
Aalto University

School of Science

Degree Programme of Computer Science and Engineering

André Medeiros

HAcid: A lightweight transaction system
for HBase

Master’s Thesis
Espoo, September 24, 2012

Supervisor: Professor Keijo Heljanko
Instructor: D.Sc. (Tech.) André Schumacher

Aalto University
School of Science
Degree Programme of Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: André Medeiros

Title:
HAcid: A lightweight transaction system for HBase

Date: September 24, 2012 Pages: 77

Professorship: Theoretical Computer Science Code: T-79

Supervisor: Professor Keijo Heljanko

Instructor: D.Sc. (Tech.) André Schumacher

The scalability of a database is an important issue for applications that deal with
large amounts of data, such as web services. The presence of rapidly increasing
high-volume data sets is a phenomenon commonly known as Big Data. As an
alternative to traditional relational databases, the so-called NoSQL distributed
databases have proved to be robust in Big Data applications.

Most NoSQL databases, such as Bigtable and HBase, do not depend on high-
end hardware, but are designed to easily scale by distributing the workload to a
set of servers with conventional hardware. Cloud Computing infrastructures are
suitable for these databases. HBase focuses on offering scalability and thus does
not provide transactions with ACID (atomicity, consistency, isolation, durability)
properties.

Recently, however, there have been many attempts towards supporting ACID
transactions in these databases. One important application of this feature is
the support for incremental updates to a data repository, such as a web search
index. Most of the existing transactional systems for HBase are built on top of
HBase itself, with transactional metadata in the database and algorithms in the
client-side.

We have built HAcid, a new open-source transactional system for HBase. As most
similar existing systems, it is a client library that keeps transactional metadata
in HBase to avoid introducing new server-side software. The novelty of HAcid
is its lightweight characteristics: it uses minimal bookkeeping resources and is
straightforward to install. The purpose is not to minimize transaction latency,
but to provide an easy approach to ACID transactions in HBase.

Keywords: Distributed database, Transaction, Cloud Computing, HBase

Language: English

2

Acknowledgements

I am grateful to my supervisor Keijo Heljanko and to my instructor André
Schumacher for helpful comments and guidance. I thank Aalto University
for the opportunity of using the Triton cluster for this Thesis. This work
was supported by the Data to Intelligence and Cloud Software programs of
Finnish Strategic Centre for Science, Technology and Innovation in the field
of ICT (TIVIT), Tekes, and Academy of Finland (#139402).

This Thesis is dedicated to my two fathers, the Lord God and Elyas
Medeiros, to whom I owe everything.

Espoo, September 24, 2012

André Medeiros

3

Abbreviations and Acronyms

ACID Atomicity, Consistency, Isolation, Durability
API Application programming interface
CAP Theorem Consistency, availability, and partition tolerance the-

orem
DBMS Database management system
FCW First-Committer-Wins rule
GFS Google File System
HDFS Hadoop Distributed File System
MVCC Multiversion Concurrency Control
NIST National Institute of Standards and Technology
OCC Optimistic Concurrency Control
RDBMS Relational database management system
SI Snapshot Isolation
SQL Structured Query Language
WAL Write-Ahead Log
WSI Write-Snapshot Isolation

4

Contents

Abbreviations and Acronyms 4

1 Introduction 7

2 Background 11
2.1 Transactions . 12

2.1.1 Concurrency control techniques 14
2.1.2 Multiversion Concurrency Control 16
2.1.3 Elementary isolation levels 16
2.1.4 Snapshot Isolation . 18

2.2 Distributed Databases . 21
2.3 Extensible Record Stores . 24

2.3.1 Data model . 24
2.3.2 Architecture . 28
2.3.3 Properties . 29

2.4 Transactions in Extensible Record Stores 30

3 HAcid 35
3.1 Design . 36

3.1.1 HAcid as a transactions certifier 36
3.1.2 Architecture . 37

3.2 Transactional metadata repositories 38
3.2.1 The Timestamp List 38
3.2.2 Metadata column in user tables 40

3.3 Transaction management algorithms 42
3.3.1 Example run of a transaction 42
3.3.2 Summary of transaction processing 45
3.3.3 Pseudocodes . 46
3.3.4 Appending the Timestamp List 48
3.3.5 Searching read versions 49
3.3.6 Recovery . 51

5

6

3.4 Analysis of properties . 53
3.4.1 Append operation . 53
3.4.2 Transaction processing correctness 55
3.4.3 Read versions and Snapshot Isolation 55
3.4.4 Transaction atomicity 57

3.5 Implementation and usage guide 58
3.5.1 HAcid API . 58
3.5.2 Installation . 60

3.5.2.1 Initialization 60
3.5.2.2 Preparation 60

3.5.3 Optimizations . 61

4 Performance evaluation 63
4.1 Microbenchmarks . 63
4.2 Timestamp throughput . 65
4.3 Transaction throughput . 66
4.4 Discussion . 67

5 Conclusion 68
5.1 Future work . 68

5.1.1 Serializable Snapshot Isolation 68
5.1.2 Garbage collection . 69

5.2 Discussion . 70

Chapter 1

Introduction

Cloud Computing has changed the business of web applications. Companies
building applications delivered as services over the Internet no longer need
to setup their own expensive datacenters in order to deploy their service.
The obstacle of initiating and maintaining new services has been drastically
reduced with the help of Cloud Providers, companies that offer scalable com-
puting resources on demand, with a pay-as-you-go billing system.

In the IT industry, the hardware layer of large-scale Internet applications
incurs severe costs of hardware acquisition, maintenance, and scalability im-
provements. In particular, the overhead of establishing a new datacenter is
enormous, and was often a barrier for Internet service companies to start a
new service. Cloud Providers are companies that encapsulate the computing
power of datacenters and sell this as an on-demand service. A Cloud is a net-
worked pool of datacenter hardware and software that is shared among many
users [1]. Cloud Providers sell computing resources (storage, servers, process-
ing, applications) of their Clouds to Cloud Users, typically companies build-
ing web applications. Cloud Computing is defined by NIST [42] as a model
of services that enable access to a shared pool of computing resources, com-
posed of five essential characteristics: (i) On-demand self-service, (ii) Broad
network access, (iii) Resource pooling, (iv) Rapid elasticity, (v) Measured
service; three service models: (i) Software as a Service (SaaS), (ii) Platform
as a Service (PaaS), (iii) Infrastructure as a Service (IaaS); and four deploy-
ment models: (i) Private cloud, (ii) Community cloud, (iii) Public cloud,
(iv) Hybrid cloud. We explain most of these terms, but some of them (e.g.
deployment models) are unnecessary for this Thesis.

Typically, traditional datacenters are underutilized (average server uti-
lization from 5% to 20% [45]) since they have to cope with peak loads. Hence,
web applications companies that manage their own datacenters have to pay
beyond what is actually used. If these companies choose Cloud services, they

7

CHAPTER 1. INTRODUCTION 8

pay precisely for those resources that are used, and not for underutilized re-
sources. Coping with peak demands is done by requesting more resources
from the Cloud Provider. This type of rapid scalability from small scale to
large scale and back is called elasticity, and is a key feature in Cloud Com-
puting. Elasticity is made possible by the availability of a massive amount
of Cloud resources at the Cloud Provider.

The resources being serviced by the Cloud can be of different types. In
IaaS, the Provider offers fundamental computing resources where the con-
sumer can deploy and run arbitrary software, such as operating systems and
applications. In PaaS, the service is a platform of programming languages,
libraries, services, and tools built on datacenter resources where the Cloud
User is able to run an application, even though the underlying infrastructure
cannot be managed by the user. In SaaS, the Cloud User can use Cloud
software running on the Provider’s infrastructure.

Two major players of Cloud Computing since its beginning have been
Amazon and Google. Amazon has since 2002 been providing its Amazon
Web Services, which includes a number of different Cloud resources available
on-demand. Google has been building its software infrastructure to work
on datacenters of commodity hardware, as opposed to high-end hardware.
The strategy behind this is an economy of scale where costs are reduced
and overall computing power is maximized. Instead of buying expensive
high-end servers, Google has been building their private Clouds on cheaper
hardware, cheaper electricity, cheaper computing, and a smaller number of
administrators.

The challenge for Google was to develop fault-tolerant elastically scalable
software systems to work on commodity hardware in several datacenters,
since at large scale hardware failures are inevitable. Their objective was
providing Cloud services for their own Internet SaaS products, and Google
entered the commercial Cloud Computing business only in 2008 with Google
App Engine. Even though Cloud provisioning is not their core business,
Google has given major contributions in the field of software for Cloud Com-
puting.

Google has tackled the Big Data problem, which is to handle an ever-
increasing large amount of data. In order to process huge amounts of data
for creating an index for Web searches, they have created their own architec-
ture for scalable distributed batch processing, namely MapReduce [19] and
the underlying Google File System (GFS) [28]. These are software systems
designed to work at the scale of thousands of computers in dozens of data-
centers around the world. The architecture for these system was published
by Google in 2004, even though the system itself remained private to Google.

CHAPTER 1. INTRODUCTION 9

Not long after the publication of MapReduce and GFS, Hadoop [25] and
its distributed file system (HDFS) [49, 55] appeared as an open-source alter-
native inspired by Google’s architecture. Hadoop is an Apache project that
was born from improvements to Apache Nutch, a web search engine. Since
then, it has become a solid software framework for distributed processing of
large data sets, and has been adopted by major companies like Yahoo! and
Facebook [8].

The field of distributed systems for Cloud Computing continued to grow,
and in 2006 Google published another influential paper, this time introducing
Bigtable [14]. This system was presented as a distributed storage system built
on GFS to be an alternative to traditional relational databases management
systems (RDBMS), since these were not feasible in the scale required for Big
Data. For achieving high scalability, the data model in Bigtable is simpler
than in relational databases, hence it does not support a query language, join
operations, ACID transactions, and other useful features. Nevertheless, it has
been proved to work in several Google products such as Google Analytics,
Google Finance, Google Docs, and Google Earth.

Apache HBase [24, 27] was created in 2007 as an implementation of
Bigtable’s design [14], and is tightly associated with HDFS. Being an open-
source project has contributed for its wide adoption, and today it stands as
one of the main databases for in Cloud Computing systems.

HBase, Bigtable, and several other Cloud data stores are included in the
class of the so-called NoSQL databases [51]. These are distributed storage
systems that were originally designed specifically for highly-scalable opera-
tion. SQL and relational models often suffered from poor performance issues
when dealing with Big Data, hence NoSQL data stores1 avoid these.

However, NoSQL data stores have been gradually regaining some of those
features [35, 44, 48, 52, 53, 54, 59, 60]. One of these features is the support for
transactions. The objective of transactions is to protect data from damage
made by uncoordinated or unfinished data operations. They are mechanisms
in databases that encapsulate a group of data operations (such as read and
write) and ensure that these will not be left incomplete, but will rather
behave as a single operation. The precise properties that transactions are
required to satisfy are known as ACID, and are described in Chapter 2.

There are a few transactional systems for HBase, such as the ones we
discuss in Section 2.4. The contribution of this Thesis is a new transactional
system called HAcid, created out of the need for an open-source lightweight
transactional system.

1In general, we shall use “data store” to refer to non-relational databases.

CHAPTER 1. INTRODUCTION 10

This Thesis is structured as follows. In the next chapter, we present
background knowledge of transactions, distributed databases, and data stores
such as HBase. In Chapter 3 we describe HAcid thoroughly. Chapter 4
discusses the performance of the proposed system, and Chapter 5 concludes
and summarizes the Thesis.

The reader interested in the use of HAcid can skip to Section 3.5, while
academic readers might be interested in earlier sections of Chapter 3.

Chapter 2

Background

A database is an organized collection of data items, which are records of
some real world information [31]. This is a broad definition that includes
even non-digital databases, such as ancient tablets for recording measure-
ments of resources. Databases have always been important structures for life
and society. Nowadays they are mainly digital and can be found in many
organizations.

Databases follow some data model, which is an abstract structure for
describing the arrangement of data items in data structures. For example,
the relational model is a popular data model, central to SQL-based databases.
Among other things, data models describe how data items should be grouped
and associated with each other.

Data items are any data that has a value that can be atomically read
and written. An atomic operation cannot be partially executed. Data item
values can be numbers, strings of characters, bytes, or even a whole row in a
table. Data items possess a key or location to uniquely identify them. Thus,
a data item is described by a key-value pair 〈key, value〉. The values of all
data items in the database at any time comprise the database state at that
moment.

In order to maintain the data model of a database and allow modifi-
cations, databases rely on database management systems (DBMS). These
are software systems that provide an interface that allows clients to build,
maintain, and modify a database stored in hardware. Clients are usually
applications interfacing with the DBMS.

DBMSs can have many subsystems, each one for managing a different
aspect of the database. An important requirement for all DBMSs is that
they support read and write operations. We use the notation “r[x = v]” to
represent a read operation that reads value v from data item x. Similarly,
“w[x = v]” represents a write of value v to x. In many cases the value can

11

CHAPTER 2. BACKGROUND 12

be omitted if it is not relevant in the context: r[x], w[x].
One of the main components that many DBMSs support is a transaction

manager. Transactions are thoroughly described in the next section.

2.1 Transactions

A transaction is a sequence of read and write operations that are conceptually
related. The idea is to have a group of operations execute as if it was one
single operation. Transactions are specified by the application programmer,
who sorts and groups some read and write operations together, and submits
them to the transaction manager in the DBMS, for executing the operations.

Typically, the application that issued the transaction first submits to the
DBMS its operations to be executed. After that, the application requests a
commit of the transaction. Through the commit request, the application is
informing that the modifications done by the transaction should be made vis-
ible to other transactions and be written to persistent storage in the database.
The DBMS, then, can give an outcome for the transaction: either committed
or aborted. In the abort case, some problem occurred with the transactions
management or in the execution phase, and the modifications were undone.
This undoing command is called rollback and is performed by the DBMS.

The execution of a transaction can be formally modeled as a totally or-
dered set Ti, i.e. a sequence, where elements are operations such as read
(ri[x]) and write (wi[x]). We assume that no transaction reads or writes the
same data item more than once. The following definitions are inspired by
Bernstein et al. [6].

Definition 1 (Transaction). A transaction is a totally ordered set Ti with
ordering relation <i such that Ti ⊆ {ri[x], wi[x] : x is a data item}.

That is, transactions have their read and write operations totally ordered.
For example, r1[x] <1 w1[x] means that transaction T1 read data item x and
then wrote to x. We use the notation T1 : r1[x] w1[x], commonly found in the
literature [3, 57], to completely describe the operations of a transaction and
their ordering. The data items of read operations in transaction Ti comprise
the readset TR

i and the data items of write operations in Ti are collected in
the writeset TW

i .
We extend the definition of a transaction to allow the final operation to

be either a commit (ci) or an abort (ai).

CHAPTER 2. BACKGROUND 13

Definition 2 (Completed transaction). A completed transaction is a totally
ordered set Ti with ordering relation <i such that:

1. Ti ⊆ {ri[x], wi[x] : x is a data item} ∪ {ci, ai};

2. ci ∈ Ti ⇔ ai /∈ Ti;

3. If ci ∈ Ti (or ai ∈ Ti), then ci (respectively ai) is the greatest element
in Ti.

The purpose of transactions is to allow a group of operations to have the
same (or similar) safety properties as the basic read and write operations are
expected to have. That is, there are essential properties that all transactions
should guarantee upon execution.

As an example, consider a database for bank accounts and the transfer
of an amount of money from one account to another. In order to transfer,
for instance, $100 from Alice to Bob, it is necessary to subtract $100 from
Alice’s balance (debiting) and add $100 to Bob’s balance (crediting). The
whole process involves four operations: a read and a write in Alice’s balance,
and a read and a write in Bob’s balance. This sequence of four operations
should be run in such a way that they appear to be actually a single operation.
The bank cannot tolerate a partial execution of this sequence, where some
operations fail.

The so-called ACID is a traditional set of properties that database trans-
actions are expected to satisfy in order to provide data reliability. These
properties define transactions that are protected from concurrency problems
and hardware failures. The acronym ACID stands for four properties, which
are explained below.

• Atomicity: either all operations of a transaction are performed, or
none are. If some operation fails, the entire transaction fails and the
database state is left unchanged by the transaction.

• Consistency: after the transaction is committed, it has brought the
database from one valid state to another. A valid state is a database
state that satisfies some rules, e.g., data type constraints.

• Isolation: no transaction interferes with another concurrent transac-
tion. That is, the intermediate steps of a transaction are invisible to
other transactions.

• Durability: when a transaction is committed, the modifications to
data items are persisted, even in the event of a system failure.

CHAPTER 2. BACKGROUND 14

These terms are traditionally defined informally. A technical description
of the ACID properties requires more details concerning the database and
its data model. There can also be many levels of rigor in these properties.
In particular, Isolation normally incorporates many different levels. Some of
these levels, such as Serializability, Snapshot Isolation, and Read Committed
are relevant to HBase and its transactional systems. These are discussed in
Sections 2.1.3 and 2.1.4.

