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Abstract. In this paper we present a robust motion recognition frame-
work for both motion capture and RGB-D sensor data. We extract four
different types of features and apply a temporal difference operation to
form the final feature vector for each frame in the motion sequences. The
frames are classified with the extreme learning machine, and the final class
of an action is obtained by majority voting. We test our framework with
both motion capture and Kinect data and compare the results of different
features. The experiments show that our approach can accurately classify
actions with both sources of data. For 40 actions of motion capture data,
we achieve 92.7% classification accuracy with real-time performance.

1 Introduction

Human motion capture (mocap) represents the human skeleton with the 3D
positions of each joint or with the angular and translative distances between the
joints [7]. Mocap and its classification are important in fields like filmmaking,
computer animation, sports science, robotics, surveillance systems and other
applications. The recognition of motion provides important information to various
intelligent systems, and can also enable human–computer interaction without
any physical contact. The methods for the classification of motion capture data
are not only beneficial to the mocap community but can also be used for the
classification of other media data which generates similar skeleton models during
an intermediate process, such as video [4] or depth data [13].

The classification of mocap sequences faces the difficulties of interclass simi-
larity between different actions and intraclass variety of different performance
instances of the same actions. For example, a “jump” performed by different
actors can have very different styles, and even the same actor does not perform
the action exactly the same way each time. Different instance of the same action
can also vary e.g. in speed and the number of repetitions of the gestures.

Motion sequence analysis has been revigorated by the proliferation of RGB
cameras with depth sensors (RGB-D), such as the Microsoft Kinect, which are
nowadays widely used in computer vision due to their low cost and portability.
The depth information provided by RGB-D cameras enriches the sensing of
the environment, making the analysis of the 3D world considerably easier than
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with 2D images and e.g. stereo vision approaches. The classification of motion
sequences recorded by RGB-D sensors is raising increasing attention in the
research community [2]. Several algorithms have been developed for extracting
the human skeleton from the RGB-D images [13, 16]. These algorithms provide
analogous data to mocap, and similar methods for motion classification can thus
be applied to both mocap and RGB-D data.

In this paper, we propose a method to classify multiple actions with high
accuracy and low computation requirements. We use several different kinds of
features, propose the time difference concept to be used in the feature generation,
and apply extreme learning machines (ELM) for multiclass classification. We
examine the efficiency of the proposed method with a large number of experiments
conducted with both motion capture and RGB-D sensor data.

2 Related Work

The methods for classification, segmentation and retrieval of motion capture data
are not isolated, e.g. the methods used for classification can often be used in
retrieval. In general, the classification methods vary in two main components:
feature selection and the used classification algorithm.

Müller et al. [8] proposed relational motion features to describe geometric
relations between the key points of a pose. A motion template was learned for
each motion class by dynamic time warping. In [15], the 3D coordinates of markers
forming the feature vector were used to represent each frame in a motion. Each
frame was classified with a SVM, and the recognition result for each motion was
the average of the frame-wise results. The algorithm was able to recognize 21
motions with an average accuracy of 92.3%. In [1], the relative rotation angles of
bones were used as features. For each bone, a learned feature vector was used as a
model vector and each bone’s angle sequences were compared to the model vectors
of the corresponding bones. The method was used to classify between 4 different
motions. In [10], a flexible dictionary of action primitives was built from time
series data of limb positions by K-means clustering. Each action was represented
as a concatenation of histograms of each primitive and then classified with a
SVM. The algorithm was tested by 5 motions with mean classification accuracy
of 97.40%. In [12, 6], the (x, y, z) positions of seven markers were adopted as
features, and the gestures were classified online by sparse coding of a hierarchical
Self-Organizing Map. The average accuracy for 6 gestures was 80%. Vieira [14]
used distance matrices as features for each posture. The matrix was vectorized
and reduced in dimensionality with PCA. Each motion was described by an action
graph which consists of salient postures as nodes with each motion modeled by a
path in the graph. The average accuracy for 10 motions was 90.86%.

