On Tree Belts and Belt-Selectors

Eero Lassila*

Abstract

Such finite trees are considered that are rooted and ordered: every tree
node is a descendant of a unique root node; and the direct descendant nodes
of each node are linearly ordered. A rather general mechanism is presented
for the specification of such two-argument functions that take any tree and
any node in the tree and return such a cross-section-type subset of the nodes
of the argument tree that contains the argument node itself.

1 Introduction

Computerized information processing often involves manipulation of finite strings of
symbols. For example, computer programs themselves, when interpreted as data, are
finite instruction sequences, and their compile-time generation and optimization can
be seen as string manipulation. (In addition to atomic symbols, like the characters in
a character string, structured symbols are allowed to occur in the strings considered.)
We are especially interested in the case in which the lowest-level string manipulation
operations available are elementary refinements: one symbol occurrence is replaced
with an appropriate new substring, as depicted in Figure 1.

Figure 1: An elementary refinement.

By introducing an auxiliary root node, we are able to represent an arbitrary series of
successive elementary refinements as a tree, as suggested in Figure 2. The particular
tree in the figure is seen to record five elementary refinements. Obviously, the tree
representation partially hides the actual order in which the elementary refinements
have been performed.

*Helsinki University of Technology, Laboratory for Theoretical Computer Science, P.O. Box
5400, FIN-02015 HUT, Finland. E-mail address: eero.lassila@hut.fi

For the purpose of tasks like optimizing code generation, the elementary refinements
should be unboundedly context-sensitive. Nevertheless, even if we normally want
to use a refinement context that is maximally wide, we may often be satisfied with
a context that is not particularly greedy: it may well be appropriate to use some
other cross section of the tree than the maximally deep cross section consisting of
the current leaf sequence. In the following, we give three code-generation-related

Figure 2: A series of elementary refinements represented as a tree.

examples of a context selection scheme.

Macro processors [2, 4, 3, 5] use a cross section whose left-hand side is
maximally deep. Moreover, the left-hand side must be constituted by
terminal symbols rather than by other macro calls. (Each elementary
refinement, that is, the expansion of each macro call, may be sensitive to
the current values of any global macro-time variables, and these values
customarily propagate from left to right. In contrast, the right-hand
context is usually ignored.) Therefore, the leaf processing order is strictly
depth-first and left-to-right, which means that the cross section even as a
whole is necessarily maximally deep. Figure 3 shows a sample tree at the
unique moment when the leaf marked with a black ring is processable;
the refinement context is indicated by white rings, and the checkered
nodes in the left-hand context correspond to terminal symbols.

Parametric Lindenmayer systems [20, 19, 14, 13, 18, 17] output sequences
of drawing commands and thus indirectly produce high-quality graphics.
They are perhaps the best-known example of application-oriented exten-
sions to the basic Lindenmayer system model [7, 21, 8]. With Linden-
mayer systems (whether parametric or not), the tree nodes are processed
in a generation-by-generation fashion, and the “horizontal” cross section
constituted by all the nodes in the current generation serves as the refine-
ment context. In practice, the nodes within each single generation may
well be processed sequentially, rather than simultaneously, but it should
be noticed that the desired horizontal cross section then differs from the
maximally deep cross section. The two trees of Figure 4 depict only the
two extremes among the possible processing moments for the leaf with
the black ring.

Figure 5 illustrates a context selection scheme that we have earlier em-

ployed in a simplistic prototype [9, 10, 11], called ReFlEz, of a still
nonexistent tool proposed by us for optimizing machine-level code gen-
eration [1, 12, 16, 15]. Now the refinement context is constituted by the
least deep cross section possible. Such ungreediness is rewarded as the
leaf processing order becomes completely free. The two trees of Figure 5
again depict only two of the possible processing moments for the leaf
with the black ring. (The moment depicted on the left-hand side of the
figure is of course the earliest possible.)

Figure 5: The refinement context used by the ReFlEx prototype.

Our present goal is to find a general mechanism with which one can conveniently
specify the particular cross section to be used as the refinement context. On one
hand, the mechanism should be expressive by imposing only few constraints on the
choice of the cross section; on the other hand, well-designed constraints would prob-
ably be helpful by making the consequences of the choice more easily tractable. In
the following Section 2, we formulate a simple constraint on cross section selection,
and in the final Section 3, we then describe such a cross section specification mech-
anism that exactly matches the formulated constraint. We suggest that the single
constraint is not only simple but also a practical one, even if we do not, as yet, try
to provide any concrete evidence for this claim.

