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Abstract: Many modern code generation methods use tree pattern matching with

dynamic programming. However, especially in the case of an irregular special-purpose

processor architecture their lack of transparency and stability may be problematic:

it is di�cult to predict the exact code generation result in advance, and the e�ects

of a modi�cation in the code generation rules may be surprisingly wide.

In contrast, macro expansion techniques are intuitively transparent. When global

variables are disallowed, macro expansion typically has the Church-Rosser property:

the �nal expansion result is independent of the expansion order of the individual inter-

mediate macro calls. Besides enabling parallel implementation, order-independence

means stability: the e�ects of modifying a macro de�nition are guaranteed to remain

local.

The locality is actually the problem with macro expansion; code optimization

is improved when an assembly language macro is sensitive to its context. For in-

stance, it should know which registers are free and which ones contain useful values.

A traditional mechanism for propagating contextual information is the use of global

variables. But relying on global variables means that the expansion should take place

strictly from left to right, so that order-independence is lost while it is still not pos-

sible to pass information in the opposite direction.

In this work a novel assembly-language-level macro expansion technique with

both order-independence and rather general context-sensitivity is proposed. The

technique supports modular and hierarchical code libraries. Both a formal model

and a code generator prototype demonstrating the technique are presented.
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1 Introduction

Compiler writers and many other system programmers need to be familiar

with assembly language. Assembly language programs are, of course, low-

level and machine-speci�c, as opposed to the ones written in a language like

Fortran, Pascal, or C. Furthermore, assembly languages usually lack struc-

turing mechanisms: the code tends to be \spaghetti-like".

Many algorithms are conveniently described as data 
ow graphs; this holds

especially in the case of digital signal processing algorithms [78], which are

typical embedded computer system speci�cations. An essential advantage of

data 
ow graphs is their natural composability [24]: a given subgraph, such as

shown in Fig. 1, can be de�ned to be the implementation of a new compound

block, such as shown in Fig. 2, which is then ready to be used exactly in the

same way as the old prede�ned blocks. This composition straightforwardly

carries over to hardware realizations: both discrete components and VLIW

cells [52] are easily grouped into larger composite entities.

NEG

NEG

SQRT

ADD

ADD MUL

MUL

ADD

Figure 1: Subgraph of a data 
ow graph.

EUCLIDEAN-DISTANCE

Figure 2: User-de�ned compound block.

In the case of software realizations, in contrast, abstraction through mod-

ular and hierarchical composition is not as simple [41, pp. 252{252]. The

problem arises when e�ciency matters|as it is rather usual with embedded

computer systems|and assembly language is consequently a must. An as-

sembly code segment is not context-free: for instance, the segment cannot use

a given register as a temporary data storage if the surrounding code already

happens to use the register so that it must not be overwritten. A possible so-

lution attempt might be to employ functions with standard calling interfaces

as program modules, but the extensive use of function calls would be very
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ine�cient. Therefore, assembly language programmers seem to be in need of

a more general notion of a program module.

In this report we propose a novel approach to the composition of machine (or

assembly) code libraries. We have adopted several complementary ways to

promote the proposal. After presenting some background in Sec. 2, in Sec. 3

we give a systematic description of our library-based code generation tech-

nique. Next, Sec. 4 introduces a demonstration prototype of the suggested

code generation tool (moreover, the three appendices of the report deal with

this prototype and its implementation). In Sec. 5 we provide a formal frame-

work that should make the principles of our approach explicit and precise. The

report ends with a brief identi�cation of related research e�orts, in Sec. 6, and

a concise statement of our main conclusions, in Sec. 7. Additionally, we men-

tion that for the up-to-date information about our contributions in this �eld

you should consult the URL ftp://saturn.hut.fi/pub/reflex/README (in

particular, you are told how to obtain a copy of the prototype tool and how

to experiment with it).
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2 Background and motivation

We are interested in developing programming tools and techniques in partic-

ular for embedded special-purpose processor code generation. On the whole,

code generation must obviously take place not later than running the program.

Still, this \constraint" allows several schemes distinct from the conventional

static compile-time code generation. Interpretation means that the code for

each source language statement is generated each time when the statement

is executed; dynamic code generation means that program code is generated

as the �rst step of the program execution, with the run-time parameter val-

ues already known (see [67], for example). At the other extreme, there is

embedded processor �rmware generation: code generation must take place in

conjunction with the hardware design of the computing system, as the pro-

grams are physically closely tied to the hardware (e.g. stored in a read-only

memory).

2.1 On embedded processor programming

The �eld of machine-level code generation is not homogeneous. The general-

purpose Reduced Instruction Set Computer (RISC) processors are speci�-

cally designed to be programmed with optimizing high-level language com-

pilers [80]: for instance, global register allocation [19] is straightforward due

to the large uniform register �le. But especially in the embedded real-time

computing area, there are many special-purpose processor architectures that

must often programmed in assembly language (which is not an easy task ei-

ther). The unavailability of high-quality compilers stems from architectural

di�culties, exceptionally high requirements on the output code quality, and

limited compiler markets (the more specialized the processor is, the smaller

the number of potential applications tends to be).

Embedded real-time computing systems [65, 41] are rapidly gaining ground.

An example of an embedded system aimed at the consumer market is a mobile

phone. Typically, a processor in such a system continuously runs a single

program that must be able to respond very fast to some external signals. In

spite of its elaborateness, this program may be relatively small. This is clearly

di�erent from the general-purpose computers on the o�ce desk, which have to

be able to switch between diverse application programs at the user's request.

Representative examples of the special-purpose processors we have in mind

are the digital signal processors (DSPs) [66] designed for real-time number

crunching. E. A. Lee states that they \are traditionally designed for perfor-

mance, not extensive functionality or programmer convenience" [66, Part I,

p. 4]. For the assembly language programmer, the main complication is the
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�ne granularity of the instruction set (with VLIW-type instruction-level paral-

lelism [36])|for execution speed, there is no intermediate microprogram level

(this is a similarity to RISCs). For the compiler writer, the main problems

are the non-RISC traits of the architecture: unconventional functionality with

both limitations and exotic features, and irregularity and non-orthogonality.

The architecture is thus strongly geared towards the intended application

area. For instance, special-purpose registers (which need no explicit identi�-

cation) are helpful when an architecture designer tries to pack into a single

instruction word several operations that typically occur in conjunction with

each other.

The core of the di�culties faced by the compiler is the case analysis problem

described by W. A. Wulf in 1981 [103]: due to the architectural anomalies,

selection of the optimum machine instructions and registers becomes trouble-

some. For a particular feature in the source program, there may be|instead

of a single obvious implementation|only several alternative more or less du-

bious implementation candidates. Furthermore, individual implementation

decisions are typically very sensitive to each other. For instance, some oper-

ation may \naturally" leave its result into a certain register, while the next

operation using this result may expect its operand to be found in a di�er-

ent register. In practice, the compiler is seldom able to tackle a chain of

such intertwined decisions in the best possible way. (In contrast, the code

selection is usually a great deal easier for a human assembly language pro-

grammer, who rather quickly learns to \see" the best|or at least a very

good|implementation alternative.)

In addition to the poor quality of compiled code, the are also more \manage-

rial" issues that favor assembly language programming:

� In the case of a mass-produced article such as a mobile phone,

increases in the non-recurring programming costs are usually ac-

ceptable [41, p. 9] when they result in a decrease in the recurring

hardware costs.

� Special-purpose processor applications are often so specialized

that there is little need to consider application program porta-

bility.

� It may be feasible to adopt a heterogenous multiprocessor system

tailored to the particular application at hand: precisely the most

time-critical tasks can then be assigned to a separate special-

purpose processor programmed entirely in assembly language.

� One might suppose that the inevitable advances in integrated

circuit technology and processor architecture design would soon

more than compensate the performance penalty resulting from
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high-level language use. However, that is not the whole truth: as

the processors get faster, software (or �rmware) implementations

become competitive in new application areas, but only if the full

processing capacity can be exploited. In other words, there seems

to exist a niche for assembly language programming, which is

not easily occupied by compiler writers without some signi�cant

breakthroughs.

The above issues are re
ected even in the embedded processor compiler tech-

nology [74]: compilers should absolutely be capable of powerful optimiza-

tion. General-purpose processor compilers typically optimize for high execu-

tion speed, but with embedded processors, optimization for small code size

may be even more important [71]: the smaller program memory is needed,

the smaller are the recurring costs for each product sold. Finally, as the

programming costs are non-recurring, optimization algorithms that consume

exceptionally large amounts of time or space may become feasible [69, p. 26]

(as a rule, the compilation does not take place on the target processor but on

a more general and user-friendly platform).

2.2 Our goals

Compilation is often conceptually divided into the analysis and synthesis

phases: for instance, lexical and syntax analysis belong to the former, whereas

code generation belongs to the latter. Ideally, the analysis phase involves no

decisions with run-time consequences: it neither loses any information about

the input program nor makes any commitments concerning the output pro-

gram. In contrast, the synthesis phase comprises all the machine-dependent

decisions that a�ect the e�ciency of the output program. This di�erence ex-

plains why the quality of compiler writing tools seems to be much better in

the case of the analysis phase: Lex and Yacc are examples of proven scanner

and parser generators, respectively [68].

Our present focus is on ensuring that a code generator program is always

capable of producing output of su�ciently high quality. This is an issue espe-

cially with special-purpose processors|already the �rst Fortran compiler [8]

launched in 1957 could produce su�ciently good code for a general-purpose

processor, i.e. IBM 704 (since precisely ensuring this was crucial for the suc-

cess of Fortran [9], the compiler featured even global program 
ow analysis).

Accordingly, much of the contemporary code generation research concentrates

on compiler retargetability and compilation speed rather than on further rais-

ing the level of output code e�ciency. This latter task is typically relegated to

optimization phases separate from the actual code generation; but, in prac-

tice, the less regular and orthogonal the processor architecture is, the less



{ 6 {

global optimizations can account for.

Instead of maximally automated machine-description-driven \high-end" code

generation, we are presently aiming at a \low-end" code generation tool that

would enable the compiler writer to ful�ll his task in the �rst place, even

when faced with exceptionally high requirements. Most of all, the tool should

assist the designer by releasing him from tedious clerical work. Our speci�c

goals are:

� The tool should be usable both as a code-generator writing system

and as a stand-alone macro assembler.

� An experienced application programmer should himself be able

to modify the code generation rules, and the quality of the out-

put code should be a monotonously|and even rather steadily|

increasing function of the time spent in such optimization.

� Retargeting the tool should be still be straightforward: even

programmable application-speci�c instruction set processors are

rapidly becoming more widely used [82].

We �nally remark that, in principle, retargeting of a low-level tool of the

suggested kind can be speeded up by combining it with some higher-level

code generation tool in the manner sketched in Fig. 3. The low-level tool is

shown to consist of a rule interpreter (only to make the �gure simpler, we

assume here that the low-level code generation rules are not subject to any

preprocessing) and a rule base that may optionally be produced automatically

by the higher-level tool. Most importantly, note that in the automated case

the low-level rule base can still be improved by manual optimizations that are

not lost even if the source program is subsequently modi�ed (though they are

lost whenever the target machine description has to be modi�ed).

2.3 Requirement analysis

Our strategy is to strive for a machine-level code abstraction formalism with

the following properties:

1. Universality: there should be no restrictions whatsoever on the

code that can be generated.

2. Transparency: the designer should be able to \see" the structure

of the output code e�ortlessly by viewing the abstract code.

3. Modularity: there should be support for reusable program com-

ponents with well-de�ned interfaces and mutually independent

implementations.
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some "high-end"
code generation tool

some "high-level"
machine description

source
program

target
programcompiler

rule base

rule interpreter

Figure 3: A scheme for faster retargeting.

4. Hierarchy: it should be possible to create new abstraction levels

on the top of the already existing ones.

How do these properties help us to achieve the three speci�c goals set in

Sec. 2.2? First, the main defects with existing code-generator writing systems

and macro assemblers are the lack of universality and modularity, respectively:

the compiler optimization level cannot be tuned arbitrarily high; and there

is no protection mechanism that would prevent the macro expansion result

from inadvertently corrupting the register contents. Second, assume that our

code generation result is not good enough: hierarchy guides us in identifying

the whereabouts of the defect; transparency helps us to recognize the reason

for the defect; universality guarantees that we are able to remove the defect;

and by modularity, the necessary modi�cations can be made locally. Third,

suppose that we want to switch to a new processor: universality means that

the formalism is indeed compatible with the new processor; hierarchy enables

straightforward construction of processor-speci�c code libraries; modularity

makes the libraries easily maintainable and safely reusable; and by improving

readability, transparency encourages us to set up deeper library hierarchy.

We may further de�ne conformability as the combination of universality and

transparency, and composability correspondingly as the combination of mod-

ularity and hierarchy. Even without any abstraction formalism, one already

has conformability, which may only be lost by a \poor" formalism; clearly,

one usually adopts an abstraction formalism speci�cally in order to achieve
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composability. By conformability, the programmer is able to determine the

output code structure as precisely as he wishes|in a way that is sensitive

to as large a context as necessary. Composability, then, enables easy-to-use

code libraries to be written. High-level languages such as C provide com-

posability but not conformability; instead of conformability, they o�er|more

or less|machine-independence and thus portability of both programs and

programming experience. Even if machine-independence is not among our

present goals, by stretching the requirement of universality over di�erent tar-

get hardware we still aim at retargetability.

To support our claim that the above four properties are independent of each

other, we present four \three-property" examples:

� Conventional assembly language macros lack modularity. For in-

stance, if some macro M

1

uses a register R as a temporary data

storage, the programmer has to take care when calling M

1

: the

macro expander is not able to issue a warning that the value possi-

bly already stored in R will be lost during the execution ofM

1

[62,

pp. 15{17]. Additionally, if M

1

, in turn, calls another macro, say

M

2

, then the original caller of M

1

must take into consideration

even similar restrictions that perhaps concern M

2

.

� The MIPS assembly instruction set [32, 81] contains synthetic in-

structions that the assembler may expand into a couple of machine

instructions. Sometimes the assembler needs a temporary regis-

ter for storing intermediate results; modularity is still guaranteed

since one of the hardware registers is reserved for the exclusive use

of the assembler. But as there is only a single reserved register,

it has not been feasible to allow hierarchical synthetic instruction

de�nitions.

� Bliss [105, 104] is a machine-oriented higher-level language [96]

designed around 1970 for PDP-10 system programming. As Bliss

was intentionally tailored to exploit certain features of the PDP-

10 instruction set architecture, it lacks universality.

� Using a high-level language such as C with optional inline assem-

bly instructions (see [95, Ch. 13], for example), one can to write

thoroughly optimized code. Still, the compilation result of the C

portions of the program is not fully transparent.

In principle, modularity ensures that a single modi�cation in the abstract

code does not disrupt the global consistency of the output code. However, it

is still possible that the automatic consistency preservation involves numerous

changes in di�erent parts of the output code. Uncontrolled, such \
uidity" ob-

viously impedes transparency; controlled, it may even improve transparency.
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More speci�cally, in addition to conformability and composability we would

also like to have plasticity comprising the following two constituents (which

may seem mutually con
icting|but wait for Sec. 3.4):

5. Stability: The e�ects of a modi�cation in the abstract code should

be localizable within a bounded segment of the output code.

6. Propagativity: If two coding decisions must be consistent with

each other, the programmer should be able to make them at a

single point in the abstract code, independently of the distance

between them in the output code.
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3 Our approach to code generation

Our proposed rule formalism can be seen as a macro language. This classi�ca-

tion creates a common frame of reference: you are probably at least somewhat

familiar with the concepts and terminology related to the use of macros. (Be-

low we will use terms `programmer' and `macro writer' interchangeably|

even if the programmer is often actually a compiler writer.) Still, while

claiming many similarities to conventional macro expansion, we also want

to stress the di�erences. Our macro expansion is domain-sensitive rather

than general-purpose; by general-purpose macro expansion we refer to the

pure text string substitution that is characteristic to the more traditional,

domain-independent macro expanders.

The domain-sensitivity manifests itself in domain-speci�c attributes and ex-

pansion-integrated domain-speci�c actions. The macro writer is provided with

a set of built-in domain-speci�c attributes, whose values he may examine and

against which the conditional expansion may thus take place. For instance,

he may ask whether there is any registers free to be overwritten at the point

of the macro call. Similarly, but much less importantly, a T

E

X macro writer

may ask for the height of the text accumulated on the current page and use

this value as a condition for a \hard" page break. (T

E

X by D. E. Knuth [59]

is a typesetting program whose proprietary input language features a 
ex-

ible macro facility; T

E

X macro packages such as L. Lamport's L

A

T

E

X [61]

may be very elaborate systems.) The essential property of such domain-

speci�c attributes is that their implementation is hidden from the user. The

expansion-integrated domain-speci�c actions, in turn, are likewise embed-

ded in the macro expansion facility itself. More speci�cally, the expander

is preprogrammed to perform routine but (from a human viewpoint) labo-

rious code-generation-related transformations|instead of plain text string

substitution|in conjunction with the expansion of each macro call. Such

transformations may involve storage allocation, for instance. (In contrast,

the domain-speci�c actions of T

E

X are conversion-integrated, i.e. separate

from the macro expansion proper: the T

E

X macro expansion can be seen as a

preprocessing phase whose output is the input to the actual conversion phase.

By a `conversion' we mean a non-transparent language translation not based

on explicit rules, as opposed to macro expansion.)

Because a macro expansion|even if the domain-sensitivity leads to enhanced

context-sensitivity|is an inherently local operation, the proposed formalism

facilitates local optimizations but cannot express global optimizations. Never-

theless, we shall claim that it is surprisingly easy to integrate supplementary

global optimization routines with the proposed macro expansion.
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3.1 Concept of a macro call environment

As we already noted in Sec. 2.3, conventional assembler macros lack mod-

ularity. This lack e�ectively prevents hierarchical macro de�nitions: since

any hidden change in the state of the processor's registers is unsafe, hierar-

chy cannot promote abstraction through information hiding [79]. Our aim

is to make macros into proper modules; from the viewpoint of the proposed

macro expander, macro calls are not only string patterns but logical entities

corresponding to computational operations.

Modularity requires that the module implementations are independent of each

other. The module interface should, �rst, be carefully de�ned to cover all

the possible intermodule dependencies and, second, be carefully respected

when the modules are processed to produce output code. The advantage of

modularity is that if some module implementation is modi�ed, the output

code remains globally consistent, even if numerous changes may spread all

over it.

Our strategy is to manage the intermodule dependencies by extensive condi-

tionality: the macro expansion takes place conditionally against the knowledge

of the run-time context that is available already at expansion time. Typically,

this knowledge contains information about the utilization of the processor's

physical resources. Such knowledge constitutes the expansion-time environ-

ment of each macro call instance. The macro writer is presented with an

abstract display through which he can examine the environment; the display

hides both the internal program representation and the built-in algorithms

(such as ones performing 
ow analysis) working on it.

The most important problems we now have to tackle include the follow-

ing:

� What are the constituents of the expansion-time environment the

should be utilizable in the conditional expansion? It seems doubt-

ful that we could somehow guarantee that we are aware of all the

relevant types of information. (See Secs. 3.2.3{3.2.5.)