In our paper, instead of extracting complicated features such as in [11], we
use either the 3D data directly or calculate Euclidean distances from it and
and utilize the information contained in the temporal order to form feature
vectors for each frame. These are then classified by ELM, which can directly do
multi-class classification and most of the parameters in the model are assigned
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Fig. 1: An overview of the proposed classification framework

randomly which makes the learning extremely fast. The final classification result
for a sequence is obtained by majority voting, which makes the system robust to
inaccurate and noisy data.

3 Method

In this section, we describe the proposed framework for recognizing multiple
actions from motion capture and RGB-D sensor data with high resolution and
low computational requirements. We will first describe the feature extraction for
the motion sequences and then introduce the extreme learning machine.

Our recognition framework begins with feature extraction. We experiment
with several different kinds of features extracted from the skeletal data. Then, a
temporal difference vector is calculated on each kind of feature and concentated
with the original feature. The selection of which joints from the full skeleton to
use directly influences the dimensionality of the features.

Every frame in each motion sequence is classified by the extreme learning
machine, and the frame-wise classification results are counted, and the class with
the highest number of votes is the the final classification result for that sequence.
A graphical overview of the classification framework can be seen in Fig. 1.

3.1 Feature Extraction

Skeletal features can be designed or extracted in various ways. Here, we try to
discover features that are simple to calculate and easy to obtain but still contain
sufficient distinguishing information for classification. We introduce four kinds of
features for skeletal data originating either from mocap or from RGB-D sensors.

Normalized 3D Position (POS) The original data generated by mocap is
usually either in ASF/ACM or C3D format. Both formats express skeletons using
translations and rotations. The 3D coordinates of the joints can be obtained
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Fig. 2: A “cartwheel” action in original (left) and root (right) coordinates

through several levels of hierachical calculations of rotations and translations. As
the first step, a transformation to a common coordinate system is needed.

For the mocap skeleton, the transformed coordinates of joints can be obtained
by setting the rotation matrix R1 and the translation vector t1 of the root
(joint 1 in the HDM05 skeleton in Fig. 4) to identity and zero, i.e. R1 = I and
t1 = [0 0 0]T . After this transformation, the root of the skeleton is at origin, and
the left and right hip are at positions relative to the root at coordinates fixed
during calibration, which are independent to the performed posture. That is, for
all postures of a given actor, the coordinates of the root, left hip and right hip
remain fixed after the transformation. For example, Fig 2 shows sampled frames
from a “cartwheel” action in the original and root coordinates.

For RGB-D skeletons, only the 3D coordinates of the joints are typically
available, i.e. no similar hierarchical format of bone structure and rotation and
translation data exist. Therefore, we have to transform the joints to a common
coordinate system using the original 3D positions of the joints. We start by
translating the root of the skeleton to the origin by subtracting the coordinates
of the root from all the joints.

Next, we select any skeleton as the standard skeleton, and use its coordinates
as the common basis that the other skeletons in the sequence will be transformed
to. Let us assume that after the translation to the origin, the left and right hip of
the standard skeleton are p0

lhip and p0
rhip, and of the skeleton to be transformed,

plhip and prhip. The rotation matrix which transforms the joints to the common
coordinates is R. plhip and prhip form a plane c that can be represented by the
origin of the coordinates and the norm vector nc, which can be calculated by

nc = p0
lhip × p0

rhip . (1)

After the rotation, the left and right hip have to lie in the plane c and the sum
of the distances between the transformed hips to the standard hips is minimized,
which can be expressed as

nc · (Rplhip) = 0
nc · (Rprhip) = 0

min
R

(‖Rplhip − p0
lhip‖+ ‖Rprhip − p0

rhip‖)
(2)
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The transformed 3D positions of the whole skeleton can be obtained by multiplying
all the joints with R.

Finally, due to the varying size of actors, the skeleton should be normalized
so that the sum of the distances of the connected joints equals to one.

Pairwise Distance Vector (PW) As the name implies, the pairwise distance
vector feature is composed of all distances between the joints, and the vector is
normalized so that the sum of all elements equals to one. The elements of the
feature vector can be calculated by

‖pi − pj‖∑
i6=j ‖pi − pj‖

, i 6= j (3)

where pi and pj are the 3D positions of joints i and j.

