
On Tree Belts and Belt-Sele
torsEero Lassila�Abstra
tSu
h �nite trees are 
onsidered that are rooted and ordered: every treenode is a des
endant of a unique root node; and the dire
t des
endant nodesof ea
h node are linearly ordered. A rather general me
hanism is presentedfor the spe
i�
ation of su
h two-argument fun
tions that take any tree andany node in the tree and return su
h a 
ross-se
tion-type subset of the nodesof the argument tree that 
ontains the argument node itself.1 Introdu
tionComputerized information pro
essing often involves manipulation of �nite strings ofsymbols. For example, 
omputer programs themselves, when interpreted as data, are�nite instru
tion sequen
es, and their 
ompile-time generation and optimization 
anbe seen as string manipulation. (In addition to atomi
 symbols, like the 
hara
ters ina 
hara
ter string, stru
tured symbols are allowed to o

ur in the strings 
onsidered.)We are espe
ially interested in the 
ase in whi
h the lowest-level string manipulationoperations available are elementary re�nements: one symbol o

urren
e is repla
edwith an appropriate new substring, as depi
ted in Figure 1.
Figure 1: An elementary re�nement.By introdu
ing an auxiliary root node, we are able to represent an arbitrary series ofsu

essive elementary re�nements as a tree, as suggested in Figure 2. The parti
ulartree in the �gure is seen to re
ord �ve elementary re�nements. Obviously, the treerepresentation partially hides the a
tual order in whi
h the elementary re�nementshave been performed.�Helsinki University of Te
hnology, Laboratory for Theoreti
al Computer S
ien
e, P.O. Box5400, FIN-02015 HUT, Finland. E-mail address: eero.lassila�hut.�



Figure 2: A series of elementary re�nements represented as a tree.For the purpose of tasks like optimizing 
ode generation, the elementary re�nementsshould be unboundedly 
ontext-sensitive. Nevertheless, even if we normally wantto use a re�nement 
ontext that is maximally wide, we may often be satis�ed witha 
ontext that is not parti
ularly greedy : it may well be appropriate to use someother 
ross se
tion of the tree than the maximally deep 
ross se
tion 
onsisting ofthe 
urrent leaf sequen
e. In the following, we give three 
ode-generation-relatedexamples of a 
ontext sele
tion s
heme.� Ma
ro pro
essors [2, 4, 3, 5℄ use a 
ross se
tion whose left-hand side ismaximally deep. Moreover, the left-hand side must be 
onstituted byterminal symbols rather than by other ma
ro 
alls. (Ea
h elementaryre�nement, that is, the expansion of ea
h ma
ro 
all, may be sensitive tothe 
urrent values of any global ma
ro-time variables, and these values
ustomarily propagate from left to right. In 
ontrast, the right-hand
ontext is usually ignored.) Therefore, the leaf pro
essing order is stri
tlydepth-�rst and left-to-right, whi
h means that the 
ross se
tion even as awhole is ne
essarily maximally deep. Figure 3 shows a sample tree at theunique moment when the leaf marked with a bla
k ring is pro
essable;the re�nement 
ontext is indi
ated by white rings, and the 
he
kerednodes in the left-hand 
ontext 
orrespond to terminal symbols.� Parametri
 Lindenmayer systems [20, 19, 14, 13, 18, 17℄ output sequen
esof drawing 
ommands and thus indire
tly produ
e high-quality graphi
s.They are perhaps the best-known example of appli
ation-oriented exten-sions to the basi
 Lindenmayer system model [7, 21, 8℄. With Linden-mayer systems (whether parametri
 or not), the tree nodes are pro
essedin a generation-by-generation fashion, and the \horizontal" 
ross se
tion
onstituted by all the nodes in the 
urrent generation serves as the re�ne-ment 
ontext. In pra
ti
e, the nodes within ea
h single generation maywell be pro
essed sequentially, rather than simultaneously, but it shouldbe noti
ed that the desired horizontal 
ross se
tion then di�ers from themaximally deep 
ross se
tion. The two trees of Figure 4 depi
t only thetwo extremes among the possible pro
essing moments for the leaf withthe bla
k ring.� Figure 5 illustrates a 
ontext sele
tion s
heme that we have earlier em-