� What kind of mechanisms should the abstract display o�er for the

programmer examining the environment? They should, of course,

be easy-to-use and have clear-cut semantics. (See Sec. 3.3.3.)

� Should the programmer provide the code with some additional

information to be processed by the macro expander only? In some

cases the expander might perhaps need help in order to be able to

make useful inferences about the environments. (See Sec. 3.2.2.)

� Should the expander be able to verify that the programmer does
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respect the environment? Such automatic veri�cation could prob-

ably make programming less error-prone. (See Sec. 3.2.2.)

� In general, the macro expander should only o�er sophisticated but

transparent decision-making tools to the programmer. But are

there, after all, even such decisions that could be wholly relegated

to the expansion mechanism? How \compiler-like" should the

macro expander be? (See Sec. 3.3.2.)

3.2 Orthostatic and metastatic module interfaces

The macro expander must organize the knowledge that is, in an implicit

form, contained by the expansion-time environment into the interface that

explicitly steers the expansion of the particular macro call instance. (Even

the domain-speci�c attributes are evaluated against this intercase, which is

actually hidden from the programmer by a \second-level interface", i.e. the

abstract display.) It is convenient to divide the macro call interface into

two fractions: the pre-expansion-time orthostatic fraction becomes known

before the strictly expansion-time metastatic fraction. More speci�cally, the

orthostatic fraction becomes �xed at the time the macro de�nition containing

the particular macro call specimen is written, whereas the metastatic fraction

becomes �xed only at the time each particular macro call instance is ready

to be expanded. A macro call specimen within some macro de�nition may be

expanded multiple times (because of recursion, for example): the orthostatic

interface remains the same each time but the metastatic interface is likely

to vary. Thus, each orthostatic macro call specimen typically corresponds to

several metastatic macro call instances.

We are not able to give an exhaustive de�nition for the ideal structure of either

interface fraction. But �rst of all, the orthostatic interface should include the

macro name and the number of macro arguments. The main components of

the metastatic interface, then, are likely to be the following:

� How is the physical location of each argument of the macro call

instance to be accessed? (See Sec. 3.2.3.)

� What is the available temporary storage, i.e. the set of free reg-

isters and memory locations? We say that a storage cell is free

if there cannot be a data item that both has earlier been written

into it and will later be read from it. (See Sec. 3.2.4.)

� What possibly useful knowledge does the expander already have

about the run-time contents of the registers at the point of the

macro call instance? (See Sec. 3.2.5.)
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3.2.1 Orthostatic interface: basic components

The name of the macro called �xes the required number of macro arguments

(however, certain macros|that is, macro names|perhaps allow some of the

arguments to be vectors instead of scalars). Furthermore, input arguments

are separated from output arguments, and each call specimen of a given macro

must have the same number of input (or output) arguments. For example,

a sub macro would be likely to require two input arguments and one output

argument.

In addition to input and output arguments, there are also exit arguments.

They are code labels that specify the possible locations to which the macro

call may relinquish the run-time control. Similarly to input and output ones,

the number of exit arguments is �xed. All these three �xed numbers are

independent of each other: a control 
ow branch with two exit arguments as

branch destinations may well also have output arguments. (If the number of

exit arguments is zero, the macro is typically a non-terminating loop, which

waits for an external interrupt.) It seems practical to allow macros to have an

implicit extra exit argument that is always associated with the immediately

following macro call specimen. This convention re
ects the default sequential


ow of control (see Sec. A.4.1 for a particular realization of the convention).

If the macro requires two or more exit arguments, there is typically at least as

many distinct exit points inside the macro de�nition. In contrast, we require

that each macro has only a single entry point; it seems natural to adopt this

restriction to improve readability and transparency. (Note that, in a similar

fashion, C functions have a single entry point but possibly many exit points.

The di�erence is that there is only one return location for a given C function

call, whereas our macro calls may have multiple return locations.)

3.2.2 Orthostatic interface: extension directions

The three macro argument lists should be complete: for example, for each

storage cell that the macro may write, there should explicitly be an output

argument. Thus, provided that the macro writer sticks with direct addressing,

the macro expander can, by simple program 
ow analysis [49, 55], precisely

determine the metastatic free storage cell set at each macro call instance.

It may even be reasonable to further extend the scope of the orthostatic

interface. As we do not want to constrain the semantics of the macros, any

additional requirements would still be essentially syntactic restrictions|like

the completeness requirement on argument lists. What kind of bene�ts could

such additional restrictions o�er?
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� They would enable the expander to build up more precise meta-

static interfaces (in the same vein as the argument list complete-

ness allows the precise free cell sets to be found in case of direct

addressing): unfortunately, the expander often has to remain un-

sure of a fact whose truth or falsity the programmer is interested

in.

� They would enable the expander to verify more accurately that

the programmer really respects the environment (by the argument

list completeness, the expander can check that the programmer

does not overwrite any non-free cell at least by direct addressing).

Nevertheless, full veri�cation is admittedly beyond our reach. (In

particular, because it seems impossible to keep track of the exact

value of an address register, the expander has to allow indirect

writes to locations known only to the programmer.)

� If carefully formulated, they would probably improve readability

(as does the argument list completeness).

Some examples of additional constraints of the suggested kind are given below

in conjunction with the discussion of the main components of the metastatic

interface.

3.2.3 Metastatic interface: argument access

Local variables inside a macro de�nition are either parameters or temporaries.

The orthostatic parameters represent the metastatic arguments of the macro

currently being de�ned; the macro writer provides the lower-level macro calls

inside the macro de�nition with orthostatic argument designators, which rep-

resent the metastatic arguments of these lower-level macros. Some local vari-

able of the calling macro (see Sec. A.4.2 for the details of a particular scheme)

is a possible argument designator. (By the way, you might notice that we have

no need for a separate notion of a run-time argument. Actually, our meta-

static `argument' is often a speci�cation of the run-time argument that is

available already at the expansion time; typically, this speci�cation �xes the

location of the run-time argument. Similarly, our `argument designator' is the

speci�cation that is available orthostatically, i.e. when the macro de�nition is

scanned before expansion.)

For a moment, suppose that only direct addressing can be used. In this case,

the metastatic interface must reveal the storage class and intraclass identity

of each input or output argument. For instance, if the actual metastatic ar-

gument happens to be located in the memory, then the metastatic interface

must �x the address of the particular memory location|obviously, the argu-
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ment cannot otherwise be referred to in the resulting output code. Moreover,

it is the metastatic interface that should determine that the argument resides

in the memory instead of some register: the macro de�nitions become more

general, and thus shorter, as this storage class information need not be �xed

already in the orthostatic interface.

With indirect addressing a more elaborate scheme is needed. The metastatic

interface must now specify the particular indirection type, i.e. the addressing

mode, and the required \parameters" of this type, such as the index of the

address register employed. Nevertheless, when an indirectly addressed argu-

ment of the macro currently being de�ned is only silently passed forward to

a lower-level macro called, then the writer of the higher-level macro need not

even be aware of the indirection. In this case, he may simple use the pa-

rameter as the argument designator of the lower-level call, whose orthostatic

interface now leaves the addressing mode unspeci�ed. But let us assume that

the macro writer, instead, selects to change the addressing mode. In this

latter case, he must typically �rst �nd out the old mode, and then specify the

new mode as a part of the orthostatic interface of the lower-level call.

3.2.4 Metastatic interface: temporary storage

If direct addressing were exclusively used, the expander could determine the

set of free storage cells by straightforward 
ow analysis. With indirect ad-

dressing, the situation is, of course, more complicated. But the more accurate

pointer analysis (see [29, 100], for example) we are capable of, the larger safe

estimate for the free cell set we can obtain. (Note, however, that indirect

addressing typically applies to memory locations, whereas the register �le

constitutes the most useful temporary storage.)

For a start, we might still want to adopt a simple but safe heuristics based

on the following observations:

� Because the expander performs the intraclass storage allocation

for the macro temporaries (see Sec. 3.3.2), the programmer is, by

default, ignorant of their exact addresses (i.e. intraclass identi-

ties).

� The programmer cannot even indirectly address such a storage

cell whose address is fully unknown to him (i.e. so unknown that

he has even no pointer for accessing the cell).

Accordingly, we propose the following pair of rules:

1. If the writer of a macro explicitly extracts the address of an in-

directly addressable storage cell (by using some special `address-
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of' operator), then the expander considers that cell non-free at

all lower-level macro calls (resulting from the call of the current

macro) encountered during the expansion.

2. The writer of a macro is responsible for returning no knowledge

about the addresses of its arguments back to the caller through

the contents of the output arguments.

Finally, note that the smaller safe estimate of the possible destination set the

expander can construct for each indirect jump, the more temporary storage

may become available. In practice, this means that the orthostatic interface

should specify the exact set (which is not a very strong requirement).

3.2.5 Metastatic interface: register states

Often it is extremely useful if the macro writer knows for sure the exact value

of some (status) register at the point of the macro call (see the discussion of

mode control|or residual control|in [4, 70]). For instance, suppose that the

target processor architecture contains a status bit that determines whether

addition over
ows are saturated or not, and that the bit is manipulated by

some dedicated instructions. Suppose further that we want to write a macro

that performs a saturated addition, and that it is too costly to turn the

over
ow mode blindly o� at each instance of the macro call, since there seems

to be little or no need for non-saturated additions. What we now need is some

device telling us the actual over
ow mode at each (metastatic) call instance

of the addition macro. More generally, we need a device that can record the

information about the run-time register states that becomes available already

at expansion time.

We suggest the introduction of special expansion-time variables that can be

associated with individual registers to keep track of their run-time contents.

These variables, which we call 
uxions, are sensitive to the run-time control


ow, and their range includes a special value denoting the ordinary \un-

known" case (i.e. the case in which the associated register may have di�erent

contents at di�erent execution times of the particular code segment).

There is a natural and fundamental restriction on the usage of 
uxions|this

restriction both in practice justi�es their introduction and is presupposed by

the formal model to be presented in Sec. 5. No macro call expansion result

is allowed to modify the value of a 
uxion unless this modi�cation is speci�ed

already as a part of the orthostatic interface of the macro call. Moreover,

the orthostatic interface typically even includes the new value (or at least a

reference to it that is resolved by the metastatic interface).
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3.3 Overview of the expansion mechanism

The recursive macro expansion process generates a tree structure whose root

is the original macro call. A macro expansion tree with eight leaves is shown in

Fig. 4. As this tree also contains seven non-leaf nodes (the root included), its

generation has so far involved seven expansion steps, which have been applied

to the individual macro calls now represented by these seven nodes. We do

not know if this particular, informally speci�ed tree can be further expanded;

when a tree becomes complete, the leaf sequence of that time constitutes the

expansion result.

Figure 4: An expansion tree.

Next we present an overall description of the expansion mechanism. In partic-

ular, we are now interested in the possible realization of properties 1{4 listed

in Sec. 2.3: universality, transparency, modularity, and hierarchy.

3.3.1 Macro semantics

Macros of any kind typically do not have any prede�ned semantics, contrary

to the built-in elements of programming languages. The power of the pro-

posed approach is in the generality resulting from this lack. For a simpli�ed

example, suppose that the target processor instruction set contains an ADD

instruction that reads two registers and writes one register. Suppose also

that the programmer uses the ADD instruction (i.e. the corresponding sys-

tem macro) inside the de�nition of some macro AVERAGE. When the macro

expander, then, tries to expand some call of AVERAGE, all that it has to do

concerning the ADD instance is to select three appropriate registers (in par-

ticular, it must take care that the data possibly already present in the output

register is not prematurely overwritten; see Sec. 3.3.2 for the main principles

of storage allocation). Thus, it can ignore a great deal of information relevant

to any high-level language compiler. Most importantly, it need not even know

whether ADD actually performs an addition or something wholly di�erent.

In all, the lack of prede�ned semantics o�ers the following advantages:

� The macro expander proper can be made a relatively small pro-

gram. It is the rule base consisting of macro de�nitions that drives

the expansion.
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� Operations not needed in the chosen application need not be im-

plemented. Still, if additional functionality is later required, new

macros may then be added to the rule base.

� Universality is strongly supported: with suitable macro de�ni-

tions, the tool can be tailored to fully exploit the particulars of

the chosen target processor architecture.

To further promote universality, we accompany the lack of prede�ned seman-

tics with a lack of structural restrictions: any macro call segment with a single

entry point can be de�ned as a macro (for the singularity of the entry point,

see Sec. 3.2.1). The base of the macro hierarchy is constituted by atomic

macros, which are actually not proper `macros' but typically placeholders for

individual machine instructions. We say that the macros at the upper hier-

archy levels are composite ones; a composite macro may call any atomic or

composite macro|even (both direct and indirect) recursion is allowed. (Of

course, the macro expansion process stops when all the leafs of the expansion

tree are calls of atomic macros.)

Finally, what kind of constraints do we have to set on the target processor ar-

chitecture? We believe that basically all sequential uniprocessors are covered

by our approach (for instruction-level parallelism [36] we provide no explicit

support). Nevertheless, we still stress that there is no support for any stan-

dard machine-independent interfaces within the macro hierarchy: in addition

to the implementation of the atomic macros, even their names and semantics

are intended to be fully processor-dependent.

3.3.2 Storage allocation

The expansion-integrated domain-speci�c actions are likely to be more clerical

than intelligent. Most importantly, such built-in actions must be transpar-

ent: the programmer is not likely to devote himself to ultimate re�nement of

the conditional macro expansion if some transformation to follow may have

seemingly unpredictable consequences.

Some macros employ temporary variables. This means that there must be

some data storage free at the point of the macro call. But how should the

free data storage be found and then allocated for the macro temporaries?

(We completely ignore the memory allocation for the program code resulting

from the macro expansion; we simply assume that there is always enough

space for the code.) The suggested storage allocation scheme re
ects the

structure of the user-de�ned macro hierarchy: it is assumed that when a

macro is (metastatically) called, the storage for the macro parameters has

already been allocated; a part of the storage allocation for the possible macro
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temporaries, instead, is carried out as our main expansion-integrated domain-

speci�c action. Since 
ow (and pointer) analysis is involved, this action is not

a trivial one.

We assume that the target architecture provides a set of distinct storage

classes, and that the storage cells in each class can be used fully interchange-

ably (a representative example of a storage class would thus be the set of

memory locations, or the set of general-purpose registers). The division of la-

bor is then as follows. The macro writer chooses the optimum storage class for

each temporary, and the macro expander metastatically tries to �nd some free

member of the chosen class. Thus, the programmer completely speci�es the

interclass storage allocation, whereas the expander autonomously performs

the intraclass allocation.

The above sketched idealized scheme does not fully match the real proces-

sor architectures. Because simply specifying the storage class is, not always

su�cient, in practice the macro writer also has to possess more elaborate al-

location requests. In all, the most obvious bottlenecks of the basic scheme

above include the following:

� In particular with RISC architectures featuring a large homoge-

neous register set, global register allocation methods are clearly

superior to local ones (but see Sec. 3.3.4 for our proposed remedy).

� It should be possible to de�ne two storage classes to be physically

overlapping. For instance, there may be double precision registers

comprising two normal precision registers each.

� There are often storage cells which are not functionally indepen-

dent of each other. For instance, it might be so that only one of

the two registers containing the operands of an addition opera-

tion is explicitly named in the instruction word, whereas the other

operand is implicitly assumed to be found in the other member

of the particular odd-even register pair.

� Especially in case of indirect addressing, the programmer should

be able to specify that two variables that are used together should

also be located near each other. This is because small address

register modi�cations are often very cheap (see [71] for a further

discussion).

3.3.3 Conditionality

Extensive macro hierarchy means smaller scopes for the programmer, who

should be able to manage each scope|transparently, in a modular fashion,
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and without losing universality|by a versatile conditional expansion facility.

Indeed, each (composite) macro de�nition may consist of several alternative

implementation versions guarded by a condition that is metastatically evalu-

ated by a powerful expression interpreter.

In 1960, M. D. McIlroy [75] stated that \any compiler should include within

it an interpreter for its source language or somewhat equivalent". As opposed

to conventional high-level languages, our macro system o�ers no prede�ned

run-time operators (all operations supported by the target must be explic-

itly declared as atomic macros), but it does o�er a powerful expansion-time

expression interpreter that provides the usual arithmetic operations as pre-

de�ned primitives. The most important feature of the interpreter is, how-

ever, a set of domain-speci�c attributes that constitute the abstract display;

through this display, the programmer can examine the view that the macro

interface enforced by the expander gives of the expansion-time environment.

The idea behind the abstractness of the display is that the domain-speci�c

attributes should implement transparent information hiding. For example,

there might be an attribute meaning `is there any free cell of storage class

R available?'|thus the 
ow analysis necessary would be wholly hidden from

the programmer.

Even if the guarding condition, or version-speci�c test, is ful�lled, the version

may still have to be rejected. In all, the possible reasons for rejecting a version

are the following:

� The version-speci�c test is not successful.

� The version writer happens to violate the environment of the par-

ticular macro call instance in a way that the expander is able to

detect. For example, if the version writer explicitly intends to

overwrite the input argument register, the expander should �nd

out whether the environment expects that the value remains in-

tact. (When the detectable violations are documented, the pro-

grammer may shorten the version-speci�c test by relying on them

as sentinels.)

� The expander cannot perform the required built-in transforma-

tions (i.e. expansion-integrated domain-speci�c actions) without

violating the environment. For example, temporary storage allo-

cation is impossible if there is not enough free storage.

� The macro-speci�c tests of the lower-level macro calls in the ver-

sion do not succeed (even if the macro expander should try to take

these tests into account when carrying out the built-in transfor-

mations). Introducing a macro-speci�c test for a given macro

may make other macro de�nitions shorter and more easily main-
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tainable: such a test can be seen as an implicit component of the

version-speci�c test of each such macro version whose code con-

tains a call of the given macro. (See Sec. 4.3 for programming

examples; in contrast, the formal model to be presented in Sec. 5,

for simplicity, ignores macro-speci�c tests.)

Within a macro de�nition, the alternative versions are listed in the order

of decreasing priority|the programmer should thus place the most favored

versions �rst. We believe that the expansion-time control 
ow should, for

transparency, be most simple-minded: once the expander �nds a version that

matches the above criteria, it is irreversibly selected. But if no acceptable

version is found, the whole expansion process originating from the root of

the particular expansion tree fails. Thus, there is no backtracking: if the

expansion of some lower-level macro call in the code of an accepted version

fails, then this failure is a fatal one. As only the �rst match counts (in

principle, costs of some kind could perhaps be employed for selecting between

multiple matches), there is also a potential pitfall: the programmer is tempted

to shorten the version-speci�c tests by adapting them to the particular order

in which the versions are listed.

3.3.4 Interplay with global optimizations

Macro expansion suits especially well to local optimization but rather poorly

to global optimization, which involves adjustment of a net of long-distance

dependencies spanning all over the code. Nevertheless, we suggest that it

is possible to compensate this inherent locality by combining add-on global

optimization routines with the macro expansion.