2 Definition of a belt-selector

2.1 Trees

A tree consists of a finite and non-zero number of nodes. Figure 6 depicts a sample
tree, which we call A. (By convention, ‘node a3’, for instance, refers to the unique
node in tree A labeled as ‘3’. The reason why node ay is distinguished in Figure 6
is that we have, more or less arbitrarily, chosen it to have an important role in
some examples below.) Each tree is rooted and ordered, as will be explained next.
(This denotation of the term ‘tree’ adopted here is a standard one within the formal
language community; see [6], for instance.)

Figure 6: Tree A.

The rootedness means that each tree has exactly one root: the root of A is ay. Every
tree node different from the root has exactly one father in the tree: the father of ag
is ay, and so ag (like a9 and ayy) is a son of ay. Such tree nodes that have no sons
are leaves of the tree: A has a total of nine leaves.

We say that a given node n' is an ancestor of a given node n if the pair (n',n)
belongs to the reflexive-transitive closure of the binary ‘is a father of” relation. (By
‘a pair’ we always mean an ordered pair.) Hence the ancestors of ag are agy, a,, and
ag. If n’ is an ancestor of n, then n is a descendant of n’. Moreover, n' is a proper
ancestor of n, and n is correspondingly a proper descendant of n', if n' is an ancestor
of n and n' # n.

The orderedness means that there is a total “left-to-right” order among the sons of
any given tree node. If two distinct nodes have the same father, then one of them
is a left-brother of the other, and the latter is a right-brother of the former. For
instance, ag has right-brothers a;y and a;;, and a;o has ag as a left-brother and a;;
as a right-brother.

We say that a given node n' is a left-relative of a given node n if there are such
nodes ng and ng in the tree that ny is a left-brother of ny, n' is a descendant of ny,
and n is a descendant of ngy. If n’ is a left-relative of n, then n is a right-relative of
n'. For instance, ag is a left-relative of ag (since a; is a left-brother of ay), and aq is
a right-relative of as.

Note that for each two distinct nodes n* and n** in any given tree, exactly one of the
following statements holds: n* is a proper ancestor of n**; n* is a proper descendant
of n**; n* is a left-relative of n**; or n* is a right-relative of n**

2.2 Angles between tree nodes

Each tree node has a unique degree, and each pair of tree nodes has a unique angle.

Definition 1. The degree of a given tree node is the number of its proper ances-
tors.

Definition 2. The angle of a given tree node pair (n,n’) is denoted as <((n,n’)
and defined as the unique integer triple (i,d,j) that meets the following condi-
tions.
1. i [respectively, j] is the difference of the degrees of n [respectively, n'] and the
one of the common ancestors of n and n’ that has the greatest degree.
2. d =0if one of n and n’ is an ancestor of the other, d = —1 if n’ is a left-relative
of n, and d = 1 if n’ is a right-relative of n.

Note that <(n,n’) = (i,d, j) always implies <((n',n) = (j, —d,). Table 1 lists the
angles from node ag to the other nodes of our sample tree A.

n <(ag,n) | n <(ag,n) | n <(ag,n)
ap <2,0,0> dg <2]_,3> a2 <0,0,].>
a <2, —]_,]_> ary <2,]_, 3> as <0, 0,].>
as (1,0,0) | ag (2,—1,4) a4 (0,0,2)
as (2,1,1) | a (0,0,0) |ap (1,1,2)
a; (2,-1,2) |ap (1,1,1) |a (1,1,2)
as <2,—1,3> ary < ,]_,]_> ary <]_,]_,2>

Table 1: The angles from node ag to the other nodes of tree A.

Definition 3. A given integer triple (i,d, j) is a link if there is such a tree node
pair (n,n’) that <(n,n') = (i,d, j).

Note that (i,d, j) is a link if and only if all the following conditions are met: i > 0,
de{-1,0,1},j>0,andd =0 < i x j = 0.

2.3 Belts and belt-selectors

Definition 4. A belt of a tree is any such subset of the tree nodes that each leaf
of the tree has exactly one ancestor in the subset.

In any tree, both the set consisting of the sole root and the set consisting of all
the leaves are belts. For more specific examples, Table 2 lists all such belts of our
sample tree A that contain node ag.

