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Abstract. RGB-D skeletons are nowadays commonly used e.g. for ges-
ture recognition, and so their accuracy and stability have significant in-
fluence on further processing. Skeletons obtained with motion capture
are considerably more accurate and can be used to assess the quality of
RGB-D skeleton extraction algorithms. In this paper, we record motion
sequences with both a Kinect RGB-D sensor and a full motion capture
system and align the generated skeletons by subsequence dynamic time
warping with a varied step size. To evaluate the alignment, we propose
two measures: the minimum overall distance between feature vectors and
the distance of transformed skeletons. Experimental results show that our
proposed method provides a better alignment between skeletons than
the comparison methods. The proposed technique can also be used for
content-based retrieval from large motion capture databases.

1 Introduction

Human motion analysis is often used in filmmaking, entertainment, sports and
other applications. Traditionally, the human motion is recorded by a motion
capture (aka mocap) system [7]. Such a system consists of multiple calibrated
cameras in a dedicated space, and the recorded data needs to be processed by
specific software. The expensive hardware and software make mocap data very
costly. On the other hand, RGB cameras with depth sensors (RGB-D), such as
the Microsoft Kinect, are nowadays widely used in computer vision due to their
low cost and portability. The depth information provided by RGB-D cameras
enriches the sensing of the environment, making the analysis of the 3D world
considerably easier than with 2D images and e.g. stereo vision approaches.

Detecting the human figure from RGB-D data is relatively straightforward.
In [12], a 2D edge detector and a 3D shape detector are used to detect the head
and subsequently segment the human figure from the background. A detailed
implementation is given in [5]. Several algorithms have been developed to gener-
ate the human skeleton based on the depth information only. The algorithm by
Shotton et al [10] is implemented by Microsoft in their Kinect drivers and Xbox
devices. In addition, some other algorithms for skeleton extraction are proposed
in [9, 4]. The extracted skeleton is then often used in gesture recognition [13, 6].
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The focus of this paper is to evaluate skeletons generated from Kinect depth
images based on skeletons from a motion capture system that we consider here
as the groundtruth. The proposed method can be used to compare skeletons
generated by different algorithms, or to retrieve motion capture data from large
databases by using a RGB-D skeleton sequence as the query. To evaluate the
method, we record several human motion sequences simultaneously with both a
Kinect sensor and a full motion capture system. Due to different frame rates, dif-
ferent starting and ending times in the recordings, and the possibility of missing
frames, we need to align the skeletons on each frame from Kinect to mocap.

The distances between joints have been shown to be effective features in
motion classification and retrieval [11]. In this paper, instead of direct pairwise
distances between the joints, we use the distances between joints and the centroid
of the skeleton, which significantly decreases the feature dimensionality and the
complexity of the computations. We calculate a similarity matrix between the
features from both systems, and then use subsequence dynamic time warping
(SS-DTW) [1] with varied steps to find the minimum distances. We evaluate the
similarity between the aligned sequences by visual observation and by quanti-
tative measures. We also compare our approach with other methods for finding
the alignment, out of which SS-DTW is shown to produce the best results.

2 Dynamic Time Warping

Dynamic time warping (DTW) is a well-known algorithm to measure the sim-
ilarity and to find an alignment between two signal sequences [8]. Given two
sequences, P = p1, p2, ..., pN , and Q = q1, q2, ..., qM , the dissimilarity c(pn, qm)
between elements from each sequence is defined as the distance between the
elements

c(pn, qm) = f(pn, qm) (1)

where f is a distance function. Commonly used distance functions include the
Euclidean and cosine distances. By calculating the dissimilarity between each
pair of elements from the sequences, a cost matrix C ∈ RN×M with C(n,m) =
c(pn, qm) can be obtained. DTW finds the alignment between P and Q with
the minimum overall cost. The minimum cost alignment is also referred to as
the warping path, as it indicates the indices of the matched elements in the
sequences.