ployed in a simplisti
 prototype [9, 10, 11℄, 
alled ReFlEx, of a stillnonexistent tool proposed by us for optimizing ma
hine-level 
ode gen-eration [1, 12, 16, 15℄. Now the re�nement 
ontext is 
onstituted by theleast deep 
ross se
tion possible. Su
h ungreediness is rewarded as theleaf pro
essing order be
omes 
ompletely free. The two trees of Figure 5again depi
t only two of the possible pro
essing moments for the leafwith the bla
k ring. (The moment depi
ted on the left-hand side of the�gure is of 
ourse the earliest possible.)
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������Figure 3: The re�nement 
ontext used by ma
ro pro
essors.
Figure 4: The re�nement 
ontext used by Lindenmayer systems.
Figure 5: The re�nement 
ontext used by the ReFlEx prototype.Our present goal is to �nd a general me
hanism with whi
h one 
an 
onvenientlyspe
ify the parti
ular 
ross se
tion to be used as the re�nement 
ontext. On onehand, the me
hanism should be expressive by imposing only few 
onstraints on the
hoi
e of the 
ross se
tion; on the other hand, well-designed 
onstraints would prob-ably be helpful by making the 
onsequen
es of the 
hoi
e more easily tra
table. Inthe following Se
tion 2, we formulate a simple 
onstraint on 
ross se
tion sele
tion,and in the �nal Se
tion 3, we then des
ribe su
h a 
ross se
tion spe
i�
ation me
h-anism that exa
tly mat
hes the formulated 
onstraint. We suggest that the single
onstraint is not only simple but also a pra
ti
al one, even if we do not, as yet, tryto provide any 
on
rete eviden
e for this 
laim.



2 De�nition of a belt-sele
tor2.1 TreesA tree 
onsists of a �nite and non-zero number of nodes. Figure 6 depi
ts a sampletree, whi
h we 
all A. (By 
onvention, `node a3', for instan
e, refers to the uniquenode in tree A labeled as `3'. The reason why node a9 is distinguished in Figure 6is that we have, more or less arbitrarily, 
hosen it to have an important role insome examples below.) Ea
h tree is rooted and ordered, as will be explained next.(This denotation of the term `tree' adopted here is a standard one within the formallanguage 
ommunity; see [6℄, for instan
e.)
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Figure 6: Tree A.The rootedness means that ea
h tree has exa
tly one root : the root of A is a0. Everytree node di�erent from the root has exa
tly one father in the tree: the father of a9is a2, and so a9 (like a10 and a11) is a son of a2. Su
h tree nodes that have no sonsare leaves of the tree: A has a total of nine leaves.We say that a given node n0 is an an
estor of a given node n if the pair hn0; nibelongs to the re
exive-transitive 
losure of the binary `is a father of' relation. (By`a pair' we always mean an ordered pair.) Hen
e the an
estors of a9 are a9, a2, anda0. If n0 is an an
estor of n, then n is a des
endant of n0. Moreover, n0 is a properan
estor of n, and n is 
orrespondingly a proper des
endant of n0, if n0 is an an
estorof n and n0 6= n.The orderedness means that there is a total \left-to-right" order among the sons ofany given tree node. If two distin
t nodes have the same father, then one of themis a left-brother of the other, and the latter is a right-brother of the former. Forinstan
e, a9 has right-brothers a10 and a11, and a10 has a9 as a left-brother and a11as a right-brother.We say that a given node n0 is a left-relative of a given node n if there are su
hnodes n00 and n0 in the tree that n00 is a left-brother of n0, n0 is a des
endant of n00,and n is a des
endant of n0. If n0 is a left-relative of n, then n is a right-relative ofn0. For instan
e, a8 is a left-relative of a9 (sin
e a1 is a left-brother of a2), and a9 isa right-relative of a8.