ACID properties can be achieved through different techniques. A tradi-
tional technique is the use of locks, giving to a transaction exclusive access to
its related data items. Alternatives techniques are Optimistic Concurrency
Control and Multi-versioning, where the latter one takes copies of data items
to avoid the need for managing locks. These techniques are the subject of
the following section.

2.1.1 Concurrency control techniques

Transactions are concurrent if they are being executed simultaneously. In
practice, concurrency is represented as the interleaving of the operations
of transactions and controlled through a component called scheduler in the
DBMS. The interleaving is particularly important when defining the order
of conflicting operations.

Definition 3. Two operations are said to be conflicting if and only if the
following conditions hold: (i) they are read or write operations; (ii) both
concern the same data item; (iii) at least one of them is a write operation.

We assume that two conflicting operations are never executed concur-
rently. As an example, operations r2[x] and w1[x] are conflicting, and their
ordering is intricate, in the sense that transaction T2 reading x might get
different results depending on when transaction T1 wrote to x.

Thus, after a collection of transactions is executed, the resulting database
state might depend on how the transactions were interleaved. A history is an
interleaving of transactions, and an outcome is the resulting database state,
hence the outcome depends on the history. Histories are formally defined as
follows.

Definition 4 (History). [6] Given a collection of completed transactions
T = {T1, . . . , Tk}, a history is a partially ordered set H with ordering relation
<H such that

1. H =
⋃k

i=1 Ti;

2. <H ⊇
⋃k

i=1 <i;

CHAPTER 2. BACKGROUND 15

3. For every pair of conflicting operations p, q ∈ H, either p <H q or
q <H p.

That is, the ordering relations of the transactions are inherited in the his-
tory (condition 2), and all conflicting operations of the involved transactions
are ordered (condition 3).

If the history is a totally ordered set, we use the following notation,
common in the literature [3, 57]. Let T = {T1, T2}, where T1 : r1[x] w1[y] c1
and T2 : w2[x] w2[y] a2, and H be defined as r1[x] <H w2[x] <H w1[y] <H

c1 <H w2[y] <H a2. History H can also be represented as

H : r1[x] w2[x] w1[y] c1 w2[y] a2 .

Histories are determined by the scheduler in the DBMS. The scheduler
can be implemented in different ways, of which Two Phase Locking (2PL)
[4, 6] is the traditional approach. Locks are mechanisms that a transaction
enables to deny other transactions access to data items. The purpose is to
allow a transaction to acquire exclusive access to some data items so that
other transactions do not interfere with its operations.

In this method, each data item is associated with a lock, which can be
held by only one transaction at a time. The DBMS maintains a lock table,
where each data item x is mapped to some transaction Ti (x is locked by
Ti) or to no transaction (x is unlocked). Before a transaction Ti accesses a
data item x (through read or write operations), it must attempt to acquire
a lock from the scheduler. The lock of x is granted to Ti if it is not held by
another transaction. If the lock is already taken, then Ti must wait until it
is released.

Two Phase Locking happens in two phases: first in a growing phase, then
in a shrinking phase. In the growing phase, a transaction obtains locks for
the data items it wants to access, then performs its operations on those data
items. In the shrinking phase, a transaction releases the locks it has obtained.
No locks are released in the growing phase, and no locks are acquired in the
shrinking phase. 2PL is a pessimistic concurrency control method, in the
sense that it denies access to other transactions that might not necessarily
request access to the locked data items.

Locking is interesting for providing good Isolation, since it enforces that
transactions cannot interfere with each other. On the other hand, without
additional precautions it is common to encounter problems such as dead-
locks, which happen when a transaction Ti is waiting for Tj to release locks,
while the Tj is waiting for Ti to release locks. There are no general-purpose
deadlock-free locking protocols for databases that always provide high con-
currency [37]. Typically, strict locking schedulers exhibit poor performance
with many in-flight transactions.

CHAPTER 2. BACKGROUND 16

Another method is Optimistic Concurrency Control (OCC) [37], which
can be considered the opposite approach to pessimistic concurrency control.
In OCC, a transaction is never blocked from executing its operations, but
might get aborted when the commit request happens, in order to avoid vio-
lation of properties such as Isolation. This is an optimistic approach, in the
sense that transactions assume that violation of Isolation will not happen
while executing its operations. When aborted, normally the transaction is
re-executed until no Isolation violation occurs on the commit request. Vio-
lation of Isolation is also called transaction conflict.

OCC might operate with better performance than 2PL when transaction
conflicts are rare. When transaction conflict is highly likely, OCC suffers
from starvation due to repeated executions of transactions [37].

2.1.2 Multiversion Concurrency Control

Multiversion Concurrency Control (MVCC) [4, 5] is a class of methods that
keep a list of versions of each data item. Externally (to the client), x is a data
item, but internally x is a map from version numbers (typically integers) to
proper data items.

For instance, x(1) is a data item representing the first version of x. Version
x(k) may or may not be defined, i.e., x is a partial function. If x(k) is
undefined, we write x(k) = ⊥. To “create” a new version corresponds to
defining x(k) if it was previously undefined. In MVCC, when a transaction
writes to x, instead of overwriting a value, it actually creates a new version
x(k), which is written only once. The MVCC method determines how read
operations select the correct version to read. In MVCC methods, we refer to
x as a data item, and x(k) as a version of x.

The benefits of MVCC are increased concurrency (each transaction writes
to a different version) and unobstructed read-only transactions, since versions
are not modified after being created. The versions of x are internal to the
concurrency control method and are not seen directly by the client. The
drawback of this method is the storage cost of maintaining multiple versions.

2.1.3 Elementary isolation levels

Isolation is about concurrency. If no concurrency is involved, the DBMS
deals with transactions sequentially without overlapping in time. The result
is a serial history H: a history with no interleaved operations of different
transactions, i.e., no operation of Tj can appear (in the <H order) between
two operations of Ti, for all j 6= i. In this situation, Isolation is perfectly
guaranteed.

CHAPTER 2. BACKGROUND 17

However, concurrency for transactions is a basic property that most
DBMS should support, since the lack thereof incurs severe performance draw-
backs. For example, recall the bank accounts database system. It would be
an obvious drawback to lock the whole database for the execution of every
transfer. Two unrelated transfers should be allowed to execute in parallel.

Ideally, a DBMS should provide Serializability, the highest isolation
level. With this property, the DBMS allows concurrency but the outcome of
a history is always equivalent to the outcome of some serial history. Thus,
to the application interfacing with the DBMS, transactions appear to have
been executed serially, i.e., sequentially without overlapping in time.

To illustrate Serializability, recall the example of money transfer from
Alice to Bob. Let transactions T1 : r1[A] w1[A] c1 and T2 : r2[B] w2[B] c2,
where A and B are bank account balances for Alice and Bob. History H of
{T1, T2}, defined as

H : r1[A] r2[B] w1[A] c1 w2[B] c2

is a serializable history, because its outcome is the same as the outcome of
the serial history

H ′ : r1[A] w1[A] c1 r2[B] w2[B] c2 .

In other words, the accounts will have seen a correct transfer, regardless
whether the history was H or H ′.

Despite its usefulness, Serializability is a strict requirement over the out-
comes of histories, hence it often causes performance to be poor. It is expen-
sive notably in typical Two Phase Locking implementations, since transac-
tions are often blocked from proceeding in order to satisfy the requirement.

Other isolation levels have therefore been proposed, in order to increase
performance. The disadvantage is that these levels allow a number of anoma-
lies that cause inconsistencies in the database. In general, the more anomalies
we allow, the more concurrency we gain. On the other hand, less anoma-
lies allowed means better data consistency of the outcomes. Some important
anomalies are described below, and were originally specified by ANSI SQL-92
[56], but properly redefined by Berenson et al. [3]. We interpret the defini-
tions of Berenson et al. [3] using the terminology of Bernstein et al. [6].

Definition 5 (Dirty Write Anomaly). Given a collection of completed trans-
actions T and a history H of T , we say that H exhibits Dirty Write if
there are two transactions T1, T2 ∈ T such that w1[x] <H w2[x] <H c1 or
w1[x] <H w2[x] <H a1.

CHAPTER 2. BACKGROUND 18

Dirty Writes mean that inconsistent values can be written to the data item
when a transaction commits or aborts. For example, in the case w1[x] <H

w2[x] <H a1, when T1 should rollback, it is unclear whether to recover the
value previous to operation w1[x] or the value written by w2[x]. Preventing
Dirty Writes is equivalent to making transactions get write locks for their
writesets [3].

Definition 6 (Dirty Read Anomaly). Given a collection T and a history H
of T , we say that H exhibits Dirty Read if there are two transactions T1 and
T2 such that w1[x] <H r2[x] <H c1 or w1[x] <H r2[x] <H a1.

What Dirty Read means is that transaction T2 reads a data item value
that was not yet committed. Moreover, if T1 aborts, then the value it wrote
could have been undesirably read by some other transaction.

Apart from Serializability, two basic isolation levels are Read Uncommit-
ted and Read Committed.

Definition 7 (Read Uncommitted). A transaction manager exhibits Read
Uncommitted if the histories produced by it never have Dirty Writes.

Definition 8 (Read Committed). A transaction manager exhibits Read
Committed if the histories produced by it never have Dirty Writes nor Dirty
Reads.

These are isolation levels important to mention for this Thesis. They
disallow some anomalies, but many other kinds of anomalies can still occur
with them. There are other isolation levels as well, which are not mentioned
here. However, not all levels are defined according to anomalies, such as the
important Snapshot Isolation, which is the subject of the next section.

2.1.4 Snapshot Isolation

Proper Isolation is normally achieved by giving transactions exclusive ac-
cess to data items, i.e, locking. However, locking is not the only technique,
because exclusive access can be given by means of snapshots.

Snapshot Isolation (SI) [3, 12, 57] is a term used for denoting a method of
concurrency control and the resultant Isolation properties that it provides.
In SI, a transaction starts by taking a snapshot of the current state of the
database, then executes its reads and writes on that “private” snapshot, and
finally commits by making its snapshot persist in the database. The commit
is successful only if the writeset of the transaction has not been modified by
other transactions since the snapshot was taken. That situation is called a

CHAPTER 2. BACKGROUND 19

write-write conflict [57], and happens when two transactions overlap in time
and have an intersection in their writesets.

In practice, we do not copy the whole database state to make the snap-
shot, since this is clearly expensive. It suffices to take a snapshot of the
readset and writeset of the transaction, i.e., the data items involved. To
simplify the management of snapshots, typical SI implementations employ
timestamps, which are unique integers served in increasing order by some
source, usually called timestamp oracle. Timestamps are suitable for imple-
menting SI in multi-version databases, which are databases that have built-in
support for multiple versions of data items. In these settings, SI takes ad-
vantage of techniques from MVCC.

In SI, transactions proceed as follows. When a transaction Ti starts, it
acquires a start timestamp, denoted in this Thesis as T start

i . Only after that
can Ti execute its operations. When no more read or write operations will be
performed, Ti acquires an end timestamp T end

i , which in the literature is also
known as commit timestamp1. Finally, conflict testing happens to determine
whether Ti commits or aborts. If Ti committed, its end timestamp is used
to represent the time Ti was committed. If a transaction still does not have
a start or an end timestamp, we write T start

i = ⊥ or T end
i = ⊥.

Notice the connection between the order of operations and the timestamps
of a transaction. The start timestamp is acquired before any operation is
executed, and the end timestamp is acquired after the last read or write
operation and before the commit operation ci (or ai). Transactions that
have timestamps are called timestamped transactions in this Thesis. The
start and end timestamps of a transaction define its lifetime.

Definition 9 (Lifetime). The lifetime of a timestamped transaction Ti is the
interval [T start

i , T end
i).

During the lifetime of a transaction, read and write operations are exe-
cuted. To simplify the theory needed, we assume that all read operations
must happen before any write operation in a transaction, as [44] does. In
practice this is commonplace, and it simplifies our discussion. Each read
operation uses the newest committed data item version that was committed
before T start

i . A write operation to data item x is performed by creating a
new version x(T start

i).
The start timestamp, therefore, represents the snapshot for Ti: data is

written on version T start
i and read from versions smaller than T start

i . The
snapshot of a transaction is the set of all data item versions that can be read

1We avoid the term, since even transactions that aborted would have a commit times-
tamp, which might be misleading given that a transaction is either aborted or committed.

CHAPTER 2. BACKGROUND 20

Timestamps

T start
1 T end

1
T1 : r1[A]w1[A]

T start
2 T end

2
T2 : w2[A]

Figure 2.1: A write-write conflict between transactions T1 and T2. A line with
a square and a filled circle on the ends represents a transaction. A square is
a start timestamp and a filled circle is an end timestamp. T1 conflicts with
T2 because A ∈ TW

1 ∩ TW
2 , so T1 commits and T2 aborts since T end

1 < T end
2 .

in the transaction. Version numbers are defined by the SI method, and the
client application does not need to know what version numbers were used.

When conflict testing happens, the outcome of the transaction is decided:
aborted (ai ∈ Ti) or committed (ci ∈ Ti). The transaction manager is re-
sponsible for checking whether the current transaction conflicts with some
other transaction, and deciding which aborts and which commits. In SI, two
transactions conflict if they have a write-write conflict, as defined below.

Definition 10 (Concurrent transactions). Two timestamped transactions Ti
and Tj are concurrent if their respective lifetimes have a non-empty intersec-
tion.

Definition 11 (Write-write conflict). Timestamped transactions Ti and Tj
have a write-write conflict if they are concurrent and TW

i ∩ TW
j 6= ∅.

Once two transactions with write-write conflict are detected, one of them
must be selected as the “winner” to commit. For resolving this, SI enforces
the “First-Committer-Wins” (FCW) rule: the transaction with smallest end
timestamp is selected as the winner. The other transaction is aborted. FCW
is also useful for preventing an anomaly, namely, Lost Updates, which is
explained in details by Berenson et al. [3]. Figure 2.1 is an example of two
conflicting transactions, where the FCW rule applies.

A read-only transaction will not interfere with other transactions, it sim-
ply needs to find the correct data version that represents its snapshot, and
execute the read. In this sense, read-only transactions in timestamp-based
SI implementations are never blocked and always committed.

Snapshot Isolation is an interesting isolation level that many databases
support. Compared to Serializability in 2PL, it has better performance and
avoids many anomalies, including Dirty Reads and Dirty Writes. A key
advantage of SI is that read operations are never blocked. On the other
hand, there can occur some anomalies in SI histories, the most notorious

CHAPTER 2. BACKGROUND 21

being Write Skew. This anomaly happens when a constraint is not satisfied
globally (inter-transaction violation), even though SI transactions can satisfy
the constraint locally (intra-transaction fulfillment). The following example
illustrates an occurrence of Write Skew.

Suppose x and y are integer data items, and let x+y > 0 be the constraint
we wish to keep satisfied. Let T1 and T2 be two completed transactions,
T start
1 = 1, T start

2 = 2, and H be a history of {T1, T2} obtained by a Snapshot
Isolated transaction manager,

H : r1[x(0) = 5] r1[y(0) = 5] r2[x(0) = 5] r2[y(0) = 5] w1[x(1) = −2] w2[y(2) = −3] c1 c2.

In words, H has T1 reading the values of x and y, then writing a negative
value to x; T2 reads the values of x and y, and writes a negative value to
y. Transactions T1 and T2 do not exhibit a write-write conflict, thus both
commit. Locally, the snapshot of T1 at the timestamp T start

1 = 1, has the
values x = −2 and y = 5, therefore x + y > 0 is satisfied. Similarly, the
snapshot of T2 satisfies the constraint on commit time. However, in a global
view of the database state, the constraint is violated. That is, the snapshot
of a next transaction T3 (starting after both T1 and T2 committed) will have
the values x = −2 and y = −3, violating x+ y > 0.

In many applications, Write Skew might not be a problem for data in-
tegrity, but for databases such as bank account databases, it is safer to avoid
it. Serializability, by definition [3], does not allow any anomaly from a list of
eight anomalies, including Write Skew. Therefore, Snapshot Isolation does
not guarantee serializable histories [3, 12]. The main reason for Write Skews
in SI is because the readsets of transactions are not used during conflict
testing in SI, only writesets are used [57].

In transactional systems for Cloud data stores (the focus of this Thesis),
Snapshot Isolation is usually the main isolation level supported. For example,
the pioneers Percolator [44] and HBaseSI [60] have SI as one of the main
properties of their systems. This isolation level is convenient for data stores
such as Bigtable and HBase, which are multi-version databases.

2.2 Distributed Databases

In large enterprises, centralized databases were once the traditional approach
for storing data. If a database is centralized, all the data is maintained in a
single server, such as a specialized database server. The main disadvantages
are performance bottlenecks and unavailability during failure recoveries.

In a distributed database, the data is stored in several storage devices
across different computers (or “nodes”). The computers are normally inter-

CHAPTER 2. BACKGROUND 22

Centralized database

Node

di1
di2
di3
di4
di5

Distributed database

Node 1

di1
di3
di5

Node 2

di1
di2
di4
di5

Node 3

di2
di3
di4

Figure 2.2: An example of centralized and distributed databases. On the
right side, five data items are replicated in three different nodes. Edges in
the distributed database represent network connection, and “di” stands for
“data item”.

connected by a network. Data is typically partitioned among the nodes, so
that each node holds a portion of the whole database. The DBMS managing
the networked nodes provides a global view of the database to the client,
even though only local views are given at each node. This property is known
as distribution transparency [50].

