
Companion Notes to

“Tetrasystems: A Framework for

String Generation Devices”

Eero Lassila
Aalto University, Helsinki, Finland

eero.lassila@aalto.fi

http://users.ics.aalto.fi/ela/dsrfs/nwpt2012/

October 28, 2012

Contents

1 Preliminaries 1

2 Belt-selectors 2
2.1 Span between two tree nodes . 2
2.2 Combs and belt-selectors . 2
2.3 Belt-selector examples . 3

3 Tetrasystems 3
3.1 Components of a tetrasystem . 3
3.2 Tetrasystem operation . 4
3.3 Some specific frames . 4

4 Selective substitution grammars 5

5 Emulating selective substitution grammars 5
5.1 Macro processors . 6
5.2 Context-sensitive Chomsky grammars 6
5.3 Pure grammars . 7
5.4 L systems . 7

1 Preliminaries

The set of letters divides into nonterminals and terminals. A word is a finite
letter sequence.

A letter-refiner is a function that takes three arguments: a word, a letter,
and a word. The former word represents the left-hand context, and the latter
the right-hand context. The letter-refiner returns a non-empty set of non-empty
words, which represent the possible (mutually alternative) refinement results of

1

the argument letter in the specified two-sided context. Each terminal refines
only to itself.

We consider trees that are finite, rooted, and ordered. Each tree node holds
a letter.

A belt of a tree is such a subset of the tree nodes that contains exactly one
ancestor of each leaf of the tree. So the belts of a given tree are simply the cross
sections of the tree.

2 Belt-selectors

2.1 Span between two tree nodes

Let n1 and n2 be two given nodes in a given tree, and let n0 denote the lowest
(i.e. closest) common ancestor of n1 and n2. We define the span between n1
and n2 as the following integer triple 〈i, d, j〉:

i = the difference of the depths of n1 and n0

d =

 −1 if n2 is on the left of n1
0 if (at least) one of n1 and n2 is an ancestor of the other
1 if n2 is on the right of n1

j = the difference of the depths of n2 and n0

(Of course, the depth of the root is 0, and the depth of a child is always one
more than the depth of the parent.)

We denote the span between n1 and n2 as ∠(n1, n2). Obviously, ∠(n1, n2) =
〈i, d, j〉 implies ∠(n2, n1) = 〈j,−d, i〉; and trivially, ∠(n1, n1) = ∠(n2, n2) =
〈0, 0, 0〉. If n1 is a child of n2, then ∠(n1, n2) = 〈1, 0, 0〉; and if n1 and n2 siblings
(and distinct), then either ∠(n1, n2) = 〈1,−1, 1〉 or ∠(n1, n2) = 〈1, 1, 1〉.

2.2 Combs and belt-selectors

A comb is any such function f : {. . . ,−2,−1, 0, 1, 2, . . .} → {0, 1, 2, . . .} ∪ {∞}
that ∀i 6= 0 : f(i) > 0.

For each comb, there is a corresponding belt-selector ; and every belt-selector
corresponds to some comb. Each belt-selector is such a function that takes a tree
and one of its nodes as its arguments and returns such a belt of the argument
tree that contains no proper ancestor of the argument node. For a given comb
f , for a given tree X, and for a given node n of X, the belt selected by the
belt-selector corresponding to f is the node set constructed by the following
two successive steps:

1. Each such node n′ ∈ X that is not a proper ancestor of n is added to the
set if ∠(n, n′) = 〈i, d, f(i× d)〉 for some i and d.

2. Each such leaf of X that has no ancestor already in the set is added to
the set.

A belt-selector is said to be settled at a tree node if every leaf added by step
2 above holds a terminal.

It is easy to see that no belt-selector can correspond to two distinct combs,
which means that the correspondence between combs and belt-selectors is a

2

bijection. So for a given belt-selector s, the comb which s corresponds to can
be denoted as fs.

2.3 Belt-selector examples

First, we define belt-selectors σE, σC, and σI by specifying the corresponding
combs (here i ranges over all integers, of course):

fσE
(i) = ∞

fσC
(i) = |i|

fσI
(i) =

{
0 when i = 0
1 otherwise

Clearly, σE is settled at a tree node if and only if all the leaves of the tree
hold terminals. On the other hand, σI is settled at every node in every tree.