Note that for ea
h two distin
t nodes n� and n�� in any given tree, exa
tly one of thefollowing statements holds: n� is a proper an
estor of n��; n� is a proper des
endantof n��; n� is a left-relative of n��; or n� is a right-relative of n��.2.2 Angles between tree nodesEa
h tree node has a unique degree, and ea
h pair of tree nodes has a unique angle.De�nition 1. The degree of a given tree node is the number of its proper an
es-tors.De�nition 2. The angle of a given tree node pair hn; n0i is denoted as ^(n; n0)and de�ned as the unique integer triple hi; d; ji that meets the following 
ondi-tions.1. i [respe
tively, j℄ is the di�eren
e of the degrees of n [respe
tively, n0℄ and theone of the 
ommon an
estors of n and n0 that has the greatest degree.2. d = 0 if one of n and n0 is an an
estor of the other, d = �1 if n0 is a left-relativeof n, and d = 1 if n0 is a right-relative of n.Note that ^(n; n0) = hi; d; ji always implies ^(n0; n) = hj;�d; ii. Table 1 lists theangles from node a9 to the other nodes of our sample tree A.n ^(a9; n) n ^(a9; n) n ^(a9; n)a0 h2; 0; 0i a6 h2;�1; 3i a12 h0; 0; 1ia1 h2;�1; 1i a7 h2;�1; 3i a13 h0; 0; 1ia2 h1; 0; 0i a8 h2;�1; 4i a14 h0; 0; 2ia3 h2; 1; 1i a9 h0; 0; 0i a15 h1; 1; 2ia4 h2;�1; 2i a10 h1; 1; 1i a16 h1; 1; 2ia5 h2;�1; 3i a11 h1; 1; 1i a17 h1; 1; 2iTable 1: The angles from node a9 to the other nodes of tree A.De�nition 3. A given integer triple hi; d; ji is a link if there is su
h a tree nodepair hn; n0i that ^(n; n0) = hi; d; ji.Note that hi; d; ji is a link if and only if all the following 
onditions are met: i � 0,d 2 f�1; 0; 1g, j � 0, and d = 0 , i� j = 0.2.3 Belts and belt-sele
torsDe�nition 4. A belt of a tree is any su
h subset of the tree nodes that ea
h leafof the tree has exa
tly one an
estor in the subset.In any tree, both the set 
onsisting of the sole root and the set 
onsisting of allthe leaves are belts. For more spe
i�
 examples, Table 2 lists all su
h belts of oursample tree A that 
ontain node a9.De�nition 5. A belt-provider is any su
h two-argument fun
tion that takes anytree and any node in the tree and returns one su
h belt of the tree that 
ontains thenode.