Centroid Distance Vector (CEN) In this feature, we consider the centroid
of the triangle formed by the neck and hips as the centroid of the body. The
elements of the feature vector consist of the distances between joints and the
centroid, normalized by the sum of the distances,

‖pi − pcen‖∑
i ‖pi − pcen‖

, ∀i (4)

where pcen = 1
3 (pneck + plhip + prhip).

Key Joints Distance Vector (KEY) Similar to the centroid distance vector,
the key joints distance vector is calculated as the distances between a set of key
joints and the other joints. We use in this paper the following three key joints:
head, root and left knee (lknee);{

‖pi − phead‖∑
i ‖pi − phead‖

,
‖pj − proot‖∑
j ‖pj − proot‖

,
‖pk − plknee‖∑
k ‖pk − plknee‖

}
∀i, j, k : i /∈ {head}, j /∈ {head, root}, k /∈ {head, root, lknee} .

(5)

Temporal Difference of Feature Vectors (TDFV) The above feature vec-
tors represent the uniqueness of each posture. In general, actions are composed
of multiple postures, and some actions can even be kinematically inverse to each
other. Fig. 3 shows two such actions: StandUpKnee and SitDownKnee. Here, for
each posture in one action there is an almost identical counterpart in the other
one, and a frame-wise classification method can easily misclassify such frames.
Therefore, we take the temporal order of the postures into account by calculating
a feature expressing temporal difference information.
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(a) StandUpKnee (b) SitDownKnee

Fig. 3: One pair of inverse actions

Let us assume the feature of the ith posture calculated by one of the above
methods is f id. The temporal difference of feature vectors feature f itd can be
calculated as

f itd =

{
f id 1 ≤ i < m

f id − f i−m+1
d m ≤ i ≤ N

(6)

where m is the temporal offset parameter, 1 < m < N . By concatenating the
feature vector fd and the temporal distance feature vector ftd, the final feature of
a posture can be written as f i = [(f id)T (f itd)T ]T .

Dimensionality of the Features The dimensionalities of the feature vectors
fd described in this section are

• normalized 3D position: 3n
• pairwise distance: n(n− 1)/2
• centroid distance: n
• key joints distance: nkjn−

∑no

i=0 i

where the numbers of joints in the used set and of key joints in the skeleton are
n and nkj , respectively, and no is the number of overlapping joints between key
joints and the set of used joints. ftd has the same dimensionality as the original
feature vector, so the dimensionality of the final feature vector f is doubled.

The commonly used mocap databases include the CMU Graphics Lab Motion
Capture Database [3] and the Motion Capture Database HDM05 [9]. Both
databases provide 31 joints for their skeletons with the same ordering, whereas
e.g. the skeletons extracted from Kinect with the PrimeSense Natural Interaction
Middleware (NiTE) have 15 joints. According to [3] some joints are not real
captured data, and some are relatively noisy. For these reasons, and also to be
able to perform comparisons between mocap and Kinect data, we simplify the
mocap skeletons from 31 to 15 joints corresponding to the NiTE skeleton format
shown in Fig. 4.

3.2 Extreme Learning Machine

Extreme learning machine (ELM) [5] belongs to the class of single-hidden layer
feed-forward neural networks. In ELM, the input weights and first hidden layer
biases do not need to be learned but are assigned randomly, which makes the
learning extremely fast.
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Fig. 4: Original skeleton of HDM05 (left) and the simplified skeleton (right)

Given P samples {xi,yi}Pi=1, where xi ∈ Rn and yi ∈ Rm, the standard ELM
model with L hidden neurons can be represented as

yi = f(xi) =

L∑
j=1

γjg(ωj · xi + bj) , (7)

where g(·) is a nonlinear activation function, γj ∈ Rm are the output weights,
ωj ∈ Rn is the weight vector connecting the input layer to the j th hidden
neuron and bj is the bias of the j th hidden neuron. Both ωj and bj are assigned
randomly during the learning process. With Y = [y1 y2 · · ·yP ]T ∈ RP×m and
Γ = [γ1 γ2 · · ·γL]T ∈ RL×m, Eq. (7) can be written compactly as

HΓ = Y (8)

where the hidden layer output matrix H is

H =

g(ω1 · x1 + b1) · · · g(ωL · x1 + bL)
...