Distributed databases often employ less reliable hardware than central-
ized databases do. Thus, hardware failures, such as hard disk failures, are
common and should be taken into account. Replication is an appropriate
technique for providing fault-tolerance, by storing copies (“replicas”) of ev-
ery data item in different nodes. Therefore, if one of the replicas is lost
through hardware failure of the host computer, there are other replicas in
the distributed system. This property is called redundancy. The larger the
number of replicas employed for each data item, the smaller will be the prob-
ability of irreversibly losing that data item. Figure 2.2 compares centralized
and distributed databases regarding data item distribution.

Replication can favor availability: the data item is unavailable if a global
failure happens, but remains available while at least one replica is accessible.
A data item can have replicas in computers spread around the globe, so that
clients can access the nearest host node, and latency can be made low in many
geographical locations. Availability is a key issue concerning distributed
systems.

Another key issue is consistency: the problem of maintaining the same
value for all replicas of a data item. When a data item is written, each of its
replicas must be updated. Replicas cannot be updated simultaneously, due
to the fact that they are distributed. Consequently, the distributed database

CHAPTER 2. BACKGROUND 23

will have a temporary inconsistency among the replicas, from the moment
the write operation is issued until the last replica is updated.

There are two major categories of methods for updating replicas [50]:
eager (synchronous) replication and lazy (asynchronous) replication. In syn-
chronous methods, the DBMS makes the data item unavailable to clients
while the updates to replicas are being propagated. The data item is avail-
able to clients only if all replicas have the same value. Therefore, updates
to replicas are grouped in a transaction with ACID properties, which blocks
any read operation to the data item.

In asynchronous methods, the data item is kept constantly available, and
updates to replicas are propagated independently of each other. Read op-
erations are not blocked, therefore two read operations of the same data
item can return different results according to which replica was used for each
operation. Eventually, the replicas will converge to the same value.

The distribution of replicas implies a trade-off: making data items tem-
porarily unavailable for guaranteeing consistency, or allowing inconsistency
for providing constant data item availability. This is a central consequence
of the CAP Theorem, introduced by Brewer [9] and proved by Gilbert and
Lynch [29], informally described below.

Consider the three following properties of distributed databases:

• Consistency2: at any moment all nodes see the same database state.

• Availability: every read or write request eventually receives a response
whether it was successful or failed.

• Partition Tolerance: the system continues to operate despite net-
work partitions, except in case of total network failure. A network is
partitioned when message losses occur between any two nodes of the
system.

The CAP Theorem states that a distributed database can only satisfy
at most two of those three conditions. Thus, one of the conditions must
be left out. In reality, a system that does not allow partition tolerance is
non-distributed (centralized). This is true because the system must prevent
partitions from happening, and this is possible only if the database resides
in a single node.

Hence, a distributed database must be partition tolerant, so either avail-
ability or consistency can be supported, but not both, as stated previously.
This result is strong and has affected the design of all distributed databases.
Cloud data stores are distributed databases, thus they must also take the

2Not to be mistaken with Consistency in ACID.

CHAPTER 2. BACKGROUND 24

CAP Theorem into account. The theorem also affects transactional systems
for Cloud data stores.

In the following section we focus on the Extensible Record Stores, a class
of Cloud data stores pioneered by Google’s Bigtable, and the kind of data
store we consider for enabling transactions.

2.3 Extensible Record Stores

Bigtable [14] is a proprietary distributed NoSQL database (a Cloud data
store) designed to scale to thousands of machines in Google’s own data-
centers. Google has designed Bigtable out from their need of controlling
performance and scalability in data stores. For this reason, the data model
is intentionally simple, yet flexible. By choice, transactions were left out of
Bigtable’s design, since a strict need for them was not found. Nonetheless,
many Google products have been successfully developed on top of Bigtable,
which indicates its importance.

Bigtable has been the pioneer of a category of data stores named Extensi-
ble Record Stores [13]. The name indicates that the data model can be easily
extended at any moment. This category includes data stores such as Apache
HBase [24], Hypertable [34], Apache Accumulo [22], and Apache Cassandra
[23].

HBase [27] is likely the most popular Extensible Record Store, and is the
data store for which we seek to enable transactional support. We will focus
on describing HBase’s design, using its terminology, instead of Bigtable’s
original terminology.

2.3.1 Data model

In HBase, data items are key/value pairs. The keys are multidimensional,
with the following dimensions: table, row, column family, column qualifier,
and version number3. The version numbers are what cause HBase to be
a multi-version database. The dimensions “column family” and “column
qualifier” are normally grouped together as a pair under the name “column”.
Typically, the “table” dimension will be clear from the context, hence a key
is commonly represented simply as the tuple (row, col, ver), where col =
(column family, column qualifier) and ver stands for the version number.

3Version number is more commonly known as timestamp, however we reserve the word
“timestamp” for timestamped transactions.

CHAPTER 2. BACKGROUND 25

row personal:name personal:age financial:balance financial:bank

A

132: 1630

131: 1690

127: 2120 127: Nordea

123: Adam 123: 34 123: 1911

B 211: Bob 211: 4124

C
125: 851 125: Pohjola

96: Caroline 96: OP

S 154: Smith 154: 58

Figure 2.3: Example HBase table. The notation “100: data” means that
data is stored in version number 100.

An HBase table t is a map of data items

(row, col, ver) 7→ value ,

where col = family:qualifier, ver is a 64-bit integer, and row, family,
qualifier, value are byte strings. Typically, byte strings are decoded as
human-readable data, but can be binary data as well.

A cell is a set of data items with common row and col keys, and the cell
key is precisely (row, col). Each data item in a cell is called a version of that
cell. Sometimes we refer to a row as the collection of cells with common row
key.

A table is organized by grouping cells into rows, and sorting rows lexico-
graphically by their row keys. The sorting allows the table to be partitioned
into regions, which are different ranges of row keys. The regions of a table are
distributed between different nodes, so rows that are lexicographically close
will likely be stored spatially near to each other, thus it is wise to choose row
keys that provide good locality for data accesses.

As indicated by the example in Figure 2.3, HBase tables are sparse in the
sense that null values are not stored. For cells that have at least one version,
the latest version corresponds to the data item with highest version number.
Thus, the cell (C, financial:bank) has “125: Pohjola” as the latest version,
where financial is a column family and bank is a column qualifier.

HBase’s API provides simple operations for reading and writing data.
The most important operations are Get and Put, both operating on a single
row.

Definition 12 (HBase Get). t.get(row, col, ver) retrieves from HBase the
data item in table t whose key is (row, col, ver).

CHAPTER 2. BACKGROUND 26

Keys can contain the special symbol ∗ in some entry (except row) to ex-
press that the entry is unspecified. So t.get(row, col, ∗) returns all data items
that match row and col in their keys. On the other hand, t.get(row, ∗, ver)
returns all data items that match row and ver. t.get(row, ∗, ∗) returns all
cells with row in their keys. t.get(∗, col, ver) is not allowed, i.e., a Get is a
single-row operation.

To get the latest version of a cell, t.get(row, col) returns the cell whose key
matches row and col, and has the largest version number. For example, the
call t.get(C, financial:bank) to table t in Figure 2.3 returns the key/value
pair

〈(C, financial:bank, 125), Pohjola〉 .

Definition 13 (HBase Put). t.put(L) is given a set L of key/value pairs
with common row key, and requests the HBase table t to store the given
key/values pairs. If a key/value in L has the version number unspecified,
HBase takes care of giving that key/value a version number created from the
server’s wall clock time4.

Not all dimensions in a key can be arbitrary for a Put. A table has a
specified set of possible column families, but column qualifiers can be arbi-
trary. Column families are normally defined only at the time the table is
created, but new families can be added at any time by first disabling [27] the
table, which is an expensive operation. Consequently, it is recommended to
keep the set of column families fixed, even though it can be modified.

On the other hand, new row keys, column qualifiers, and version numbers
can be specified on the fly in Put operations. In this sense HBase is an
Extensible Record Store, because the schema of a table is allowed to be
extended by adding new columns qualifiers, with no overhead compared to
using existing column qualifiers. These new column qualifiers do not affect
previous existing rows that did not contain such qualifier, since null data
items are not stored.

Notice how the Put operation allows a set of data items to be submitted.
In fact, the group of write operations being submitted are performed atomi-
cally (via locking mechanisms), and hence HBase provides ACID properties
for a Put operation. This fact will be discussed more carefully in the follow-
ing sections. An operation similar to Put is CheckAndPut, which includes
one Get operation performed atomically with a Put.

4HBase requires its servers to have synchronized clocks in order to make version num-
bers from clock time. More details on “Implicit Versioning” is given by [27].

CHAPTER 2. BACKGROUND 27

Definition 14 (HBase CheckAndPut). t.checkAndPut(row, col, ver, x, L)
is an operation that atomically performs: t.get(row, col, ver), and if the
result is x, then t.put(L) is executed. All row keys in L must be equal to
row. CheckAndPut returns true if and only if the Get check succeeded.

The CheckAndPut operation is similar to compare-and-set instructions
in multithreaded operating systems. It writes to the cell only if the previous
value in the cell matches the given value.

Definition 15 (HBase Delete). t.delete(row, col, ver) removes the given
data item from table t.

The operation t.delete(row, col, ∗) removes all versions of the specified
cell, while t.delete(row, ∗, ver) removes all data from the specified row ver-
sion, and t.delete(row, ∗, ∗) removes all data of the given row.

Delete, CheckAndPut, and Put are the only HBase operations that can
write/update data. These are single-row operations.

Definition 16 (Row mutation). An HBase row mutation is either a Put, a
CheckAndPut, or a Delete.

An HBase Scan is a read operation that spans a range of rows in a table.
Two row keys are given to determine the ends of the range, and the scan
gradually returns each row whose key is in the range. To return a row means
to return all cells with common row key. Contrary to the previously discussed
operations, a scan is not atomic: it can be partially executed. That is, a scan
might be interrupted by a failure, and the data scanned might be outdated
if a write operation occurred during the scan. These issues are discussed in
Section 2.3.3.

Definition 17 (HBase Scan). t.scan(startrowkey, endrowkey) starts a scan
operation of the row key range startrowkey (inclusive) to endrowkey (ex-
clusive) and returns a scanner object with two functions: hasNext() and
next(). The hasNext() function returns whether or not there is still some
row to be scanned from the specified range. In lexicographic order of the
row keys, next() returns the next row that has not yet been scanned by the
scanner.

In the underlying system, an HBase Get is in fact a Scan where the range
comprises a single row key. The next section introduces the internal HBase
systems that sustain this data model and its operations.

CHAPTER 2. BACKGROUND 28

Client layer

Application

Client library

Server layer
Master
server

Region servers

Write-Ahead Log

Memstore

HFile

Storage layer ZooKeeper HDFS

Figure 2.4: The main components in HBase’s architecture. Edges indicate
important communication between components.

2.3.2 Architecture

We give a quick overview of the internals of HBase, but for an in-depth
description, refer to [27]. HBase consists of three layers: the client, the
server, and the storage layers. The client layer has the client library for the
application; the server layer consists of a master server and several region
servers ; the storage layer comprises a distributed file system and a reliable
distributed coordination service, typically Hadoop Distributed File System
(HDFS) and ZooKeeper, respectively. See Figure 2.4.

For data operations, the client library communicates directly with a re-
gion server. As mentioned in the previous section, the rows of a table are
partitioned into regions, according to the order of row keys. The region is the
basic unit of scalability and load balancing in HBase. Each region is served
by exactly one region server.

The region server handles read and write requests to some regions, and
initiates a split of regions that have become too large. The region server
consists of three main components: Write-Ahead Log (WAL), Memstore,
and HFiles. The WAL is a log of all modifications done to data in the region
and its purpose is to allow recovery from failures, because any mutation can
be redone to bring the data store to the state it should be in before the failure
happened. Memstore is an in-memory buffer that contains recently updated
data items sorted by key, with the purpose of caching data items to reduce
read and write latencies. HFiles are persistent and ordered immutable maps

CHAPTER 2. BACKGROUND 29

from keys to values. WAL and HFiles are files in the underlying filesystem,
HDFS.

When a Put is processed in the region server, the changes are first written
to the WAL, which is stored persistently. If the write to the WAL succeeds,
the Put is executed on Memstore. When Memstore exceeds its maximum
capacity, it is flushed as an HFile to the filesystem. When the region server
receives a Get request, it attempts to find the appropriate data item from
Memstore, and if it was not found, the search for the data item continues
through HFiles.

HDFS [7, 25] is a distributed filesystem designed with built-in replication,
fault tolerance, and scalability. HBase uses HDFS by default, but optionally
other filesystems can replace it. Originally, the purpose of HDFS was to
support the MapReduce framework, therefore its performance is optimized
for batch processing in Big Data. HDFS is typically installed on commodity
hardware, so it employs replication to provide fault tolerance.

The assignment of regions to region servers is done automatically by one
master server, according to changes in workload and region server failures.
The master is also responsible for balancing the load of regions across region
servers, performing garbage collection of files, and handling schema changes.
The master manages the assignment of regions using ZooKeeper to keep track
of regions and region servers.

Apache ZooKeeper [26, 33, 36] is designed to be a smaller data store than
HBase, with the purpose of being a highly-reliable distributed coordination
service with good read performance. It is typically used as a database-like
service for storing configuration and coordination data for distributed sys-
tems, and is comparable to Chubby [10] from Google. In HBase, each region
server creates a data item in ZooKeeper to represent its existence. Region
servers and the master server access ZooKeeper’s data store to acquire a re-
liable global view of the set of current region servers and the regions they
manage.

2.3.3 Properties

In this section, we discuss the ACID properties related to HBase data oper-
ations mentioned previously.

Because only one region server is serving a row, Serializability of oper-
ations on a fixed row can be provided. In fact, Gets and Puts of a row
are executed serially by the region server, whereby perfect Isolation can be
guaranteed. The region server does this by using row locks that result in
atomicity of a row mutation. Durability of a row mutation is ensured by the
WAL and HDFS.

CHAPTER 2. BACKGROUND 30

Guarantee 1. Row mutations have ACID properties, where the isolation
level is Serializability.

Notice that ACID properties are guaranteed for single-row operations,
but not for transactions with operations on multiple rows. In particular, the
CheckAndPut operation is the most similar to a transaction, since it involves
a Get and a Put on the same row. It can thus be said that HBase supports
simple single-row transactions. This guarantee is extremely important for
data integrity, and it is a necessary property for the transactional system
discussed in this Thesis. Recalling the definition of data item from Chapter 2,
we see that an HBase row can be seen as a data item with a complex data
structure for its value.

The Scan is the only operation among the previously mentioned that
concerns multiple rows. Internally, scans are allowed to request rows in
batches, therefore the data obtained of a row may not be the most up-to-
date. If a row is mutated after a scan has requested it in batch, the scan may
or may not reflect the mutation. A scan is guaranteed, however, to reflect all
data written prior to the construction of the scanner with t.scan(). In other
words, the following holds.

Guarantee 2. The isolation level for HBase Scan operations is Read Com-
mitted.

Both guarantees are important building blocks for transactional systems
that are built on top of HBase or Bigtable.

2.4 Transactions in Extensible Record Stores

Recently in 2010 Google published their design of Percolator [44], a trans-
actional management system using Bigtable, tailored for incremental data
processing. This meant that ACID multi-row transactions are possible on
top of Bigtable. Naturally, given the similarity between Bigtable and HBase,
one could ask if multi-row transactions are also feasible with HBase. Table 2.1
compares features supported by (or made possible by) relational databases
and Extensible Record Stores.

Independently from Percolator, Zhang and Sterck [59] also in 2010 pub-
lished a transactional system for HBase, later named HBaseSI [60]. This sys-
tem is a client library that maintains some special tables in HBase specifically
for transaction management. It has no centralized server for managing trans-
actions, so clients concurrently decide to commit or abort transactions based
on HBaseSI’s metadata5 tables, which are HBase tables storing transactional

5We use the term metadata to denote data concerning transaction management.

CHAPTER 2. BACKGROUND 31

SQL-based Extensible
RDBMS Record Stores

Query language X ×
Relational operations X ×

(join, project, ...)

Highly distributed × X

Highly scalable × X

Multi-row transactions X ?

Table 2.1: Comparison of features of typical relational databases and Ex-
tensible Record Stores. The question mark indicates an ongoing shift of the
status of the feature.

management data. Currently, there is no publicly available implementation
of HBaseSI.

In 2011, Junqueira et al. [35] presented ReTSO, a lock-free transaction
management system, and its open-source implementation, Omid [58], for
HBase. ReTSO is a centralized scheme that employs a “transaction status
oracle” server to manage transactions. Optimistic Concurrency Control [37]
is employed for managing transaction commits.