fa1g [ fa9g [ fa10; a11; a3g fa5; a6; a7g [ fa9g [ fa10; a11; a3gfa1g [ fa9g [ fa15; a11; a3g fa5; a6; a7g [ fa9g [ fa15; a11; a3gfa1g [ fa9g [ fa10; a16; a17; a3g fa5; a6; a7g [ fa9g [ fa10; a16; a17; a3gfa1g [ fa9g [ fa15; a16; a17; a3g fa5; a6; a7g [ fa9g [ fa15; a16; a17; a3gfa4g [ fa9g [ fa10; a11; a3g fa5; a8; a7g [ fa9g [ fa10; a11; a3gfa4g [ fa9g [ fa15; a11; a3g fa5; a8; a7g [ fa9g [ fa15; a11; a3gfa4g [ fa9g [ fa10; a16; a17; a3g fa5; a8; a7g [ fa9g [ fa10; a16; a17; a3gfa4g [ fa9g [ fa15; a16; a17; a3g fa5; a8; a7g [ fa9g [ fa15; a16; a17; a3gTable 2: The sixteen belts of tree A that 
ontain node a9.De�nition 6. A given belt-provider s is uniangular , and hen
e 
alled a belt-sele
tor , if it meets the following 
ondition.� Let X1 and X2 be two trees 
ontaining nodes n1 and n2, respe
tively. SupposethatX1 has a leaf n01, and let the unique an
estor of n01 that belongs to s(X1; n1)be denoted as n001. Similarly, suppose that X2 has a leaf n02, and let the uniquean
estor of n02 that belongs to s(X2; n2) be denoted as n002. Then ^(n1; n01) =^(n2; n02) implies ^(n1; n001) = ^(n2; n002).2.4 An exampleBefore a more thorough analysis in Se
tion 3, let us brie
y look at some 
onsequen
esof the uniangularity requirement. Spe
i�
ally, we will 
onsider some belts of tree B,on the left-hand side of Figure 7, and ask whether there is su
h a belt-sele
tor thatis able to sele
t the parti
ular belt for node b4. Of 
ourse, any belt sele
ted must
ontain b4 itself, and we restri
t ourselves to only three su
h belts.
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17Figure 7: Trees B and C.Case 1: fb4; b7; b10; b13g. In Se
tion 3 below, we will prove that there exists su
h abelt-sele
tor s for whi
h s(B; b4) equals this belt.



Case 2: fb4; b8; b10; b13g. (This is the belt of 
ase (1) with b7 repla
ed by itssingle son b8.) It is readily seen that there exists no su
h belt-sele
tor s� forwhi
h s�(B; b4) equals this belt: uniangularity would otherwise be violated, sin
e^(b4; b9) = ^(b4; b12) but ^(b4; b8) 6= ^(b4; b10).Case 3: fb4; b7; b10; b3g. (This is the belt of 
ase (1) with the brotherless b13 repla
edby its father b3.) Again, there exists no su
h belt-sele
tor s� for whi
h s�(B; b4) equalsthis belt. Our following simple proof is by 
ontradi
tion; suppose for a moment thatsu
h s� exists. Consider tree C, on the right-hand side of Figure 7, whi
h is otherwisefully isomorphi
 to tree B but has a single additional bran
h 
onsisting of nodes
14, 
15, 
16, and 
17. Be
ause ^(b4; b12) = ^(
4; 
17) and ^(b4; b10) = ^(
4; 
15),uniangularity requires that 
15 belongs to s�(C; 
4). This for
es us to in
lude even
13 in s�(C; 
4). The 
ontradi
tion desired is now that ^(b4; b13) = ^(
4; 
13) butobviously ^(b4; b3) 6= ^(
4; 
13), and so uniangularity is violated.3 More expli
it 
hara
terization of belt-sele
torsWe let N+ denote the set f1; 2; : : :g of all positive integers. The `less-than' relationis extended from N+ to N+ [ f1g simply by stating that k <1 for every k 2 N+and requiring that the relation remains irre
exive and transitive.De�nition 7. A 
omb is any fun
tion from N+ � f�1; 1g to N+ [ f1g.De�nition 8. A given 
omb f is a 
hara
teristi
 
omb of a given belt-providers if for every tree X, for every node n of X, and for every leaf n0 of X, the following
onditions are met when ^(n; n0) is denoted as hi; d; ji and the unique an
estor ofn0 that belongs to s(X; n) is denoted as n00.1. Suppose d 6= 0 and j � f(i; d). Then n00 = n0.2. Suppose d 6= 0 and j > f(i; d). Then n00 is the unique proper an
estor of n0 forwhi
h ^(n; n00) = hi; d; f(i; d)i.Let us tentatively try to asso
iate ea
h one of the three belt sele
tion s
hemesdepi
ted in Figures 3, 4, and 5 with a 
hara
teristi
 