. . .
...

g(ω1 · xP + b1) · · · g(ωL · xP + bL)


P×L

. (9)

The solution of Eq. (8) is given [5] as

Γ = H†Y (10)

where H† is the Moore-Penrose generalized inverse of matrix H.

4 Experiments

In this section, we provide an experimental evaluation of our proposed method.
To be able to make comparisons to other published methods, we use the public
mocap database HDM05 [9], which contains roughly 70 motion classes with 10
to 50 motion sequences for each class performed by 5 actors. We also record
additional data with the Kinect sensor that corresponds to a subset of HDM05.
In all experiments, we use the ELM with L = 500 hidden neurons.
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Fig. 5: Confusion matrix for four pairs of inverse actions

4.1 Effect of TDFV Feature

In order to test the effect of the TDFV feature, we first select four pairs of
actions from HDM05 database. In each pair, the actions are similar but in
reverse chronological order. All motion sequences of these actions are used in the
experiments, totaling 154 sequences. We use the pairwise distance of all joints
and either fd or f as our feature. In both cases, we use 10-fold cross validation.

The confusion matrices for the experiments are shown in Fig. 5. We can see
that with fd, i.e. only the frame-wise distance vectors, the actions in each pair
are often misclassified to each other, whereas with f , that is, after concatenating
with the TDFV feature, the actions are clearly distinguished from each other.
The average accuracy is increased from 56.49% to 99.35%. Based on these results,
we use the concatenated features in all subsequent experiments in this paper.

4.2 Temporal Parameter in TDFV

In Eq. (6), the temporal parameter m represents the offset in frames in the motion
sequence. To observe the influence of different offset values, we calculate TDFV
features for different values of m corresponding to time offsets ranging from 0.1s
to 0.8s with a 0.1s interval. with the same motion sequences as in Sec. 4.1. The
average classification accuracies are plotted in Fig. 6. We can observe that the
accuracy is above 96% in all cases, and when the time offset is 0.3s, we get the
highest classification accuracy. Therefore in all further experiments we use values
m = 0.3fs, where fs is the frame rate of the sequence.

4.3 Comparing Features with Mocap and Kinect Skeletons

In [14], the distance matrix is used as features and an action graph is used to
classify between 10 classes of motions from the HDM05 database. In order to
be able to compare results, we use the same data to test our method. In total,
156 motion sequences from 10 classes are used in 10-fold cross validation. We
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select two sets of joints: all 15 joints in the simplified skeleton and a reduced set
of five joints (head, hands and feet). The four features described in Sec. 3.1 are
extracted for both sets of joints.

We also recorded the same motions with a Kinect device. Example RGB-D
images and the corresponding skeleton are shown in Fig. 7. In our data, there
are five actors similarly as in the mocap data, and each of the actors performed
an equal number of motions as in the original data1.

The classification accuracies are shown in Table 1. The 10 used actions are
indicated by numbers and the corresponding actions can be found in Table 2.
The dimensionality of the features fd is shown in parentheses. We can see that,
for the mocap skeletons, ELM with each of the features and either set of joints
(15 or 5 joints) can classify the 10 classes with a minimum of 98.8% average
accuracy, which is higher than reported in [14]. For the same motions with Kinect
the accuracy is lower, which can be explaned by the unstability and noisiness of
the Kinect skeletons. An example is shown in Fig. 7 where the right knee of the
skeleton is not bent as in the corresponding RGB-D image. With five joints, the
dimensionalities of the features are significantly lower than with 15 joints, but
the classification accuracies remain almost as high. For Kinect, the normalized
3D position feature requires a relatively complicated normalization computation
which is not needed with the other three features, and the accuracy is only about
1–4% higher than with the pairwise and key joints distances. Therefore, the
pairwise and key joints distance are also a good choices with Kinect skeletons.