Definition 5. A belt-provider is any such two-argument function that takes any
tree and any node in the tree and returns one such belt of the tree that contains the
node.

{a1} U {ag} U{aig, air, a3} {as, 26,27} U{ag} U {aig,air,as}
{a1} U {ag} U{ais, air, as} {as, 26,27} U{ag} U {ais,ai1,as}
{a1} U {ag} U {aio, a1, a17, a3} {as,a6,a7} U {ag} U {aig, a16,a17, a3}
{a1} U {ag} U {ais, ais,a17, a3} {as,a6,a7} U{ag} U {ai5,a16,a17, a3}

{ad} U {ag} U{aio, air, a3} {as,as,a7} U{ag} U {aig,air,as}
{as} U{ag} U{ais, air, as} {as,as,a7} U{ag} U {ais,ai1,as}
{aa} U {ag} U {aig, a1, ai7, a3} {as,as,a7} U {ag} U {ai, 16,17, a3}
{aa} U{ag} U {ais, ais, a17, a3} {as,as,a7} U {ag} U {ai5,a16,a17, a3}

Table 2: The sixteen belts of tree A that contain node ag.

Definition 6. A given belt-provider s is untangular, and hence called a belt-
selector, if it meets the following condition.

e Let X; and X, be two trees containing nodes ny and ns, respectively. Suppose
that X has a leaf n{, and let the unique ancestor of n| that belongs to s(Xy,n;)
be denoted as nf. Similarly, suppose that X, has a leaf n), and let the unique
ancestor of nj, that belongs to s(Xs,ny) be denoted as nj. Then <(ny,n}) =
<(ng,nfy) implies <(ny, n}) = <(ng, ny).

2.4 An example

Before a more thorough analysis in Section 3, let us briefly look at some consequences
of the uniangularity requirement. Specifically, we will consider some belts of tree B,
on the left-hand side of Figure 7, and ask whether there is such a belt-selector that
is able to select the particular belt for node by. Of course, any belt selected must
contain by itself, and we restrict ourselves to only three such belts.

Figure 7: Trees B and C.

Case 1: {by, b7, big,b13}. In Section 3 below, we will prove that there exists such a
belt-selector s for which s(B,bs) equals this belt.

Case 2: {by,bg,big,b13}. (This is the belt of case (1) with b; replaced by its
single son bg.) It is readily seen that there exists no such belt-selector s* for
which s*(B,bs) equals this belt: uniangularity would otherwise be violated, since
<f(b4,b9) = <I(b4,b12) but <I(b4,bg) 7£ <):(b4,b10).

Case 3: {by,b7,b19,bs}. (Thisis the belt of case (1) with the brotherless b;3 replaced
by its father bs.) Again, there exists no such belt-selector s* for which s*(B, by) equals
this belt. Our following simple proof is by contradiction; suppose for a moment that
such s* exists. Consider tree C, on the right-hand side of Figure 7, which is otherwise
fully isomorphic to tree B but has a single additional branch consisting of nodes
C14, C15, C16, and cy7. Because <((by,bi2) = <((cy, c17) and <t(bg, b1g) = <(cy, €15),
uniangularity requires that ci5 belongs to s*(C, c4). This forces us to include even
c13 in $*(C,cy4). The contradiction desired is now that <t(bg,biz) = <t(cy, c13) but
obviously <(by, bs) # <(c4, c13), and so uniangularity is violated.

3 More explicit characterization of belt-selectors

We let N denote the set {1,2,...} of all positive integers. The ‘less-than’ relation
is extended from N* to N* U {oo} simply by stating that k < oo for every k € N*
and requiring that the relation remains irreflexive and transitive.

Definition 7. A comb is any function from N* x {—1,1} to N* U {oo}.

Definition 8. A given comb f is a characteristic comb of a given belt-provider
s if for every tree X, for every node n of X, and for every leaf n’ of X, the following
conditions are met when <(n,n’) is denoted as (i, d, j) and the unique ancestor of
n' that belongs to s(X,n) is denoted as n”.
1. Suppose d # 0 and j < f(i,d). Then n” = n'.
2. Suppose d # 0 and j > f(i,d). Then n” is the unique proper ancestor of n' for
which <(n,n") = (i,d, f(i,d)).