Recently, in parallel to the development of this work, Padhye and Tripathi
[43] have devised a scheme similar to HBaseSI in that it is a client library
that maintains transactional metadata tables in HBase. The system, which
we will call Dependency Serialization Graph (DSG), uses fewer metadata
tables than HBaseSI and provides stronger isolation properties in concurrent
scenarios.

There are many other transactional systems for Cloud data stores, many
of which are not directly related to HBase, such as ElasTras [16], Scalaris [47],
G-Store [17], Google’s Megastore [2], and Deuteronomy [39]. CloudTPS [53]
is worthy to note: it is a decentralized scalable transaction manager suitable
for HBase. On the other hand, since it is tailored for web applications, it
assumes transactions to be short-lived and access a small number of well-
defined set of items.

Although the data consistency that transactions provide is valuable in
any situation, it does not come without cost. Supporting transactions leads
to performance drawbacks and involves careful design. Many web applica-
tions have successfully made use of HBase or Bigtable without transactional
support, so there must be a strong reason for adopting transactions. As

CHAPTER 2. BACKGROUND 32

pointed out by Percolator authors Peng and Dabek [44], transactional sup-
port is essential for concurrent incremental updates to large repositories of
data.

For illustrating the problem of incremental data processing, consider the
example of a large web index. When a web page is updated with new content,
the index entries related to the new content should be recomputed to reflect
changes. Typically new content would be indexed only at the next scheduled
batch processing, along with the entire web index. Given the Big Data scale
of these computations, the frequency of scheduled batch processing can be
at least some days. End users, however, desire that the web index is at most
some minutes old.

With transactional support, several concurrent content updates can be
reflected in the web index without redundant recomputation of the remaining
index entries. This drastically reduces the time between content generation
and updated index entries. On the other hand, batch processing – for instance
with MapReduce – is still advantageous when large percentages of the web
index are updated. There is a trade-off between massive recomputations and
small incremental updates. For example, Peng and Dabek [44] measured
the median latency that MapReduce and Percolator take for reflecting new
content in the web index, as a function of the fraction of repository refreshed
per hour. When about 10% of the repository is refreshed per hour, Percolator
has latency below 10 seconds for updating the index, while MapReduce takes
over 2000 seconds for doing the same. On the other hand, Percolator has
larger latency (over 2500 seconds) than MapReduce when approximately
40% of the repository is refreshed per hour. This means that Percolator
is advantageous when only a small portion of the data repository is being
updated.

A transactional system for incremental updates, hence, need not focus on
massive throughput of transactions. In a scenario where massive amounts of
new content need to be indexed, batch processing methods like MapReduce
may have better performance. Latency needs to be low enough to allow an
advantage over MapReduce, but extremely low latency is not necessary, even
though beneficial.

An important requirement for transactional systems for incremental up-
dates is the support for transactions that span an arbitrary number of data
items, and with no time constraints for executing. The system should be able
to handle huge indexes, with sizes typically larger than the RAM memory
capability of a commodity computer. Put differently, the system should be
designed for Big Data.

Given the faulty nature of commodity hardware that Cloud infrastruc-
tures are normally built on, the transactional system should also perform

CHAPTER 2. BACKGROUND 33

transaction recoveries. That is, the system should recover and carry on trans-
actions that should have committed their changes but were interrupted by
some failure.

The decentralized design of Percolator is an intelligent use of Bigtable
that satisfies the aforementioned requirements. As HBase is an implemen-
tation of Bigtable, it would suffice to have an open-source implementation
of Percolator for the purpose of supporting incremental updates. However,
there is space for improvement where Percolator is lacking. With Percola-
tor, two concurrent conflicting transactions can unnecessarily abort [43, 60],
and the use of locks hinders the progress of concurrent transactions, e.g., a
read-only transaction must wait until certain locks are released [43]. More-
over, the ReTSO authors have shown [57] how Serializability – a valuable
property not supported by Percolator – can be easily achieved in lock-free
transactional systems like ReTSO.

Alternatives to Percolator are HBaseSI, ReTSO, and DSG. Among these,
only ReTSO has a publicly available implementation. Compared to other sys-
tems, it provides transactional support at the best performance, with very
high throughput and low latency. Serializability is also supported, so ReTSO
proves to be a solid transaction manager for HBase. However, the centralized
nature of ReTSO diverges from the highly-distributed and highly-scalable
design characteristics of typical Cloud software like Hadoop and HBase. Al-
though ReTSO is currently capable of handling large amounts of transac-
tional data, its memory limitations will eventually restrict the scalability of
the system. In practice this is because ReTSO starts to pessimistically abort
transactions when the server’s memory is full. Other problems typical to
centralized systems can occur, such as downtimes when the ReTSO server
fails.

HBaseSI, DSG, and Percolator share much in common. These are all
client libraries that simply use the data store in an intelligent way in order
to provide transactional support. By doing this, features from HBase such
as fault-tolerance and data consistency are immediately inherited. The de-
centralized client-based design also seems not to limit scalability, which is
desirable for Cloud infrastructures.

Transactional metadata tables are employed in both HBaseSI and DSG.
Six tables comprise the former and at least two tables are employed in the
latter. An interesting design question is: what is the minimum number of
metadata tables required for providing transactional support on top of HBase?
Can such minimum be achieved while maintaining ACID properties? Reduc-
ing the number of metadata tables has performance advantages. For instance,
in HBaseSI, each transaction has to access six different tables for bookkeeping
purposes. This is expected to increase the overhead for transactions.

CHAPTER 2. BACKGROUND 34

We have seen reasons to justify the creation of a new transactional system
for HBase. The contribution of this Thesis is the design of a new lightweight
non-centralized transaction manager for HBase. The objective is to provide
a transactional system suitable for general purposes but tailored in perfor-
mance for incremental data processing. The system is named HAcid, and is
presented in the chapter.

Chapter 3

HAcid

HAcid1 is a client library that applications can use for operating multi-row
SI transactions in HBase. No server-side modifications are necessary. Many
concurrent HAcid-enabled clients can be active without losing correctness
properties such as ACID. This transactional system is intended for general
purpose multi-row transactions, and allows running ACID transactions with
an arbitrary number of operations across an arbitrary number of different
rows.

The system is in many ways similar to HBaseSI, Percolator, and DSG,
but innovates by using a minimal number of metadata tables. In particu-
lar, in HAcid the timestamp oracle is a table in HBase that also contains
transactional data, and timestamps are served by appending the table. This
approach is new compared to other transactional systems for HBase, and is
beneficial in many ways.

HBase offers single-row transactions, but not multi-row transactions. How-
ever, HBase is not far from supporting that feature. The design for HAcid is
motivated by the pursuit of the minimal amount of changes to an HBase sys-
tem to achieve multi-row transactions. HAcid aims to be lightweight, which
is a property achieved when the system answers the following questions.

The key questions for lightweight multi-row transactional support are: (a)
what is the simplest and minimal data structure for transactional metadata?
(b) What is the least amount of changes in the server layer? (c) What is
the smallest amount of changes in the client layer? (d) What is the simplest
and most familiar API for using the transactional system? (e) What is the
minimal performance overhead for transactional support?

These questions define the goals of HAcid’s design, discussed in the next
section.

1The name HAcid refers to HBase and ACID, two important concepts for this trans-
action manager. Acids and bases in Chemistry were also an inspiration for the name.

35

CHAPTER 3. HACID 36

3.1 Design

HAcid’s design consists of transaction management algorithms in the client
side, and transactional data in the server side, i.e., in HBase tables. These
two parts of the system enable transactions over user tables, which are con-
ventional HBase tables that transactions will modify.

For concurrency control, HAcid employs Optimistic Concurrency Control
and Multi-version Concurrency Control. No locks are used, and Snapshot
Isolation (SI) is supported.

Because HAcid uses MVCC for Snapshot Isolation, transactions are times-
tamped and write operations use the start timestamp as the version number
for data items, as previously described in Section 2.1.4. For this reason, the
user application should not attempt to handle version numbers, which are
managed by HAcid algorithms.

3.1.1 HAcid as a transactions certifier

The concurrency control method in HAcid is a certifier [4]. Certifiers are
methods that execute transaction operations as soon as they are requested
without blocking them. When a transaction ends, it undergoes a certifi-
cation: the process of checking for conflicts to certify that the transaction
can commit. If the certification fails, the transaction aborts and optionally
restarts. The HAcid client library processes a transaction in three phases,
summarized as follows.

1. Execution phase:

• the client library executes read and write operations of a transac-
tion only in this phase;

• any modifications done by the transaction are invisible to other
transactions; and

• the client does not track nor predict conflicts of transactions in
this phase.

2. Certification phase:

• the client searches for conflicts between the current transaction
and other transactions, by inspecting a repository of transactional
data; and

• the fate of the transaction is decided: committed if there are no
conflicts, aborted if some conflict was found.

CHAPTER 3. HACID 37

3. Update phase:

• if the transaction committed, the modifications of the transaction
are rollforwarded, i.e., they are made visible to other transactions;
and

• if the transaction aborted, the modifications are rollbacked, i.e,
the version is deleted.

Certification is a form of OCC because conflicts are expected to be rare.
In other words, concurrency control is done by aborting and restarting trans-
actions, since we optimistically assume concurrent transactions to be isolated.

In HAcid, SI with MVCC allows the operations of a transaction Ti to
execute freely without influencing other transactions, since each transaction
writes to its own version. The certification at the end of Ti then affects other
transactions by determining whether the version of Ti should become visible.

3.1.2 Architecture

HAcid consists of a few components: a client library, an HBase table for
transactional metadata called “Timestamp List”, and an additional column
in all user tables. The table and the column are in the server-side, that is,
in an HBase data store. The client library holds transaction management
algorithms. Figure 3.1 illustrates the architecture.

The HAcid client library is built on top of HBase’s conventional client
library. For performing transactions in HBase, the client application uses
the API offered by the HAcid library instead of the API from the HBase
library. There are no other components in the system, such as a dedicated
timestamp oracle or any kind of server process. The only kind of process in
HAcid is a client application augmented with the library.

Multiple HAcid clients can be active at the same time, executing transac-
tions in HBase. Concurrency issues are handled by using the metadata table
and the special user table column as the only kind of shared data between
clients. There is no global knowledge of currently active clients, and clients
cannot directly communicate with each other.

The metadata table, Timestamp List, has a central role in HAcid.

CHAPTER 3. HACID 38

Client application

HBase library

HAcid library

HBase

User table 1

User table 2

Timestamp List

Figure 3.1: Components in HAcid’s architecture. The edges leaving the
HAcid library indicate which components in the HBase side are modified by
transaction management algorithms in the client side.

3.2 Transactional metadata repositories

3.2.1 The Timestamp List

At the core of HAcid’s design lies the Timestamp List, a table in HBase
managed by HAcid algorithms and with two purposes. It acts as a timestamp
oracle, and stores all transactional metadata. Its schema is carefully designed
to take advantage of HBase properties. This is an innovative approach among
transactional systems for Extensible Record Stores. The Timestamp List
is illustrated by the example in Figure 3.2, and explained in the following
paragraphs.

Each row in the Timestamp List represents a timestamp of some trans-
action Ti: either a start timestamp T start

i or an end timestamp T end
i . The

row key is precisely the timestamp (an integer) represented by that row.
Since HBase tables are sorted by row key, the timestamps in the Timestamp
List are sorted in increasing order, as rows in the table. Hence the first row
represents the first timestamp, and consecutive rows represent consecutive
timestamps. The type of a timestamp (“start” for T start

i or “end” for T end
i)

is indicated by the column qualifier type in every row. There is only one
column family in the Timestamp List, so it is not necessary to name it in
this Thesis. Hence in this section we refer to column qualifiers simply as
columns.

CHAPTER 3. HACID 39

row type status writeset start-ts end-ts

...
...

...
...

8 start committed 9

9 end (t2,E),(t2,F) 8

10 start active

11 start committed 13

12 start aborted 14

13 end (t1,A),(t1,B) 11

14 end (t1,B),(t1,C) 12

Figure 3.2: Example Timestamp List. Version numbers are omitted because
each cell has only one version. In writeset cell values, (t1,A) refers to row A

in table t1.

To serve timestamps, the Timestamp List is first analyzed by clients to
determine what is the last existing timestamp, then a new successive times-
tamp is created. Since a timestamp oracle must serve timestamps in increas-
ing order, such that the latest served timestamp is the largest timestamp, the
Timestamp List must be appended with a new row. Fortunately, this can be
done rather efficiently in HAcid due to HBase single-row transactions. The
append operation for the Timestamp List is explained in Section 3.3.4.

Besides storing timestamp data, the Timestamp List contains columns
for transactional metadata. These are: status, writeset, start-ts, and
end-ts. Timestamped transactions in HAcid are uniquely identified by their
start or end timestamps. Therefore, the rows in the Timestamp List cor-
responding to the start and end timestamps of a transaction can store its
transactional metadata. Since there are two rows for each transaction, trans-
actional metadata is partitioned between the start and end timestamp rows.
Thus, some of those columns will have non-null values only in the start times-
tamp row, and others only in the end timestamp row.

The status cell in a row can assume one of the three following values for
indicating the transaction’s status: “active”, “committed”, or “aborted”. A
transaction is active if it is not yet committed or aborted. The status cells
are stored only in start timestamp rows. This is justified from the fact that
all transactions have some status, even those that do not yet have an end
timestamp.

The writeset cell represents TW
i of a transaction Ti. This column has

CHAPTER 3. HACID 40

non-null values only in end timestamp rows, for the sole fact that the writeset
is only known when the transaction ends and no more write operations can
be submitted. Since formally TW

i is a set of data items, the cell value of
writeset is a list of data item keys. The keys are separated by commas, and
each key has the format “(t1,A)”, where t1 is a table name, and A is a row
key. That is, data items in HAcid transactions are rows in user tables.

The cells start-ts and end-ts are simply pointers for cross-referencing
the start and end timestamp rows, linking them together. That is, the cell
start-ts is non-null only in end timestamp rows, and the cell end-ts is
non-null only in start timestamp rows. This allows a client reading an end
timestamp row in the Timestamp List to discover the corresponding start
timestamp, and vice-versa. These are important procedures for HAcid trans-
action management algorithms.

The Timestamp List is a tall-narrow [27] HBase table, i.e., it has a small
number of columns and an arbitrarily large number of rows. The version num-
ber dimension is not necessary for its schema, since each cell in the Times-
tamp List has only one version. The table is initialized with one dummy row
with row key 1. This timestamp row has type = end, because for a row to
exist, one of its cells must be non-null.

3.2.2 Metadata column in user tables

In theory, the Timestamp List alone is enough for indicating what versions of
data are committed, but in practice retrieving this information is expensive.
For instance, to perform a read operation of a row A in a transaction, the
transaction manager can read all rows from the Timestamp List to discover
the latest committed transaction with A in its writeset. This approach is
clearly problematic: expensive scans would be necessary for each read oper-
ation. The reason why the Timestamp List is not usable for this purpose is
the lack of indexing of rows according to writeset entries. That is, given
(t1,A) (table t1, row A), we cannot efficiently get from the Timestamp List
the set of timestamps with (t1,A) in their writeset.

Therefore, for good performance of read operations, we employ a meta-
data column in each user table for storing transactional metadata. All tables
that are to be modified by multi-row transactions must include this column.
To include the column, a new HAcid-specific column family is introduced, so
each user table must be first disabled (a possibly expensive operation) before
including the HAcid column family. Fortunately, this installation procedure
is necessary only once per user table. More information on HAcid installation
is found in Section 3.5.2.

The column serves as a cache of some metadata from the Timestamp List.

CHAPTER 3. HACID 41

row personal:name financial:balance HAcid:commit-time

A

45: 1630 45: 0

35: 1690 35: 38

31: 2120 31: 0

25: Adam 25: 1911 25: 27

B 19: Bob 19: 4124 19: 23

C
42: 851 42: 0

28: Caroline 28: 29

S 15: Smith 15: 2380 15: 16

Figure 3.3: A user table augmented with the commit-time metadata column.
Version 28 of row C has been committed at the end timestamp 29. HAcid is
a Snapshot Isolation method (recall Section 2.1.4), therefore all transactions
that have start timestamp greater than 29 can see the version 28 of row C.

The purpose of the metadata column is to indicate which versions of data in
user tables are visible to other transactions’ reads. That is, this column is
responsible for indicating if data is committed.

The metadata column is called commit-time2, and its value holds the
end timestamp of the transaction that committed that particular user data
version. In other words, in row R the value at (R, commit-time, v) is the end
timestamp of the transaction that committed some data to R and version
number v. See the example in Figure 3.3.

The value zero in the commit-time column has a special connotation:
it indicates that the data version is in an unstable state of visibility. If
commit-time has a positive value (cache hit), then the data version is cer-
tainly committed, but if commit-time is zero (cache miss), the data version
can either be committed or not yet committed.

A cache miss is useful for indicating a situation for recovery. Suppose
that a client using HAcid library commits a transaction (in the Certifica-
tion Phase) but fails before updating the commit-time value (in the Update
Phase), which remains zero. Another client that reads the zero value can
check from the Timestamp List if that particular data should be visible,
and proceeds with the Update Phase where the previous client failed. These
recovery issues are discussed in detail in Section 3.3.6.

