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Abstract

Tetrasystems are proposed as a common framework for practical string generation
devices such as macro processors and parametric Lindenmayer systems. They are also
capable of emulating many devices well-known from formal language theory.

1 Introduction

We are especially interested in rewriting systems neither as language recognition devices nor
as language generation devices but as string generation devices, like macro processors [1] or
parametric Lindenmayer systems [11, 10, 9], which are proven programming tools. Therefore, we
want to allow infinite alphabets (for coping with structured symbols) and unbounded context-
sensitivity. (For our earlier attempts in this direction, see [5, 4].)

We propose tetrasystems as a common framework for such string generation devices. How-
ever, we also claim that tetrasystems are able to emulate large families of devices well-known
from formal language theory. This notion of emulation will be explicated in the actual NWPT
2012 presentation.

Section 2 contains preliminary definitions, and section 3 then introduces tetrasystems. Fi-
nally, section 4 takes a closer look at tetrasystem-based emulation of other devices.

2 Preliminary Definitions

The trees considered here are finite, rooted, and ordered. Each tree node moreover holds a
letter. The letters divide into nonterminals and terminals. Words are finite letter sequences.

2.1 Span Between Two Tree Nodes

Let n1 and n2 be two given nodes in a given tree, and let n0 denote the lowest (i.e. closest)
common ancestor of n1 and n2. We define the span between n1 and n2 as the following integer
triple 〈i, d, j〉:

i = the difference of the depths of n1 and n0

d =

 −1 if n2 is on the left of n1

0 if (at least) one of n1 and n2 is an ancestor of the other
1 if n2 is on the right of n1

j = the difference of the depths of n2 and n0

(Of course, the depth of the root is 0, and the depth of a child is always one more than the
depth of the parent.)

Let the span between n1 and n2 be denoted as 6 (n1, n2). Obviously, 6 (n1, n2) = 〈i, d, j〉
implies 6 (n2, n1) = 〈j,−d, i〉; and trivially, 6 (n1, n1) = 6 (n2, n2) = 〈0, 0, 0〉.
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2.2 Tree Belts and Belt-Selectors

A belt of a tree is simply a cross section of the tree, that is, such a subset of the tree nodes that
contains exactly one ancestor of each leaf of the tree.

A comb is defined as any such function f : {. . . ,−2,−1, 0, 1, 2, . . .} → {0, 1, 2, . . .} ∪ {∞}
that ∀i 6= 0 : f(i) > 0.

A belt-selector is a function that takes a tree and one of its nodes as its arguments and
returns such a belt of the argument tree that contains no proper ancestor of the argument
node. Moreover, there is a bijection between combs and belt-selectors, and so for any belt-
selector s, there is a unique comb fs.

But we still have to define how a belt-selector selects its belt, and to characterize the claimed
bijection. For a given belt-selector s, for a given tree X, and for a given node n of X, the belt
selected is the node set constructed by the following two successive steps:

1. Each such node n′ ∈ X that is not a proper ancestor of n is added to the set if 6 (n, n′) =
〈i, d, fs(i× d)〉 for some i and d.

2. Each such leaf of X that has no ancestor already in the set is added to the set.

A belt-selector is said to be settled at a tree node if every leaf added by step 2 above holds
a terminal. For example, consider the belt-selector s with ∀i : fs(i) =∞. This belt-selector is
settled at a tree node if and only if all the leaves of the tree hold terminals. On the other hand,
the belt-selector s∗ with ∀i : fs∗(i) = min(|i|, 1) is settled at every node in every tree.

2.3 Letter-Refiners

A letter-refiner is a function that takes three arguments: a word, a letter, and a word. The
former word represents the left-hand context, and the latter the right-hand context. The letter-
refiner returns a non-empty set of non-empty words, which represent the possible (mutually
alternative) refinement results of the argument letter in the specified two-sided context. (Each
terminal refines only to itself.)

3 Tetrasystems

A tetrasystem implements rewriting as a tree generation process. The operation of a tetrasystem
is governed by a refinement rule base and a separate control mechanism. These two are intended
to be as orthogonal to each other as possible.

The alphabet of a tetrasystem may be countably infinite, and the effective rewriting context
may be unbounded in both directions.

3.1 Components of a Tetrasystem

The two main components of a tetrasystem are a letter-refiner (i.e. the rule base) and a frame
(i.e. the control mechanism) consisting of four belt-selectors.

All the components of a given tetrasystem 〈VN , VT , cS , r, 〈s1, s2, s3, s4〉〉 are as follows:

• set VN of nonterminals, which must be non-empty but may be finite or countably infinite

• set VT of terminals, which may be empty, finite, or countably infinite



• the seed-letter cS must belong to VN

• the letter-refiner r must have the property that every possible refinement result of each
letter in VN may contain only letters in VN ∪ VT

• the frame 〈s1, s2, s3, s4〉

3.2 Tetrasystem Operation

The tree generation process proceeds as follows:

1. The tree is booted up by introducing a single root node holding the seed-letter.

2. The tree grows by repeated expansion of leaves holding nonterminals:

(a) (Use of s1.) A given nonterminal-lettered leaf node is fertile, i.e. ready to be ex-
panded, if the generation process has already proceeded sufficiently far in the other
parts of the tree. That is, s1 must be settled at the leaf.

(b) (Use of s2.) At a time, exactly one of the fertile leaves (if any) is expanded by
applying the letter-refiner: the two sides of the refinement context are given by
the belt returned by s2; and the node changes from a leaf into a non-leaf as it is
now provided with a child node sequence collectively holding one of the possible
refinement results.

3. Output words (if any) of the process can be found at any time (and so even if the process
has not terminated):

(a) (Use of s3.) A node is mature if it is nonterminal-lettered and s3 is settled at it.

(b) (Use of s4.) For any mature node, the belt returned by s4 gives an output word.

So the process does not terminate as long as there are fertile nonterminal-lettered leaves.

4 Emulation of Other Devices

We claim that tetrasystems are intrinsically capable of emulating macro processors and para-
metric Lindenmayer systems: one just has to choose the appropriate frame.

We also claim that choosing a suitable frame even, in a sense, enables the emulation of

1. FPIL-type Lindenmayer systems [13, 3],

2. context-sensitive Chomsky grammars [7], and

3. context-sensitive pure grammars [8, 6].

However, there are further restrictions concerning the empty word: in cases 2 and 3, the
native production rules must never refine any letter into an empty word; and in cases 1 and 3,
the native start words must not include the empty word.

We demonstrate the above claims by using selective substitution grammars [12, 2] simply
for their original purpose: as a unifying rewriting framework, now for all the devices men-
tioned above (other than tetrasystems). This common intermediate representation facilitates
the explication of our notion of emulation in the actual NWPT 2012 presentation.

The presentation will also precisely specify the frames needed in each one of the emulation
cases mentioned above.
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