The warping path of the basic DTW has to fulfill two conditions:

1. Begin and end conditions: p1 ↔ q1 and pN ↔ qM
2. Step condition: If pn ↔ qm, then pn ↔ qm+1 or pn+1 ↔ qm or pn+1 ↔ qm+1

That is, the first and last elements of P and Q have to align to each other,
no elements in either sequence can be omitted, and no element can match to
multiple elements. The most efficient solution to finding the warping path with
the minimum overall cost is based on dynamic programming. Let us define the
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Fig. 1: Example warping paths of DTW (left) and subsequence DTW (right)

matrix D as the accumulated cost matrix, calculated as follows [2]:

D(1, 1) = C(1, 1) (2a)

D(n, 1) = D(n− 1, 1) + C(n, 1) (2b)

D(1,m) = D(1,m− 1) + C(1,m) (2c)

D(n,m) = min(D(n− 1,m) + D(n,m− 1), (2d)

D(n− 1,m− 1)) + C(n,m) .

D(n,m) is the minimum distance between the subsequences Pn = p1, p2, ..., pn,
and Qm = q1, q2, ..., qm, and so D(N,M) is the minimum distance between the
sequences P and Q. The optimal warping path can be found by tracing back
the steps from the bottom-right corner of D to the top-left corner. If D(n,m)
is on the optimal path, then min(D(n− 1,m− 1), D(n− 1,m), D(n,m− 1)) is
the next step on the path. If there is no unique minimum, the element with the
lexicographically smallest index is chosen. An example can be seen in Fig. 1.

2.1 Subsequence Dynamic Time Warping

Subsequence DTW (SS-DTW) is a modification of DTW that does not fulfill the
first condition of DTW, that is, it does not bound the beginning and end of the
two sequences to each other. Instead, the longer sequence is assumed to contain a
matching subsequence to the shorter sequence (see Fig. 1). SS-DTW can also be
solved with the accumulated cost matrix. The calculation of the matrix is similar
to the basic DTW except that Eq. (2c) is replaced by D(1,m) = C(1,m).

The criterion to trace back to find the optimal warping path is also similar
to DTW except that it does not start from D(N,M). Instead, the starting point
D(N,m′), which is also the end of the matching sequence, can be found by:

m′ = min
argm

(D(N,m)) , m = 1, 2, . . . ,M . (3)

3 Aligning RGB-D and Motion Capture Skeletons

In this project, an OptiTrack motion capture system and one Kinect device are
used to collect skeletons of human actors. The motion capture system comprises
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Fig. 2: Data aquisition by mocap and Kinect

of 24 cameras set up to surround a large square space. The Kinect is placed
outside the camera array. An actor performs in the square space and the perfor-
mance is recorded by both systems. Part of the setup can be seen in the Kinect
video frame in Fig. 2b. Fig. 2a shows the corresponding Kinect depth image.
The extracted skeletons from Kinect and mocap can be seen in Figs. 2c–d. The
used software for Kinect is based on the OpenNI framework1 and the skeleton is
extracted with the Natural Interaction Middleware (NiTE)2 from PrimeSense.

During data acquisition, the actors performed several groups of actions, each
lasting about two minutes. The start and stop of the recording on both systems
was controlled manually. The motion capture system was always started earlier
and stopped later than the Kinect recording.

3.1 Feature Extraction

The used mocap system provides 22 joints in the skeleton, while the algorithm we
used with Kinect provides 15 joints (see Fig. 3). Compared to Kinect, the mocap
skeleton provides additionally the ends of hands, feet and head, and the center
hip. Kinect uses one joint (torso) to represent the body, whereas mocap uses ab
and chest, neither of which directly match the Kinect torso. Therefore, in order
to be able to extract the same features, we first need to project the skeletons to
the same structure. The mocap skeleton can be simplified by deleting the extra
joints. Moreover, the Kinect torso is more similar to ab than chest, so we delete
the chest joint. Now the skeletons have the same number of joints, and with the
exception of torso and ab, the joints are conceptually matching each other.

We represent the 3D coordinates of each joint3 as ji = (xi, yi, zi). As the
torso in Kinect and ab in mocap do not match, we calculate the center of the
body as the centroid of the neck and left and right hips in both systems,

c =
1

3
(jneck + jlhip + jrhip) . (4)

For each frame, we define a 15-dimensional feature vector f = [d1 d2 . . . d15]T

whose each element is the Euclidean distance between a specific joint and the

1 http://www.openni.org/ 2 http://www.primesense.com/Nite/ 3 We use the su-

perscripts as in jk and jm to distinguish between Kinect and mocap when necessary.
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Fig. 3: The skeleton joints from Kinect (left) and motion capture (right)

centroid,
di = ‖ji − c‖ , 1 ≤ i ≤ 15 . (5)

Due to the varying size of actors, the distances can be different even for the same
gesture. Therefore, the feature vector is normalized with the L1 norm

f̄ =
f

‖f‖1
. (6)

The elements of the cost matrix are then calculated as c(n,m) = ‖f̄n − f̄m‖.
It should be noted that the selection of used features in our method is not

restricted. Alternatively, we could have used e.g. the higher-dimensional pairwise
distances between the joints as in [11].