We could have used a separate table for building an index of data items
and their corresponding transactions. The table could have data item keys as

2The column name is actually HAcid:commit-time, with HAcid as a column family
name, but we omit the column family for convenience, since this family will be obvious
from the context.

CHAPTER 3. HACID 42

row keys, and cells for start timestamps of transactions that modified the data
item. However, it is beneficial for performance to collocate this information
in user tables. A read operation can efficiently retrieve multiple columns from
the same row, so we can read both user data and commit-time metadata in
one operation. Using a separate table for commit-time would require two
read operations: one at the user data, and another at the commit-time table.

The main advantage for using a separate table for this purpose would be
no intrusion of HAcid into user tables. However, the commit-time column
is a minor intrusion, since all other column families in the user tables are
preserved.

3.3 Transaction management algorithms

A transaction is originated at the client application using the HAcid library.
The client library follows three phases for each transaction: Execution, Cer-
tification, and Update. Each transaction has its own phases, i.e., transaction
T1 might be in Execution Phase while T2 is in its Update Phase.

When the application creates a new HAcid transaction, the HAcid library
will first get a start timestamp for it at the Timestamp List. Then, opera-
tions are added to the transaction. The whole set of operations need not be
specified before executing the operations, but are executed on the fly, as soon
as they are added to the transaction. This Execution Phase terminates when
the client application requests a commit of the transaction. From that point
onward, the HAcid library at the client performs Phases Certification and
Update automatically, with no need for input from the client application.

3.3.1 Example run of a transaction

The steps of transaction management in HAcid are described first by an
example transaction, then by pseudocode. Consider table t to be the user
table given in Figure 3.3, a portion of which is repeated in Figure 3.4 for
convenience, and the transaction

T1 : r1[B = x]w1[C = x]

that reads column financial:balance from row B in table t, and writes the
previously read value x to column financial:balance on row C in table t.

Once T1 is created by the client application, the attached HAcid library
requests T start

1 by accessing the Timestamp List and appending it to get a new
timestamp row, setting its type to “start” and status to “active”. Supposing
that 50 is the last timestamp in the Timestamp List, the new last timestamp

CHAPTER 3. HACID 43

row personal:name financial:balance HAcid:commit-time

B 19: Bob 19: 4124 19: 23

C
42: 851 42: 0

28: Caroline 28: 29

Figure 3.4: An example portion of a user table t before being modified by a
transaction.

after an append operation will be 51. In our example, T start
1 = 51, as shown

by Figure 3.5 below. The appending operation is described in Section 3.3.4.

row type status writeset start-ts end-ts

51 start active

Figure 3.5: T start
1 = 51 in Timestamp List, at the beginning of the processing

of transaction T1.

After T1 has received its start timestamp, the client application can begin
to submit operations to T1 through the HAcid library. Transaction T1 is
in its Execution Phase. First a read of row B is added to T1, and HAcid
promptly executes an HBase Get operation on table t and row B. Given the
start timestamp T start

1 , HAcid knows exactly what version of row B to read
so returns the value 4124 (at version number 19) to the client application.
More information regarding the read version is given in Section 3.3.5.

Next, a write operation is submitted to T1, which in turn executes an
HBase Put operation in table t and key (C, financial:bank, T start

1). The
Put also simultaneously writes value 0 to (C, HAcid:commit-time, T start

1), to
indicate that this version is not confirmed to be committed. See Figure 3.6
for the state of table t and row C after these operations are executed.

row personal:name financial:balance HAcid:commit-time

C

51: 4124 51: 0

42: 851 42: 0

28: Caroline 28: 29

Figure 3.6: The modified row C in table t after T1 executed its operations in
the Execution Phase.

When the client application has no more operations for T1, it requests a
commit of T1 to HAcid. This marks the end of the Execution Phase and the
beginning of the Certification Phase. At the beginning of this phase, HAcid

CHAPTER 3. HACID 44

gets an end timestamp for T1 by appending the Timestamp List in the same
fashion as start timestamps are created. The end timestamp row includes
also information about T1, such as writeset and start-ts. See Figure 3.7.

row type status writeset start-ts end-ts

52 end (t,C) 51

Figure 3.7: Row T end
1 = 52 in Timestamp List.

After the end timestamp is created, HAcid starts the certification of T1
to check for write-write conflicts. For searching for a write-write conflicting
transaction Tj with T1, HAcid scans the Timestamp List (using an HBase
Scan operation) from T start

1 to T end
1 . When a timestamp of type end (repre-

senting T end
j) is found, its writeset is compared with the writeset at T end

1 :
if there is an intersection and the status of Tj (located in the row T start

j) is
not aborted, then a conflict has been found. In our example, no conflict is
found because there are no timestamps between 51 and 52.

When HAcid has concluded whether or not conflicts exist with T1, it
ends the Certification Phase and starts the Update Phase. This change of
phase is marked by a commit decision: the status of T1 is set to either
“committed” (if no conflicts found) or “aborted” (if any conflict was found).
In our example, T1 committed. The decision is done by atomically writing
to the start timestamp row of T1: its status cell is set to “committed”, and
end-ts points to T end

1 . See Figure 3.8 for the start timestamp row of T1 at
the end of Certification Phase.

row type status writeset start-ts end-ts

51 start committed 52

Figure 3.8: Row T start
1 = 51 in Timestamp List, at the beginning of the

Update Phase.

In the subsequent Update Phase, we update the user tables rows written
by T1. If T1 committed (which is the case), we update the commit-time

column to point to T end
1 . If T1 aborted, we delete versions of data that T1

wrote. See Figure 3.9 for the outcome after the Update Phase.
After the last update has happened in the Update Phase, transaction T1

has completed its processing.

CHAPTER 3. HACID 45

row personal:name financial:balance HAcid:commit-time

C

51: 4124 51: 52

42: 851 42: 0

28: Caroline 28: 29

Figure 3.9: The modified row C in table t after the Update Phase of T1.
Notice commit-time at version 51.

3.3.2 Summary of transaction processing

Note that the three phases in HAcid’s processing of a transaction are sep-
arated by events such as the creation of an end timestamp when the client
application requests a commit for the transaction. The events and phases of
a transaction’s processing are summarized in Figure 3.10.

There are three events and three phases. The events are: (i) creation of a
start timestamp, (ii) creation of an end timestamp, (iii) update of the start
timestamp to set the status of the transaction (Commit Decision). All these
three events happen in the start and end rows in the Timestamp List corre-
sponding to the current transaction. Each event is an HBase row mutation,
hence atomic.

The atomicity of events in HAcid is important for properties such as
correctness and transaction atomicity. Phases, in contrast, are not atomic.
Consequently, a phase can be partially executed and interrupted by a failure,
while an event cannot. This observation is relevant for recoveries in HAcid,
an issue that is discussed in Section 3.3.6.

During the Execution Phase of transaction Ti, the writeset of Ti is up-
dated as write operations arrive. This is maintained in the local variable TW

i .
When the client requests the commit of Ti, the variable TW

i is exported to
the cell writeset in the newly created end timestamp row.

In the Certification Phase, an end timestamp row T end
j of a possibly con-

flicting transaction is searched for in the range (T start
i < T end

j < T end
i) of

T start
i T end

i

Execution Phase Certification Phase

Commit
Decision

Update Phase

time

Figure 3.10: Important events and phases in the processing of a transaction
in HAcid. Events are represented as nodes and phases are represented as
lines.

CHAPTER 3. HACID 46

the Timestamp List. Transaction Tj is possibly conflicting if its end times-
tamp row T end

j has its writeset intersecting TW
i . When a possibly conflict-

ing transaction is found, we check for its status in the start timestamp row
T start
j . If its status is “committed”, then Tj is conflicting, but if its status

is “aborted”, Tj is not conflicting. If, however, the status for Tj is “active”,
then we pessimistically assume that Tj is conflicting.

The client application has control over the first two events and the Exe-
cution Phase, but the following Phases are coordinated by the HAcid library.
The commit request from the client application is a blocking request and the
response comes from the commit decision event. That is, the commit request
lasts as long as the Certification Phase.

3.3.3 Pseudocodes

The transaction management methods illustrated in the previous sections
are described in the following pseudocodes. Some subprocedures are sophis-
ticated, and described in details in the next sections. All pseudocodes refer
to the management of a transaction Ti.

• Upon the request for initializing transaction Ti:

1. Create a new timestamp in the Timestamp List, setting its type

to “start” and its status to “active”. To create a new timestamp,
one must append the Timestamp List. T start

i is the row key of the
row created in the Timestamp List. This operation is explained
in Section 3.3.4.

2. Start Execution Phase only if the previous step was successful.

• In the Execution Phase:

– Upon a request for a read operation of table t, row R, column C:

1. Get the version number σ := ReadVersion(t, R, T start
i), which

is a procedure explained in detail in Section 3.3.5.

2. Return t.get(R,C, σ).

– Upon a request for a write operation on table t, row R, column
C, value x:

1. Insert (t, R) into TW
i (local variable).

2. Execute t.put(〈(R,C, T start
i), x〉, 〈(R, commit-time, T start

i), 0〉).

CHAPTER 3. HACID 47

– Upon a commit request from the client application:

1. If (local variable) T end
i = ⊥, create a new timestamp T end

i in
the Timestamp List, setting its type to “end”, writeset to
TW
i , and start-ts to T start

i .

2. Start Certification Phase only if the previous step was suc-
cessful.

• In the Certification Phase:

1. Scan through each timestamp τ in the Timestamp List between
T start
i and T end

i . If τ is an end timestamp (τ = T end
j for some j 6= i)

and its writeset cell intersects the writeset of T end
i , then:

1.1. Assign variable T start
j := TimestampList.get(T end

j , start-ts),
then assign T status

j := TimestampList.get(T start
j , status).

1.2. If T status
j is “active” or “committed”, then execute Commit-

Decision(“aborted”).

1.3. If T status
j is “aborted”, continue the scan operation of Step 1.

2. Execute CommitDecision(“committed”).

• CommitDecision(d):

1. Execute a CheckAndPut operation on row T start
i in the Times-

tamp List to atomically check if status was “active”, and set the
status to d and its end-ts to T end

i . (The value of d is either
“committed” or “aborted”.)

2. If the CheckAndPut operation succeeded, use d as the outcome of
this commit decision.

3. Else, read the status on row T start
i , to make it the outcome of

this commit decision.

4. Start Update Phase.

• In the Update Phase:

1. If the outcome of the commit decision was committed, then for
each (t, R) ∈ TW

i execute t.put(〈(R, commit-time, T start
i), T end

i 〉).
2. If the outcome was aborted, then for each key (t, R) ∈ TW

i execute
t.delete(R, ∗, T start

i).

Notice how a possibly conflicting transaction Tj with status active makes
transaction Ti abort in the Certification Phase. The transaction Tj could

CHAPTER 3. HACID 48

change its status to either aborted or committed, but HAcid takes a pes-
simistic approach and decides for aborting Ti. This is to satisfy the First-
Committer-Wins rule, because if Tj happened to get status committed, then
Ti should not be committed.

On the other hand, in face of active possibly conflicting transactions,
one can also postpone the commit decision of Ti. In this alternative, the
Certification Phase waits for some time and later rechecks if Ti still has
status active. The pessimistic abort of Ti is taken only if Tj is still active.

Other approaches could fit as well. The Certification Phase of Ti could
pause for executing the Certification and Update Phases of Tj until it gets
a commit decision. This would be useful for recovery of a client that failed
before finishing the Certification Phase of Tj. However, the client managing
Ti cannot know whether the client managing Tj has failed or is too slow. As-
suming that slow clients are more common than failed clients, this approach
is expensive because it allows multiple clients to perform the Certification
Phase of the same transaction.

3.3.4 Appending the Timestamp List

When a timestamp is created in the Timestamp List, it should be the last
row in the table. This is to satisfy the requirement for being a timestamp
oracle: the latest timestamp is the largest among the previous. Since rows
in the Timestamp List are sorted in increasing order by row keys, which are
timestamps, the newest timestamp must be the last row.

Hence, creating a new timestamp requires an append operation. There
is currently no such operation provided natively by HBase, so we need a
custom implementation for appending. For the Timestamp List, our append
operation has the following roles: to discover the last row key, to create a
new row after the current last row, and to write some transactional data at
the same time the new row is created.

The HBase API has no method for retrieving the row key of the last row
in a table, i.e., the largest row key in terms of the lexicographic sorting of
rows. However, we can easily discover the last row by scanning the table
starting at an arbitrary row, with no end row specified for the scan. When
the scan ends, the last scanned row is the last row in the table, if no changes
have been submitted since the start of the scan. The closer the start scanning
row is to the last row in the table, the more efficient will be the scan.

Besides creating the row, the CheckAndPut operation allows data to be
written to cells of the row. For the Timestamp List, it is useful to write
transactional data at the time we append a new row. The append operation
takes as input some key/value pairs (where the key is only the column key)

CHAPTER 3. HACID 49

for the Put part of the CheckAndPut, while the output is the row key of
the appended row. The key/value pairs we write when appending a start
or an end timestamp to the Timestamp List were already mentioned in the
pseudocodes of Section 3.3.3.

To append a new row to the Timestamp List, we use the known last row
key R to attempt to create a row with key R + 1. Since other concurrent
clients might be appending the Timestamp List, the row R + 1 could be
already existent. To make sure that row R + 1 does not yet exist, we use
a CheckAndPut operation to atomically check if R + 1 does not exist and
simultaneously create it if the check passed. If the CheckAndPut fails, it
means that row R+ 1 exists, so we try the CheckAndPut on row R+ 2, and
so forth, until it succeeds.

CheckAndPut operations in HBase do not allow one to explicitly check
if a row is inexistent, so we check if cell type is null in the CheckAndPut.
Since every timestamp (a row in the Timestamp List) must have type either
“start” or “end”, an empty type cell means that the row of that cell is
inexistent.

A pseudocode of the append operation is given below.

Append operation on the Timestamp List. Input is a set L of column-
key/value pairs.

1. Scan the Timestamp List starting from an arbitrary row, with no end
row specified.

2. When the scan stops, record R as the row key of the last scanned row,
and K := R + 1.

3. Execute a CheckAndPut operation on row K in the Timestamp List
to atomically check if column type was null, and write L to row K if
the check passed.

4. If the CheckAndPut failed, do K := K + 1 and go to Step 3.

5. Return K as the row key of the newly appended row.

In Section 3.5.3, we explain how the Timestamp List and this algorithm
are modified in the implementation for optimizations.

3.3.5 Searching read versions

Recall, from Section 2.1.4, that each read operation in a transaction uses a
data item version corresponding to the transaction’s snapshot of the database.
In HAcid, the version number used in a read operation is called read version
σ, defined as follows.

CHAPTER 3. HACID 50

row personal:name financial:balance HAcid:commit-time

S

76: 2148 76: 87

70: 2368 70: 72

15: Smith 15: 2380 15: 16

Figure 3.11: Row S in table t, where a ReadVersion procedure operates on.

Definition 18 (Read version). Given data item x and transaction Ti, the
read version σ is defined as

σ(x, Ti) = max{T start
j : x ∈ TW

j ∧ cj ∈ Tj ∧ T end
j < T start

i }.

In other words, σ(x, Ti) is the largest start timestamp of a transaction
that wrote to data item x and committed before Ti started. This is equivalent
to finding the latest committed version of x that was committed before Ti
started. The equivalence is proved in Section 3.4.

To discover σ(x, Ti) in HAcid, we use the commit-time column in the user
table of x, since all committed transactions Tj with x ∈ TW

j are registered
in the commit-time column. That is, the commit-time value is the end
timestamp and its version number is the start timestamp of a committed
transaction with x in its writeset.

When a read operation is submitted in the Execution Phase, it first
searches for its read version through the procedure ReadVersion(t, R, T start

i),
as previously mentioned in the pseudocode of the Execution Phase.

The procedure works by reading the versions in the cell commit-time

of row R in user table t, searching the version number that corresponds to
σ((t, R), Ti). The procedure searches for the largest version number whose
commit-time value is smaller than T start

i .
Consider an example, where transaction T1 with T start

1 = 85 is search-
ing for the read version of row S in table t from Figure 3.11. Procedure
ReadVersion(t, S, T start

1) gets all versions of the cell (S, commit-time). The
largest version number is 76, but its commit-time value is 87 > T start

1 . The
second largest version number is 70, whose commit-time is 72 and satisfies
72 < T start

1 . Therefore 72 is the version number returned by the procedure.
In this example, there are no zero values in commit-time. In case zero

values are found, which represent cache misses, the searching procedure vis-
its the Timestamp List to get fresh data. The ReadVersion procedure is
explained in detail through the pseudocode below.

CHAPTER 3. HACID 51

ReadVersion(t, R, T start
i):

1. Versions := t.get(R, commit-time, ∗).
2. For each key/value pair 〈(R, commit-time, v), z〉 in Versions, in de-

creasing order of version numbers v, do:

2.1. If v < T start
i and z = 0, then: //This is a Cache miss situation

2.1.1. Recovery(v, T start
i). //Explained in Section 3.3.6

2.1.2. If TimestampList.get(v, status) = “committed”, then
set z := TimestampList.get(v, end-ts).

2.2. If v < T start
i and z 6= 0 and z < T start

i , then return v.