Let us tentatively try to associate each one of the three belt selection schemes
depicted in Figures 3, 4, and 5 with a characteristic comb. Consider any i € NT.
Macro processors seem to require that f(i, —1) = oo but f(i,1) = 1; Lindenmayer
systems and the ReFIEx prototype seem to require that f(i,—1) = f(i,1) = i and
f(i,—1) = f(i,1) = 1, respectively.

Notation 9. The set of belt-providers [respectively, of belt-selectors, of combs] is
denoted as P [respectively, S, F|.

Our following main result indicates that the ‘is a characteristic comb of’ relation
is actually a one-to-one correspondence between combs and belt-selectors. In par-
ticular, the theorem implies that the set of belt-selectors is non-empty, since the
set of combs is obviously non-empty. Notice also that it now becomes evident that
there does exist a belt-selector realizing case (1) of the example in Section 2.4: we
may choose any belt-selector whose characteristic comb f has the property that

f(2,1) =3.

Theorem 10. Let R denote the set of all such members (s, f) of P x F that f is a
characteristic comb of s. Then R C S8 x F, and moreover, R is a bijective function
from S to F.

We will be able to prove Theorem 10 after first obtaining some auxiliary results.
Lemma 11. Each comb is a characteristic comb of at least one belt-provider.

Proof. Let f, X, and n be a given comb, a given tree, and a given node of the tree,
respectively. We define two subsets N; and Ny of the nodes of X in the following
incremental fashion.

1. Ny = {n}UN'" when N’ consists of all such nodes n' of X that <(n,n’) =
(i,d, f(i,d)) for some (i,d) € N x {—1,1}.

2. Ny = N;UN* when N* consists of all such leaves of X that have no ancestor
in Nl-

By the two definitions above, neither set N; nor set N, contains such a node
that is a proper ancestor of some other node in the same set. Consequently, Ny is
easily seen to be such a belt that contains n. Hence, the above two-stage node set
construction procedure serves as a belt-provider, and it is straightforward to verify
from Definition 8 that f is indeed a characteristic comb of that belt-provider. O

Lemma 12. Each comb is a characteristic comb of at most one belt-provider.

Proof. (By contradiction.)

Assume that a comb f is a characteristic comb of two distinct belt-providers
sy and sy. Because s; # sy, there must be a tree X with such a node n that
s1(X,n) # so(X,n).

However, Definition 8 picks for each leaf a unique ancestor that must belong to
the belt returned by any such belt-provider whose characteristic comb is f. (For
each such leaf of X that is a descendant of n, the unique ancestor is obviously n
itself, already by the definition of a belt-provider.) Hence, we must have s;(X,n) =
$o(X, n), which is a contradiction. O

Lemma 13. Each belt-provider has at most one characteristic comb.

Proof. (By contradiction.)

Assume that a belt-provider s has two distinct characteristic combs f; and fs.
Because f; # fo, there must be such (i,d) € Nt x {—1,1} that fi(i,d) # f2(7,d).
Without loss of generality, we may further assume fi(i,d) < fo(i, d).

We clearly have f;(i,d) < co. Consider then any tree X with such nodes n and
n” that <(n,n") = (i,d, f1(i,d)) and n” is a father of some leaf n’ of X.

First, since f; is a characteristic comb of s, condition (2) of Definition 8 requires
that n” € s(X,n). Second, since fs is a characteristic comb of s, condition (1) of
Definition 8 requires that n’ € s(X,n). This is obviously a contradiction. O

Lemma 14. Let R* denote the set of all such members (f, s) of F x P that f is a
characteristic comb of s. Then R* is an injective function from F to P.

Proof. Lemmas 11 and 12 together imply that the specified R* is a function from F
to P, and Lemma 13 moreover implies that the function is injective. O

Lemma 15. If a belt-provider has a characteristic comb, then the belt-provider is
a belt-selector.

Proof. Suppose that a belt-provider s has a characteristic comb f. Let X; and X,
be given trees, let n; and ny be given nodes of Xy and Xs, respectively, and let n
and n4, be given leaves of X; and Xo, respectively Let n{ denote the unique ancestor
of n that belongs to s(Xi,n;), and let nY similarly denote the unique ancestor of
nh that belongs to s(Xs,ny). By Deﬁnltlon 6, it is now sufficient to demonstrate
that <t(ny,n}) = <(ng,n}) implies <<(ny, n) = <<(ng, ny).