To make room for global optimizations, we split the macro library into several

\horizontal" slices; consequently, the expansion tree also divides into horizon-

tal layers corresponding to the library slices. (Such a slicing is encouraged by

an important property of the macro expansion to be discussed in Sec. 3.4.3.)

The macro expansion is thus driven by an ordered pack of macro libraries that

are loaded into the expander one at a time in a strictly sequential fashion.

Each time the macro expander becomes ready with a library slice (that is,

when all the remaining macro calls are atomic with respect to that slice), it

steps aside for a moment, as some slice-speci�c global optimization routine

may temporarily take over; this scheme is depicted in Fig. 5 (see Sec. 5.5 for a

more precise description). What the optimizations are like is of no concern to

the expander, which in due time recovers the control and starts afresh with a

new library slice and a possibly modi�ed sequence of macro calls to be further

expanded.

Prominent add-on optimization candidates include, for example, a global en-
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Figure 5: Informal view of a global optimization.

hancement of the register allocation as an intermediate processing phase and

code compaction [35, 54] as a postprocessing phase.

3.4 Interaction between macro calls

We have noted that macro expansion suits better to local than global opti-

mization. Still, here we explain what kind of communication is possible across

the boundaries of neighboring macros, and whether such communication sets

any constraints on the expansion order of individual macro calls. This com-

munication scheme, which is a distinctive feature of our approach, promotes

the remaining properties 5 and 6 listed in Sec. 2.3: stability and propagativity.

Below, we �rst provide some background. In the case of general-purpose

macro expansion, intermacro communication requires that one introduces

global variables and �xes a strict depth-�rst left-to-right macro expansion

order (to simulate the default execution order of machine instructions). We

feel that these two closely intertwined conventions are strong de�ciencies:

global variables are subject to hidden side e�ects which make the macro li-

braries di�cult to maintain; the left-to-right requirement prevents parallel

macro expansion.

3.4.1 Some contrast: on general-purpose macro expansion

With general-purpose macro expanders [17, 16, 20], conditional expansion

is domain-independent. It takes place against the expansion-time values|

which may be arbitrary text strings|associated with certain identi�er tokens.

The identi�ers involved are divided into parameters and global variables: the

parameters inherit their values from the corresponding arguments of each

call instance of the macro; the value of any global variable can be changed

with an explicit rede�nition directive. As the source text is processed strictly

sequentially, the e�ective de�nition of each global variable is always unique,

i.e. the most recent one encountered.
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P. J. Brown [16, Ch. 1.7] demonstrates how the intermacro communication

by global variables can be utilized in code optimization. Suppose that we

have written a two-argument macro that copies the contents of one memory

location into another on our single-accumulator machine. For instance, the

macro call sequence below on the left might produce the result shown on the

right.

Move M1 M2 load M1

store M2

Move M2 M3 load M2

store M3

The above result is, however, not an optimum one: the second load from

memory is readily seen to be redundant. This de�ciency can be eliminated

by conditional expansion: we can introduce a global variable, say $Acc, for

representing our knowledge of the run-time contents of the accumulator. Now,

if the �rst Move instance set $Acc to value `M2', then the second Move instance

could examine the value of $Acc and consequently drop out the redundant

load instruction. (This suggestion is not a very general one yet: it would

not work if the second Move instance were replaced with an equivalent macro

call reading as `Move M1 M3'.) In a similar vein, an instruction clearing the

accumulator could be optimized o� if it occurred immediately after a `branch-

on-nonzero' instruction.

There are, of course, inherent problems with any simple-minded technique

of the above kind. The strictly sequential left-to-right macro call processing

order e�ectively enables the macros to \look back", but they cannot \look

ahead" to �nd out, say, in which register the next operation would like its

operands to be located. Moreover, the above technique can be applied only

to basic blocks, i.e. straight-line code segments, whereas control 
ow branches

cannot be coped with. These limitations|which the present study attacks|

were expressed by Brown in 1974 [16, p. 62]: \Macro processors simply do

not have the facilities to look at the dynamic behaviour of a program and

optimize on the basis of this."

3.4.2 Context-sensitivity

Our approach excludes globally visible expansion-time variables. Neverthe-

less, not all information passed to a macro call needs to be explicitly for-

mulated as macro arguments. This is because the macro calls are context-

sensitive: for example, they are e�ectively aware of the free storage cell sets.

Such implicit intermacro communication makes the macro de�nitions more

readable and maintainable, as the programmer need not provide the macro
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calls with exhaustively long and tightly interdependent argument lists con-

sisting of mainly redundant information. Clearly, the context-sensitivity im-

proves propagativity; still, the horizontal propagation is possible only within

macro calls that are issued within the same macro (or rather, version) de�-

nition (see Sec. 5 for a precise description). This scoping restriction implies

that the programmer should make the most important decisions on the upper

levels of the macro hierarchy to enable them to propagate farther.

The context-sensitivity rests on the assumption that the expander builds up

the metastatic interfaces. This may seem like a lot of work, but fortunately,

the determination of the metastatic interface can be done lazily: the expander

calculates only those components of the interface that are explicitly examined

by the programmer.

3.4.3 Order-independence

The main property of the model to be presented in Sec. 5 is order-indepen-

dence: the �nal macro call expansion result is independent on the expansion

order of the individual macro calls. This property, which is depicted in Fig. 6,

stems from the fact that the environment of a macro call never changes due to

the expansion of other macro calls: by de�nition (see Sec. 5.1), in all the four

expansion trees of Fig. 6 the environment of node N remains the same. The

order-independence means that there is neither the left-to-right bias nor the

basic-block restriction of the general-purpose macro expanders. E�ectively,

the proposed macro expansion is functional: there is no hidden side e�ects.

N

N

N N

Figure 6: Order-independence.

The order-independence has several advantageous consequences:

� Transparency of the macro expansion is enhanced.

� Macro calls can be expanded in parallel [85, Ch. 24], which enables

e�cient implementations.

� As the expansion-time environment of a macro call never changes,

laziness in determining the components of the metastatic interface

is justi�ed.
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� It is straightforward to split an existing macro library into two or

more slices and introduce intermediate global optimizations. The

reason is that as the expansion order can freely be selected in any

way that seems desirable, the expander might just as well process

the macro calls in such a layer-by-layer basis whose layers exactly

correspond to the library slices.

� Stability of the macro expansion is enhanced: if some macro de�-

nition is modi�ed, only such code that results (possibly indirectly)

from a call of the modi�ed macro may change. Thus, outside the

modi�ed macro de�nition itself, the changes can propagate only

downwards|not left, right, or upwards. This means that if the

programmer makes the most important decisions on the upper

levels of the macro hierarchy, as suggested in Sec. 3.4.2, their

consequences are not a�ected each time a minor decision on a

lower level is reconsidered.

We still want to illustrate the stability claimed above. How a code modi�-

cation may propagate in an expansion tree is depicted in Fig. 7. Suppose

that inside the de�nition of macro M0, the argument list of the call of M2

is modi�ed. By context-sensitivity, this modi�cation propagates across the

macro calls that are siblings of the M2 call, so that the calls of M1 and M3

may be a�ected. Furthermore, any descendant of an a�ected macro call may

also be a�ected. But most importantly, no white-colored node in the tree of

Fig. 7 is in
uenced by the modi�cation.

M1 M2

M0

M3

Figure 7: Propagation of a modi�cation: our approach.

In contrast, let us examine the e�ects of a similar change in the case of

general-purpose macro expansion; the situation is depicted in Fig. 8. Again,

we assume that inside the de�nition of M0, the argument list of the M2 call

is modi�ed. Now the general-purpose macro expander sticks to the left-to-

right depth-�rst expansion order, and only such macro calls (which are again

white-colored in Fig. 7) that the expander processes before the M2 call are

guaranteed to remain una�ected by the modi�cation.
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M1 M2

M0

M3

Figure 8: Propagation of a modi�cation: general-purpose macro expansion.
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4 A prototype implementation

We have implemented a simple demonstration prototype of the proposed

macro expander; the ReFlEx 1.0 program is freely available for non-commer-

cial purposes (see Sec. 1). This prototype was introduced in [64], a more

detailed reference is found in Appendices A and B, and the complete refer-

ence is [63] (in addition to providing a full user documentation, that report

is precise enough for an interested reader to build a re-implementation with

the same functionality). The main content of the present section is a tuto-

rial example (Sec. 4.3) of the use of ReFlEx 1.0; more examples are given in

Appendix C and in [63].

4.1 Objectives

Our main objectives in the design of ReFlEx 1.0 were:

� To demonstrate the basic ideas of our approach.

� Speci�cally, to demonstrate that these basic ideas are sound.

Thus, the following were not among our goals:

� Extensive functionality: diversity of details might hide our basic

ideas.

� Ultimate e�ciency of the expander implementation (which would

not a�ect the quality of the expansion results): the example cases

processed by ReFlEx 1.0 will probably be rather small.

Consecutively, we were in a rather short time able to complete and document

prototype implementation.

4.2 Limitations

The rudimentary ReFlEx 1.0 prototype system supports only unrealistically

simple processor architectures; still, it is fully retargetable within its restricted

class of target architectures. The one elaborate feature of ReFlEx 1.0 is that

by 
ow analysis it can at any point of code precisely determine the set of the

data storage cells that are guaranteed to be free.

The main restrictions on the target architecture include the following:

� It is not possible to declare data vectors|only scalar variables

can be used.
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� Indirect addressing is not supported|the only possible addressing

modes are direct and immediate. (Of course, this restriction dra-

matically simpli�es the building of the metastatic interface, espe-

cially the construction of the free storage cell set|see Sec. 3.2.4.)

� Any two cells in di�erent data storage classes must be physically

distinct (see Sec. 3.3.2).

� Only the storage class of each macro temporary can be speci�ed

by the macro programmer (see Sec. 3.3.2).

� There is no explicit support for intermediate global optimizations

(see Sec. 3.3.4).

� There is no explicit support for instruction-level parallelism (for

instance, VLIW-type parallelism might be supported by a code

compaction routine, which is an example of a prominent global

optimization).

� Fluxions (see Sec. 3.2.5) are not provided.

4.3 A tutorial example

ReFlEx 1.0 reads its macro de�nitions from an ASCII-formatted rule �le

produced by the user; with these macro de�nitions, it is then able to generate

code for a given macro call. In a step-by-step fashion, we will here write a

simple rule �le and �nally run some elementary code generation examples.

The main parts of the rule �le are shown in Fig. 9.

HEADER f . . . g

STORAGE f . . . g

SYSTEM f . . . g

UTILITY f . . . g

Figure 9: Overall structure of the rule �le.

The HEADER part contains auxiliary de�nitions for the expansion-time expres-

sion interpreter. In the STORAGE part one speci�es the available run-time data

storage, i.e. the CPU registers and the data memory. The atomic and com-

posite macros are described in the SYSTEM and UTILITY parts, respectively.

An atomic macro is simply a placeholder for a machine instruction of the tar-

get, while a composite macro is a proper macro, i.e. a compound consisting

of calls of another|atomic or composite|macros.
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4.3.1 Expansion-time expression interpreter

In the HEADER part you may de�ne new expressions for the built-in expansion-

time expression interpreter. For instance, here is the recursive de�nition for

the factorial function:

Fact(a) = _If(_Lt(a,2), 1, _Mul(a,Fact(_Add(a,-1))));

The expressions recognized by the interpreter are called forms. Here the forms

If, Lt, Mul, and Add are primitive, that is, prede�ned. Not surprisingly,

Lt, Mul, and Add are `less-than', multiplication, and addition, respectively.

As for If, if its �rst argument is nonzero, it returns the value of the second

argument; otherwise, it returns the value of the third argument. This special

primitive form supports lazy evaluation (in the case of Fact, for example):

never are all three of its arguments evaluated.

Then, Fig. 10 introduces some more user-de�ned compound forms:

Not Is the argument zero?

And Are the two arguments both nonzero?

Or Is at least one of the two arguments nonzero?

Int Is the argument an integer?

Lt Is the �rst argument an integer that is less than the second one?

Gte Is the �rst argument an integer that is greater than or equal to

the second one?

Eq Are the arguments equal integers?

Not(a) = _Nand(a,a);

And(a,b) = _If(a, _If(b,1,0), 0);

Or(a,b) = _If(a, 1, _If(b,1,0));

Int(a) = And(Not(?(a)), Not(&(a)));

Lt(a,b) = And(_Lt(a,b), And(Int(a),Int(b)));

Gte(a,b) = And(Not(Lt(a,b)), And(Int(a),Int(b)));

Eq(a,b) = And(Gte(a,b), Gte(b,a));

Figure 10: Compound form de�nitions.

Most of the primitive forms mentioned above are autonomous; the excep-

tions are ?(a) and &(a), which are diagnostic. Diagnostic primitives can

be used for extracting information about the expansion-time environment.

We give some examples (if a diagnostic primitive takes arguments, it accepts

any number of arguments, and there is an implicit conjunction between the

arguments):
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?(x,y) Do x and y represent cells, i.e. data storage elements?

?M(x) Does cell x belong to class M?

?R(x) Does cell x belong to class R?

#R() How many of the cells in class R are currently free?

&(l0,l1) Are labels l0 and l1 equivalent, i.e. do they refer to the

same code location?

4.3.2 Run-time data storage

Our hypothetical target processor architecture is utterly simpli�ed. As shown

in Fig. 11, there are 1024 memory locations M[0]{M[1023], four auxiliary reg-

isters R[0]{R[3], and a single accumulator A. Thus, there are three distinct

storage classes. ReFlEx assumes that the cells in each single storage class can

be used fully interchangeably. (Note that we were able to refer to the storage

classes already in the compound form de�nitions.)

STORAGE {

M[1024];

R[4];

A[1];

}

Figure 11: Declaration of data storage cells.

ReFlEx itself need not know the cell lengths (which may well be di�erent for

di�erent classes) in terms of bit positions. On the other hand, in the case of

a real processor the user should absolutely be familiar with this information.

4.3.3 Machine instruction set

Next, in Fig. 12 we declare the atomic macros, which represent the machine

instructions of the target. What we de�ne is actually only the interface seen

by composite macro writers. ReFlEx cannot convert atomic macro calls into

real machine instructions; what it is able to do, is to convert composite macro

calls into atomic macro call sequences. It seems clear that this latter task is

the interesting one, while the former task should be a routine matter and

therefore relegated to a simple ReFlEx-compatible assembler.

So there are, in all, ten atomic macros, among which there are one uncondi-

tional branch (JUMP) and three conditional branches (BRANCH). Most of the

atomic macros are provided with a macro-speci�c test (TEST) that constrains
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SYSTEM {

set(c > r) { TEST And(?R(r), And(Gte(c,-1024),Lt(c,1024))); }

load(m > r) { TEST And(?R(r), ?M(m)); }

store(r > m) { TEST And(?R(r), ?M(m)); }

move(s > d) { TEST And(Or(?A(s),?R(s)), Or(?A(d),?R(d))); }

add(a,r > a) { TEST And(?A(a), ?R(r)); }

sub(a,r > a) { TEST And(?A(a), ?R(r)); }

JUMP goto() [l] { }

BRANCH eq(a) [l] { TEST ?A(a); }

BRANCH gt(a) [l] { TEST ?A(a); }

BRANCH lt(a) [l] { TEST ?A(a); }

}

Figure 12: Declaration of atomic macros.

their use. By providing the load atomic macro de�nition, for instance, with

such a test, the programmer makes macro de�nitions shorter and more easily

maintainable: otherwise, every single call instance of load should be guarded

by a version-speci�c test that would check whether the arguments really are

a memory location and an auxiliary register.

ReFlEx does not know the semantics of the atomic macros; nevertheless, this

semantics must, of course, be known to the composite macro writer. With

the information seen in Fig. 12, even the following brief description should be

fairly comprehensive for a prospective macro writer:

� set \reads" a signed 11-bit integer and writes it into one of the

auxiliary registers (notice that form ?R checks whether its ar-

gument belongs to storage class R). Thus, set is for immediate

addressing, as the value of the integer is �xed at expansion time.

� load copies the contents of a memory location into an auxiliary

register, and store performs the opposite data transfer.

� move can move data between two storage cells, provided that each

one of the cells is either the accumulator or an auxiliary register.

� add adds the contents of one of the auxiliary registers into the

accumulator. Thus, it reads and writes the accumulator, and

additionally reads an auxiliary register. Similarly, sub performs

a corresponding subtraction.

� goto jumps to the speci�ed code label.

� eq, gt, and lt branch to the speci�ed label if the contents of the

accumulator are, respectively, equal to zero, positive, or negative.

Thus they all read the accumulator.
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From this rather restricted atomic macro set, one may infer that the (hy-

pothetical) target processor instruction set is similarly restricted. Note in

particular that the accumulator cannot be loaded directly from memory.

4.3.4 Higher-level macros

Now we are ready to de�ne composite macros, without which the rule �le

would not be of any use. Our �rst composite macro, my null shown in Fig. 13,

is simple: it does not do anything. Still, it is a useful macro, as you will see

later. (Actually, the essential feature of my null is the requirement that the

input and output arguments must be the same cell.)

my_null(x > x) {

null: { }

}

Figure 13: De�nition of the my null composite macro.

The my move macro in Fig. 14, then, implements a general data transfer not

subject to any storage class restrictions, contrary to the atomic macros de-

clared above. The macro de�nition consists of six alternative versions, each

with a distinct name. The versions are listed in the order of decreasing pri-

ority, i.e. in the order in which ReFlEx should try to apply them to each

my move call.

my_move(s > d) {

same: { my_null(s > d); }

as_set: { set(s > d); }

as_load: { load(s > d); }

as_store: { store(s > d); }

as_move: { move(s > d); }

temp_needed: TEST And(Not(?R(s)), Not(?R(d))); USE R[r];

{ my_move(s > r); my_move(r > d); }

}

Figure 14: De�nition of the my move composite macro.

Note that the as load version, for instance, can be accepted only if the source

of the data transfer is a memory location and the destination is an auxiliary

register, because the macro-speci�c test of load in Fig. 12 rejects calls of

other kinds. In Fig. 14, in contrast, the single explicit test is version-speci�c.

Let us look closely at each one of the my move versions:

� same guarantees that the expansion result is an empty code se-

quence when the source and the destination are the same cell. The
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empty my null call actually serves two purposes: it veri�es that

parameters s and d do represent the same cell, and it \writes"

the output parameter d. (To demonstrate its 
ow analysis capa-

bility, ReFlEx 1.0 checks that output-only parameters are not left

unwritten.)

� as set, as load, as store, and as move may only be converted

into the respective corresponding atomic macros.

� temp needed requires a free auxiliary register. This register is

used as an intermediate storage when, for instance, the contents

of a memory location are to be transferred into the accumulator.

The version is recursive, but the recursion depth can be seen to

be at most one.

Our third composite macro, my mswap shown in Fig. 15, interchanges the

contents of two memory locations. Unlike our �rst two composite macros,

my mswap has a macro-speci�c test (i.e. one that veri�es the storage classes).

my_mswap(m,n > n,m) {

TEST ?M(m,n);

two_aux_free: TEST Gte(#R(),2); USE R[r];

{ my_move(m > r); my_move(n > m); my_move(r > n); }

acc_and_aux_free: USE A[a];

{ my_move(m > a); my_move(n > m); my_move(a > n); }

}

Figure 15: De�nition of the my mswap composite macro.

