > a); my_smove(a > z);

}

y_acc_x_zero: TEST And(?A(y),Equal(x,0)); {

my_move(y > r); sub(y,r > y);

sub(y,r > y); my_smove(y > z);

}

y_acc_x_aux_only_free:

TEST And(?A(y),?R(x),!(x),Equal(#R(),1));

{

sub(y,x > y); my_move(y > x);

sub(y,x > y); sub(y,x > y); my_smove(y > z);

}

y_acc_1_aux_free:

TEST And(?A(y),Or(?M(x),Const(x)),Equal(#R(),1));

{

my_move(x > r); sub(y,r > y); my_move(y > r);

sub(y,r > y); sub(y,r > y); my_smove(y > z);

}

default1: {

my_smove(x > a); my_smove(y > r);

sub(a,r > a); my_smove(a > z);

}

default2: {

my_smove(y > r); my_smove(x > a);

sub(a,r > a); my_smove(a > z);

}

}

BRANCH my_eq(x,y) [l] {

// are x and y equal?

TEST Or(#A(),&(l,NEXT),Equal(x,y),Const(x,y),=(x,y));

next: TEST &(l,NEXT); { }

eq_const: TEST Equal(x,y); { JUMP goto() [l]; }

neq_const: TEST Const(x,y); { }

same: TEST =(x,y); { JUMP goto() [l]; }

swap: TEST Not(Ordered(x,y)); { BRANCH my_eq(y,x) [l]; }

INSIST Ordered(x,y);

default: USE A[a]; {

� 77 �

my_sub(x,y > a); BRANCH eq(a) [l];

}

}

} // UTILITY

Acknowledgements

The author wishes to thank Professor Leo Ojala for his �rm interest in the

subject and for the arrangements that have made this work possible. During

the implementation and documentation phases of the work, Dr. Johan Lilius

and Dr. Ilkka Niemelä have provided many valuable suggestions. The �nancial

support from Helsinki Graduate School in Computer Science and Engineer-

ing, Academy of Finland, and Foundation of Technology is also gratefully

acknowledged.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-

niques, and Tools. Addison-Wesley, Reading (Massachusetts, USA) 1986.

[2] G. Araujo, S. Devadas, K. Keutzer, S. Liao, S. Malik, A. Sundarsanam,

S. Tjiang, and A. Wang. Challenges in code generation for embedded

processors. In [17], pp. 48�64.

[3] AT&T Microelectronics. DSP1610 Digital Signal Processor Information

Manual. Allentown (Pennsylvania, USA), December 1992.

[4] P. J. Brown. Macro Processors and Techniques for Portable Software.

Wiley, London (UK), 1974.

[5] A. J. Cole. Macro Processors (second edition). Cambridge University

Press, Cambridge (UK), 1981.

[6] A. Dollas and J. D. S. Babcock. Rapid prototyping of microelectronic sys-

tems. In M. C. Yovits and M. Zelkowitz (eds.), Advances in Computers,

vol. 40. Academic Press, San Diego (California, USA), 1995.

[7] D. J. Farber. A survey of the systematic use of macros in systems build-

ing. ACM SIGPLAN Notices, vol. 6, no. 9, pp. 29�36. October 1971.

[8] J. A. Fisher. The VLIW machine: a multiprocessor for compiling scien-

ti�c code. IEEE Computer, vol. 17, no. 7, pp. 44�53. July 1984.

� 78 �

[9] I. D. Greenwald. A technique for handling macro instructions. Commu-

nications of the ACM, vol. 2, no. 11, pp. 21�22. November 1959.

[10] S. M. Kafka. An assembly source level global compacter for digital signal

processors. Proceedings of 1990 International Conference on Acoustics,

Speech, and Signal Processing, vol. 2, pp. 1061�1064. IEEE, Piscataway

(New Jersey, USA), 1990.

[11] K. Kennedy. A survey of data �ow analysis techniques. In S. S. Muchnik

and N. D. Jones (eds.), Program Flow Analysis: Theory and Applications,

pp. 5�54. Prentice-Hall, Englewood Cli�s (New Jersey, USA), 1981.

[12] B. W. Kernighan and D. M. Ritchie. The C Programming Language (sec-

ond edition). Prentice-Hall, Englewood Cli�s (New Jersey, USA) 1988.

[13] J. R. Larus. Assemblers, linkers, and the SPIM simulator. In J. L. Hen-

nessy and D. A. Patterson, Computer Organization and Design: The

Hardware/Software Interface, Appendix A. Morgan Kaufmann, San Ma-

teo (California, USA) 1994.

[14] E. A. Lee. Programmable DSP architectures. IEEE ASSP Magazine,

vol. 5, no. 4, pp. 4�19 (Part I) and vol. 6, no. 1, pp. 4�14 (Part II).

October 1988 and January 1989.

[15] J. R. Levine, T. Mason, and D. Brown. Lex & yacc (second edition).

O'Reilly & Associates, Sebastopol (California, USA) 1992.

[16] P. Marwedel. Code generation for embedded processors: an introduction.

In [17], pp. 14�31.

[17] P. Marwedel and G. Goossens (eds.). Code Generation for Embedded

Processors. Kluwer, Boston (Massachusetts, USA) 1995.

[18] M. D. McIlroy. Macro instruction extensions of compiler languages. Com-

munications of the ACM, vol. 3, no. 4, pp. 214�220. April 1960.

[19] D. A. Patterson. Reduced instruction set computers. Communications of

the ACM, vol. 28, no. 1, pp. 8�21. January 1985.

[20] D. Salomon. Assemblers and Loaders. Ellis Horwood, Chichester (UK)

1992.

[21] B. Stroustrup. The C++ Programming Language (second edition).

Addison-Wesley, Reading (Massachusetts, USA) 1991.

[22] T. Swan. Mastering Turbo Assembler (second edition). Sams Publishing,

Indianapolis (Indiana, USA), 1995.

� 79 �

[23] W. A. Wulf. Compilers and computer architecture. IEEE Computer,

vol. 14, no. 7, pp. 41�47. July 1981.