So we assume that <((ny,n}) and <(ng, n)) are both equal to some link (7, d, j),
and try to show that <t((nq,nY) = <t(ng, nj). We divide the task into three cases.

° Suppose d = 0. By the definition of a belt-provider, we now have n{ = n;
and nj = ny, and so indeed <t(nq,nY) = (0,0,0) = <t(ng, nh).
e Suppose d # 0 and j < f(z,d). By condition (1) of Definition 8, we now
have n{ = n and nf = n), and so indeed <t(ny,nY) = (i,d, j) = <(ng, nf).
e Suppose d # 0 and j > f(i,d). By condition (2) of Definition 8, we now
indeed have <((ny,n}) = (i, d, f(i,d)) = <(na, n}).
O

Lemma 16. Let n; and nf be nodes in a tree Xy, and suppose that n is not a

leaf. Similarly, let ny and ni be nodes in a tree X, and suppose that nj is not

a leaf. Suppose also <((ni,n) = <(ng,ny). Then for any belt-selector s, we have
1€ s(Xy,n) & nj € s(Xy,ng).

Proof. We suppose exactly what is suggested above in the text of the lemma and
set out to verify that for any s, it is the case that n} € s(X1,n1) < nj € s(Xz, na).

As depicted in Figure 8, we let n [respectively, n}] denote any such leaf of X
[respectively, Xg] that is also a proper descendant of n [respectively, nj]. (Because
neither nf nor n} is a leaf, such n} and n), do exist.) It is now easy to see that there
exists a tree Xy, sketched on the right-hand side of Figure 8, with such nodes ny,
ng, Ngq, and ng , that meet the following conditions.

1. ng is not a leaf.

2. <(ng,ng) = <t(n1,ny).

3. <(ng,ny) = <t(ng,ny). (This is a trivial consequence of the previous condi-
tion, since it is supposed that <(ny,nf) = <(ng, nj).)

4. Both ng,; and ng, are such leaves that are proper descendants of ng.

5. <(no,ng,;) = <<(ng,ny).

6. <(no,npo) = Ang,ny).

First, by the uniangularity stated in Definition 6, conditions (5) and (2) above
together ensure that ny € s(Xo,n9) < nf E s(X1,n1). Second, again by uniangu-
larity, conditions (6) and (3) ensure that ny € s(Xo,n9) < ny € s(Xz,n2). The
claim now trivially follows from the combination of these two facts. O

Definition 17. Let s be a given belt-selector, and let L denote the link set that
consists of every such link (i*, d*, j* > that meets the following condition: there are
such a tree X and such nodes n and n” of X that <(n,n") = (i*,d*, j*), n" € s(X,n),
and n” is not a leaf. We say that a given comb f is a natural comb of s if the
following conditions are met for every (i,d) € N* x {—1,1}.

1. f(i,d) = oo if and only if (i,d,j) € L for every j € NT.

2. If f(i,d) < oo, then (i,d, f(i,d)) € L.

Figure 8: Proving Lemma 16.

Lemma 18. Each belt-selector has at least one natural comb.

Proof. Obvious from Definition 17. (Notice that for any given link set L, even if
it is different from the particular link set constructed in Definition 17, there is at
least one such comb f that meets the two conditions (1) and (2) of Definition 17 for
every (i,dy € Nt x {—1,1}.) 0

Lemma 19. If a belt-selector has a natural comb, then the natural comb is also a
characteristic comb of the belt-selector.

Proof. Let a comb f be a natural comb of a belt-selector s. To find out whether
f is necessarily also a characteristic comb of s, we set out to examine whether the
conditions of Definition 8 are met for a given tree X, for a given node n of X, and for
a given leaf n' of X. We denote <t(n,n') as (i, d, j) and the unique ancestor of n’ that
belongs to s(X,n) as n”. The examination may be divided into the following three
cases. (Of the two conditions of Definition 8, condition (1) is covered by cases (1)
and (2) below, and condition (2) is covered by case (3).)

1. Suppose d # 0 and j < f(i,d) = co. By condition (1) of Definition 17, we
must have n” = n'. Hence, the appropriate condition (1) of Definition 8 is
indeed met.