To perform the swap, my mswap requires two cells of free storage, because

direct transfers between memory locations are not supported by the atomic

macro set. At least one of these two cells must be an auxiliary register, while

the other one may alternatively be the accumulator. Accordingly, form #R,

seen in the my mswap de�nition, returns the number of free cells in storage

class R. (The version-speci�c test of two aux free is necessary, because in

the version code only one auxiliary register, i.e. r, is written, but the mid-

dle one of the lower-level my move calls certainly needs another one. With-

out the test, two aux free might be selected even in such a case that the

acc and aux free version might be the only fully expandable one of these

two (such a mistake would be fatal as backtracking is not supported).

We can also de�ne macros that are (conditional or unconditional) branches:

the data 
ow analysis performed by ReFlEx 1.0 is able to cope with control


ow branches. Our �nal composite macro shown in Fig. 16 is a conditional

`branch-if-positive' operation without storage class restrictions.
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BRANCH my_gt(x) [l] {

next: TEST &(l,NEXT); { }

const0: TEST Gte(x,1); { JUMP goto() [l]; }

const: TEST Int(x); { }

acc: TEST ?A(x); { BRANCH gt(x) [l]; }

default: USE A[a]; { my_move(x > a); BRANCH gt(a) [l]; }

}

Figure 16: De�nition of the my zero composite macro.

4.3.5 Generating code for macro calls

Now we put our macro de�nitions into use and produce some code for our

hypothetical target processor. We start with a single macro call: ReFlEx 1.0

expects that the expansion source is represented as one top-level macro call.

Suppose that ReFlEx has been installed on our workstation and our rule �le

is called simple.m. We start ReFlEx by typing the following command (the

option -t provides us with some interesting optional output, i.e. the full-blown

intermediate expansion tree):

reflex -t simple.m

If ReFlEx starts successfully, we may then type the following expansion source

as a response to the ReFlEx prompt, i.e. `>':

> my mswap(M[8],M[6] > M[6],M[8]); fR[1],R[3]g

This means that we want to exchange the contents of data memory locations

M[8] and M[6]. Additionally, we specify the auxiliary registers R[1] and R[3]

are free at the macro call (an explicit speci�cation like this is needed and

allowed only in the expansion source). The freedom at a given macro call

simply means that the realization of the macro call may write the particular

cell.

The expansion result is shown in Fig. 17. The intermediate output at the

top reveals the expansion-time tree structure, which is 
attened in the �-

nal output at the bottom. (For convenience, our text-formatted expansion

trees grow to the right, whereas graph-formatted ones grow downwards|see

Fig. 4 on page 17. Note also that the actual output syntax of ReFlEx 1.0 is

unfortunately somewhat more cryptic than suggested here.)

We would like to stress the crucial point of this expansion result, which

demonstrates the advantage of the program 
ow analysis capability. When

ReFlEx tries to expand the my move(M[6] > M[8]) call at the �rst level be-

low the initial my mswap call, it recognizes that the originally free auxiliary
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my_mswap(M[8],M[6] > M[6],M[8]) {R[1],R[3]}

my_move(M[8] > R[3])

load(M[8] > R[3])

my_move(M[6] > M[8])

my_move(M[6] > R[1])

load(M[6] > R[1])

my_move(R[1] > M[8])

store(R[1] > M[8])

my_move(R[3] > M[6])

store(R[3] > M[6])

load(M[8] > R[3])

load(M[6] > R[1])

store(R[1] > M[8])

store(R[3] > M[6])

Figure 17: Expansion result of a my mswap macro call.

my_mswap(M[8],M[6] > M[6],M[8]) {A,R[3]}

my_move(M[8] > A)

my_move(M[8] > R[3])

load(M[8] > R[3])

my_move(R[3] > A)

move(R[3] > A)

my_move(M[6] > M[8])

my_move(M[6] > R[3])

load(M[6] > R[3])

my_move(R[3] > M[8])

store(R[3] > M[8])

my_move(A > M[6])

my_move(A > R[3])

move(A > R[3])

my_move(R[3] > M[6])

store(R[3] > M[6])

load(M[8] > R[3])

move(R[3] > A)

load(M[6] > R[3])

store(R[3] > M[8])

move(A > R[3])

store(R[3] > M[6])

Figure 18: Expansion result of another my mswap macro call.
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register R[3] is not free any more. Thus, R[1] is the only possibility for a

temporary storage at the next-lower level. In other words, if there were only

one originally free auxiliary register, the expansion would fail.

Finally, suppose that in the previous example we had had the accumulator (as

the size of class A is 1, `A' may be used for `A[0]') and one auxiliary register

free, instead of two auxiliary registers. Then we would have got the output

shown in Fig. 18.
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5 A formal model

In this section we present a formal model for domain-sensitive macro expan-

sion. This model is a theory consisting of speci�cations, which identify our

basic building blocks, de�nitions, and propositions (or theorems). We have a

great number of speci�cations, as we want to make our vocabulary explicit;

furthermore, to strive for wide applicability, we have tried to make the model

open-ended (the speci�cations may be regarded as concerning external inter-

faces). Our few propositions, in turn, are neither surprising nor established

by particularly ingenious proofs. On the contrary, we simply selected in ad-

vance the set of the fundamental properties that the model was then rather

mechanically constructed to possess.

Our intended domain is machine-level synthesis of computer programs, but

the model is domain-independent, that is, it could have domain-speci�c in-

stantiations even in other domains. Understandably, the model is more ab-

stract than our presentation in previous sections. For example, the data 
ow

(but not the control 
ow) of a computer program is now fully ignored. To

make the model more easily approachable, we have adopted a small deviation

from the expansion mechanism described in Secs. 3 and 4: macro-speci�c tests

are excluded here (see Sec. 3.3.3).

5.1 Program representation

In this section we give a structural description of an expansion tree. This

description will be semantically re�ned in Sec. 5.3; tree restructuring, i.e. the

actual expansion process, will be discussed in Secs. 5.4 and 5.5.

Speci�cation 5.1

(a) There is a set M of macro names, a set Y of macro call cores, and a

function �

Y

: Y !M .

(b) There is a countably in�nite set B of labels.

(c) There is a set C of macro calls. Each macro call c is a triple of the form

hb; y; qi, where the address b 2 B, y 2 Y , and the successor sequence q

is a �nite label sequence. Additionally, if hb; y; qi is a macro call, then so is

hb

0

; y; q

0

i, where b

0

is any label and q

0

is any label sequence of the same length

as q.

The structure of a macro call core is left unspeci�ed. Sequence q identi�es

the macro calls to which the run-time control may be transferred; any macro

call with q longer than 1 is a conditional branch. Thus control 
ow, unlike

data 
ow, is explicit in the model.
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De�nition 5.2 Concerning any given macro call c = hb; y; qi, we use the

following notations:

(a) �(c) denotes b.

(b) �(c) denotes �

Y

(y).

Thus, �(c) is the address of c, and �(c) is the name of the macro called by c.

De�nition 5.3 The set of �nite non-empty macro call sequences is denoted

by C

+

.

Note that we are interested only in non-empty macro call sequences. Next,

you will see that an expansion result must indeed contain at least one macro

call|which may in practice, however, be an atomic `no-op' operation.

De�nition 5.4 We de�ne what a tree is like. Moreover, for each tree t, we

de�ne macro call �(t), which is the root; a label set N(t), which is the set

of the addresses of the nodes; and a label set L(t), which is the set of the

addresses of the leaves. Now, the set of trees is the smallest set � that meets

both the following conditions:

(a) Each macro call c belongs to �. In this case, �(c) = c and N(c) = L(c) =

f�(c)g.

(b) Each pair hc; zi belongs to � if c is a macro call and z is a �nite non-

empty sequence whose elements t

1

; : : : ; t

m

all belong to �, such that for each

i in range 1; : : : ;m it holds that �(c) 62 N(t

i

), and for each two distinct i

0

and

i

00

in range 1; : : : ;m it holds that N(t

i

0

)\N(t

i

00

) = ;. In this case, �hc; zi = c,

Nhc; zi = f�(c)g [

S

m

i=1

N(t

i

), and Lhc; zi =

S

m

i=1

L(t

i

).

In Fig. 19 we have an example of a tree of the form hc

0

; hhc

1

; hc

4

; c

5

ii; c

2

; c

3

ii.

The address and the follower sequence of each macro call are visible: macro

calls (whose addresses are) B1 and B4 are conditional branches and B5 is

an unconditional branch. By Def. 5.4, all the nodes of a tree have unique

addresses.

B5 <B3>B4 <B5,B2>

B0 <B9>

B3 <B9>B2 <B3>B1 <B2,B3>

Figure 19: A tree.

De�nition 5.5 We de�ne some relations between tree nodes. Supposing that

c and c

0

are among the nodes of a given tree t, we have:

(a) c

0

is a child of c in t if t contains a subtree hc; ht

1

; : : : ; t

k

; : : : ; t

m

ii such

that c

0

= �(t

k

).

(b) c

0

is a parent of c in t if c is a child of c

0

in t.
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(c) c and c

0

are siblings in t if c 6= c

0

and if there exists such a node of t that

is a parent of both c and c

0

in t.

(d) c

0

is a descendant of c in t if the pair hc

0

; ci belongs to the transitive

closure of the child relation de�ned over the nodes of t.

(e) c

0

is an ancestor of c in t if c is a descendant of c

0

in t.

The above terminology is most intuitive. It is easy to see that every non-root

node has exactly one parent and is a descendant of the root, and that every

non-leaf node has a non-empty set of descendants. (Of course, the notion of a

subtree|employed in the de�nition of a child|includes even a \non-proper"

one, i.e. the whole tree.)

Speci�cation 5.6 There is a set U of user settings.

The generation of the expansion tree cannot be independent of the code that

initially surrounds the root macro call, but the user should be able to ignore

the details and to take into account only the essential properties of the sur-

roundings. Hence, it is required that the contents of the metastatic interface

of the root macro call are explicitly speci�ed by the user.

De�nition 5.7 An expansion tree or, more shortly, an x-tree is a pair

hu; ti, where u 2 U and t is a tree. Furthermore, for each x-tree x = hu; ti, we

simply de�ne �(x) = �(t), N(x) = N(t), and L(x) = L(t); in a similar fashion,

even the \family relations" of Def. 5.5 are extended to concern x-trees.

The structure of the expansion tree to be generated depends strongly on the

user setting (actually, below we will argue that the structure depends only on

the user setting and the root macro call).

5.2 Macro call environment

The conditional expansion of the macro call takes place against its environ-

ment. Here we de�ne the extent of the environment.

Speci�cation 5.8

(a) There is a set E of environments.

(b) There is an initial extractor function �

0

: U � C ! E.

(c) There is a di�erential extractor function � : E � C

+

� C ! E.

Thus, `extraction' means the identi�cation of the macro call environment.

(The environment implicitly �xes the contents of the metastatic macro call

interface. In this section we ignore the explicit building of the metastatic

interface performed by the macro expander.)

De�nition 5.9 Each node c of an x-tree x = hu; ti has an unique environment

�(x; c).
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(a) If c is the root of x, then �(x; c) = �

0

(u; c).

(b) Otherwise, x must contain such a subtree hc

0

; ht

1

; : : : ; t

m

ii that sequence

h�(t

1

); : : : ; �(t

m

)i contains c; then, �(x; c) = �(�(x; c

0

); h�(t

1

); : : : ; �(t

m

)i; c).

The above de�nition is recursive: part (b) determines the environment of a

node in an x-tree by referring to the environment of the parent of that node,

whereas part (a) is the recursion base.

Proposition 5.10 Suppose that an x-tree x

0

is constructed by replacing in

an x-tree x a single macro call c with another call c

0

. Furthermore, suppose

that x (and therefore even x

0

) also contains a macro call c

00

di�erent from c.

Now, if the environment of c

00

is in x

0

di�erent from the one in x, then in x

exactly one of the following holds:

(a) c

00

is a descendant of c.

(b) c

00

is a sibling of c.

(c) c

00

is a descendant of a sibling of c.

Proof sketch: This is a straightforward consequence of Def. 5.9.

Note that Proposition 5.10 is actually illustrated by Fig. 7 on page 25 and

commented in Secs. 3.4.2 and 3.4.3. Consider also what would happen if the

reading of part (b) of Def. 5.9 were changed (of course, the domain of the

di�erential extractor � would also have to be appropriately changed). If the

de�nition �(x; c) = �(�(x; c

0

); h�(t

1

); : : : ; �(t

m

)i; c) were replaced with �(x; c) =

�(�(x; c

0

); c), then we would lose context-sensitivity and thus propagativity.

If the replacement were �(x; c) = �(�(x; c

0

); ht

1

; : : : ; t

m

i; c), instead, then we

would lose order-independence (which will be established by Proposition 5.23)

and thus stability.

5.3 Notion of harmoniousness

The expansion result of a macro call should respect the environment of the

macro call. This requirement is re
ected by the notion of a harmonious ex-

pansion tree|in addition, we will use this notion for establishing a technically

convenient, that is, deterministic, labeling scheme for the macro calls within

a single expansion tree.

Speci�cation 5.11 There is a bijective demultiplexer function � : B�Z!

B, where Z is the set of integers.

The existence of the demultiplexer function � is guaranteed because the set

B of labels is countably in�nite: since sets B � Z and B thus have the same

cardinality, bijections do exist.
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De�nition 5.12

(a) A label b is pristine if there is a label b

0

and an integer i � 0 such that

�(b

0

; i) = b.

(b) The progeny of a label b is the smallest set of labels that meets the

following condition: each given label b

0

belongs to the set if there is a label

b

00

and an integer i > 0 such that �(b

00

; i) = b

0

, and either b

00

= b or b

00

belongs

to the set.

By requiring the labels occurring in the root to be pristine, they are prevented

from reappearing among the node addresses, as it will be shown below: the

addresses of the nodes in a harmonious tree will be required to belong to the

progeny of the root address.

Speci�cation 5.13 There is a harmony predicate function � : E�C

+

!

f0; 1g. More speci�cally, � has the properties to be given in Spec. 5.15.

The further properties of the harmony predicate will be speci�ed by restricting

the cases to which it applies. Before that re�nement, we give an overall

characterization of the usage of the predicate.

De�nition 5.14

(a) A macro call sequence s 2 C

+

is harmonious with an environment e if

�(e; s) holds.

(b) An x-tree x is harmonious if the address and the successor sequence of

its root include only pristine labels, and if for each subtree hc; ht

1

; : : : ; t

m

ii

occurring in x, the macro call sequence h�(t

1

); : : : ; �(t

m

)i is harmonious with

environment �(x; c).

To some extent, the expander is able to verify that the selected macro version

respects the macro call environment. In other words, the expander accepts

only such a version that it can transform into a harmonious macro call se-

quence.

Speci�cation 5.15 The harmony predicate obeys the following three prin-

ciples:

(a) The labeling principle states that if an x-tree x contains a macro call

c, and if macro call sequence hc

1

; : : : ; c

m

i is harmonious with �(x; c), then for

each i and j in range 1; : : : ;m it is the case that �(c

i

) belongs to the progeny

of �(c) but not to the progeny of �(c

j

).

(b) The copying principle states that if a harmonious x-tree x contains a

macro call c = hb; y; qi, then for any integer i > 0 the singleton sequence

hh�(b; i); y; qii is harmonious with �(x; c).

(c) Let a macro call sequence s = hc

1

; : : : ; c

k

; : : : ; c

m

i be harmonious with an

environment e. Let there also be a macro call sequence hc

0

1

; : : : ; c

0

n

i that is

harmonious with �(e; s; c

k

). Then for any macro call d, let

~

d denote the macro

call that results when in d each occurrence of �(c

k

) is replaced with �(c

0

1

). Now
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themerging principle states that even h~c

1

; : : : ; ~c

k�1

; ~c

0

1

; : : : ; ~c

0

n

; ~c

k+1

; : : : ; ~c

m

i

is harmonious with e.

The labeling principle e�ectively guarantees that the addresses in the macro

expansion result will remain unique. The copying principle tells that, infor-

mally, no macro call violates its own environment. The merging principle

implies that no lower-level macro call can explicitly violate the environment

of the root, no matter how long the expansion continues. Note especially that

the copying and merging principle do not contradict the labeling principle.

5.4 Linking and order-independence

By `linking' we mean the basic expansion action which provides a macro call

instance with an appropriate implementation version of the called macro.

Thus, the expansion tree grows larger through linking operations.

Speci�cation 5.16 There is a set P of test predicate functions p : E !

f0; 1g.

Using test predicates, the macro writer can examine the environment of a

macro call, in order to �nd the best possible macro version for the particular

environment.

Speci�cation 5.17 There is a set V of macro versions.

Each macro de�nition consists of a sequence of alternative implementation

versions.

De�nition 5.18

(a) A macro de�nition is any pair hm;wi, where m 2M and w is a �nite

sequence of pairs of the form hp; vi, where p 2 P and v 2 V .

(b) A �nite set � of macro de�nitions is a library if for any two distinct

hm

0

; w

0

i and hm

00

; w

00

i in �, it holds that m

0

6= m

00

.

Each macro version is thus guarded by a condition. The versions are listed in

the order of decreasing priority (see Def. 5.20); this priority scheme makes the

expansion result deterministic. All the macros for which there is no de�nition

in the given library are interpreted as atomic placeholders.

Speci�cation 5.19 There is a transformer function � : E � V ! C

+

.

The selected macro version must be adapted to the particular environment;

this transformation is performed by the macro expander. (In the case of

machine-level computer program synthesis, we suggest that this transforma-

tion includes the intraclass storage allocation.)
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De�nition 5.20 Let an x-tree x contain a node c, and let e denote �(x; c).

Then a �nite non-empty macro call sequence s = hc

1

; : : : ; c

n

i realizes macro

de�nition hm;wi at c in x if w contains such an element hp; vi that all the

following conditions are met:

(a) p(e) holds.

(b) s = �(e; v).

(c) s is harmonious with e.

(d) For each integer i in range 1; : : : ; n it holds that �(�(c); i) = �(c

i

).

(e) Among the elements of w that precede hp; vi, there is no such hp

0

; v

0

i that

both p

0

(e) holds and �(e; v

0

) is harmonious with e.

A macro version thus results in a macro call sequence that realizes the macro

de�nition only if, �rst, the version-speci�c test is satis�ed by the environment

and, second, the expander is able to transform the version into a harmo-

nious macro call sequence. Note especially that condition (d) of Def. 5.20,

which uniquely �xes the addresses of the macro calls in the resulting sequence,

does not contradict the labeling principle stated in Spec. 5.15; precisely that

principle guarantees that the addresses can be determined locally in the way

suggested here. (For a more re�ned characterization of transformation fail-

ures in the case of machine-level computer program synthesis, you may want

to consult Sec. 3.3.3.)

De�nition 5.21 An x-tree x

0

is an immediate derivative of an x-tree x

with respect to some library �, denoted as x =)

�

x

0

, if there is a leaf c

of x, hm;wi 2 �, and s 2 C

+

such that all the following conditions are

met:

(a) x is harmonious.