3.2 Alignment of the Skeleton Sequences

The frame rate of Kinect is 30 fps, but in practice some frames are missed during
the recording and without time stamps it is difficult to know which ones these
are. The mocap frame rate is very accurately 100 fps. Since the start and stop of
the recording are controlled manually, the recordings of mocap and Kinect are
not aligned either at the beginning or at the end. Therefore, we use SS-DTW to
find the corresponding frames between the Kinect and mocap skeletons.

In the optimal warping path of the basic DTW, the step condition ensures
that each element in both sequences has a match. However, the frame rate of
motion capture is more than thrice that of Kinect, that is, between the consec-
utive Kinect frames there are at least three frames from mocap. Thus we have
to modify the step size of DTW to fulfill our requirements. Let us assume that
the Kinect frame fk

i matches with the mocap frame fm
j (see Fig. 4). Theoreti-

cally, the next matching mocap frame lies between the 3rd and 4th frames. We
therefore try to match the mocap frames fm

j+3 to fm
j+5 to the Kinect frame fk

i+1.
In addition, some frames are missing in the Kinect recording, so the next frame
in the Kinect sequence might actually be the second or even the third frame, so
we extend the possible matches to the frames fm

j+6 to fm
j+11. Thus, in the step

condition of DTW, the next possible matching ranges from the 3rd to the 11th
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Fig. 4: The matching pattern between Kinect and motion capture skeleton

frame in the mocap sequence. The accumulated cost matrix of SS-DTW with
the new step condition can be calculated by replacing Eq. (2d) with

D(n,m) = min
3≤i≤11

(D(n− 1,m− i)) + C(n,m) . (7)

4 Evaluation Methods

4.1 Visual Observation

After aligning the skeletons, it is useful to be able to observe the alignment. We
wrote a simple visualization software that is able to play the skeletons in the
same framework. It can be set to different frame rates to play the skeletons and
to show the related information with each frame.

4.2 Minimum Overall Distance between Feature Vectors

We also evaluate the skeleton alignment quantitatively. With DTW, the align-
ment is obtained by finding the minimum value of the accumulated cost matrix,
which can also be used as a criterion to evaluate the alignment. For SS-DTW,
this value is accessible during the calculation of the accumulated cost matrix

Edist = min
m

(D(N,m)) , m = 1, . . . ,M . (8)

Even if the aligned sequences were not obtained by DTW, they can still be
evaluated by the same criterion. The procedure is as follows:

1. Calculate the features of each frame in the Kinect sequences (Eqs. 4–6).
2. Simplify the mocap sequence to the same skeleton structure as Kinect.
3. Calculate the features of each frame in the simplified mocap sequences.
4. Calculate the Euclidean distance of the feature vectors between each corre-

sponding frames, and sum up all the distances in the sequence

Edist =

N∑
i=1

‖fki − fmi ‖ . (9)
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Fig. 5: Matched skeletons in different coordinate systems

4.3 Skeleton Transformation

As the above evaluation method uses the same criterion as obtaining the align-
ment we develop another evaluation method that uses a different criterion. In
this method, we try to overlap the two skeletons and calculate the distances be-
tween the corresponding joints. During data recording, the coordinate systems
of mocap and Kinect are not aligned and so the skeletons are in different coor-
dinate systems. First, we normalize the scales of the skeletons by dividing the
coordinates of each joint by the total distance of the connected bones. In Fig. 5a,
the matched skeletons are drawn with their normalized coordinates.