2. Suppose d # 0 and j < f(i,d) < oco. By condition (2) of Definition 17,
there are such a tree X, and such nodes ny and nf of Xj that <(ng,ny) =
(i,d, f(i,d)) and nj € s(Xo,n0). (Here we need not be interested in whether
ng is or is not a leaf.) This means that for any proper ancestor n* of n/,
there is such a proper ancestor ng of n{ that the following conditions are
met.

e <(n,n*) = <(ng,ny).
e Neither n* nor nj is a leaf.
o 0} & s(Xo,ng).

Lemma 16 now implies that n” # n* for any n*, and so we must have
n” = n'. Hence, the appropriate condition (1) of Definition 8 is indeed met.

3. Suppose d # 0 and f(i,d) < j < oco. By condition (2) of Definition 17,
there are, again, such a tree X, and such nodes ng and ng of X, that
<(no,ny) = (i,d, f(i,d)), ny € s(Xo,n0), and ng is not a leaf. Lemma 16
now implies that n” must be the unique proper ancestor (which obviously
cannot be a leaf) of n' for which <(n,n") = <(no,ny) = (i,d, f(i,d)).
Hence, the appropriate condition (2) of Definition 8 is indeed met.

O

Proof of Theorem 10. By Lemmas 18 and 19, every belt-selector has a characteristic
comb; and by Lemma 15, no such belt-provider that is not a belt-selector has a
characteristic comb. Hence, a belt-provider has a characteristic comb if and only if
the belt-provider is a belt-selector, and so the claim now follows from Lemma 14. O

References

1]

8]
[9]

[10]

[11]

[12]

A.V. Aho, R. Sethi, and J.D. Ullmann. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1986.

P.J. Brown. A survey of macro processors. Annual Review in Automatic Pro-
gramming, vol. 6, part 2, pp. 37-88. Pergamon Press, 1969.

P.J. Brown. Macro Processors and Techniques for Portable Software. Wiley,
1974.

M. Campbell-Kelly. An Introduction to Macros. Macdonald, London (UK),
1973.

A.J. Cole. Macro Processors (second edition). Cambridge University Press,
1981.

F. Gécseg and M. Steinby. Tree languages. In [22], vol. 3, pp. 1-68.

G.T. Herman and G. Rozenberg. Developmental Systems and Languages.
North-Holland, 1975.

L. Kari, G. Rozenberg, and A. Salomaa. L systems. In [22], vol. 1, pp. 253-328.

E. Lassila. ReFlEx—an experimental tool for special-purpose processor code
generation. Report B15, Digital Systems Laboratory, Helsinki University of
Technology. Espoo (Finland), March 1996.

E. Lassila. A macro expansion approach to embedded processor code genera-
tion. Proceedings of the 22nd EUROMICRO Conference, pp. 136-142. TEEE
Computer Society Press, 1996.

E. Lassila. Towards optimizing code generation by domain-sensitive macro ex-
pansion. Report A42, Digital Systems Laboratory, Helsinki University of Tech-
nology. Espoo (Finland), January 1997.

P. Marwedel and G. Goossens (eds.). Code Generation for Embedded Proces-
sors. Kluwer, 1995.

[13]

[17]
18]
[19]
[20]
[21]

22]

R. Méch. Modeling and simulation of the interaction of plants with the en-
vironment using L-systems and their extensions. Ph.D. thesis, Department
of Computer Science, The University of Calgary. Calgary (Alberta, Canada),
November 1997.

R. Méch and P. Prusinkiewicz. Visual models of plants interacting with their
environment. Proceedings of SIGGRAPH 96 Conference, pp. 397-410. ACM
SIGGRAPH, 1996.

R. Morgan. Building an Optimizing Compiler. Butterworth-Heinemann, 1998.

S.S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
mann, 1997.

P. Prusinkiewicz. Simulation modeling of plants and plant ecosystems. Com-
munications of the ACM, vol. 43, no. 7, pp. 84-93. 2000.

P. Prusinkiewicz, M. Hammel, J. Hanan, and R. Méch. Visual models of plant
development. In [22], vol. 3, pp. 535-597.

P. Prusinkiewicz, M. James, and R. Méch. Synthetic topiary. Proceedings of
SIGGRAPH 94 Conference, pp. 351-358. ACM SIGGRAPH, 1994.

P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants.
Springer, 1990.

G. Rozenberg and A. Salomaa. The Mathematical Theory of L Systems. Aca-
demic Press, 1980.

G. Rozenberg and A. Salomaa (eds.). Handbook of Formal Languages (vols.
1-3). Springer, 1997.