(b) �(c) = m.

(c) s realizes hm;wi at c in x.

(d) x

0

is obtained from x by replacing c with hc; si.

Each single expansion step produces an immediate derivative of the previous

expansion tree. The labeling principle guarantees that the addresses of the

nodes in the x-tree remain unique.

De�nition 5.22 For each non-negative integer i, an x-tree x

0

may be a

derivative of degree i of an x-tree x with respect to some library �, denoted

as x =)

i

�

x

0

. The actual de�nition is inductive:

(a) If x is harmonious, then x =)

0

�

x.

(b) If there is an x-tree x

00

such that both x =)

k

�

x

00

and x

00

=)

�

x

0

, then

x =)

k+1

�

x

0

.

Informally, expandability is the re
exive-transitive closure of one-step expand-

ability.

Proposition 5.23 Suppose that x =)

i

�

x

0

and x =)

j

�

x

00

. Then there exist
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such x

�

, k, and l that both x

0

=)

k

�

x

�

and x

00

=)

l

�

x

�

.

This Church-Rosser-type property [12, 51, 87] guarantees that no expansion

result sought after can be missed by a wrong selection of the leaf to be ex-

panded next: the �nal expansion result (if it exists) is completely determined

by the user setting and the root macro call.

Proof sketch: By Proposition 5.10, every such node whose structure may

a�ect the environment of a given node is present in the expansion tree when-

ever the given node is: forthcoming expansion steps cannot ever change the

node environment. Speci�cally, in part (b) of Def. 5.9, we have �(x; c) =

�(�(x; c

0

); h�(t

1

); : : : ; �(t

m

)i; c), which means that the environment of a macro

call c depends on no other parts of the possibly already existing subtrees t

i

than their roots, which do exist whenever c exists. (Actually, the set of nodes

that may a�ect the environment is precisely the set of nodes whose presence

is guaranteed!) For example, in Fig. 20 only the white-colored nodes con-

tribute to the environment of node N1: this environment is determined by

nodes N1, N2, and N3, and the environment of node N0. As the structure of

the subtree originating from a given node is fully determined by the macro

name and the environment of the node, the structures of neighboring subtrees

are independent of the order in which they are generated.

N1 N2

N0

N3

Figure 20: Extracting the environment of node N1.

Proposition 5.24 Suppose that both x =)

i

�

x

0

and x =)

j

�

x

0

. Then it is

the case that i = j.

This proposition states the full insigni�cance of the expansion order: no wrong

choice of a leaf to be expanded next can even delay our reaching the �nal

expansion result (whenever such one exists).

Proof sketch: Each expansion step increases the number of nodes in the

x-tree. Moreover, the precise increase depends only on the environment at

the particular leaf, which is independent of the expansion order. This means

that whenever two expansion step sequences result in the same x-tree, they

must comprise the same node number increases (even if possibly di�erently

ordered) and thus be of the same length.
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5.5 Merging and global optimizations

Whereas linking grows the expansion tree, merging contracts it into a more

polished form by removing the intermediate nodes di�erent from both the root

and the leaves. The order-independence of the linking operations presupposes

that they are performed without intervening merging operations. On the other

hand, in practice the integration of an add-on global optimization routine has

to be facilitated by a preliminary full merge of the tree.

De�nition 5.25 Let X

1

be the set of wide x-trees, that is, the set of

harmonious x-trees that have a single non-leaf node (which thus must be the

root).

The notion of wideness re
ects the fact that typical program representations

do not intermix multiple abstraction levels as freely as our x-trees.

De�nition 5.26 The label which is the image of a given label b with respect

to a given x-tree x is de�ned recursively as follows:

(a) If b does not belong to N(x), or if b belongs to L(x), then the image of b

is b itself.

(b) Otherwise, x contains a subtree of the form hc; ht

1

; : : : ; t

m

ii such that

b = �(c). Now the image of b is �(�(t

1

)).

The image function thus maps the address of each node to the address of the

leaf determined by primogeniture.

De�nition 5.27 The 
attening of an x-tree x = hu; ti is the x-tree �x de�ned

as follows:

(a) If t is a macro call c = hb; y; qi, then �x = hu; hhb; y; qi; hh�(b; 1); y; qiiii.

(b) Otherwise, �x = hu; h�(t); sii, where s is the macro call sequence that is

obtained by �rst concatenating all the leaves of t, in the same order as they

appear in t, and then replacing the occurrences of each label with its image

(with respect to x).

In case (b), 
attening removes the intermediate nodes from the tree and

redirects the remaining references to them to point to their image leafs. (The

leaf concatenation order is indeed obvious; see Def. 5.4.)

Proposition 5.28 The 
attening of a harmonious x-tree is a wide x-tree.

Proof sketch: The most challenging part is the establishment of harmo-

niousness. If the original tree is a macro call, then the copying principle

applies. Otherwise, the full 
attening can be carried out by repeated elemen-

tary 
attening operations, each of which lifts a single macro call sequence

upwards in the tree. By the merging principle, each such lifting preserves

harmoniousness.
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De�nition 5.29 For any integer k, an x-tree x

0

is a k-�nalization of an

x-tree x with respect to some library � if there exists an x-tree x

00

such that

all the following conditions are met:

(a) x =)

k

�

x

00

:

(b) For each leaf c of x

00

and for each macro de�nition hm;wi in �, it holds

that �(c) 6= m.

(c) x

0

is the 
attening of x

00

.

A k-�nalization is the 
attening of a full-blown expansion result, and its ex-

istence implies that the full-blown x-tree is achieved by precisely k expansion

steps.

Proposition 5.30 If there exists a k-�nalization of a given x-tree with

respect to some library, then this k-�nalization is wide and unique, and there

does not exist a l-�nalization (of the same x-tree and with respect to the same

library) for any l 6= k.

Proof sketch: This is a direct consequence of Proposition 5.23, Proposi-

tion 5.24, and Proposition 5.28.

Speci�cation 5.31 There exists a set G of global optimization functions

g : X

1

! X

1

. Speci�cally, for each g 2 G and hu; hc; sii 2 X

1

, there is a

macro call sequence s

0

such that ghu; hc; sii = hu; hc; s

0

ii.

Note that even doing nothing would be valid as a global optimization. (In

the case of machine-level computer program synthesis, global optimizations

would be such procedures as, say, global common subexpression analysis.)

De�nition 5.32 A generator is any pair h
;�i, where 
 is a �nite set of

libraries and � is a �nite set of global optimizations.

Code generation is constituted by macro expansion augmented with interme-

diate global optimizations; see Fig. 21.

0

optimization expansion

4*3 5 6*

0

21

0

5 6436543

flattening

Figure 21: Integrating an intermediate global optimization.

De�nition 5.33 The set of x-trees that are generated from an x-tree x

by a generator h
;�i is the smallest set � that meets the following condi-

tions:

(a) If x

0

= x or if x

0

belongs to �, and if there is such k that x

00

is the

k-�nalization of x

0

with respect to some library in 
, then x

00

belongs to �.
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(b) If x

0

belongs to �, and if x

00

= g(x

0

) for some g 2 �, then x

00

belongs to

�.

Proposition 5.34 If an x-tree x

0

is generated from an x-tree x by a gener-

ator, then x

0

is wide.

Proof sketch: The proposition follows trivially from Def. 5.33.
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6 Related work

The basic conceptual structure of a compiler [2, 34], shown in Fig. 22, consists

of analysis and synthesis phases: the front end �rst parses the source program

written by the user into a suitable intermediate representation (IR), from

which the back end then generates the machine-level program to be run on

the target processor. Note that here we deliberately use the terms `parsing'

and `code generation' in a rather wide sense: for example, our parsing task

covers at least lexical, syntactical, and semantical analysis (which are typical

subphases of the analysis phase).

source
program

target
program

inter-
mediate

represen-
tation

parsing
code

generation

ANALYSIS SYNTHESIS

Figure 22: Basic compiler structure.

There are two major reasons motivating the de�nition and adoption of an

intermediate representation [2, p. 463]. First, retargeting the compiler should

become easier: one may hope that only the back end needs to be rebuilt.

Second, there is the possibility to optionally perform optimizing transforma-

tions [10] within the IR, as shown in Fig. 23: such optimizations should not

require modi�cations in the front or back end.

inter-
mediate

represen-
tation

inter-
mediate

represen-
tation

optimization

parsing

source
program code

generation

target
program

Figure 23: An optimizing compiler.

Sometimes it may be pro�table to introduce even more than one IR: in Fig. 24

we have two IRs. We de�ne code generation as a transformation that con-

verts the program from one representation into another and involves machine-

dependent commitments. In practice, there are thus at least as many code

generation phases as there are IRs.
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target
program

represen-
code

generation

I

code
generation

II

inter-
mediate

tation
II

source
program

parsing represen-

inter-
mediate

tation
I

Figure 24: Two-phase code generation.

The outline of the rest of this section is as follows. We are interested in such

approaches in compiler design whose primary concerns include run-time e�-

ciency; below we will examine (machine-oriented) source languages in Sec. 6.1,

intermediate representations in Sec. 6.2, and techniques for implementing code

generation in Sec. 6.3.

6.1 Source languages

The �rst programming languages di�erent from machine languages were as-

sembly languages. Macros were an early addition to the assembler facil-

ity [45, 75, 56, 88]. From our present viewpoint, particularly interesting

are the Ferguson-type meta-assemblers [33, 90, 88]: a meta-assembler is a

retargetable tool for assembler construction, and a Ferguson-type one is re-

targeted by writing a macro de�nition for each machine instruction of the

new processor. Thus, our ReFlEx system might be seen as a Ferguson-type

meta-assembler that has been augmented with the strong support for modular

hierarchy.

A major obstacle to the approval of the �rst high-level language compilers

was the loss of transparency. Potential compiler users could not estimate how

much the run-time e�ciency would degrade due to the compiler use, and the

only way to assure them was by getting them to carry out experiments and

by making sure that no alarming results would ever be produced. Accord-

ingly, when the �rst Fortran system became available in 1957 [8], the main

concern of the implementors was the requirement of consistently high output

code quality [9], and the compiler consequently featured surprisingly power-

ful optimizations|even global program 
ow analysis was included [60]. But

the extreme signi�cance of optimization soon decreased, as noted by J. W.

Backus and W. P. Heisig in 1968 [9]. Nowadays, new high-level languages are

often designed to be, �rst of all, user-friendly, rather than ultimately e�cient
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in terms of execution time and memory space.

The principles of structured programming [27, 22] proposed in the 1960's

were soon applied even to assembly languages. Block structure and high-level

control constructs (such as if-then-else and while-do) were introduced, but the

data structure and operation one-to-one correspondence were still retained:

the programmer was able to select the precise hardware registers and machine

instructions. A pioneering example of such a structured assembly language

was the PL360 language [101] for the IBM 360 computers, which N. Wirth

designed to give the look-and-feel of a high-level language without sacri�cing

the e�ciency of a machine-level language [102, p. 11]. The same idea was

ported to other machines: for example, a similar language for the Zilog Z80

microprocessor is described in [13]. It has been demonstrated [97, 86] that

at least some structured assembly languages can be implemented with macro

assemblers.

Around 1970, there was considerable interest in designing extensible high-

level languages [18, 91]; the extensions were supposed to be de�ned and im-

plemented by the end users, often through macros (possibly in a machine-

dependent fashion [5]). This activity was accompanied by similar develop-

ments in the �eld of fully machine-speci�c languages [31]: for an elaborate

example, B. N. Dickman [26] presents a macro-based system that is capable

of automatic \intraclass" register allocation within a basic block according to

explicit live variable information provided by the user. Additionally, many re-

searchers [16, 17, 46] proposed the use of general-purpose macro expanders as

an implementation mechanism for special-purpose high-level languages (tai-

lored to some particular application area): the suggested advantage of this

approach was the easy portability of the implementation|whose run-time

e�ciency, however, was likely to remain rather poor.

Still in the 1970's, many high-level programming languages were designed [96,

21] speci�cally to be used in system programming, e.g. in the construction of

compilers and operating systems. In such tasks it is certainly worthwhile

to strive for e�ciency (note that practically all embedded computer pro-

grams can be seen as system programs). In contrast to structured assembly

languages, system programming languages are (at least relatively) machine-

independent, which should promote the portability of the system programs.

Two examples of system programming languages are Bliss [105, 104] and

C [57, 58]. Although the Bliss de�nition is machine-independent, it is inten-

tionally strongly geared towards the DEC PDP-10 architecture and cannot

be implemented as e�ciently on other machines. The C language de�nition,

in contrast, is not geared towards any particular machine. Nevertheless, C

programs are not strictly machine-independent: as C ignores some machine-

speci�c details such as over
ow handling conventions, running a single pro-
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gram on two di�erent machines may produce di�erent results. But this very

laxity is perhaps the decisive factor behind the success of C (and the UNIX

operation system written in C): there is only a small set of language elements,

and these elements are likely to match well enough with the basic features

o�ered by most target architectures. (In essence, C demonstrates the power

of the downward abstraction principle; see [47, 26, 89], for instance.)

6.2 Intermediate program representations

The compiler writer has to determine both the structure and the semantics of

the intermediate representation(s). Structural possibilities are presented in [2,

34] and include linear lists, trees, directed acyclic graphs, and unrestricted

graph formats; the semantics problem seems to be the more interesting one.

An important question is whether the IR should have a �xed semantics or

whether it should be a language schema [3, 48] without built-in semantics (for

a theoretical discussion on language schemas, see [73], for example). Clearly,

our ReFlEx macro language can be seen as a language schema, as it has no

built-in primitive operations.

As the primary motivation for the introduction of an IR is to improve re-

targetability, the IR semantics should ideally be independent of both the

source and target language (i.e. the target processor). Accordingly, already

in the 1950's many researchers tried to de�ne a single universal IR lan-

guage, traditionally referred to as UNCOL (UNiversal Computer Oriented

Language) [94, 93, 92]. But similarly to the analogous interlingua approach

in the machine translation of natural languages [53, 6], the theoretically most

interesting UNCOL approach has been slow to �nd signi�cant practical ap-

plications.

Some later, less ambitious approaches have proved to be much more success-

ful:

� Using an IR that is tailored to the source language but fully in-

dependent of the target language [77, 84].

� Using an IR that is an intersection language with only a relatively

small set operations [23]. This small set should be chosen so that

it is nevertheless, �rst, likely to be supported by a relatively broad

class of contemporary target architectures, and, second, likely to

support a relatively broad class of contemporary source languages.

� Using an optimization-oriented machine-speci�c IR (which is fully

independent of the source language) [14], perhaps in addition to

a higher-level IR serving to isolate the machine-independent front

end from the back end.
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6.3 Code generation techniques

Overall information about state-of-the-art code generation methods can be

found in the standard compiler textbooks [2, 34], which are from the late

1980's. Additionally, retargetable code generation tools were surveyed in the

early 1980's by Ganapathi, Fisher, and Hennessy [40], and by Lunell [72]. In

particular, Lunell [72, Ch. III.2] separates the automation and support ideals

set for di�erent code generator writing systems: many approaches aim at

maximum automation, whereas some strive for a system that only supports

the human code generator writer. Below, partially following the classi�cation

used in [40], we examine interpretative methods, methods based on a context-

free grammar, and heuristic pattern matching methods.

The interpretative tools can be associated with the support ideal. The ear-

liest interpretative code generation method was the use of a general-purpose

macro expander [16, 17, 20, 15, 76]. Two early special-purpose programming

languages tailored to code generation (which were never developed into a fully

retargetable form) were described by Elson and Rake [28] and by Wilcox [98];

later ones include Fraser's language [37] and our proposal. The languages

of [28, 98, 37] are procedural, whereas ours is functional: there are no side ef-

fects. The intermediate program representations examined and manipulated

in [28, 37] consist of trees; in [98] a linear operation sequence is used; we

establish an abstract interface for hiding the program representation and the

built-in algorithms processing it. When the intermediate program represen-

tation is a linear sequence, it is straightforward to keep track of the machine

register contents within a basic block (i.e. a straight-line code segment), in

the fashion addressed above in conjunction with macro-based code generators.

Our goal is more ambitious: we want to be able to utilize all the informa-

tion about the run-time context that is available already at compile time. In

particular, we want to be able to look ahead as well as back, and beyond

basic-block boundaries.

The Graham-Glanville method [42, 43, 44, 50] uses context-free grammars

and LR parsing for code generation (the obvious extension direction is to

use attribute grammars, as suggested in [39]). Being fully transparent, like

the corresponding syntax analysis performed by the compiler front end, the

method is not inconsistent with the support ideal but it di�ers from the earlier

interpretative approaches by being highly declarative. On the other hand, the

intermediate representation accepted by a Graham-Glanville code generator

must be a rather low-level one: many of synthesis decisions must be made

already prior to the code generation. Though our approach shares this same

restriction, it strives for a wider scope by its intuitive context-sensitivity.

Many modern code-generator generators [1, 83, 30, 11, 38] use tree pattern
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matching and dynamic programming: the compiler writer speci�es a collection

of code generation patterns with associated costs, and the code generator tries

to �nd a set of patterns that covers a given tree in the intermediate program

representation with a minimum total cost. The operation is thus heuristics-

driven, sharing the automation ideal. This method is neither fully transparent

nor particularly stable: when a single pattern or its associated cost is about

to be modi�ed, it may be di�cult to predict the overall consequences.
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7 Conclusion

Traditionally, macro expansion systems employ global variables to achieve

some context-sensitivity. But the use of global variables has some signi�cant

drawbacks. First, the Church-Rosser property is lost: the macro expansion

result becomes dependent on the expansion order. Second, the gained context-

sensitivity is very limited: information about the context can typically be

passed only from left to right, in accordance with the customary left-to-right

and depth-�rst expansion order.

Our main contribution is the formal model of Sec. 5, which describes a mod-

ular and hierarchical abstraction mechanism that we claim to be reasonably

universal and transparent, as de�ned in Sec. 2.3. In particular, the model

establishes context-sensitivity without violating order-independence, i.e. the

Church-Rosser property; our idea of context in the case of machine-level com-

puter program synthesis is characterized in Sec. 3. Order-independence and

context-sensitivity e�ectively o�er stability and propagativity, respectively,

as de�ned in Sec. 2.3. But most importantly, the order-independence means

that the macro expansion language is functional rather than procedural: for

instance, extensively parallel implementations become possible.

The prototype implementation dealt with in Sec. 4 is admittedly extremely

simple and provides no evidence of practical usefulness. Indeed, our next goal

will be an extended prototype that supports most of the features mentioned

in Sec. 3.2. After these fully experimental systems, we should be able to

try to construct a code generation tool for a real processor. Most promising

contemporary target processors seem to include the \purest" DSPs, i.e. the

stripped-down �xed-point number crunchers with limited functionality, low

cost, and high speed|such as AT&T DSP1610 [7]. Still, the retargetability

of the tool should be preserved, and furthermore, demonstrated by providing

the class of supported target architectures with an explicit characterization (in

principle, such a characterization might even serve as a constraint on future

processor design).
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A ReFlEx 1.0 macro language

This appendix systematically discusses the features of the ReFlEx 1.0 macro

language. First, Secs. A.1 and A.2 introduce some general concepts. Next,

Secs. A.3{A.5 deal with the rule �le, which contains the macro de�nitions.