omb. Consider any i 2 N+ .Ma
ro pro
essors seem to require that f(i;�1) = 1 but f(i; 1) = 1; Lindenmayersystems and the ReFlEx prototype seem to require that f(i;�1) = f(i; 1) = i andf(i;�1) = f(i; 1) = 1, respe
tively.Notation 9. The set of belt-providers [respe
tively, of belt-sele
tors, of 
ombs℄ isdenoted as P [respe
tively, S, F ℄.Our following main result indi
ates that the `is a 
hara
teristi
 
omb of' relationis a
tually a one-to-one 
orresponden
e between 
ombs and belt-sele
tors. In par-ti
ular, the theorem implies that the set of belt-sele
tors is non-empty, sin
e theset of 
ombs is obviously non-empty. Noti
e also that it now be
omes evident thatthere does exist a belt-sele
tor realizing 
ase (1) of the example in Se
tion 2.4: wemay 
hoose any belt-sele
tor whose 
hara
teristi
 
omb f has the property thatf(2; 1) = 3.



Theorem 10. Let R denote the set of all su
h members hs; fi of P �F that f is a
hara
teristi
 
omb of s. Then R � S � F , and moreover, R is a bije
tive fun
tionfrom S to F .We will be able to prove Theorem 10 after �rst obtaining some auxiliary results.Lemma 11. Ea
h 
omb is a 
hara
teristi
 
omb of at least one belt-provider.Proof. Let f , X, and n be a given 
omb, a given tree, and a given node of the tree,respe
tively. We de�ne two subsets N1 and N2 of the nodes of X in the followingin
remental fashion.1. N1 = fng [ N 0 when N 0 
onsists of all su
h nodes n0 of X that ^(n; n0) =hi; d; f(i; d)i for some hi; di 2 N+ � f�1; 1g.2. N2 = N1[N� when N� 
onsists of all su
h leaves of X that have no an
estorin N1.By the two de�nitions above, neither set N1 nor set N2 
ontains su
h a nodethat is a proper an
estor of some other node in the same set. Consequently, N2 iseasily seen to be su
h a belt that 
ontains n. Hen
e, the above two-stage node set
onstru
tion pro
edure serves as a belt-provider, and it is straightforward to verifyfrom De�nition 8 that f is indeed a 
hara
teristi
 
omb of that belt-provider. 2Lemma 12. Ea
h 
omb is a 
hara
teristi
 
omb of at most one belt-provider.Proof. (By 
ontradi
tion.)Assume that a 
omb f is a 
hara
teristi
 
omb of two distin
t belt-providerss1 and s2. Be
ause s1 6= s2, there must be a tree X with su
h a node n thats1(X; n) 6= s2(X; n).However, De�nition 8 pi
ks for ea
h leaf a unique an
estor that must belong tothe belt returned by any su
h belt-provider whose 
hara
teristi
 
omb is f . (Forea
h su
h leaf of X that is a des
endant of n, the unique an
estor is obviously nitself, already by the de�nition of a belt-provider.) Hen
e, we must have s1(X; n) =s2(X; n), whi
h is a 
ontradi
tion. 2Lemma 13. Ea
h belt-provider has at most one 
hara
teristi
 
omb.Proof. (By 
ontradi
tion.)Assume that a belt-provider s has two distin
t 
hara
teristi
 
ombs f1 and f2.Be
ause f1 6= f2, there must be su
h hi; di 2 N+ � f�1; 1g that f1(i; d) 6= f2(i; d).Without loss of generality, we may further assume f1(i; d) < f2(i; d).We 
learly have f1(i; d) <1. Consider then any tree X with su
h nodes n andn00 that ^(n; n00) = hi; d; f1(i; d)i and n00 is a father of some leaf n0 of X.First, sin
e f1 is a 
hara
teristi
 
omb of s, 
ondition (2) of De�nition 8 requiresthat n00 2 s(X; n). Se
ond, sin
e f2 is a 
hara
teristi
 