3. Return 1.

In Step 3, version number 1 is returned to refer to the initial dummy
row in the Timestamp List and to signal that null should be read as the
value of the data item. Notice that v and z correspond to the start and end
timestamps of some transaction Tj, i.e., v = T start

j and z = T end
j (if z 6= 0).

Note how recovery of previously failed transactions is performed during the
ReadVersion procedure. In the next section we discuss recovery in HAcid.

3.3.6 Recovery

HAcid clients are susceptible to failures, such as crash failures. The HAcid
system must be able to complete the processing of transactions even in the
face of crash failures. Transaction recovery in HAcid is a procedure for com-
pleting the processing of interrupted transactions. In high-level, the proce-
dure recovers a transaction by detecting what phase it was in before the crash
failure, and performing the remaining phases and events.

Crash failures can happen at any time during the processing of a trans-
action: in events or in phases. If a crash affects an event, the event will not
be executed, since it is atomic. Therefore, we focus our attention on crashes
during phases.

If a crash happens during the Execution Phase, the transaction might
have not executed all of its read and write operations. Since operations are
originated at the client processing the transaction, it is impossible for other
clients to identify what remaining operations need to be executed. Thus, if
transaction Ti was interrupted in the Execution Phase due to a failure of its
client, other clients can ignore Ti entirely. This does not violate any ACID
property.

If transaction Ti was interrupted by a crash during the Certification
Phase, then Ti has a start and an end timestamp, its writeset is known

CHAPTER 3. HACID 52

to other transactions, but a Commit Decision has not happened yet. There-
fore, clients have enough information for recovering Ti. Any client is allowed
to perform the remaining processing for Ti, which are Certification Phase,
Commit Decision, and Update Phase.

Finally, the Update Phase concerns only the commit-time column in user
tables, updating cached values. Hence, recovery of the Update Phase of Ti
is done by allowing other clients to update the cache.

Since HAcid has no centralized process for transaction management, con-
current clients are responsible for all transaction processing, including re-
covery. Moreover, there is no centralized role for the detection of recovery
situations and immediate action. Instead, a lazy approach is applied: a
transaction is recovered by a client only when it is considered necessary for
a read operation in a transaction managed by that client.

Notice how any client can perform recovery of the failed transaction, and
recall that clients have no knowledge of concurrent clients. Consequently,
two (or more) clients might be simultaneously recovering the same failed
transaction. This is not a problem in HAcid, because recovery is designed to
be idempotent [20]. In layman’s terms, idempotence is the property of having
the same results regardless of how many times an operation is applied, as
long as it is applied at least once.

In HAcid recovery methods, idempotence is guaranteed by a mechanism
that ensures that multiple clients will not disagree on the Commit Decision
of the failed transaction. For recovery, only the Certification Phase, the
Commit Decision, and the Update Phase can be executed. The Certification
Phase is merely about reading (scanning) the Timestamp List, so no changes
are made. The Update Phase, however, changes the commit-time cache
depending on the outcome of the Commit Decision. Since the Update Phase
simply consists of cache updates, multiple clients can be performing this
phase for the same failed transaction, as long as the clients agree on the
outcome of the Commit Decision. Each transaction gets only one Commit
Decision, because the Commit Decision is atomic and it tests if a previous
Commit Decision has not yet happened (by checking that the transaction’s
status is active before changing it). Therefore, recovery is idempotent.

The pseudocode for recovery is given below, and is a subprocedure of
ReadVersion from the previous section. Recall from that pseudocode that
v is the start timestamp of some transaction Tj, which is the target of the
recovery. Transaction Ti is the transaction performing the read operation
that called ReadVersion.

CHAPTER 3. HACID 53

Recovery(v = T start
j , T start

i):

1. T status
j := TimestampList.get(T start

j , status).

2. If T status
j = “active”:

2.1 Scan through each timestamp τ in the Timestamp List between
T start
j and T start

i . If τ is an end timestamp such that its start-ts
cell has value T start

j (hence τ is T end
j), then:

2.1.1 TW
j := TimestampList.get(T end

j , writeset).

2.1.2 Perform Certification Phase, Commit Decision, and Update
Phase for Tj.

3. Else:

3.1 T end
j := TimestampList.get(T start

j , end-ts).

3.2 TW
j := TimestampList.get(T end

j , writeset).

3.3 Perform Update Phase for Tj.

Note that recovery of Tj might not happen in the procedure. The scan
of Step 2.1 might not find T end

j in the interval [T start
j , T start

i) and hence will
ignore the Steps 2.1.1 – 2.1.2. This means that Tj might: (a) have failed dur-
ing Execution Phase, (b) be still in Execution Phase, (c) be not necessary for
the read operation of Ti because T start

i < T end
j , so the recovery is postponed

until it is necessary for another transaction.

3.4 Analysis of properties

In this section, we discuss correctness properties of HAcid. We present in-
variants and claims. Invariants are facts that always hold and can be easily
verified in the pseudocodes. Claims are facts for which we present arguments.

We focus on analyzing the correctness of only nontrivial parts of HAcid
algorithms, which are: (a) append operation on the Timestamp List, (b)
correct conflict detection, (c) read versions and relation to Snapshot Isolation,
(d) transaction atomicity. Next, we analyze each of these aspects.

3.4.1 Append operation

We start with some invariants, which are confirmed either from Section 3.2.1
or from Section 3.3.4.

Invariant 1. The Timestamp List is initialized with a single timestamp row:
the row key is 1.

CHAPTER 3. HACID 54

Invariant 2. The row key of any row in the Timestamp List is a positive
integer.

Invariant 3. No row gets deleted from the Timestamp List.

Invariant 4. All rows in the Timestamp List have a non-null value on the
column type.

Claim 1. One instance of the append operation increases the number of rows
by one.

Proof. The CheckAndPut (Step 3 of the append operation) writes data only
if the column type is null. By Invariant 4, if type is null on a row K, then K
does not exist. So if the CheckAndPut passes, then a row that was inexistent
is created. By Step 4 in the procedure, only one successful CheckAndPut
can happen during the procedure, so only one row is created.

Definition 19 (Tightness). A table is tight if every two consecutive rows
have row keys that are consecutive integers. (In HBase, two rows are con-
secutive if one is returned after the other in a standard Scan operation.)

Claim 2. The Timestamp List is tight before and after an append is executed.

Proof. By induction. Initially, the table has one row (Invariant 1), therefore
it is tight since there are no consecutive rows. Suppose, then, that the table
has an arbitrary number of rows and is tight from rows 1 until R (the last
row) before the append. The procedure identifies row key R as a candidate
for the key of the last row in the table. Next, CheckAndPut is attempted
at R + 1, R + 2, . . . , R + i successively. If it succeeded at R + i, then it
failed at all R + j, where 1 ≤ j < i, therefore all rows R + j existed (and
remained existent due to Invariant 3). CheckAndPut at R+ i succeeded, so
row R + i was created and the procedure was terminated (CheckAndPut is
an atomic operation, given Guarantee 1 from Section 2.3.3). The table is
tight from 1 to R, and also from R + 1 to R + i because R + 1, . . . , R + i
are consecutive rows due to Invariant 2 (and there is no integer between two
consecutive integers).

Corollary 1. At the moment the CheckAndPut of the append operation cre-
ates a row in the Timestamp List, that row is the last one in the table.

Proof. Given Claim 1, Claim 2, and Invariant 2, the newly created row cannot
be elsewhere than immediately after the previous last row, hence it is the new
last row.

The Corollary above demonstrates how the append operation has the
correct behavior.

CHAPTER 3. HACID 55

3.4.2 Transaction processing correctness

The Certification Phase in the processing of a transaction must correctly
identify write-write conflicts. For this purpose, a Scan of the Timestamp
List is performed. Given Guarantee 2 from Section 2.3.3, that Scans have
the Read Committed isolation level, data read during a Scan could be stale.
Hence conflict searching should be correct despite the presence of stale data.
In this section, we show what data can be stale in the Timestamp List, and
demonstrate how this does not negatively affect conflict checks.

Invariant 5. The only cell that is overwritten in a row in the Timestamp
List is the status cell. Moreover, this cell can be changed from “active” to
“committed” or “aborted”. If status is not “active”, it will not be overwrit-
ten.

A consequence of the Invariant above is that the only column with pos-
sibly stale data is the status column.

Claim 3. Given a transaction Ti with non-null start and end timestamps, if
there is a write-write conflicting transaction Tj with T end

j in the lifetime of
Ti, then it is impossible that both Ti and Tj commit.

Proof. In the Certification Phase of Ti, the Scan at Step 1 will find the
timestamp T end

j and execute Steps 1.1–1.3, because before the Scan begins
the Timestamp List is tight from T start

i to T end
i (with T end

j in between), hence
this will be seen by the Scan. That is, this fact is not affected by the Read
Committed isolation level of Scans.

The row for T end
j in the Timestamp List includes TW

j in the writeset

column. Because this data is never overwritten (Invariant 5), it is never stale.
The status at row T start

j , though, can be stale only if its value is “active”.
We show that if Tj commits, then Ti cannot commit. Let the status of

T start
j be “committed”. This information might not be seen by the Scan of

Step 1. That is, the status cell of Tj given by the Scan could be stale: the
value “active” could be seen instead of the actual “committed”. However,
Step 1.2 in the Certification Phase aborts transaction Ti in both cases of Tj
“active” or “committed”, hence Ti does not commit.

3.4.3 Read versions and Snapshot Isolation

For correct Snapshot Isolation, we must guarantee that a transaction reads
from its snapshot. The snapshot of a transaction Ti is the database state at
the moment T start

i is created. The snapshot of Ti can be represented by the

CHAPTER 3. HACID 56

set of all data item versions that were committed before T start
i . We discuss

how read operations in HAcid are equivalent to reading from snapshot.
First, we show how the procedure ReadVersion from Section 3.3.5 cor-

rectly determines σ. Then, we demonstrate that reading σ versions is equiv-
alent to reading from snapshot.

Invariant 6. Every write operation in any transaction Tj in HAcid uses
T start
j as the version number for the data item version.

Definition 20. Let x(k) be a data item version, where k = T start
j for some

transaction Tj (guaranteed from Invariant 6). The commit time CT is defined
as

CT (x(k)) =

{
T end
j , if Tj committed,
∞, otherwise.

That is, the commit time of a data item version is the end timestamp
of the transaction that wrote it, if that transaction committed. Notice that
this definition is time-dependent, because every data item version written by
a transaction Tj starts with its CT =∞, which later can become T end

j once
Tj commits. Since a committed transaction stays committed, if CT (x(k)) is
a finite value, then CT (x(k)) will remain forever unchanged. The definition
above allows us to suitably redefine σ as

σ(x, Ti) = max{T start
j : x ∈ TW

j ∧ CT (x(T start
j)) < T start

i }.

Claim 4. Given the key/value pair 〈(R, commit-time, v), z〉 from a user table
t, if z 6= 0, then CT (R(v)) = z.

Proof. The Update Phase implies that v = T start
j and z = T end

j for some
transaction Tj, since no other procedure writes nonzero values to commit-time.
In that case, Tj committed. Therefore cj ∈ Tj, so CT (R(T start

j)) = T end
j .

Claim 5. The procedure ReadVersion(t, R, T start
i) returns σ((t, R), Ti).

Proof. The procedure inspects key/value pairs 〈(R, commit-time, v), z〉 of
the cell (R, commit-time) in decreasing order of version numbers v. Since
v = T start

j for some transaction Tj, the first v such that the constraints
(t, R) ∈ TW

j and CT (R(T start
j)) < T start

i are satisfied is precisely σ((t, R), Ti).
The constraint (t, R) ∈ TW

j is obviously satisfied because all key/value pairs
are from row R. So only the second constraint needs to be checked by the
procedure.

If z = 0 in Step 2.1 in the procedure, then either T end
j < T start

i or
T end
j > T start

i or even T end
j = ⊥. If T end

j = ⊥, when this end times-
tamp is created it will be greater than T start

i since the Timestamp List is

CHAPTER 3. HACID 57

tight. Furthermore T end
j > T start

i implies CT (R(T start
j)) > T start

i , hence the
constraint is not satisfied. Thus only case T end

j < T start
i is relevant, and Re-

covery in Step 2.1.1 makes sure that Tj aborts or commits. If Tj committed,
Step 2.1.2 sets z := CT (R(T start

j)).
If z 6= 0 in Step 2.2, then by Claim 4 we have CT (R(T start

j)) = z, so it
suffices that z < T start

i to determine that T start
j = σ((t, R), Ti). This is done

in Step 2.2.

Definition 21. A data item version x(k) is in the snapshot of a transaction
Ti if and only if CT (x(k)) = max{CT (x(l)) : x(l) 6= ⊥∧CT (x(l)) < T start

i }.
The previous definition means that x(k) is in the snapshot of Ti only

if x(k) was the latest committed version of x which committed before Ti
started. Notice that the set {CT (x(l)) : x(l) 6= ⊥∧CT (x(l)) < T start

i } on the
right-hand side is not time-dependent, since finite CT (x(l)) are immutable.

Claim 6. Let σ(x, Ti) be obtained from the procedure ReadVersion. The data
item version x(σ(x, Ti)) is in the snapshot of Ti.

Proof. By definition, σ(x, Ti) = max{T start
j : x ∈ TW

j ∧ CT (x(T start
j)) <

T start
i }. In other words, σ(x, Ti) is equal to the start timestamp T start

M of some
transaction TM that committed at CT (x(T start

M)) = T end
M < T start

i . We affirm
that CT (x(T start

M)) is the maximum in {CT (x(l)) : x(l) 6= ⊥ ∧ CT (x(l)) <
T start
i }, as required for Definition 21.

The proof is by contradiction. Suppose there is CT (x(T start
z)) greater

than CT (x(T start
M)) where x(T start

z) 6= ⊥ and CT (x(T start
z)) < T start

i . So
T end
M < T end

z by the definition of CT . From the definition of σ, it holds that
T start
z < T start

M , because T start
M is the largest such start timestamp. Hence

T start
z < T start

M < T end
M < T end

z , therefore the two transactions Tz and TM
are concurrent. Moreover, x ∈ TW

M ∩ TW
z , so these two transactions have a

write-write conflict. By the First-Committer-Wins rule, TM commits and Tz
aborts. Hence CT (x(T start

z)) =∞, contradicting our assumption.
This means that CT (x(T start

M)) is the maximum for Definition 21, so
x(T start

M) is in the snapshot of Ti, where T start
M = σ(x, Ti).

The consequence of the Claim above is that read operations in HAcid are
snapshot isolated.

3.4.4 Transaction atomicity

Atomicity is perhaps the most important ACID property. If one write oper-
ation in a transaction gets committed, then also all other write operations
in that transaction should commit. Here we demonstrate how HAcid trans-
actions satisfy atomicity.

CHAPTER 3. HACID 58

Definition 22. A data item version x(k) is visible if k = σ(x, Ti) for some
(hypothetical) transaction Ti.

Claim 7. Let Ti be a HAcid transaction, and x(T start
i) a data item version

that is visible, written by Ti. Then all data item versions written by Ti are
visible.

Proof. Because x(T start
i) is visible, T start

i = σ(x, Tl) for some hypothetical
transaction Tl. The ReadVersion procedure returns σ(x, Tl) = T start

i only if
the value of (x, commit-time, T start

i) is non-null (see Step 2.2). This means
that the Update Phase of Ti has been executed, and consequently Ti com-
mitted writing “committed” to status of row T start

i in the Timestamp List.
Therefore, if Tl were to process a read operation of any data item y that

was written by Ti, we would have σ(y, Tl) = T start
i . This is true because

T start
i = σ(x, Tl) implies that T start

i is the largest start timestamp such that
T end
i < T start

l . Hence y is also visible.

3.5 Implementation and usage guide

HAcid is an open-source library for HBase client applications, enabling Snap-
shot Isolation multi-row transactions. The source code and library download
can be found at [41], where its documentation is also available. The API is
minimalistic and designed to be easy to understand and use.

Here we explain how HAcid can be used in practice for an HBase data
store, and give some details about its implementation. The HAcid API is a
Java library (jar file) in many ways similar to the standard HBase client Java
library. Section 3.1.2 is a good representation of the connections between
HAcid and an existing HBase installation.

3.5.1 HAcid API

The HAcid API resembles the HBase API. In Java applications that access
HBase, it is typical to encounter the classes HTable, Put, and Get. HTable

represents a table in HBase, Put represents a write operation, and Get rep-
resents a read operation. These are important and common classes. The
example below shows the use of these classes.