Finally, Sec. A.6 covers the expansion source, i.e. the code generation in-

put. Many secondary features of the full ReFlEx 1.0 language are still, for

simplicity, ignored. (See [63] for a complete reference to the language.)

The rule �le provided by the user must be a single physical �le at the time

when the macro expansion session is started. The information contained in

the rule �le cannot be updated during the session; in particular, new macro

de�nitions cannot be created. Having processed the rule �le, ReFlEx prompts

the user to type in an expansion source. The expansion source should consist

of a macro call and a speci�cation of its metastatic interface. Given the

expansion source, ReFlEx expands the macro call in it, and then prompts for

another task.

A.1 Taxonomy of integer, cell, and label designators

The elementary objects processed at expansion time include integers, storage

cells, and code labels. Such an expression written in the rule �le or expansion

source that may at expansion time produce an integer is called an integer des-

ignator; similarly, there are also cell designators and label designators. Being

an integer, cell, or label designator is actually a property of each particular

occurrence of the expression: if an expression occurs in two di�erent con-

texts, it may be that only one of the occurrences is a valid integer designator.

In other words, an expression occurrence is a valid integer (or cell or label)

designator if and only if:

� its syntax is appropriate; and

� it appears in an appropriate context.

Furthermore, as ReFlEx classi�es the designators orthostatically (that is, al-

ready before the macro expansion), a single expression occurrence may be,

say, both an integer designator and a cell designator. Whether such an am-

biguous designator metastatically (that is, at expansion time) really produces

an object of the anticipated kind, cannot generally be orthostatically deter-

mined. Obviously, there are three possible cases of designator mismatch: if a

valid integer designator actually turns out to produce a non-integer (i.e. a cell

or a label), ReFlEx simply takes zero as the value produced by the designator;

for the other two cases, see Sec. A.2.2.
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Each designator is syntactically either a literal, a reference, or a form call.

A.1.1 Integer, cell, and label literals

The programmer uses literals in the expansion source, and references and

form calls in the rule �le; as a natural exception, integer literals may freely be

used even in the rule �le. The expansion result produced by ReFlEx contains

literals only.

An integer literal is any digit sequence optionally preceded by a plus or minus

sign. Here are some examples of valid integer literals:

7 + 7 - 7

A cell literal, then, consists of a storage class name and an integer literal

serving as a zero-based index within the class (if the storage class contains

only one cell, the index can be dropped o�):

M[0] M[1] M[10]

Finally, any identi�er can be used as a label literal. (See Sec. A.1.2 for the

de�nition of an identi�er.)

A.1.2 Integer, cell, and label references

As mentioned above, integer, cell, and label references can be used in the

rule �le but not in the expansion source. Any integer, cell, or label refer-

ence is constituted either by an identi�er or a reserved word. An identi�er

is a maximal sequence of alphanumeric characters that is di�erent from the

reserved words and does not begin with a digit (alphanumeric characters in-

clude letters, digits, and the underscore ` '; the distinction between uppercase

and lowercase letters is signi�cant). Each reserved word consists of uppercase

letters only. (Even if we do not list the reserved words here, they can be easily

distinguished from the identi�ers used in this report, because the latter either

contain non-uppercase characters or consist of a single uppercase letter.)

First, let us look at form de�nitions. Inside a form de�nition, the form param-

eters, which are identi�ers, are valid as integer references, as cell references,

and even as label references.

In our �rst example, form parameter a is used as an integer reference on the

right-hand side of the form de�nition:

Sqr(a) = _Mul(a,a);
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In the next example, the form parameter is used as a cell reference in order

to decide whether the referred cell belongs to one of certain storage classes:

Convenient(x) = Or(?R(x),?A(x));

In addition to form de�nitions, there are macro de�nitions, of course. Inside

a macro de�nition,

� the input parameters are valid integer references;

� the data parameters and the data temporaries are valid cell ref-

erences; and

� the exit parameters, the label temporaries, and reserved words

THIS and NEXT are valid label references.

Here, input parameter x is used both as an integer reference and as a cell

reference, whereas data temporary t may only be used as a data reference:

t_incr(x > y) {

integer: TEST Int(x); { t_move(_Add(x,1) > y); }

cell: USE R[t]; { t_add(x,1 > t); t_move(t > y); }

}

Of the label references in our �nal macro de�nition, l is an exit parameter

and s is a label temporary (associated with an empty statement):

BRANCH t_branch(x) [l] {

nop: TEST &(l, NEXT); { }

impl: { BRANCH t_1(x) [s]; BRANCH t_2(x) [l]; s: ; }

}

The test involving NEXT above detects such anomalous cases in which the

branch target is the code location immediately following the current macro

call: THIS and NEXT mark the beginning and end of the expansion result of

the current macro call, respectively.

A.1.3 Form calls

Each form call is a valid integer designator but invalid as a cell or label

designator. More on forms can be found in Sec. A.2.

A.2 Forms

Form calls are integer designators. At expansion time, each form call is eval-

uated by a special interpreter (which is an integral part of ReFlEx) according
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to the de�nition of the particular form. There is a set of prede�ned primitive

forms, which consists of nine autonomous forms and six diagnostic forms.

Additionally, the user may de�ne new compound forms in the HEADER part of

the rule �le.

Form argument designators are those expressions that are visible in the form

calls of the rule �le. A form argument designator may be an integer designa-

tor, a cell reference, or a label reference (thus, cell and label literals are ruled

out); an exception is that a macro temporary (even though it is certainly

either a cell reference or a label reference) can never be used as a form ar-

gument designator. Form arguments, then, are the integers, cells, and labels

that replace the argument designators at expansion time. Thus, each form

argument is the metastatic evaluation result of the corresponding orthostatic

argument designator.

A.2.1 Autonomous primitive forms

The argument designators of autonomous primitive forms must be integer

designators. If a valid form argument designator still, at expansion time,

turns out not to represent an integer, then ReFlEx uses zero as the metastatic

argument, as stated in Sec. A.1.

The autonomous primitive forms can be divided into three categories:

� Abort(x,y,z), which raises an exception.

� If(x,y,z), which implements lazy argument evaluation.

� Arithmetic-logic primitive forms (see below).

Instead of returning, each call of Abort aborts the expansion immediately.

No expansion result is produced, but the three arguments of the Abort call

are passed to the user as an explanation.

The If(x,y,z) call is processed similarly to the x?y:z expression of the C

language. That is, the following steps are taken:

1. The �rst argument is evaluated.

2. If the result is nonzero: the second argument is evaluated, and

the resulting value is returned as the value of the call.

3. Otherwise: the third argument is evaluated, and the resulting

value is returned as the value of the call.

Other autonomous primitive forms always evaluate all their arguments, but

either the second or the third argument of each If call always remains un-
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evaluated. Lazy evaluation of this kind makes even recursive compound form

de�nitions feasible.

There are, in all, seven arithmetic-logic primitive forms, which are shown in

Table 1. The rightmost column of the table consists of C language expressions,

which �x the semantics of the primitives.

Add(x,y) addition x + y

BNand(x,y) bitwise NAND ~(x & y)

BShl(x,y) bitwise shift (y > 0) ? (x << y) : (x >> -y)

Div(x,y) division x / y

Lt(x,y) less-than (x < y) ? 1 : 0

Mul(x,y) multiplication x * y

Nand(x,y) logical NAND (x && y) ? 0 : 1

Table 1: Arithmetic-logic primitive forms.

A.2.2 Diagnostic primitive forms

The diagnostic primitive forms return information concerning the metastatic

macro call interface constructed by the macro expander. Their argument

designators must be cell or label references di�erent from macro temporaries.

However, if any argument designator still turns out to represent an integer,

then the whole form call is taken to return zero. The same happens if an

expected cell turns out to be a label, or vice versa. (Thus, one could say that

\type checking" is here somewhat stricter than with autonomous primitives.)

Most of the diagnostic primitives accept any number of arguments, and there

is an implicit conjunction between the arguments. For instance, the ?M(x)

form call checks whether x represents a cell that belongs to storage class M,

and ?M(x,y,z) checks whether all three of x, y, and z belong to M.

There are, in all, six diagnostic primitive forms, most of which may be further

parametrized with a storage class speci�er (such as `M' of the ?M(x) form

call above). We explain the usage of the six diagnostic primitives with the

following examples:

?(x) Does x represent a cell?

%(x,y) Do x and y represent cells that belong to the same class?

=(x,y) Do x and y represent a single common cell?

!(x) Does x represent a free cell?

#() How many free cells are there?
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&(x,y) Do x and y represent equivalent labels?

It should be noted that even !(x) and #() always report the situation at the

currently processed macro call (as do the other diagnostic primitive forms),

independently of the point at which they are placed inside the de�nition of

the called macro. (This is the reason why macro temporaries, which do not

have self-evident denotations outside the macro de�nition, are invalid as form

argument designators.)

Finally, we make a few remarks about some individual diagnostic primitive

forms:

� &(x,y) expects labels for arguments, while the others expect cells.

� #() accepts no arguments, while the others accept any number of

arguments.

� #() returns a non-negative integer, while the others return either

0 or 1.

� &(x,y) does not accept a storage class speci�er, while the others

do.

A.2.3 Compound forms

Two most simple compound form de�nitions read as follows:

Dozen() = 12;

Gross() = _Mul(Dozen(),Dozen());

More complicated de�nitions are of course possible. The following de�nition

of subtraction captures precisely the details of the two's complement repre-

sentation for negative integers:

Sub(x,y) = _Add(x,_Add(_BNand(y,y),1));

The argument designators of a call of a compound form may freely be integer

designators, cell references, or label references|macro temporaries excluded.

As the �rst stage of the evaluation of a call of a compound form, and therefore

even before the evaluation of the arguments, the interpreter replaces the call

with the de�nition of the form called. This strategy supports lazy evaluation,

because the de�nition may consist of an If call.

Compound forms may be recursive, again because of the special property of

the If form. Here is a recursive de�nition for the factorial function:

Fact(x) = _If(_Lt(x,2), 1, _Mul(x,Fact(Sub(x,1))));
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A.3 Rule �le

A ReFlEx rule �le contains both the target architecture description and the

macro de�nitions. The �le consists of four main parts, as shown in Fig. 25.

These parts, each of which typically extends over several lines, are discussed

below one at a time.

HEADER f . . . g

STORAGE f . . . g

SYSTEM f . . . g

UTILITY f . . . g

Figure 25: General structure of a rule �le.

A.3.1 Compound form de�nitions

The HEADER part of the rule �le contains the compound form de�nitions (see

Sec. A.2.3), whose mutual order is insigni�cant. Fig. 26 shows a simple ex-

ample.

HEADER {

Not(a) = _Nand(a,a);

And(a,b) = _If(a, _If(b,1,0), 0);

Or(a,b) = _If(a, 1, _If(b,1,0));

Int(a) = And(Not(?(a)), Not(&(a)));

Lt(a,b) = And(_Lt(a,b), And(Int(a),Int(b)));

Gte(a,b) = And(Not(Lt(a,b)), And(Int(a),Int(b)));

Eq(a,b) = And(Gte(a,b), Gte(b,a));

}

Figure 26: A sample HEADER part.

A.3.2 Data storage declarations

The STORAGE part contains the data storage class declarations. For each

storage class, name and size (i.e. the number of cells) are given. Fig. 27 shows

an example with three storage classes.

A.3.3 Declarations of atomic macros

The SYSTEM part contains the declarations of the atomic macros. Each atomic

macro can be seen as a ReFlEx-compatible model of a target machine instruc-

tion. The declaration of an atomic macro has a great deal in common with
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STORAGE {

M[1024];

R[4];

A[1];

}

Figure 27: A sample STORAGE part.

the de�nition of a composite macro: an atomic macro declaration consists of

a macro exterior only, whereas a composite macro de�nition contains also a

macro interior (see Sec. A.4 for the structure of a macro exterior). Again,

Fig. 28 shows a simple example of a SYSTEM part.

SYSTEM {

set(c > r) { TEST And(?R(r), And(Gte(c,-1024),Lt(c,1024))); }

load(m > r) { TEST And(?R(r), ?M(m)); }

store(r > m) { TEST And(?R(r), ?M(m)); }

move(s > d) { TEST And(Or(?A(s),?R(s)), Or(?A(d),?R(d))); }

add(a,r > a) { TEST And(?A(a), ?R(r)); }

sub(a,r > a) { TEST And(?A(a), ?R(r)); }

JUMP goto() [l] { }

BRANCH eq(a) [l] { TEST ?A(a); }

BRANCH gt(a) [l] { TEST ?A(a); }

BRANCH lt(a) [l] { TEST ?A(a); }

}

Figure 28: A sample SYSTEM part.

A.3.4 De�nitions of composite macros

The UTILITY part �nally contains the de�nitions of the composite macros; the

mutual order of the de�nitions is insigni�cant. Fig. 29 shows a simple example

of an UTILITY part, which contains two macro de�nitions. We must here

assume that macros t move, t add, t 1, and t 2 in the �gure are now atomic

macros, because otherwise they should also be provided with a de�nition in

this very UTILITY part; thus Figs. 28 and 29 are actually incompatible.

The structure of individual composite macro de�nitions is examined in detail

in Sec. A.4.

A.4 Macro de�nition

ReFlEx supports macro hierarchy: within a composite macro de�nition, any

atomic or composite macro can be called. In particular, both direct and
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UTILITY {

t_incr(x > y) {

integer: TEST Int(x); { t_move(_Add(x,1) > y); }

cell: USE R[t]; { t_add(x,1 > t); t_move(t > y); }

}

BRANCH t_branch(x) [l] {

nop: TEST &(l, NEXT); { }

impl: { BRANCH t_1(x) [s]; BRANCH t_2(x) [l]; s: ; }

}

}

Figure 29: A sample SYSTEM part.

indirect recursion is allowed.

ReFlEx also provides extensive support for conditional macro expansion.

Each macro de�nition comprises a number of alternative implementation ver-

sions. At expansion time, ReFlEx traverses through the version list in the

order speci�ed by the macro writer until it �nds a version that matches the

metastatic interface of the current macro call. If no such version is found, the

macro expansion fails.

In Fig. 29 in Sec. A.3.4 we showed some simple macro de�nition. The general

structure of a macro de�nition is presented in Fig. 30. As indicated in the

�gure, some of the items are optional.

deviation

opt

name params f

test

opt

version

version

. . .

g

Figure 30: Structure of a macro de�nition.

The meaning of the items in Fig. 30 is as follows:

deviation Is the macro a branch of any kind? See Sec. A.4.1.

name Name of the macro being de�ned.

params Macro parameters (which represent storage cells and code la-

bels). See Sec. A.4.2.

test Macro-speci�c test. See Sec. A.4.3.

version De�nition of a macro version. See Sec. A.5.
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The macro de�nition can be divided into the following parts:

� The macro exterior contains the deviation, name, params, and

test items. It constitutes a partial speci�cation of the macro call

interface.

� The macro head is a subset of the macro exterior con-

sisting of the deviation, name, and params items. It

speci�es the structure of the orthostatic macro call

interface.

� The macro interior contains the version items. It constitutes the

macro implementation.

A.4.1 Control transfer

Concerning the control transfer after execution, ReFlEx macros are, for code

readability, divided into four types by three distinct deviation quali�ers. All

these quali�ers can be found in the following macro calls:

t_trans1(x > y);

BRANCH t_trans2(x > y) [l1,l2];

JUMP t_trans3(x > y) [l3];

l1: SLEEP t_trans4(x > y);

Macros of the BRANCH and JUMP types are the ones that may|explicitly|

transfer the control to a remote location (speci�ed by an exit parameter);

macros of the default and BRANCH types are the ones that may|implicitly|

transfer the control to the location immediately following (the code resulting

from) the macro call itself. Thus BRANCH and JUMP macros are conditional and

unconditional branches, respectively, whereas SLEEP macros typically repre-

sent non-terminating loops. Supposing that the macro calls above constitute a

code fragment, the t trans4 call would be unreachable if it were not provided

with the l1 label temporary.

A.4.2 Parameters and arguments

There are two ways to classify macro variables. First, they can be divided into

data variables and label variables. Second, they can be divided into parameters

and temporaries (for the temporaries, see Section A.5.2). Because ReFlEx 1.0

does not support global variables, macro parameters are the only means for

passing run-time data across macro boundaries.
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There are both data parameters and exit parameters. A data parameter may

be an input one, an output one, or an input-output one; exit parameters repre-

sent code labels which serve as branch targets. The parameters are speci�ed

in the macro head. We present some examples:

t_param1(x,y,z > z,w) { . . . }

BRANCH t_param2(i,j) [l,m,n] { . . . }

t_param3( > s) { . . . }

JUMP t_param4() [t] { . . . }

Note that the output parameters are separated from the input ones by a `>' to-

ken, which divides the data parameter list into two sublists. Understandably,

the parameters that occur in both these sublists are the input-output ones.

(The `>' separator is omitted if there are neither output nor input-output

parameters.)

When a macro is called at expansion time, macro arguments stand for the

macro parameters. A metastatic argument may be an integer, a storage cell,

or a code label. With macro arguments, we do not employ such a special

notion as the one of an input-output parameter with macro parameters|an

output argument may simply simultaneously be even an input argument.

When a macro is called inside the de�nition of another macro, the macro

writer has to provide the call with orthostatic argument designators that

represent the metastatic arguments. The argument designators must meet

the following constraints:

� An input parameter must be matched by an integer designator or

by a data variable (of the calling macro de�nition).

� An output or input-output parameter must be matched by a data

variable.

� An exit parameter must be matched by a label variable.

Here we provide sample calls for the macros whose heads were shown above:

t_param1(_Add(2,3),a,b > b,a);

BRANCH t_param2(u,u) [k,k,k];

t_param3( > a);

JUMP t_param4() [k];

A.4.3 Macro-speci�c test

Each macro de�nition may have a macro-speci�c test. This test is evaluated

at expansion time, and it determines whether a call of the macro is acceptable
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as a part of the expansion-time realization of an upper-level macro call. For

example, the t amacro shown in Fig. 31 cannot be called unless the output

argument belongs to storage class A or storage class R, and unless there are

at least two cells currently free in class R.

t_amacro(x > y) {

TEST And(Or(?A(y),?R(y)), Gte(#R(),2));

implem1: TEST ?A(y); { t_a1(x > y); }

implem2: TEST ?R(y); { t_a2(x > y); }

}

Figure 31: A macro de�nition with a macro-speci�c test.

As indicated in Fig. 31, the macro-speci�c test is constituted by an integer

designator. The test is interpreted as a success if the designator at expansion

time produces a nonzero value.

A natural implicit supplement to the macro-speci�c test is the following re-

quirement: if two elements in the data parameter list of the macro de�nition

are identical, then even the two corresponding arguments must be identical.

As with the rest of the macro-speci�c test, the ful�llment of this requirement

is checked only at expansion time.

In addition to macro-speci�c tests, there exist also version-speci�c tests. Two

such tests are included in Fig. 31; see Sec. A.5 for more information.