Second, we introduce two operations 4s and s‖s′ (i.e. a unary one and a
binary one) on belt-selectors:

f4s(i) = fs(i) + 1

fs‖s′(i) =

 fs(i) when i < 0
0 when i = 0

fs′(i) when i > 0

So for example:

f4σC
(i) = |i|+ 1

fσE‖σI
(i) =

 ∞ when i < 0
0 when i = 0
1 when i > 0

3 Tetrasystems

A tetrasystem implements rewriting as a tree generation process. The oper-
ation of a tetrasystem is governed by a refinement rule base and a separate
control mechanism. These two are intended to be as orthogonal to each other
as possible.

The alphabet of a tetrasystem may be countably infinite, and the effective
rewriting context may be unbounded in both directions.

3.1 Components of a tetrasystem

The two main components of a tetrasystem are a letter-refiner (i.e. the rule
base) and a frame (i.e. the control mechanism) consisting of four belt-selectors.

All the components of a given tetrasystem 〈VN , VT , cS , r, 〈s1, s2, s3, s4〉〉 are
as follows:

• set VN of nonterminals must be non-empty but may be finite or countably
infinite,

• set VT of terminals may be empty, finite, or countably infinite,

• the seed-letter cS must belong to VN ,

3

• the letter-refiner r must have the property that every possible refinement
result of each letter in VN may contain only letters in VN ∪ VT ,

• the frame 〈s1, s2, s3, s4〉 is a quadruple of belt-selectors.

3.2 Tetrasystem operation

The tree generation process proceeds as follows:

1. The tree is booted up by introducing a single root node holding the seed-
letter.

2. The tree grows by repeated expansion of leaves holding nonterminals:

(a) (Use of s1.) A leaf is fertile if it is nonterminal-lettered and s1 is
settled at it.

(b) (Use of s2.) At a time, exactly one of the fertile leaves (if any) is ex-
panded by applying the letter-refiner: the two sides of the refinement
context are given by the belt returned by s2; and the node changes
from a leaf into a non-leaf as it is now provided with a child node
sequence collectively holding one of the possible refinement results.

3. Output words (if any) of the process can be found at any time (and so
even if the process has not terminated):

(a) (Use of s3.) A node is mature if it is nonterminal-lettered and s3 is
settled at it.

(b) (Use of s4.) For any mature node, the belt returned by s4 gives an
output word.

So the process does not terminate as long as there are fertile nonterminal-
lettered leaves. Fertileness implies that the leaf is ready to be expanded as the
generation process has already proceeded sufficiently far in the other parts of
the tree.

3.3 Some specific frames

Let us specify four frames M, C, P, and L as follows:

s1 s2 s3 s4
macro processors M σE‖σI σE σE σE

Chomsky grammars C σI σE σE σE
pure grammars P σI σE 4σI σE

L systems L σC σC 4σC 4σC

The comments on the left anticipate the use of each of these frames. (Actu-
ally, a perhaps more elegant s3 for P would be the belt-selector s with fs(i) = 1
for every integer i.)

4

4 Selective substitution grammars

Here we adopt a modified version of the definition in [1]. (Of course, ‘∗’ is the
Kleene star.)

If V is a letter set, we first define V = {c : c ∈ V }, and then the homomor-
phism hV : (V ∪ V)∗ → V ∗ as follows:

hV (c) = c for c ∈ V
hV (c) = c for c ∈ V

A selective substitution grammar is a construct G = 〈V, V ′, r, cS ,K〉 where

• V and V ′ are such letter sets that V ′ ⊆ V ,

• r is such a letter-refiner that every possible refinement result of each letter
in V may contain only letters in V ,

• the seed-letter cS belongs to V \ V ′,

• the selector language K is a subset of (V ∪ V)∗.

We say that a word x directly derives a word y in G if there exists such a
word z ∈ K that hV (z) = x and when we denote z = b1b2 . . . bn with bi ∈ V ∪V
for 1 ≤ i ≤ n, then y = β1β2 . . . βn with each βi meeting the appropriate one of
the following conditions:

βi = bi for bi ∈ V
βi ∈ r(hV (b1 . . . bi−1), ai, hV (bi+1 . . . bn)) for bi = ai ∈ V

Finally, we say that the language generated by G is the set of all such words
w ∈ V ′∗ that 〈cS , w〉 belongs to the transitive closure of ‘directly derives’. (Note
the technical detail that the closure is transitive rather than reflexive-transitive.)

5 Emulating selective substitution grammars

We want to be able to show that particular tetrasystem frames are able to
emulate particular classes of selective substitution grammars. In each case this
means that for a given member G of the particular class, we aim at constructing
a tetrasystem TG with the particular frame meeting the following conditions:

• The language generated by G is constituted by the output words of TG.