omb of s, 
ondition (1) ofDe�nition 8 requires that n0 2 s(X; n). This is obviously a 
ontradi
tion. 2Lemma 14. Let R� denote the set of all su
h members hf; si of F � P that f is a
hara
teristi
 
omb of s. Then R� is an inje
tive fun
tion from F to P.Proof. Lemmas 11 and 12 together imply that the spe
i�ed R� is a fun
tion from Fto P, and Lemma 13 moreover implies that the fun
tion is inje
tive. 2Lemma 15. If a belt-provider has a 
hara
teristi
 
omb, then the belt-provider isa belt-sele
tor.



Proof. Suppose that a belt-provider s has a 
hara
teristi
 
omb f . Let X1 and X2be given trees, let n1 and n2 be given nodes of X1 and X2, respe
tively, and let n01and n02 be given leaves of X1 and X2, respe
tively. Let n001 denote the unique an
estorof n01 that belongs to s(X1; n1), and let n002 similarly denote the unique an
estor ofn02 that belongs to s(X2; n2). By De�nition 6, it is now suÆ
ient to demonstratethat ^(n1; n01) = ^(n2; n02) implies ^(n1; n001) = ^(n2; n002).So we assume that ^(n1; n01) and ^(n2; n02) are both equal to some link hi; d; ji,and try to show that ^(n1; n001) = ^(n2; n002). We divide the task into three 
ases.� Suppose d = 0. By the de�nition of a belt-provider, we now have n001 = n1and n002 = n2, and so indeed ^(n1; n001) = h0; 0; 0i = ^(n2; n002).� Suppose d 6= 0 and j � f(i; d). By 
ondition (1) of De�nition 8, we nowhave n001 = n01 and n002 = n02, and so indeed ^(n1; n001) = hi; d; ji = ^(n2; n002).� Suppose d 6= 0 and j > f(i; d). By 
ondition (2) of De�nition 8, we nowindeed have ^(n1; n001) = hi; d; f(i; d)i = ^(n2; n002). 2Lemma 16. Let n1 and n001 be nodes in a tree X1, and suppose that n001 is not aleaf. Similarly, let n2 and n002 be nodes in a tree X2, and suppose that n002 is nota leaf. Suppose also ^(n1; n001) = ^(n2; n002). Then for any belt-sele
tor s, we haven001 2 s(X1; n1) , n002 2 s(X2; n2).Proof. We suppose exa
tly what is suggested above in the text of the lemma andset out to verify that for any s, it is the 
ase that n001 2 s(X1; n1) , n002 2 s(X2; n2).As depi
ted in Figure 8, we let n01 [respe
tively, n02℄ denote any su
h leaf of X1[respe
tively, X2℄ that is also a proper des
endant of n001 [respe
tively, n002℄. (Be
auseneither n001 nor n002 is a leaf, su
h n01 and n02 do exist.) It is now easy to see that thereexists a tree X0, sket
hed on the right-hand side of Figure 8, with su
h nodes n0,n000, n00;1, and n00;2 that meet the following 
onditions.1. n000 is not a leaf.2. ^(n0; n000) = ^(n1; n001).3. ^(n0; n000) = ^(n2; n002). (This is a trivial 
onsequen
e of the previous 
ondi-tion, sin
e it is supposed that ^(n1; n001) = ^(n2; n002).)4. Both n00;1 and n00;2 are su
h leaves that are proper des
endants of n000.5. ^(n0; n00;1) = ^(n1; n01).6. ^(n0; n00;2) = ^(n2; n02).First, by the uniangularity stated in De�nition 6, 
onditions (5) and (2) abovetogether ensure that n000 2 s(X0; n0) , n001 2 s(X1; n1). Se
ond, again by uniangu-larity, 
onditions (6) and (3) ensure that n000 2 s(X0; n0) , n002 2 s(X2; n2). The
laim now trivially follows from the 
ombination of these two fa
ts. 2De�nition 17. Let s be a given belt-sele
tor, and let L denote the link set that
onsists of every su
h link hi�; d�; j�i that meets the following 
ondition: there aresu
h a treeX and su
h nodes n and n00 ofX that ^(n; n00) = hi�; d�; j�i, n00 2 s(X; n),and n00 is not a leaf. We say that a given 
omb f is a natural 
omb of s if thefollowing 
onditions are met for every hi; di 2 N+ � f�1; 1g.1. f(i; d) =1 if and only if hi; d; ji 62 L for every j 2 N+ .2. If f(i; d) <1, then hi; d; f(i; d)i 2 L.
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’Figure 8: Proving Lemma 16.Lemma 18. Ea
h belt-sele
tor has at least one natural 
omb.Proof. Obvious from De�nition 17. (Noti
e that for any given link set L, even ifit is di�erent from the parti
ular link set 
onstru
ted in De�nition 17, there is atleast one su
h 
omb f that meets the two 
onditions (1) and (2) of De�nition 17 forevery hi; di 2 N+ � f�1; 1g.) 2Lemma 19. If a belt-sele
tor has a natural 
omb, then the natural 
omb is also a
hara
teristi
 