Next, the two coordinate systems should be aligned. The Kinect skeleton is
not very accurate especially for hands and feet, so the transformation can be
largely influenced by outliers within these joints. The joints of the main body
are, however, relative stable, so the skeletons can be transformed based on the
body joints. We use the neck and hips from the two skeletons for aligning so the
sum of the distances between these corresponding joints is minimized,

E(R, t) =
∑

i∈{neck ,lhip,rhip}

(‖j̄mi − (Rj̄ki + t)‖) , (10)

where R is a rotation matrix and t a translation vector for the Kinect skele-
ton. Eq. (10) can be minimized by the Horn’s method [3]. We compute R and
t for each frame and then transform the joints of the Kinect skeleton to the
new coordinates. Fig. 5b shows an example Kinect skeleton aligned to a mocap
skeleton. The evaluation measure is the sum of all Euclidean distances between
the corresponding joints in each frame of the sequences,

Etrans =

N∑
j=1

15∑
i=1

‖j̄mi,j − (Rj j̄
k
i,j + tj)‖ . (11)
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Fig. 6: Skeletons aligned with different methods

5 Experiments

During data acquisition, we recorded six RGB-D videos and the corresponding
mocap data of human actors. The videos are named according to their main type
of motion as jump, sit, stand & walk, turn, walk and wave hand. We aligned the
skeletons with SS-DTW and with the following three comparison methods:

Direct sampling. The direct sampling method samples the mocap skeleton
data with the sample rate of M

N , where M and N are the total numbers of frames
in the corresponding mocap and Kinect sequences. The sampled mocap skeleton
thus has the same number of frames as Kinect, and we assume implicitly that
the recordings have been started and stopped simultaneously.

Sampling with DTW start and end. In this method, we use the start
and end points detected by the SS-DTW for sampling the mocap sequence. The
sample rate of the mocap data is thus E−S

N , where E and S are the frame indices
of the SS-DTW end and start points.

Normalized cross-correlation. Theoretically, we can match the sequences
by sampling the mocap data with the sample rate of 10

3 . We start by aligning
the start points of the Kinect and mocap sequences, and calculate the sum
of normalized cross-correlation between the aligned feature vectors. We then
slide the Kinect sequence by one frame, calculate again the sum of normalized
cross-correlation, and repeat this until the ends of the two sequences align. The
maximum value then corresponds to the best alignment between the sequences.

The aligned skeletons can be first observed visually. Fig. 6 shows some frames
from the sit sequence aligned with these four methods. We can see that the
SS-DTW alignment is visually very close to the Kinect sequence. The skeletons
from direct sampling and sampling with DTW start and end are very similar,
which means that the start and end found by DTW are close to the beginning
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Fig. 7: The distances Edist (left) and Etrans (right) for each recording

and end of the original recording. However, some frames are not matching well
with Kinect (marked by ellipses). Correlation gives many ill-matching skeletons
(marked by a rectangle), as the missing frames in Kinect make it hard to find a
long well-matching subsequence from mocap.

The aligned sequences are also evaluated by measuring the minimum overall
distance between the feature vectors, Edist (Sec. 4.2) and the skeleton trans-
formation, Etrans (Sec. 4.3). The results are shown in Fig. 7. Accoding to both
measures, for each recording the distances between Kinect and the SS-DTW
alignment are smaller than with the other methods. Sampling with DTW start
and end points has notably lower performance than DTW, which shows that the
missing frames make the alignment nonlinear. Some distances from the cross-
correlation method are very high, partly due to it also ignoring the missing
Kinect frames. When the number of mocap frames is fixed, the matching time
with DTW is almost linear to the number of frames in the Kinect sequence.
With our Matlab implementation using Intel i5 CPU at 3.3 GHz, aligning a
one-minute Kinect sequence with two minutes of mocap takes about 50 seconds.

6 Conclusion and Future Work

In this paper, we align skeleton sequences from Kinect and a motion capture sys-
tem by feature extraction and subsequence dynamic time warping. The aligned
sequences show a good visual alignment. We also propose two quantitative meth-
ods to numerically evaluate the alignment: the minimum overall distance between
feature vectors and the distances of transformed skeletons. Both evaluation meth-
ods show that subsequence dynamic time warping is better than comparison
methods based on sampling and cross-correlation.

The proposed technique to align the sequences can also be used for content-
based retrieval of similar motions from large motion capture databases. Instead
of textual or faceted search or requiring the user to have existing motion capture
data for similarity search, the user can produce RGB-D motion sequences on-line
and then retrieve similar motion sequences from the database, in order to be able
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to reuse the expensive motion capture data. The proposed evaluation methods
can also be used for evaluating the accuracy of different RGB-D skeletons.

In the future, we will build a complete system for content-based retrieval
from a motion capture database by Kinect skeletons with easy access and low
computation requirements. Additionally, we continue to work on our alignment
method to take the confidence values of the Kinect joints into account so that
the low confidence joints will not negatively influence the alignment.
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