A.5 Version de�nition

Each macro version speci�es a possible implementation for a call of the macro

being de�ned. The versions are listed in the order of decreasing priority. The

criteria according to which ReFlEx either accepts or rejects an individual

version are given in Sec. A.5.1 below.

The overall structure of each version de�nition is shown in Fig. 32. The

meaning of the items in the �gure is as follows:

name Name of the version being de�ned. (This name is more like a

comment. It will be used nowhere else.)

test Version-speci�c test. See Sec. A.5.1.

temp Declaration of version-speci�c temporaries. See Sec. A.5.2.

stmt A statement. See below.

A statement consists of a unique label temporary, a macro call, and a ter-
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name : test

opt

temp

opt

f

statement

statement

. . .

g

Figure 32: Structure of a version de�nition.

minating semicolon. Both the temporary and the macro call are optional

(a statement is empty if it does not contain a macro call). The statement

sequence of a version de�nition is called the version body.

Fig. 33 shows a macro de�nition with two versions. The de�nition of the �rst

version, vers1, contains all the items mentioned above.

t_bmacro(x > y) {

TEST ?A(x);

vers1: TEST ?A(y); USE M[m], R[r1,r2]; {

BRANCH t_b1(x) [s1];

t_b2(x > m,r1,r2);

JUMP t_b3() [s2];

s1: t_b4(x > m,r1,r2);

s2: t_b5(m,r1,r2 > y);

}

vers2: { t_b0(x > y); }

}

Figure 33: A macro de�nition with two versions.

A.5.1 Version-speci�c test

The version-speci�c test determines whether the particular macro version can

be considered as an expansion-time realization of a call of the current macro.

Even if the test succeeds, the version may still be rejected; the complete list

of possible rejection reasons is as follows:

� The version-speci�c test does not succeed.

� Storage cells cannot be allocated for the data variables of the

version.

� The macro-speci�c tests of the macros called in the version body

cannot be satis�ed.

If all the above three constraints are satis�ed, the version is accepted. This

decision is irreversible: there is no backtracking during version selection.



{ 68 {

For example, consider version vers1 of macro t bmacro already shown in

Fig. 33. The version cannot be selected unless all the following constraints

are met:

� Output parameter y must represent a cell of storage class A.

� The must be a cell of class M and two distinct cells of class R free.

� The (here unknown) macro-speci�c tests of lower-level macros

t b1, t b2, t b3, t b4, and t b5 must be successful.

A.5.2 Temporaries

The set of macro variables may include macro temporaries, in addition to

macro parameters. Similarly to the macro parameters, the macro tempo-

raries are divided into data temporaries and label temporaries. Data and label

temporaries are valid as cell and label references, respectively, as long as they

are not used as form argument designators. Temporaries are version-speci�c:

data temporary is introduced in a version-speci�c temporary declaration, and

a label temporary is introduced by including it as a pre�x in some statement

in the version body. The temporaries must be di�erent from the parameters

and unique within the particular macro version.

For example, consider again version vers1 in Fig. 33. Its three data tempo-

raries are m, r1, and r2 (of storage classes M, R, and R, respectively), and its

two label temporaries are s1 and s2.

The macro writer must select the storage class for each data temporary. When

the macro expander has chosen the macro version to be linked to a given macro

call, it binds each data temporary of the version permanently to some �xed cell

of the user-selected class. Data temporaries cannot be made \static"(using

the C language terminology): none of them can retain its contents between

di�erent execution times of the expansion result.

A.5.3 Initialization of data variables

There are two global constraints on the structure of a single version body; to

verify them ReFlEx must perform both data and control 
ow analysis. These

constraints aim to catch mistakes possibly made by the macro writer and are

closely related to each other (note that neither one concerns input-output

parameters):

� No data temporary or output parameter can be read before it is

written.
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� Every output parameter must be written.

For example, the body of version ver in Fig. 34 would become invalid if the

second statement (the call of t c2) were replaced with an empty statement.

In that case, in one of the two alternative execution paths,

� temporary t is read before it is written,

� output parameter y is read before it is written, and

� y is not written at all.

t_cmacro(x > y,z) {

ver: USE R[t]; {

BRANCH t_c1(x) [s1];

t_c2(x > y,t);

JUMP t_c3() [s2];

s1: t_c4(x > y,t);

s2: t_c5(y,t > z);

}

}

Figure 34: A version body with two alternative execution paths.

The �rst one of the initialization constraints also enables us, in Appendix B,

to formulate a relatively simple de�nition of a free cell. (In the full ReFlEx 1.0

language, actually, the initialization constraints are less restrictive; see [63,

Sec. 6.8].)

A.6 Expansion source

In addition to the rule �le, the ReFlEx macro expander needs expansion

sources in order to perform code generation. The overall structure of the

expansion source is simple:

label

opt

: call ; disposal

opt

follower

opt

The meaning of the items above is as follows:

label Label associated with the �rst instruction of the expansion result.

call Macro call to be expanded.

disposal Disposal set (see below).

follower Follower label (see below).
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Thus, the expansion source actually consists of a non-empty statement op-

tionally followed by a disposal set and a follower label. Here are two examples

of expansion sources:

t_dmacro(M[0] > M[1]);

l0: JUMP t_emacro(R[0]) [l1,l2,l3]; {R[1],R[2],M[100]} >l1

Note that in the expansion source there is no need for argument designators:

one must explicitly use integer or cell literals instead of data variables (and

also code labels instead of label variables|although there is no syntactical

di�erence).

The disposal set contains the storage cells that are free at the point of the

macro call|in addition to the output arguments, which are always taken to

be free. These cells can be used as a temporary storage inside the expansion

result. By default, the disposal set is empty. Above, the disposal set of the

second example consists of cells R[1], R[2], and M[100].

The follower label is the label at the end of the expansion result, i.e. the

label associated with the instruction that immediately follows the expansion

result. In practice, a follower label speci�cation cannot ever be useful unless

the follower label is also a label argument of the macro call of the expansion

source. (Indeed, the follower label l1 of the second example above is also a

label argument of the t emacro call.)
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B ReFlEx 1.0 expansion mechanism

The ReFlEx 1.0 macro expansion begins from an expansion source and pro-

duces an expansion result. The expansion source consists of a single macro

call, and the expansion result is a sequence of macro calls. In this section we

give a precise description of the macro expansion procedure.

B.1 Phases of the procedure

During the macro expansion a tree structure is built upon the source macro

call by repeated re�nement steps. Each node of this expansion tree is either an

empty statement or a macro call statement; one of the nodes is the root, which

contains the source macro call. The nodes of the tree can be divided into stock

nodes and leaf nodes; each node with an empty statement is a leaf (thus, an

empty statement is actually equivalent to a call of an atomic `no-op' macro).

To the macro call of each stock node a realization has already been linked,

while the macro calls of the leaf nodes have not yet been provided with a

realization. The realization of a macro call is selected from the versions of the

called macro; the lower-level macro calls in the body of the selected version

become new leaf nodes. Once each non-empty leaf of the tree is a call of an

atomic macro, there is no need for further re�nement of the tree. Then the

tree is ready to linearized into a macro call sequence consisting of the �nal

set of leaf nodes.

Thus, as shown even in Fig. 35, the macro expansion procedure comprises

three successive phases:

1. Setup phase.

2. Linking phase.

3. Merging phase.

At the beginning of the expansion, the setup phase sets up an initial expansion

tree. The initial tree consists of a single root node which contains the macro

call of the expansion source. The disposal set and the possible follower label

from the expansion source are also associated with the tree.

The linking phase is the essential component of the macro expansion proce-

dure. It builds up the hierarchical expansion tree by repeatedly augmenting

the structure originating from the initial expansion tree. A more detailed

description of the linking phase will be given in Sec. B.2.

The merging phase mechanically linearizes the complete expansion tree into

an expansion result: the macro calls of the leaf nodes in the expansion tree are
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LINKINGMERGING

SETUP

Figure 35: Phases of the macro expansion procedure.

collected into a 
at macro call sequence. This linearization means that the

natural sequential order of the leaf nodes is preserved while all the following

nodes are dropped o� from the tree:

� All the stock nodes.

� Each unreachable leaf node.

Unreachable leaf nodes may exist, because macro de�nitions may well include

versions that do not refer to every exit parameter.

Example B.1

Sec. 4.3.5 begins with a speci�cation of a sample expansion source. The full

expansion tree and the �nal 
at expansion result produced by ReFlEx are

shown in Fig. 17 on page 35. 2

B.2 Linking phase

The linking phase comprises a number of successive steps: each step links a

realization to a macro call (more speci�cally, to a call of a composite macro),

which thus changes from a leaf node into a stock node of the expansion tree.

Each step includes two selections:

1. A leaf to be processed next has to be selected.

2. A suitable realization version for the selected leaf macro call must

be selected from the versions of the particular macro.

Each statement in the body of the selected version constitutes a new leaf

node in the tree. Leaf selection is dealt with in Sec. B.2.1, and an overview of
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version selection is given in Sec. B.2.2. The following Sec. B.3 will complete

the description of version selection.

The success or failure of the macro expansion can be determined already

during the linking phase.

De�nition B.1 An expansion tree is a failure if it meets at least one of the

following conditions:

(a) The macro-speci�c test of the root macro call is not successful.

(b) The tree contains a composite macro call leaf to which no realization

version can be linked.

If the macro-speci�c test of the root macro call is not successful, ReFlEx does

not even try to link additional nodes to the tree. (If the tree can be built,

however, the macro-speci�c tests of the additional nodes are checked as a part

of the version selection; see Sec. B.2.2.)

It is perfectly possible that a composite macro call leaf for which no suitable

realization version exists is added to the tree. This means an irreversible

failure, because backtracking is not supported. Still, in this case ReFlEx does

not stop the linking phase as long as there also exists such leaves in the tree

for which a suitable version can be found.

De�nition B.2 An expansion tree is complete if its each leaf meets at least

one of the following conditions:

(a) The leaf is the root and consists of a macro call that does not meet its

macro-speci�c test.

(b) The leaf consists of an empty statement.

(c) The leaf consists of an atomic macro call.

(d) The leaf consists of a composite macro call for which there is no acceptable

macro version.

Again, the acceptability of a macro version will be de�ned in Sec. B.2.2, which

deals with version selection in detail.

Recursive macro de�nitions are possible. In practice, however, the linking

phase is guaranteed to end, since in�nite recursion is disabled: the ReFlEx

user must set a limit on the number of nodes in the expansion tree (and,

correspondingly, on the allowed form call recursion depth).

B.2.1 Leaf selection

How should the leaf node to be processed next be selected (of course, this

question is relevant only if the already generated expansion tree has at least

two leafs that consist of calls of composite macros)? The answer is that such
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a selection, which is depicted in Fig. 36, is fully insigni�cant. The reason for

this is that once a leaf node is inserted in the expansion tree, the set of cells

that are free at it never changes. This fact becomes explicit in Sec. B.3.2

below (and is thoroughly discussed in Sec. 5).

?

Figure 36: Leaf selection.

Actually, the linking and merging phases are separated just in order to achieve

the insigni�cance of leaf selection. If the results of individual linking steps

were merged into the expansion result under construction right away, the

free cell sets would not always remain unchanged. Moreover, such right-away

merging could only make the free cell sets larger, which may at �rst seem

desirable: the re�nement of a particular \di�cult" leaf could then be delayed

unless the current number of free cells were large enough. This enlargement

of free cell sets through right-away merging could, however, happen only in

some exceptional cases; see Ex. B.2 for an instance of such an exception.

Example B.2

Here is an expansion tree with two leaves, i.e. calls of t ord1 and t ord2:

t_order(A,R[2] > A,R[2]) { }

t_ord1(A > A)

t_ord2(A,R[2] > R[2])

Clearly, register R[2] is not free at the t ord1 call, as R[2] is an input

argument of the original t order call and read by the t ord2 call (the actual

de�nition of freedom can be found in Sec. B.3.2). But suppose that the

de�nition of t ord2 is as follows (note in particular that input parameter b

is not read in the single version of t ord2):

t_ord2(a,b > c) {

impl: { t_ord3(a > c); }

}

Let us then link the single t ord2 version to the t ord2 leaf. If we now broke

the rules and merged the version body immediately into the tree, we would

get the following:
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t_order(A,R[2] > A,R[2]) { }

t_ord1(A > A)

t_ord3(A > R[2])

Notice that R[2] would then become free at the t ord1 call. 2

For the advantages o�ered by the insigni�cance of leaf selection, see Sec. 3.4.3.

B.2.2 Version selection

Once a leaf node is selected, a suitable realization version for its macro call

must be selected from the versions of the particular macro. ReFlEx traverses

the versions shown in the rule �le in the order speci�ed by the macro writer.

This traversal ends as soon as an acceptable version is found; if no version is

acceptable, the whole expansion of the current expansion source fails.

De�nition B.3 A particular macro version is acceptable to a particular leaf

if both the following conditions are met:

(a) The version-speci�c test is successful.

(b) There exists a macro variable binding that meets both the following sub-

conditions:

� It is legitimate.

� It makes the macro-speci�c test of each macro call in the version body

successful.

The macro variable binding speci�es the integers, cells, and labels that substi-

tute for the data and label temporaries of the macro version. The legitimacy

of a variable binding depends on the context (e.g. the set of cells that are free

at the leaf) and will be formulated in Def. B.7 in Sec. B.3.3. Finally, to eval-

uate the lower-level macro-speci�c tests, ReFlEx has to create a provisional

link between the leaf node and an appropriately modi�ed copy of the version

body.

Example B.3

Here is a simple macro de�nition with a single version, i.e. impl:

t_accept(x > y) {

TEST %(x,y);

impl: TEST ?R(x); USE R[t]; {

t_acc1(x > t); t_acc2(x,t > y);

}

}

Suppose now that the expander is about to link a realization to a t accept

leaf in some expansion tree. What are the conditions on the acceptability of

the impl version now like?
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The version-speci�c test requires that the input argument corresponding to

parameter x must be a cell of storage class R. Obviously, there cannot be

a sound variable binding unless there is a cell of class R to which macro

temporary t can be bound and that is both free at the leaf and di�erent from

the input argument. Furthermore, each one of macros t acc1 and t acc2

may have a macro-speci�c test that must be evaluated. The existence of

macro-speci�c tests can be determined only by looking at the respective macro

de�nitions. For instance, t accept here has a macro-speci�c test that requires

its two arguments to belong to the same storage class (this constraint has been

veri�ed already before the insertion of the t accept call in the tree as a leaf).

If t acc1, say, happened to have an exactly similar test, then that test would

be guaranteed to succeed, since both x and t are associated with class R. (In

general, of course, the fate of the macro-speci�c test of a given macro call

inside a given version de�nition is not �xed orthostatically, that is, before the

actual expansion. The result might depend, say, on the number of cells free at

the macro call, in which case the provisional link mentioned above is usually

needed.) 2

If a particular macro version is accepted, an appropriately modi�ed copy of

the version body is linked to the leaf node and thus irreversibly attached to

the expansion tree. Once the version selection is made, it cannot ever be

canceled, not even in the case that a blind alley is later met|backtracking

in version selection is not supported. Therefore, the ordering of the macro

versions and the contents of their version-speci�c tests should be orchestrated

very carefully.

B.3 Conditions on variable binding

In this section we derive the crucial part of the linking phase description: the

de�nition of a legitimate variable binding. We must begin by introducing

some preliminary notions.

B.3.1 Preliminary notions

We aim at generality and brevity in our discussion; in particular, we want that

some crucial notions apply to both macro de�nitions and expansion trees. We

begin with some simple generalizing conventions:

� Cells and data variables are collectively called markers.

� We assume that ReFlEx quietly associates a unique implicit la-

bel temporary with each such statement in a macro version body
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that the user has not explicitly provided with a label temporary;

moreover, these implicit label temporaries are indistinguishable

from the original ones during macro expansion.

� The macro head is a syntactically valid macro call; since we want

to be able to treat it as a statement, we assume that ReFlEx

provides even it with an implicit label temporary.

� If the user has not explicitly provided the statement within the ex-

pansion source with a label, ReFlEx provides it with an arbitrary

label that does not already appear in the expansion source.

Because of the implicit label temporaries, no macro version body can contain

two identical statements. Furthermore, as indicated by Def. B.7 in Sec. B.3.3,

even an expansion tree cannot contain two identical statements. (Here we have

a discrepancy between our current terminology and the one used in Sec. 5.

In Sec. 5, each macro call contains a label as an integral part; here the tree

nodes are constituted by statements consisting of a macro call and a separate

label. The latter convention is perhaps more intuitive, whereas the former

one was found to be more economical from the formalization viewpoint.)

Next, we give our main umbrella de�nition.

De�nition B.4 A macro scope or, more shortly, a scope consists of a

scope head, which is a statement, and a scope body, which is a sequence of

statements.

Intuitively, the scope body is an implementation of the scope head. We in-

troduce two scope types, de�nition scopes and expansion scopes:

� For a macro de�nition, there are as many de�nition scopes as

there are macro versions. The head of each de�nition scope is the

macro head statement, and the scope body is the body of one of

the macro versions.

� For an expansion tree, there are as many expansion scopes as

there are stock nodes. The head of each expansion scope is the

macro call statement of the stock node, and the scope body is the

realization of that macro call. Thus, any stock node statement

other than the root statement both is a head of an expansion

scope and belongs to the body of another expansion scope.

Example B.4

Fig. 37 shows a macro de�nition with two de�nitions scopes; Fig. 38 shows

an expansion tree with three expansion scopes. In Fig. 38, the root node is

provided with a non-empty free cell set|this free cell set must be explicitly

determined in the expansion source by the user. 2
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BRANCH tmpA(x,y > z,w) [l] {

v1: {

BRANCH tmpB(x,y > z,w) [l];

}

v2: USE R[t]; {

tmpC(x > t);

tmpD(y > z);

l0: tmpE(t > t);

BRANCH tmpF(z > y,w) [l];

tmpG(y > t);

tmpH(y > z);

BRANCH tmpI(t) [l0];

tmpJ(t > w);

}

}

Figure 37: A macro de�nition with two de�nition scopes.

tmp0(M[1] > M[2]) {A,R[0],R[3],M[1],M[2]}

tmp1(M[1] > M[2],R[3])

tmp11(M[1] > M[2],R[3])

tmp2(M[1] > A)

tmp21(M[1] > R[0])

tmp22(M[1] > A)

tmp23(A,R[0] > A)

tmp3(R[3],M[2] > R[3])

tmp4(R[3],A > M[2])

Figure 38: An expansion tree with three expansion scopes.

We also introduce some notions related to execution-time control propagation.

First, concerning intrascope control propagation, we adopt the following ter-

minology:

� Each statement in a scope body has a set of immediate successor

statements associated with it. For instance, a two-way branch

typically has two immediate successors.

� A path in a scope body is a chain of statements that is glued

together by the immediate successorship.

Second, two more terms concern interscope control propagation:

� Each scope body has exactly one entry point, which is the �rst

statement in the scope body, i.e. the statement that receives the

control from the outside.