Configuration conf = HBaseConfiguration.create();

HTable table = new HTable(conf, "mytable");

Put p = new Put(Bytes.toBytes("row1"));

CHAPTER 3. HACID 59

p.add(Bytes.toBytes("fam1"),

Bytes.toBytes("qual1"),

Bytes.toBytes("val"));

table.put(p);

Get g = new Get(Bytes.toBytes("row1"));

g.addColumn(Bytes.toBytes("fam1"),Bytes.toBytes("qual1");

Result r = table.get(g);

table.close();

The HAcid API follows a similar style. The most important classes are
HAcidClient, HAcidTable, HAcidTxn, HAcidGet, and HAcidPut. The class
HAcidClient encapsulates the majority of management algorithms, such
as conflict testing, Timestamp List append, ReadVersion, Recovery, etc.
HAcidTable represents an HBase user table enabled for transactions, i.e.,
with the commit-time column. HAcidTxn represents a transaction. HAcidGet
and HAcidPut represent, respectively, read and write operations to be in-
cluded into transactions.

For instance, a simple use case where a transaction simply reads and
writes to a row works as follows.

Configuration conf = HBaseConfiguration.create();

HAcidClient client = new HAcidClient(conf);

HAcidTable table = new HAcidTable(conf, "mytable");

HAcidTxn txn = new HAcidTxn(client);

HAcidGet g = new HAcidGet(table, Bytes.toBytes("row1"));

g.addColumn(Bytes.toBytes("fam1"), Bytes.toBytes("qual1"));

Result r = txn.get(g);

HAcidPut p = new HAcidPut(table, Bytes.toBytes("row1"));

p.add(Bytes.toBytes("fam1"),

Bytes.toBytes("qual1"),

Bytes.toBytes("val"));

txn.put(p);

txn.commit();

table.close();

client.close();

CHAPTER 3. HACID 60

The classes HAcidPut and HAcidGet mimic the interface of HBase classes
Put and Get, so they are easy to use. The methods HAcidTxn.get() and
HAcidTxn.put() execute read and write operations in the transaction. The
modifications made by transaction txn are invisible to other transactions un-
til one calls txn.commit(). Classes HAcidTxn and HAcidClient coordinate
the three phases and three events of transaction processing.

Note that version numbers cannot be specified in HAcidGet and HAcidPut.
HAcid manages version numbers to ensure correct Snapshot Isolation, there-
fore its API does not give to the user access to version numbers. We also
discourage the access to version numbers in a HAcid user table through
HBase’s conventional API, except in read-only use cases.

3.5.2 Installation

From the perspective of the API, the user does not need to manage the
installation of HAcid when it is used for the first time. It is sufficient to
import the HAcid library into the application, and initialize instances of
HAcidClient and HAcidTable. The constructor of HAcidClient verifies if
the provided HBase data store already has a Timestamp List table present,
and creates it if necessary. We refer to the creation of the Timestamp List as
HAcid’s initialization. The constructor of HAcidTable verifies if the provided
HBase table already has the HAcid column family (to include the qualifier
commit-time), and creates such family if necessary. This method is called
preparation of a user table.

3.5.2.1 Initialization

Initialization is a simple method, creating the Timestamp List table with
one initial row. The purpose of this dummy row is to simplify the append
operation, which assumes that the Timestamp List has at least one row.
The dummy row is irrelevant to transaction processing. The only non-null
cell in this row is type, with value “end”, so that the append operation can
detect its existence. The row key is 1, hence timestamp serving starts from
2 onwards.

3.5.2.2 Preparation

User tables need to be prepared before being targeted by HAcid transactions.
Every user table must include the commit-time column in the HAcid column
family, and every version number must correspond to some transaction.

CHAPTER 3. HACID 61

If the user table does not exist before HAcid is installed, then it is pre-
pared at the time it is created, simply by including the HAcid column family.
However, if the user table already had data, we need to change the version
numbers of existing data items. In this case, for every cell (R,C) in the ta-
ble, we copy the latest version (R,C, v) to (R,C, 1) and remove all versions
except 1. That is, the version number 1 is used for all initial data items in
the user table.

In HAcid, version numbers are important to indicate the age of data for
Snapshot Isolation, hence 1 (the smallest possible version number) is used for
initial data. Preparation of a large existing user table might be an expensive
procedure and is not safe against interruptions, for instance due to crashes.
Hence it is recommended to use empty or small user tables when HAcid is
installed.

We also discourage the use of the HBase API on HAcid-prepared user
tables, since doing so could violate ACID properties of HAcid transactions.
If a user table is prepared for HAcid, it is safest to use only the HAcid API,
even for transactions with a single operation. However, read operations are
an exception: HBase Gets can be performed on HAcid user tables with no
side effects.

3.5.3 Optimizations

There are two optimizations in HAcid that are important to mention. One
is the use of σ versions in read operations, and the other is the reversed row
key schema for the implementation of the Timestamp List.

Recall that the read version σ(x, Ti) is the largest start timestamp of the
transaction that wrote to x and committed before T start

i . In Section 3.4.3 we
proved that this is equivalent to the start timestamp of the newest committed
transaction that wrote to x and committed before T start

i .
Thus, for a read operation, we could simply search in row x for the largest

commit-time value smaller than T start
i . This would require inspecting all

versions of the column commit-time in row x. However, to find σ(x, Ti),
searching for the largest appropriate version number is advantageous given
how HBase organizes data.

The versions of a cell in HBase are ordered in decreasing order of version
numbers. Consequently, the latest version has the largest version number,
so it is the first one to be returned when the cell is read. Hence searching σ
does not require one to inspect all versions in the cell.

The other optimization is to use a reversed row key schema for the Times-
tamp List. Recall that for the append operation we need to find the end of
the table, and that HBase does not provide a pointer to the last row. How-

CHAPTER 3. HACID 62

ever, HBase allows one to directly access the first row in a table. This is
done by executing a Scan with undetermined start row key. The first row
returned by the Scan is the first row of the table at the time the Scan was
created.

Hence, in the implementation of the Timestamp List, a timestamp t is
represented by row key M − t, where M is a large enough constant. The
table is prepended instead of appended. To prepend, a candidate for the
first row is obtained, then through CheckAndPut we try to insert a row
immediately before the first row. This process repeats if the CheckAndPut
failed, analogous to the append operation.

Prepending is more efficient than appending, and the reversed row key
schema does not disturb HAcid’s functionality, as long as row keys M − t are
converted to timestamps t.

Chapter 4

Performance evaluation

Good performance is an important aspect for HAcid’s lightweight objectives.
In particular, we are interested in minimizing the overhead of HAcid in rela-
tion to HBase, because HAcid is built on HBase.

In this chapter we present some benchmarks of transaction processing in
HAcid. First we study specific aspects of transaction processing, then we
examine the overall performance of the system.

We use five identical compute nodes from a high performance cluster,
the Triton cluster at Aalto University School of Science. The hardware of
these compute nodes are described in Table 4.1. One node hosts the HBase
master, while the remaining nodes host HBase region servers. The master
node is also where the benchmark applications are executed. On the software
side, we used the Cloudera [15] CDH3 Update 3 distribution, which includes
HBase 0.90.4 and Hadoop 0.20.2.

4.1 Microbenchmarks

In this experiment we are interested in measuring the overhead of using
HAcid. These are called microbenchmarks and are inspired by Percolator’s
microbenchmarks [44]. We are interested in the performance of a transaction
with a single (read or write) operation compared to the performance of the

Processor 2x Intel Xeon X5650 2.67GHz
RAM 48 GB of DDR3-1066 memory
Storage About 830 GB of local diskspace (software RAID 0)
Chassis/Mobo HP SL390s G7

Table 4.1: Hardware description of the machines used for the experiments.

63

CHAPTER 4. PERFORMANCE EVALUATION 64

HBase HAcid Relative
Read Latency (ms) 0.34 3.36 x9.8
Write Latency (ms) 1.12 7.79 x6.9

Table 4.2: Average latency of HBase operations and HAcid transactions.
The column “Relative” indicates the overhead of using HAcid. For instance,
a HAcid transaction with a single write operation is about 7 times slower
than its corresponding HBase write operation.

corresponding HBase operation alone. As expected, the latency of executing
an operation through a HAcid transaction will always be higher than per-
forming it purely in HBase. Ideally, this gap should be as small as possible.

We measure the execution time of a set of random HBase write operations
(Puts), and compare with the execution time of the corresponding set of
HAcid transactions each with a single write operation. The same is done for
read operations (Gets). All operations are run serially, that is, there is no
concurrency involved. Each operation targets a random row of a table built
for this experiment.

The HBase table contains 10000 rows and three columns in one column
family. The values in cells are random integers. We executed 100000 op-
erations of each kind (HBase Put, HBase Get, HAcid transaction with a
single write, HAcid transaction with a single read). The results are given in
Table 4.2.

HAcid write-only transactions were 6.9 times slower than their HBase
counterparts, while HAcid read-only transactions were 9.8 times slower. The
results are predictable given the fact that some HBase read and write oper-
ations are involved during the processing of a HAcid transaction.

For instance, consider the processing costs of a write-only HAcid trans-
action. Retrieving a start timestamp requires at least one Put operation,
executing the user’s write operation is one Put, and retrieving an end times-
tamp requires at least one Put. Then, for conflict checking, at least the cost
of one Get (within the Scan) is needed, while the commit decision is one
Put. Finally, to update the user table row, one Put is executed. In total, one
Get and five Puts are necessary to the processing of such transaction. Con-
sequently, using the latencies for HBase operations from Table 4.2, a HAcid
write-only transaction takes at least 5.94 ms to complete. The measured
7.79 ms latency is close (just 31% higher) to the expected minimum.

CHAPTER 4. PERFORMANCE EVALUATION 65

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Number of concurrent clients

200

400

600

800

1000

1200

1400

1600

T
im

es
ta

m
p
s

is
su

ed
p

er
se

co
n
d

Figure 4.1: Performance of the append operation to issue timestamps to
concurrent clients.

4.2 Timestamp throughput

This experiment focuses on measuring the performance of the append oper-
ation on the Timestamp List as a timestamp issuing service. We repeatedly
request start timestamps from HAcid to measure the throughput of times-
tamps. We vary the number of concurrent clients requesting timestamps to
study how well HAcid handles concurrent scenarios. HAcid should be able to
render higher timestamp throughput when the number of concurrent clients
increases.

Each client requests 50000 start timestamps, and we execute up to 18 con-
current clients. Figure 4.1 displays a plot of the throughput values obtained
in the experiment. Apparently, the append operation on the Timestamp List
benefits from concurrency: the throughput for two clients is about twice the
throughput for one client. The increase for more than two clients is mod-
erate. In general, one can expect above 1000 timestamps per second being
issued.

These results also allows us to calculate the average latency of timestamp
issuing. In the case of only one active client in the experiment, the times-
tamps are requested serially. Therefore the throughput of 556 timestamps
per second implies an average latency of 1.8 ms.

CHAPTER 4. PERFORMANCE EVALUATION 66

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Number of concurrent clients

200

400

600

T
ra

n
sa

ct
io

n
s

p
er

se
co

n
d

Figure 4.2: HAcid transactions throughput from concurrent clients.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Number of concurrent clients

1000

2000

3000

4000

5000

4-
se

q
u
en

ce
s

p
er

se
co

n
d

Figure 4.3: Throughput of sequences of four HBase operations. Sequences
are simply non-ACID transactions. This figure is comparable to Figure 4.2.

4.3 Transaction throughput

To assess the performance of HAcid in more realistic workloads, we measure
the throughput of randomly generated transactions. This experiment allows
us to estimate how many transactions per second (TPS) can HAcid provide.

We run 18 concurrent clients that generate random transactions and sub-
mit them to HAcid for commitment. Similarly to the microbenchmarks,
we use a randomly generated test table. The table contains 200000 rows
and three columns, and each client executes 13000 transactions with four
operations, which are random reads and writes. Transactions can therefore
conflict in this experiment. Figure 4.2 is a plot of the throughput of transac-
tions obtained from concurrent clients. Figure 4.3 is the corresponding plot
of throughput when HAcid transactions are not used, but simply sequences
of four HBase operations are executed.

CHAPTER 4. PERFORMANCE EVALUATION 67

The results indicate that throughput is moderate: between 300 and 500
transactions per second. However, HAcid clearly benefits from concurrency:
throughput scales almost linearly with the number of concurrent clients, up
to seven clients. Throughput does not scale beyond that because timestamp
issuing does not scale (see Figure 4.1). Figure 4.3 shows how throughput of
simple HBase operations (no ACID properties) scales linearly.

4.4 Discussion

The results imply that HAcid does not offer transactions with high perfor-
mance. HAcid transactions will necessarily have higher latency than HBase
data operations. That said, HAcid has small overhead compared to other
transaction systems built on top of HBase. For instance, in similar configu-
rations, HBaseSI [60] provides at most 500 timestamps per second and about
200 transactions per second, while HAcid performs at least 1000 timestamps
per second and about 400 transactions per second.

Managing the Timestamp List is definitely the bottleneck in HAcid. All
transactions access the Timestamp List, for two purposes: to retrieve times-
tamps and to manage transactional metadata. In other transaction systems,
these different responsibilities are distributed to different servers. In HAcid,
when many clients append the Timestamp List, the region server managing
the last parts of the table becomes a hotspot in the network. Completed
transactions have written at least three times to the Timestamp List.

Multiple clients appending the Timestamp List might cause contention for
the last row. If one client is slower to communicate with HBase than a group
of other clients, then to append it will likely hang until the remaining clients
have appended. Hence, there are no fairness properties among concurrent
clients appending to the Timestamp List.

Nevertheless, one must remember that high performance transactions are
not a feature that HAcid aims to offer. In the context of incremental up-
dates to a data repository, if many transactions are being submitted, then
likely batch processing through a framework like MapReduce would be more
suitable. HAcid is advantageous when a light workload of transactions is
necessary to update the database.

Chapter 5

Conclusion

In this chapter, we discuss opportunities for improvement in Section 5.1 and
review the work done for this Thesis in Section 5.2.

5.1 Future work

HAcid can be easily modified to include new features. For instance, multi-
ple instances of HAcid can coexist within one HBase installation. This can
be achieved by having multiple Timestamp Lists, each one related to one
instance of HAcid. The instances must be independent, in the sense that a
user table is managed by only one instance. In this fashion, we can easily
distribute the load of timestamp serving. That is, if we know beforehand the
set of users tables that a collection of transactions will target, we can create
a HAcid instance for that collection of transactions.

If no user table intrusion is desired, one can substitute the commit-time

column with a separate table. The table should allow efficient lookup of
the commit time of each data item in user tables. The disadvantage of this
approach is the decrease in performance compared to the commit-time cache
column solution.

There are two HAcid features that could be added with reasonable effort
but were left out from the version described by this Thesis. These are: the
support for Serializability as the isolation level, and garbage collection of
versions in user tables.

5.1.1 Serializable Snapshot Isolation

There has been continuous research [11, 12, 21, 40, 43, 46, 57] on how to adapt
Snapshot Isolation for guaranteeing Serializability. One of the approaches is

68

CHAPTER 5. CONCLUSION 69

Write-Snapshot Isolation (WSI), by the ReTSO authors Yabandeh and Ferro
[57], and convenient to be implemented in HAcid. Their approach consists of
minor modifications to the original SI. The main remark is that write-write
conflict detection is neither necessary nor sufficient for Serializability. Write-
write conflicts concern only the writesets of transactions, but also readsets
should be taken into account if Serializability is required.

Their solution consists in replacing write-write conflict detection with
read-write conflict detection, that considers readsets as well as writesets,
defined as follows.

Definition 23 (Read-Write Conflict). Two timestamped transactions Ti and
Tj have a read-write conflict if all the following conditions are met:

1. Ti and Tj are concurrent;

2. TW
i ∩ TR

j 6= ∅, where T end
i < T end

j ;

3. TW
i 6= ∅;

4. TW
j 6= ∅.

That is, the second transaction Tj reads what the first transaction Ti
wrote, so by the First-Committer-Wins rule, Tj should abort if Ti committed.

To support WSI in HAcid, we would need search for read-write conflicts
instead of write-write conflicts. The readsets of transactions would need to
be recorded in Timestamp List rows, as writesets are. It is also necessary
to change the definition of a read version, because σ read versions are not
necessarily in the snapshot of WSI transactions. This is due to the fact that
Claim 6 assumes that write-write conflicts determine abortion. Read version
σ should be replaced with the traditional approach: the start timestamp of
the newest committed transaction that wrote the same data item.

5.1.2 Garbage collection

After many transactions modify a data item, there will be many versions of
that data item. For better performance, it is useful to purge old versions
of the data item. Purging frees space in the data store and speeds up read
operations, so that less versions need to be inspected.

The challenge with purging is to determine when a version is old enough.
We propose one method of detecting old versions, but neither this nor purg-
ing is implemented in HAcid. We present a sufficient condition for version
oldness.

Definition 24. Let x(T start
i) and x(T start

j) be data item versions of x. Version
x(T start

j) is a successor of x(T start
i) if and only if T start

j > T start
i and cj ∈ Tj.

CHAPTER 5. CONCLUSION 70

Definition 25. Data item version x(T start
i) is safe to purge if there exists a

successor x(T start
j) and for every transaction Tk such that T start

i < T start
k <

T start
j it holds that T end

k 6= ⊥.