omb of the belt-sele
tor.Proof. Let a 
omb f be a natural 
omb of a belt-sele
tor s. To �nd out whetherf is ne
essarily also a 
hara
teristi
 
omb of s, we set out to examine whether the
onditions of De�nition 8 are met for a given tree X, for a given node n of X, and fora given leaf n0 of X. We denote ^(n; n0) as hi; d; ji and the unique an
estor of n0 thatbelongs to s(X; n) as n00. The examination may be divided into the following three
ases. (Of the two 
onditions of De�nition 8, 
ondition (1) is 
overed by 
ases (1)and (2) below, and 
ondition (2) is 
overed by 
ase (3).)1. Suppose d 6= 0 and j < f(i; d) = 1. By 
ondition (1) of De�nition 17, wemust have n00 = n0. Hen
e, the appropriate 
ondition (1) of De�nition 8 isindeed met.2. Suppose d 6= 0 and j � f(i; d) < 1. By 
ondition (2) of De�nition 17,there are su
h a tree X0 and su
h nodes n0 and n000 of X0 that ^(n0; n000) =hi; d; f(i; d)i and n000 2 s(X0; n0). (Here we need not be interested in whethern000 is or is not a leaf.) This means that for any proper an
estor n� of n0,there is su
h a proper an
estor n�0 of n000 that the following 
onditions aremet.� ^(n; n�) = ^(n0; n�0).� Neither n� nor n�0 is a leaf.� n�0 62 s(X0; n0).



Lemma 16 now implies that n00 6= n� for any n�, and so we must haven00 = n0. Hen
e, the appropriate 
ondition (1) of De�nition 8 is indeed met.3. Suppose d 6= 0 and f(i; d) < j < 1. By 
ondition (2) of De�nition 17,there are, again, su
h a tree X0 and su
h nodes n0 and n000 of X0 that^(n0; n000) = hi; d; f(i; d)i, n000 2 s(X0; n0), and n000 is not a leaf. Lemma 16now implies that n00 must be the unique proper an
estor (whi
h obviously
annot be a leaf) of n0 for whi
h ^(n; n00) = ^(n0; n000) = hi; d; f(i; d)i.Hen
e, the appropriate 
ondition (2) of De�nition 8 is indeed met. 2Proof of Theorem 10. By Lemmas 18 and 19, every belt-sele
tor has a 
hara
teristi

omb; and by Lemma 15, no su
h belt-provider that is not a belt-sele
tor has a
hara
teristi
 
omb. Hen
e, a belt-provider has a 
hara
teristi
 
omb if and only ifthe belt-provider is a belt-sele
tor, and so the 
laim now follows from Lemma 14. 2Referen
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