4.4 Classification of 40 Actions with Mocap Data

In Sec. 4.3, all four features were shown to provide very high accuracies in classi-
fication of 10 classes with mocap data. Therefore, we now test the performance
of the features on a larger dataset. In HDM05, the actions can be categorized
into two groups: stationary and mobile actions. Our features extract the relative
joint relations without the absolute movement. In this experiment we therefore
use the stationary actions and a small number of mobile actions such as jog and

1 The used data is available at http://research.ics.aalto.fi/cbir/data/.
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walk, which contain different relative joint relations to the stationary actions. In
total, we use 40 actions and 790 sequences. We use the four features with the set
of five joints (head, hands, and feet), again with 10-fold cross validation.

The results are shown in Table 2 where Ns is the number of motion sequences
in each class, and Nf is the total number of frames for that class. We can
observe that the classification accuracy with the centroid distance vector drops
significantly, while the normalized 3D position remains above 92% accuracy. It is
slightly better than the key joints distance vector, which is then 4% better than the
pairwise distance vector. The accuracies correspond to feature dimensionalities,
in that the normalized 3D position has 15 dimensions, the key joints distance
vector 14, the pairwise distance vector 10, while the centroid distance vector has
only 5 dimensions. The experiment shows that the normalized 3D position and
the key joints distance vector with the TDFV features are informative features
and scale well into a large dataset.

The experiments were conducted using Intel Core i5 CPU at 3.3 GHz and
8 GB of memory. The four features require almost an equal amount of time
both in training and in testing. For training with about 200 000 frames, the
ELM algorithm took on average around 22 seconds. In testing, including the
data preprocessing and the majority voting, it took on average 0.04 seconds to
classify one sequence. The average number of frames in a sequence was 265. The
experiments were performed using non-optimized Matlab code.

5 Conclusions and Future Work

In this paper, we use four features—normalized 3D position, pairwise distance,
centroid distance, and key joint distance—and propose the concept of temporal
difference of feature vectors. Concatenated together, these two form a feature
vector for each frame in a motion sequence. We then apply extreme learning
machines to classify each frame, and the action class with the highest number of
votes is selected as the class of the motion sequence. We test our framework on
both Kinect and mocap data.
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Table 1: Classification of 10 action classes with both Kinect and mocap data.

Ac- Kinect (%) Mocap (%) [14]
tion 15 joints 5 joints 15 joints 5 joints (%)

pos pw cen key pos pw cen key pos pw cen key pos pw cen key
(45) (105) (15) (39) (15) (10) (5) (14) (45) (105) (15) (39) (15) (10) (5) (14)

1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 85.7
2 100 95.0 90.0 95.0 100 95.0 75.0 90 100 100 100 100 100 95.0 100 100 87.9
3 100 95.0 70.0 95.0 100 95.0 75 90 100 100 100 100 100 100 95.0 100 100
4 100 100 100 100 100 100 100 100 100 100 93.3 93.3 100 100 100 100 90.0
5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 88.1
6 92.3 84.6 76.9 84.6 84.6 92.3 76.9 76.9 100 100 100 100 100 100 100 100 88.9
7 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 94.1
8 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 89.1
9 75.0 87.5 56.3 75.0 81.3 50.0 50.0 68.8 100 100 94.1 100 94.1 100 100 100 93.3
10 93.8 87.5 37.5 75.0 81.3 87.5 56.3 81.3 100 100 100 100 100 100 100 100 91.4
Av. 96.1 95.0 83.1 92.5 94.7 92.0 83.3 90.7 100 100 98.8 99.3 99.4 99.5 99.5 100 90.9

The experiments show that with only the head, hands and feet, the classifica-
tion can be almost as accurate as with the whole 15-joint skeleton. We compare
the classification of the same actions with mocap and Kinect skeletons with 10
action classes. With mocap data, we get almost 100% accuracy in each case, and
even though the Kinect skeleton is much more unstable and inaccurate, we still
get accuracies reaching 96%. With 40 action classes and mocap data, our method
achieves an accuracy of 92.7% with a 30-dimensional feature vector. In all cases,
the low time requirements for both feature extraction and classification make
online action classification possible.

The proposed features describe the relative positions between joints and do
not contain the absolute traces of the movement. Therefore, they are only effective
in distinguishing between stationary actions that mainly express relative body
movement. The are not well-suited for distinguishing mobile actions, e.g. between
running in place and running forward. In the future, we will extend the features
in order to be able to classify also motions with absolute movement.
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