• There is a natural correspondence between the derivations of G and the
generation processes of TG. That is, there is a one-to-one correspondence
in which every two mutual counterparts (i.e. a sequence of direct deriva-
tion steps and and a sequence of leaf expansions) are step-by-step isomor-
phic to each other.

5

5.1 Macro processors

Consider such selective substitution grammars G = 〈V, V ′, r, cS ,K〉 where

• V ′ consists of the terminals in V .

• K consists of every such z ∈ (V ∪ V)∗ that meets all the following condi-
tions:

– z contains exactly one occurrence of the members of V \ V ′ in total.

– z contains no occurrence of the members of V ′.

– In z, no occurrence of any member of V \ V ′ precedes the single
occurrence of a member of V \ V ′.

• For every letter c and for every two words w1 and w2, the set r(w1, c, w2)
is a singleton and moreover equals r(w1, c,Λ) for the empty word Λ. (This
is insignificant from the emulation viewpoint.)

We claim that frame M emulates this class of selective substitution gram-
mars.

5.2 Context-sensitive Chomsky grammars

Consider such selective substitution grammars G = 〈V, V ′, r, cS ,K〉 where

• V ′ consists of the terminals in V .

• K consists of every such z ∈ (V ∪ V)∗ that meets both the following
conditions:

– z contains exactly one occurrence of the members of V \ V ′ in total.

– z contains no occurrence of the members of V ′.

• For every letter c and for every four words w1, w2, w1
′, and w2

′, we have
r(w1, c, w2) ⊆ r(w1

′w1, c, w2w2
′). (This is insignificant from the emulation

viewpoint.)

Note that we omit the requirement that both the alphabet and the produc-
tion set must be finite (which is insignificant from the emulation viewpoint).
(The same omission will be made below below with both pure grammars and L
systems.)

We claim that frame C emulates this class of selective substitution grammars.
However, the above does restrict the context-sensitive Chomsky grammars we
can cope with:

• For every nonterminal c, there must in practice exist at least one context-
free production, such as the dummy production c → c. The addition
of such dummies does not affect the language generated but introduces
infinite derivations.

• In general, a context-sensitive Chomsky grammar may contain a single
length-reducing rule of the form w1cw2 → w1w2, that is, cS → Λ for the
seed-letter cS . (But in this case the seed-letter is not allowed to occur in
the right side in any production.) Here we effectively exclude even this
possibility. This simply means that for a given context-sensitive language
L, only L \ {Λ} can be generated. (See pages 15 and 83 of [3].)

6

5.3 Pure grammars

Consider such selective substitution grammars G = 〈V, V ′, r, cS ,K〉 where

• V = V ′ contains no terminals.

• K consists of every such z ∈ (V ∪V)∗ that contains exactly one occurrence
of the members of V in total.

• For every letter c and for every four words w1, w2, w1
′, and w2

′, we have
r(w1, c, w2) ⊆ r(w1

′w1, c, w2w2
′). (This is again insignificant from the

emulation viewpoint.)

Note that here the seed-letter is actually a dummy placeholder introduced
only when the pure grammar is converted into a selective substitution grammar.
(The same holds in the L system case below. See Example 10.5 of [1] for a closely
related example.)

We claim that frame P emulates this class of selective substitution grammars.
However, the above restricts the context-sensitive pure grammars we can cope
with, similarly as in the Chomsky grammar case.

5.4 L systems

Consider such selective substitution grammars G = 〈V, V ′, r, cS ,K〉 where

• V = V ′ contains no terminals.

• K consists of every z ∈ V ∗.

We claim that frame L in an obvious sense emulates this class of selective
substitution grammars, which can be interpreted as the family FPIL of Lin-
denmayer systems [2]. However, there is an important difference from all the
earlier cases: now each direct derivation step on the selective substitution gram-
mar side breaks into a finite sequence of leaf expansions on the tetrasystem side.
The order of these leaf expansions is fully arbitrary though.

References

[1] Jürgen Dassow and Gheorghe Păun. Regulated Rewriting in Formal Lan-
guage Theory, chapter 10, pages 279–289. Springer, 1989.

[2] Lila Kari, Grzegorz Rozenberg, and Arto Salomaa. L systems. In Grze-
gorz Rozenberg and Arto Salomaa, editors, Handbook of Formal Languages,
volume 1, pages 253–328. Springer, 1997.

[3] Arto Salomaa. Formal Languages. Academic Press, 1973.

7