� Each scope body has a set of exit points: any statement in the

scope body that may relinquish the control outside the scope is
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an exit point. (The last statement in the scope body is an exit

point unless the deviation quali�er of its macro call is JUMP or

SLEEP; additionally, any statement whose macro call has an exit

argument in common with the scope head is an exit point.)

Example B.5

Look again at Fig. 37 on page 78. The following sequence is a path from an

entry point of a scope to an exit point:

C!D!E!F!G!H!I!E!F

(For brevity, we have here dropped out the `tmp' pre�xes: `A' stands for `tmpA',

and so on. This convention holds even for a couple of following examples.) 2

B.3.2 Free cell analysis

In this subsection, we formulate a precise de�nition for the notion of a free

marker, that is, a free cell or a free data variable. We begin by de�ning life

paths, which indicate data dependencies that span over statements in the

code.

De�nition B.5 A path is a life path of a marker if all the following condi-

tions are met:

(a) No statement in the path writes the marker.

(b) The �rst statement of the path meets at least one of the following sub-

conditions:

� It is an immediate successor of some statement that writes the marker.

� It is an entry point of the scope body, and the scope head reads the

marker.

(c) The last statement of the path meets at least one of the following sub-

conditions:

� It has an immediate successor that reads the marker.

� It is an exit point of the scope body, and the scope head writes the

marker.

Example B.6

Consider again Fig. 37 on page 78. For the macro variables referred to in the

v2 version, there are the following life paths:

x : {

y : C G

z : E I!J I!E E!F I!E!F

w : {

t : D H H!I

2
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Finally, we are able to de�ne the set of free markers for each statement in any

scope, that is, the set of free variables for each statement in any de�nition

scope and the set of free cells for each statement in any expansion scope.

De�nition B.6 Whether a marker is free at a statement in a macro scope,

is determined according to the following criteria:

(a) Every data variable is free at the de�nition scope head.

(b) A cell is free at the root statement of an expansion tree if the cell either

belongs to the disposal set of the expansion tree or is written by the root

statement.

(c) A marker is free at a statement in a scope body if both the following

subconditions are met:

� The statement belongs to no life path of the marker.

� The marker is free at the scope head.

Note in particular that in the case of expansion scopes the de�nition above

is recursive. Moreover, the freedom in expansion scopes depends only on the

structure of the current scope and the enclosing upper-level scopes, and on the

disposal set. E�ectively, this means that the order in which the appropriate

realizations are linked to the leaves of the expansion tree is indeed insigni�-

cant, as we claimed already in Sec. B.2.1. (Often we simply say that a cell or

a data variable is free at some macro call, even if we actually mean freedom

at the statement that contains the macro call.)

Example B.7

Consider still one more time Fig. 37 on page 78. The macro variables of

version v2 are, according to Ex. B.6, not free at the following statements:

x : {

y : C G

z : E F I J

w : {

t : D H I

2

Example B.8

Consider now Fig. 38 on page 78. The cells free at the root are not free at

the following non-root nodes:

A : 3

R[0] : 22

R[3] : 2 21 22 23

M[1] : 1 11 21

M[2] : 2 21 22 23

2
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B.3.3 Legitimacy

When a macro version body is about to be linked to a leaf macro call, each

macro variable of the version is mapped to a single integer, cell, or label. This

variable binding must respect a number of constraints, which we now specify.

De�nition B.7 A variable binding is legitimate if all the following condi-

tions are met:

(a) Each macro parameter must be bound to the integer, cell, or label that

is the corresponding argument of the leaf macro call: an input parameter to

an integer or to a cell, an output or input-output one to a cell, and an exit

one to a label.

(b) Each data temporary must be bound to a cell of the indicated storage

class.

(c) Each data variable (each input parameter included) that is written by

some macro call in the version body must be bound to a cell that is free at

the leaf macro call.

(d) If two distinct data variables are bound to a single common cell, and if

one of them is written by some macro call in the version body, then the other

one must not be written by that macro call.

(e) If two distinct data variables are bound to a single common cell, and if

one of them is written by some macro call in the version body, then the other

one must be free at that macro call.

(f) Each label temporary must be bound to a label that does not already

appear in the expansion tree, that is di�erent from the possible follower label

of the tree, and to which no other label temporary is bound.

From Def. B.7 we easily see that a legitimate label temporary binding can

always be found, since we can assume that the set of labels is countably

in�nite. Furthermore, all legitimate label temporary bindings are trivially

equivalent. (For data temporaries, in contrast, see Sec. B.4.)

Example B.9

Suppose that we have a root node

L3: mac0(M[1] > M[2]) {R[0],R[3]}

and a single-version macro de�nition,

mac0(m1 > m2) {

v0: USE R[r]; {

mac1(m1 > r,m2);

l0: mac2(r,m2 > m2);

BRANCH mac3(m1,m2 > m2) [l0,l0];

}

}
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which we want to link to the root node speci�ed in the expansion source.

For simplicity, we assume that each macro dealt with in this example con-

tains neither macro-speci�c nor version-speci�c tests; this means that a legit-

imate variable binding is a su�cient condition for version acceptability (see

Def. B.3). By this assumption, the linking is clearly possible, because there

is a free cell of class R to be overitten [condition (c) of Def. B.7], i.e. R[0] or

R[3]. Thus we get an expansion tree such as shown in Fig. 39.

L3: mac0(M[1] > M[2]) {R[0],R[3]}

mac1(M[1] > R[3],M[2])

L5: mac2(R[3],M[2] > M[2])

BRANCH mac3(M[1],M[2] > M[2]) [L5,L5]

Figure 39: The tree after the �rst link operation.

Suppose then that we want to link a realization to the mac3 node in the tree.

The de�nition of mac3 is shown in Fig. 40. The argument list of the mac3 call

is indeed compatible with the parameter list of the mac3 de�nition: the two

exit arguments of the mac3 call are identical, as required by the macro head

[condition (a)].

BRANCH mac3(m1,m2 > m3) [l,l] {

v1: {

macA(m1,m2 > m1,m3);

BRANCH macB(m1,m3 > m3) [l];

}

v2: {

macA(m1,m2 > m2,m3);

BRANCH macB(m2,m3 > m3) [l];

}

v3: USE M[mx,my]; {

macC(m1,m2 > mx);

macD(m1,mx > my);

BRANCH macB(mx, my > m3) [l];

}

v4: USE R[r], M[m]; {

macC(m1,m2 > m);

macD(m1,m > r);

BRANCH macB(m,r > m3) [l];

}

}

Figure 40: A macro de�nition with four versions.

We traverse the versions of mac3 in the order given:
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� version v1 must be rejected, because it writes input parameter

m1, but the corresponding argument, i.e. M[1], is not free [condi-

tion (c)].

� v2 must be rejected, because variables m2 and m3 must be bound

to a common cell (as the arguments standing for these two param-

eters are identical), but the macA call in the version body writes

both the variables [condition (d)].

� v3 must be rejected, because both mx and my must not be bound

to the only free cell of class M, i.e. M[2]: mx is not free at the macD

call, by which my is written [condition (e)].

How about the �nal v4 then? You might verify by yourself that there is a

legitimate variable binding for v4; the result of the second linking can be seen

in Fig. 41.

L3: mac0(M[1] > M[2]) {R[0],R[3]}

mac1(M[1] > R[3],M[2])

L5: mac2(R[3],M[2] > M[2])

BRANCH mac3(M[1],M[2] > M[2]) [L5,L5]

macC(M[1],M[2] > M[2])

macD(M[1],M[2] > R[0])

BRANCH macB(M[2],R[0] > M[2]) [L5]

Figure 41: The tree after the second link operation.

2

B.4 On intraclass cell allocation

For a macro version that is about to be linked to a leaf node of an expansion

tree, there may be several legitimate but still essentially di�erent data tempo-

rary bindings available. For instance, there might be two possible alternatives

for a pair of data temporaries of a single common storage class: either the

temporaries are bound to a single common cell or they are bound to two sep-

arate cells. We intentionally leave it unspeci�ed how ReFlEx chooses among

alternative legitimate data temporary bindings. Still, a wrong choice may

later prove to be a fatal mistake: the whole expansion may result in a failure

that could have been prevented by a better choice.

In practice, however, the user can prevent unwanted data temporary bindings.

With the rudimentary ReFlEx 1.0, the only signi�cant di�erence between two

legitimate data temporary bindings can be reduced to a set of choices of the

following kind: are some argument designators of some individual macro call
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in the version body bound to a single cell or to distinct cells? (Accordingly, no

diagnostic primitive form can di�erentiate between legitimate choices of other

kinds.) By suitably augmenting the macro-speci�c tests of the appropriate

lower-level macros, the user can therefore force the desired binding. (Remem-

ber that ReFlEx rejects even a legitimate variable binding if the macro-speci�c

tests of the lower-level macro calls are not satis�ed, as stated in Def. B.3 in

Sec. B.2.2).

Example B.10

Suppose that we have the following macro de�nitions:

t_weird(a > r) {

wver: USE R[t]; { my_move(a > t); t_clash(t > r); }

}

Furthermore, the de�nition of t clash (which is called inside t weird above)

is supposed to be as follows:

t_clash(t > r) { // suspicious?

cver: TEST =(t,r); { my_move(t > r); }

}

Let us then assume that we are faced with the following expansion source:

t_weird(A > R[0]); {R[1]}

Thus we have two free cells of storage class R, i.e. R[0] and R[1]. Temporary

t of t weird must clearly be bound to either one of these. If R[0] is selected,

everything goes well, as the argument designators of the lower-level t clash

call inside the wver version body both become bound to R[0]. But if R[1],

instead of R[0], is selected, then the t clash call cannot be provided with

a realization: the only version of t clash expects that the two argument

designators in the call are bound to the same cell. The macro writer should

avoid this pitfall by moving the crucial version-speci�c test of the cver version

into a macro-speci�c test of the whole t clash macro; here we have the

improved de�nition:

t_clash(t > r) { // an improvement!

TEST =(t,r);

cver: { my_move(t > r); }

}

2

Accordingly, as only some of the intraclass allocation decisions are signi�cant,

it is readily seen that the automatic allocation performed by ReFlEx 1.0 can
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be optimized as follows. When the built-in allocator is traversing through

all the legitimate bindings in order to �nd one which could make the version

acceptable, many of the possible bindings can be skipped right away, that is,

without evaluation of all the lower-level macro-speci�c tests. More precisely,

any given binding N can be skipped if there is another binding M that has

already been found to be wanting, and no macro call in the macro version

body properly di�erentiates between M and N. Here we say that a macro call

properly di�erentiates between two variable bindings if the call has two data

argument designators which one of the bindings maps to a single cell but

which the other one maps to two distinct cells.
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C ReFlEx 1.0 code generation examples

C.1 A rule �le

Here we present an example of a syntactically valid ReFlEx 1.0 rule �le. The

rule �le is an extension of the one dealt with in Sec. 4.

HEADER {

Fact(a) = _If(_Lt(a,2), 1, _Mul(a,Fact(_Add(a,-1))));

Add(a,b) = _Add(a,b);

BShl(a,b) = _BShl(a,b);

Not(a) = _Nand(a,a);

And(a,b) = _If(a, _If(b,1,0), 0);

Or(a,b) = _If(a, 1, _If(b,1,0));

Int(a) = And(Not(?(a)), Not(&(a)));

Lt(a,b) = And(_Lt(a,b), And(Int(a),Int(b)));

Gte(a,b) = And(Not(Lt(a,b)), And(Int(a),Int(b)));

Eq(a,b) = And(Gte(a,b), Gte(b,a));

}

STORAGE {

M[1024];

R[4];

A[1];

}

SYSTEM {

set(c > r) { TEST And(?R(r), And(Gte(c,-1024),Lt(c,1024))); }

load(m > r) { TEST And(?R(r), ?M(m)); }

store(r > m) { TEST And(?R(r), ?M(m)); }

move(s > d) { TEST And(Or(?A(s),?R(s)), Or(?A(d),?R(d))); }

add(a,r > a) { TEST And(?A(a), ?R(r)); }

sub(a,r > a) { TEST And(?A(a), ?R(r)); }

JUMP goto() [l] { }

BRANCH eq(a) [l] { TEST ?A(a); }

BRANCH gt(a) [l] { TEST ?A(a); }

BRANCH lt(a) [l] { TEST ?A(a); }

}

UTILITY {

my_null(x > x) {

// verifies that the arguments are the same

null: { }

}

my_move(s > d) {

// moves s into d



{ 87 {

same: { my_null(s > d); }

as_set: { set(s > d); }

as_load: { load(s > d); }

as_store: { store(s > d); }

as_move: { move(s > d); }

temp_needed: TEST And(Not(?R(s)), Not(?R(d))); USE R[r];

{ my_move(s > r); my_move(r > d); }

}

my_mswap(m,n > n,m) {

// exchanges the contents of two memory locations

TEST ?M(m,n);

two_aux_free: TEST Gte(#R(),2); USE R[r];

{ my_move(m > r); my_move(n > m); my_move(r > n); }

acc_and_aux_free: USE A[a];

{ my_move(m > a); my_move(n > m); my_move(a > n); }

}

BRANCH my_gt(x) [l] {

// branches if x is positive

next: TEST &(l,NEXT); { }

const0: TEST Gte(x,1); { JUMP goto() [l]; }

const: TEST Int(x); { }

acc: TEST ?A(x); { BRANCH gt(x) [l]; }

default: USE A[a]; { my_move(x > a); BRANCH gt(a) [l]; }

}

BRANCH my_gt_decr(x,d > y) [l] {

// y is x decreased by d;

// branches if y remains positive

x_not_acc: TEST Not(?A(x)); USE A[a]; {

my_move(x > a);

BRANCH my_gt_decr(a,d > y) [l];

}

d_not_aux: TEST Not(?R(d)); USE R[r]; {

my_move(d > r);

BRANCH my_gt_decr(x,r > y) [l];

}

y_not_acc: TEST Not(?A(y)); USE A[a]; {

sub(x,d > a);

my_move(a > y);

BRANCH my_gt(a) [l];

}

default: {

sub(x,d > y);

BRANCH my_gt(y) [l];

}

}
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my_fix_lshift(x,s > y) {

// y is x shifted left by s bit positions;

// s must be a non-negative integer constant

TEST And(Int(s),Gte(s,0));

src_const: TEST Int(x); { my_move(BShl(x,s) > y); }

zero_shift: TEST Eq(s,0); { my_move(x > y); }

dst_not_acc: TEST Not(?A(y)); USE A[a]; {

my_fix_lshift(x,s > a); my_move(a > y);

}

src_mem: TEST ?M(x); USE R[r]; {

my_move(x > r); my_fix_lshift(r,s > y);

}

src_aux: TEST ?R(x); {

my_move(x > y); add(y,x > y); my_fix_lshift(y,Add(s,-1) > y);

}

src_acc: USE R[r]; {

my_move(x > r); add(x,r > y); my_fix_lshift(y,Add(s,-1) > y);

}

}

my_var_lshift(x,s > x) {

// x shifted left by s bit positions;

// s must be in the accumulator and

// x in an auxiliary register

TEST And(?R(x),?A(s));

implem: USE R[d,t]; {

BRANCH eq(s) [l2];

my_move(1 > d);

l1: my_move(s > t);

my_fix_lshift(x,1 > x);

my_move(t > s);

BRANCH my_gt_decr(s,d > s) [l1];

l2: ;

}

}

}

C.2 Example runs

Here we present some code generation examples produced with the rule �le

of Sec. C.1. Before the �nal expansion result, we each time show the full

expansion tree. Note again that the actual ReFlEx 1.0 output syntax is

somewhat more complicated (see [63] for a complete reference).

> my_mswap(M[8],M[6] > M[6],M[8]) {R[1],R[3]}

my_move(M[8] > R[3])
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load(M[8] > R[3])

my_move(M[6] > M[8])

my_move(M[6] > R[1])

load(M[6] > R[1])

my_move(R[1] > M[8])

store(R[1] > M[8])

my_move(R[3] > M[6])

store(R[3] > M[6])

my_mswap(M[8],M[6] > M[6],M[8]) {R[1],R[3]}

load(M[8] > R[3])

load(M[6] > R[1])

store(R[1] > M[8])

store(R[3] > M[6])

> my_mswap(M[8],M[6] > M[6],M[8]) {A,R[3]}

my_move(M[8] > A)

my_move(M[8] > R[3])

load(M[8] > R[3])

my_move(R[3] > A)

move(R[3] > A)

my_move(M[6] > M[8])

my_move(M[6] > R[3])

load(M[6] > R[3])

my_move(R[3] > M[8])

store(R[3] > M[8])

my_move(A > M[6])

my_move(A > R[3])

move(A > R[3])

my_move(R[3] > M[6])

store(R[3] > M[6])

my_mswap(M[8],M[6] > M[6],M[8]) {A,R[3]}

load(M[8] > R[3])

move(R[3] > A)

load(M[6] > R[3])

store(R[3] > M[8])

move(A > R[3])

store(R[3] > M[6])

> my_fix_lshift(M[10],3 > M[11]) {A,R[3]}

my_fix_lshift(M[10],3 > A)

my_move(M[10] > R[3])

load(M[10] > R[3])

my_fix_lshift(R[3],3 > A)

my_move(R[3] > A)

move(R[3] > A)

add(A,R[3] > A)

my_fix_lshift(A,2 > A)
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my_move(A > R[3])

move(A > R[3])

add(A,R[3] > A)

my_fix_lshift(A,1 > A)

my_move(A > R[3])

move(A > R[3])

add(A,R[3] > A)

my_fix_lshift(A,0 > A)

my_move(A > A)

my_null(A > A)

my_move(A > M[11])

my_move(A > R[3])

move(A > R[3])

my_move(R[3] > M[11])

store(R[3] > M[11])

my_fix_lshift(M[10],3 > M[11]) {A,R[3]}

load(M[10] > R[3])

move(R[3] > A)

add(A,R[3] > A)

move(A > R[3])

add(A,R[3] > A)

move(A > R[3])

add(A,R[3] > A)

move(A > R[3])

store(R[3] > M[11])

> my_var_lshift(R[0],A > R[0]) {A,R[2],R[3]}

BRANCH eq(A) [l2$1]

my_move(1 > R[2])

set(1 > R[2])

l1$1: my_move(A > R[3])

move(A > R[3])

my_fix_lshift(R[0],1 > R[0])

my_fix_lshift(R[0],1 > A)

my_move(R[0] > A)

move(R[0] > A)

add(A,R[0] > A)

my_fix_lshift(A,0 > A)

my_move(A > A)

my_null(A > A)

my_move(A > R[0])

move(A > R[0])

my_move(R[3] > A)

move(R[3] > A)

BRANCH my_gt_decr(A,R[2] > A) [l1$1]

sub(A,R[2] > A)

BRANCH my_gt(A) [l1$1]

BRANCH gt(A) [l1$1]
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l2$1:

my_var_lshift(R[0],A > R[0]) {A,R[2],R[3]}

BRANCH eq(A) [l2$1]

set(1 > R[2])

l1$1:

move(A > R[3])

move(R[0] > A)

add(A,R[0] > A)

move(A > R[0])

move(R[3] > A)

sub(A,R[2] > A)

BRANCH gt(A) [l1$1]

l2$1:
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