Definition 25 is the condition to purge. In other words, a successor of
a version x(T start

i) is a newer version x(T start
j) that is committed, and it is

safe to delete x(T start
i) if all transactions that started between T start

i and
T start
j have already ended. Consequently, these intermediate transactions

cannot anymore read the version x(T start
i), and no future transaction will have

x(T start
i) in its snapshot because they will favor the newer version x(T start

j).
As future work, the condition can be implemented into HAcid. Purging

is specially important if all versions of a data item are inspected to search the
(non-σ) read version, for instance when Write-Snapshot Isolation is required.

5.2 Discussion

We have presented a new lightweight client library for HBase that enables
multi-row SI transactions. Other transaction systems, such as HBaseSI, have
demonstrated how transactions can be provided using solely the HBase client
API. The goal in designing HAcid is to be as lightweight as possible inside
the class of transaction systems built on top of HBase.

HAcid is focused on achieving minimality in aspects such as data struc-
tures, changes in client and server sides, API, and performance. HAcid em-
ploys only one metadata table and one cache column. Changes in the client-
side are represented by importing a single library to the application. Changes
in the server-side consist of installing the metadata table and preparing user
tables. The API resembles the standard HBase API and is succinct. Further-
more, performance is apparently better than that of other similar systems.

On the other hand, there are trade-offs when attempting to make these
aspects lightweight. A system that focuses on low overhead of transactions
likely requires many changes in the server-side of an HBase installation. Lit-
tle intrusion to user tables potentially requires more metadata tables and
data structures, which might lead to performance drawbacks. It might be
impractical to achieve minimality in all aspects.

We believe to have achieved a good balance of all the aforementioned
issues in HAcid. The result is a solid system that is suitable for different
kinds of workloads. Furthermore, HAcid adopts the Cloud philosophy of
fault-tolerance: recovery is a central mechanism in HAcid and the fact that
the Timestamp List is served by an HBase region server implies that HBase
will automatically assign a server to manage it, regardless of failures. In other

CHAPTER 5. CONCLUSION 71

transaction systems, the administrator might need to manually manage the
timestamp oracle.

Our transaction system is also flexible for being adapted in interesting
ways. Not many transaction systems address the problem of garbage collec-
tion, and we have seen in this chapter how this feature can be easily included
into HAcid. Serializability is also reachable after a few modifications to the
system. If better performance is required, one can manually manage a col-
lection of independent Timestamp Lists to increase throughput.

The ideas that comprise HAcid, in particular the Timestamp List, can
be extended to other data stores. There are other Extensible Record Stores
besides HBase that can implement the transaction processing described in
HAcid. However, the structure of the Timestamp List does not depend
on many characteristics of HBase. It would be interesting to implement
the Timestamp List separately from HBase and assess its performance as a
timestamp oracle and a transactional metadata repository.

Software systems for Cloud Computing, such as HBase, are in active
evolution. Since the dawn of NoSQL data stores, many have believed that
there is “no size that fits all needs” when it comes to databases. On one
side are the traditional relational database management systems, equipped
with all necessary features. On the other side are lighter data stores that
offer less features in order to provide high performance when dealing with
large quantities of data. The gap between these two classes of databases is
often large. HAcid on HBase is situated between the two extremes, offering
to database administrators a new benefit that can be achieved with HBase.

Bibliography

[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy H. Katz, Andrew Konwinski, Gunho Lee, David A. Pat-
terson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above the
Clouds: A Berkeley View of Cloud Computing. Technical Re-
port UCB/EECS-2009-28, EECS Department, University of Califor-
nia, Berkeley, Feb 2009. URL http://www.eecs.berkeley.edu/Pubs/

TechRpts/2009/EECS-2009-28.html.

[2] Jason Baker, Chris Bond, James Corbett, J. J. Furman, Andrey Khorlin,
James Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim
Yushprakh. Megastore: Providing Scalable, Highly Available Storage
for Interactive Services. In CIDR 2011, Fifth Biennial Conference on
Innovative Data Systems Research, pages 223–234, 2011.

[3] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J.
O’Neil, and Patrick E. O’Neil. A Critique of ANSI SQL Isolation Levels.
In Proceedings of the 1995 ACM SIGMOD International Conference on
Management of Data, pages 1–10, 1995.

[4] Philip A. Bernstein and Nathan Goodman. Concurrency Control in
Distributed Database Systems. ACM Comput. Surv., 13(2):185–221,
1981.

[5] Philip A. Bernstein and Nathan Goodman. Multiversion Concurrency
Control - Theory and Algorithms. ACM Trans. Database Syst., 8(4):
465–483, 1983.

[6] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Con-
currency Control and Recovery in Database Systems. Addison-Wesley,
1987. ISBN 0-201-10715-5.

[7] Dhruba Borthakur. HDFS Architecture, June 2012. URL http:

//hadoop.apache.org/common/docs/r0.20.0/hdfs_design.html.

72

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://hadoop.apache.org/common/docs/r0.20.0/hdfs_design.html
http://hadoop.apache.org/common/docs/r0.20.0/hdfs_design.html

BIBLIOGRAPHY 73

[8] Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan
Muthukkaruppan, Nicolas Spiegelberg, Hairong Kuang, Karthik Ran-
ganathan, Dmytro Molkov, Aravind Menon, Samuel Rash, Rodrigo
Schmidt, and Amitanand S. Aiyer. Apache Hadoop goes realtime at
Facebook. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 2011, pages 1071–1080, 2011.

[9] Eric A. Brewer. Towards robust distributed systems. (Invited Talk). In
Principles of Distributed Computing. ACM, July 2000.

[10] Michael Burrows. The Chubby Lock Service for Loosely-Coupled Dis-
tributed Systems. In 7th Symposium on Operating Systems Design and
Implementation (OSDI ’06), pages 335–350, 2006.

[11] Michael J. Cahill, Uwe Röhm, and Alan David Fekete. Serializable
isolation for snapshot databases. ACM Trans. Database Syst., 34(4),
2009.

[12] Michael James Cahill and University of Sydney. School of Informa-
tion Technologies. Serializable isolation for snapshot databases, 2009.
URL http://ses.library.usyd.edu.au/handle/2123/5353. Thesis.

[13] Rick Cattell. Scalable SQL and NoSQL data stores. SIGMOD Record,
39(4):12–27, 2010.

[14] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-
rah A. Wallach, Michael Burrows, Tushar Chandra, Andrew Fikes, and
Robert Gruber. Bigtable: A Distributed Storage System for Structured
Data. In 7th Symposium on Operating Systems Design and Implemen-
tation (OSDI ’06), pages 205–218, 2006.

[15] Inc. Cloudera. Cloudera web page, August 2012. URL http://www.

cloudera.com/.

[16] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. ElasTraS: An
Elastic Transactional Data Store in the Cloud. CoRR, abs/1008.3751,
2010.

[17] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. G-Store: a
scalable data store for transactional multi key access in the Cloud. In
Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC
2010, pages 163–174, 2010.

http://ses.library.usyd.edu.au/handle/2123/5353
http://www.cloudera.com/
http://www.cloudera.com/

BIBLIOGRAPHY 74

[18] Khuzaima Daudjee and Kenneth Salem. Lazy Database Replication with
Snapshot Isolation. In Proceedings of the 32nd International Conference
on Very Large Data Bases, pages 715–726, 2006.

[19] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Pro-
cessing on Large Clusters. In Operating System Design and Implemen-
tation (OSDI 2004), pages 137–150, 2004.

[20] Ian Eslick, Andre DeHon, and Thomas Knight. Guaranteeing idempo-
tence for tightly-coupled, fault-tolerant networks. In Kevin Bolding and
Lawrence Snyder, editors, Parallel Computer Routing and Communica-
tion, volume 853 of Lecture Notes in Computer Science, pages 215–225.
Springer Berlin / Heidelberg, 1994.

[21] Alan Fekete, Dimitrios Liarokapis, Elizabeth J. O’Neil, Patrick E.
O’Neil, and Dennis Shasha. Making snapshot isolation serializable. ACM
Trans. Database Syst., 30(2):492–528, 2005.

[22] The Apache Software Foundation. Apache Accumulo web page, June
2012. URL http://accumulo.apache.org/.

[23] The Apache Software Foundation. Apache Cassandra web page, June
2012. URL http://cassandra.apache.org/.

[24] The Apache Software Foundation. Apache HBase web page, May 2012.
URL http://hbase.apache.org/.

[25] The Apache Software Foundation. Apache Hadoop web page, May 2012.
URL http://hadoop.apache.org/.

[26] The Apache Software Foundation. Apache ZooKeeper home page, Jan-
uary 2012. URL http://zookeeper.apache.org/.

[27] Lars George. HBase - The Definitive Guide: Random Access to Your
Planet-Size Data. O’Reilly, 2011.

[28] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google
file system. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP) 2003, pages 29–43, 2003.

[29] Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasi-
bility of consistent, available, partition-tolerant web services. SIGACT
News, 33(2):51–59, 2002.

http://accumulo.apache.org/
http://cassandra.apache.org/
http://hbase.apache.org/
http://hadoop.apache.org/
http://zookeeper.apache.org/

BIBLIOGRAPHY 75

[30] Jim Gray. Notes on Data Base Operating Systems. In Operating Sys-
tems, volume 60 of Lecture Notes in Computer Science, pages 393–481.
Springer Berlin / Heidelberg, 1978.

[31] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993. ISBN 1-55860-190-2.

[32] Joseph M. Hellerstein, Michael Stonebraker, and James R. Hamil-
ton. Architecture of a Database System. Foundations and Trends in
Databases, 1(2):141–259, 2007.

[33] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin
Reed. ZooKeeper: Wait-free coordination for Internet-scale systems. In
Proceedings of the 2010 USENIX conference on USENIX annual tech-
nical conference, USENIXATC’10, pages 11–11. USENIX Association,
2010.

[34] Hypertable Inc. Hypertable web page, June 2012. URL http://www.

hypertable.org/.

[35] Flavio Junqueira, Benjamin Reed, and Maysam Yabandeh. Lock-free
transactional support for large-scale storage systems. pages 176–181,
June 2011. URL http://dx.doi.org/10.1109/DSNW.2011.5958809.

[36] Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. Zab: High-
performance broadcast for primary-backup systems. In Proceedings of
the 2011 IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pages 245–256, 2011.

[37] H. T. Kung and John T. Robinson. On Optimistic Methods for Con-
currency Control. ACM Trans. Database Syst., 6(2):213–226, 1981.

[38] Leslie Lamport. The Part-Time Parliament. ACM Trans. Comput. Syst.,
16(2):133–169, 1998.

[39] Justin J. Levandoski, David B. Lomet, Mohamed F. Mokbel, and Kevin
Zhao. Deuteronomy: Transaction Support for Cloud Data. In CIDR
2011, Fifth Biennial Conference on Innovative Data Systems Research,
pages 123–133, 2011.

[40] Yang Lu. Serializable Snapshot Isolation in Shared-Nothing, Distributed
Database Management Systems. Master’s thesis, Brown University,
Providence, Rhode Island, 2012.

http://www.hypertable.org/
http://www.hypertable.org/
http://dx.doi.org/10.1109/DSNW.2011.5958809

BIBLIOGRAPHY 76

[41] Andre Medeiros. HAcid source code repository at Bitbucket, August
2012. URL https://bitbucket.org/staltz/hacid.

[42] Peter Mell and Tim Grance. The NIST Definition of Cloud Computing,
2011. URL http://csrc.nist.gov/publications/nistpubs/800-145/

SP800-145.pdf.

[43] Vinit Padhye and Anand Tripathi. Scalable Transaction Manage-
ment with Serializable Snapshot Isolation on HBase. Technical re-
port, Department of Computer Science, University of Minnesota,
Twin Cities, Feb 2012. URL http://ajanta.cs.umn.edu/papers/

serializable-hbase-transactions.pdf.

[44] Daniel Peng and Frank Dabek. Large-scale Incremental Processing Us-
ing Distributed Transactions and Notifications. In 9th USENIX Sympo-
sium on Operating Systems Design and Implementation, (OSDI) 2010,
pages 251–264, 2010.

[45] Kash Rangan. The Cloud Wars: $100+ billion at stake. Tech. rep.,
Merrill Lynch, May 2008.

[46] Stephen Revilak, Patrick E. O’Neil, and Elizabeth J. O’Neil. Precisely
Serializable Snapshot Isolation (PSSI). In Proceedings of the 27th Inter-
national Conference on Data Engineering (ICDE), 2011, pages 482–493,
2011.

[47] Florian Schintke, Alexander Reinefeld, Seif Haridi, and Thorsten
Schütt. Enhanced Paxos Commit for Transactions on DHTs. In 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Com-
puting, CCGrid 2010, pages 448–454, 2010.

[48] Jeff Shute, Mircea Oancea, Stephan Ellner, Ben Handy, Eric Rollins,
Bart Samwel, Radek Vingralek, Chad Whipkey, Xin Chen, Beat
Jegerlehner, Kyle Littlefield, and Phoenix Tong. F1 - The Fault-Tolerant
Distributed RDBMS Supporting Google’s Ad Business. In SIGMOD,
2012. Talk given at SIGMOD 2012.

[49] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The Hadoop Distributed File System. Mass Storage Systems
and Technologies, IEEE / NASA Goddard Conference on, 0:1–10, 2010.
doi: http://doi.ieeecomputersociety.org/10.1109/MSST.2010.5496972.

[50] Eljas Soisalon-Soininen and Sami El-Mahgary. T-106.5241 Distributed
Databases course at Aalto University, 2011. Lecture notes.

https://bitbucket.org/staltz/hacid
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://ajanta.cs.umn.edu/papers/serializable-hbase-transactions.pdf
http://ajanta.cs.umn.edu/papers/serializable-hbase-transactions.pdf

BIBLIOGRAPHY 77

[51] Christof Strauch. NoSQL Databases. Lecture Notes Stuttgart Media,
pages 1–8, 2010. URL http://nosql-database.org/.

[52] Hoang Tam Vo, Chun Chen, and Beng Chin Ooi. Towards Elastic Trans-
actional Cloud Storage with Range Query Support. PVLDB, 3(1):506–
517, 2010.

[53] Zhou Wei, Guillaume Pierre, and Chi-Hung Chi. CloudTPS: Scalable
Transactions for Web Applications in the Cloud. Technical Report
IR-CS-053, Vrije Universiteit, Amsterdam, The Netherlands, February
2010. http://www.globule.org/publi/CSTWAC_ircs53.html.

[54] Zhou Wei, Guillaume Pierre, and Chi-Hung Chi. Consistent Join Queries
in Cloud Data Stores. Technical Report IR-CS-068, Vrije Universiteit,
Amsterdam, The Netherlands, January 2011. http://www.globule.org/
publi/CJQCDS_ircs68.html.

[55] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, original
edition, June 2009. ISBN 0596521979. URL http://www.worldcat.org/

isbn/0596521979.

[56] ANSI X3.135-1992. American National Standard for Information Sys-
tems – Database Language – SQL, November 1992.

[57] Maysam Yabandeh and Daniel Gómez Ferro. A critique of snapshot
isolation. In European Conference on Computer Systems, Proceedings
of the Seventh EuroSys Conference 2012, EuroSys ’12, pages 155–168,
2012.

[58] Yahoo! GitHub repository. Omid: Transactional Support for HBase.,
May 2012. URL http://github.com/yahoo/omid.

[59] Chen Zhang and Hans De Sterck. Supporting multi-row distributed
transactions with global snapshot isolation using bare-bones HBase. In
Proceedings of the 2010 11th IEEE/ACM International Conference on
Grid Computing, pages 177–184, 2010.

[60] Chen Zhang and Hans De Sterck. HBaseSI: Multi-row Distributed
Transactions with Global Strong Snapshot Isolation on Clouds. Scal-
able Computing: Practice and Experience, 12(2), 2011.

http://nosql-database.org/
http://www.globule.org/publi/CSTWAC_ircs53.html
http://www.globule.org/publi/CJQCDS_ircs68.html
http://www.globule.org/publi/CJQCDS_ircs68.html
http://www.worldcat.org/isbn/0596521979
http://www.worldcat.org/isbn/0596521979
http://github.com/yahoo/omid

	Abbreviations and Acronyms
	Introduction
	Background
	Transactions
	Concurrency control techniques
	Multiversion Concurrency Control
	Elementary isolation levels
	Snapshot Isolation

	Distributed Databases
	Extensible Record Stores
	Data model
	Architecture
	Properties

	Transactions in Extensible Record Stores

	HAcid
	Design
	HAcid as a transactions certifier
	Architecture

	Transactional metadata repositories
	The Timestamp List
	Metadata column in user tables

	Transaction management algorithms
	Example run of a transaction
	Summary of transaction processing
	Pseudocodes
	Appending the Timestamp List
	Searching read versions
	Recovery

	Analysis of properties
	Append operation
	Transaction processing correctness
	Read versions and Snapshot Isolation
	Transaction atomicity

	Implementation and usage guide
	HAcid API
	Installation
	Initialization
	Preparation

	Optimizations

	Performance evaluation
	Microbenchmarks
	Timestamp throughput
	Transaction throughput
	Discussion

	Conclusion
	Future work
	Serializable Snapshot Isolation
	Garbage collection

	Discussion

