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Key-Alternating lterative Cipher

We consider iterative block ciphers

» operating on n-bit messages
» using a master key K
with round function F using subkeys K;

v

y = EK(X) = FK, o FKr—1 0+++0 FK1 (X b Ko),
with Fi.(x) = F(x @ Kj)

Xl F el F T F 9l F ey

Ko Ki Kr_» Kr_1 K,
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Differential Cryptanalysis [Biham Shamir 90]

Difference between plaintext and ciphertext pairs
Input difference : a
X X Output difference : b
Differential probability :
pr(K) = Pla—b]
= Px[ EK(X) D EK(X SV, a) = b]

Ex Ex Expected differential probability :
pr = Expklpr(K)]
= Pxkl|Exk(x)® Ex(x@ a) =Db]
Uniform probability :
y y

pw=2"

Aalto University Complexity of Statistical Attacks
A School of Science

a4



Truncated Differential Attacks [Knudsen 94]

» Set of input differences : a€ A
» Set of output differences : b€ B

>

P[A%B]:LZZP[a%b]

acAbeB

18]

» Uniform probability : pyy = o

Exercise :
» Why averaging over the input differences
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Linear Attacks
Linear relation involving plaintext, key and ciphertext bits

X

Input mask : u
(Key mask : k)
Output mask : v

Bias :
e(K)=2""#{xeFJu- x(®&r-K)dV-y = 0}—%
Correlation :
corx(u, v)(K) = 2¢(K)
Expected correlation :

corx k(u, v)(K) = Expy g [corx(u, v)(K)]
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Key-Recovery Attacks

School of Science

Aalto University Complexity of Statistical Attacks
7m



Last Rounds Linear Attack (Matsui’s Algorithm 2)

» A linear approximation with masks (v, v) on r rounds
» Partially decrypt the last rounds to find information on the

key

X — FK O--~OFK1 —»Zk—> FKr+14> y

r

—1
Fi

There are 2" last round key candidates
Initialize a counter for each key candidate : T (k)
Increment T(k)ifu-x®v-z=0
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Last Rounds Differential Attack

» A differential (a, b) on r rounds

» Partially decrypt the last rounds to find information on the
key

X — FK,O---OFK1—>Zk—>FKr+1—>y

a Ib

X =x®oa — FK O-~'OFK1 —»ZI/(—» FK

r

There are 2" last round key candidates.
Initialize a counter for each key candidate : T (k)
Increment T(k) if zx &z = b
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Analyzing Phase
» Sort the 2" key counters T (k) according to their value
» kg : the good one

» The key candidate corresponding to the good one kg is
among the first ones

» Build the list L of the #L most likely candidates and try all
corresponding master keys (exhaustive search phase)

Data complexity : Number of used plaintexts (denoted by N)

Success probability : Probability that the good key candidate kg
is in the list (denoted by Ps)
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The Last-Round Trick

» Wrong Key Assumption in the differential context If on the
last round a wrong key candidate is used to decrypt the
ciphertext then the differences with a fixed plaintext
difference are uniformly distributed

» Wrong Key Assumption in the linear context If on the last
round a wrong key candidate is used to decrypt the
ciphertext then the linear approximation is equal to zero for
“half” of the plaintext/ciphertext pairs
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Statistical Tests
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Hypothesis Testing

» The attacker performs a guess on a subkey K of the cipher
and wishes to know whether this guess is correct or not

» There are two possibilities :

» Hpg : kis the correct guess (the right key is denoted by kg)
» Hy : kis not the correct guess (a wrong key is denoted by
kw)

The attacker has a certain way of distinguishing the right
subkey and a certain amount of plaintext/ciphertext pairs
from which he is able to calculate N binary values Xi, Xo, .

, Xy which are independent and identically distributed
and satisfy

pr=P(Xi=1|Hg), pw = P(X;=1|Hy)
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Hypothesis Testing

» From the samples Xi, X5, . . ., Xy the attacker either
decides that Hg holds or that H,y is true. Two kind of errors
are possible :

» Non-detection : Occurs if one decides that k is a wrong
subkey when Hg holds
» We denote by « the non-detection error probability

» False alarm : Occurs if one decides that k is the right
subkey when Hy holds
» We denote by  the false alarm error probability

» In the literature « and 5 are sometimes denoted by « and
(¥

School of Science
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Relation between Terminologies

» To which quantities relate the non-detection and the
false-alarm error probability?
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Relation between Terminologies

» To which quantities relate the non-detection and the
false-alarm error probability?

» a=1-Pg

w1 #t

P =T R
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Relation between Terminologies

» To which quantities relate the non-detection and the
false-alarm error probability?

» a=1- P

_xb-1 #t

g i el T

» Advantage a : number of key bits “won” in an attack

2=
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Sample

» A sample is a set of collected data necessary to measure
the involved quantity

» What is a sample in the classical linear context? in the
classical differential context?

School of Science
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Sample

» A sample is a set of collected data necessary to measure
the involved quantity

» What is a sample in the classical linear context? in the
classical differential context?

» For example in a last round key-recovery attack
» Linear S = {x, zx}

» Differential S = {(x, x), (zx, z;)}
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The Notion of Structure

» Given the 3 input differences ay, a», a1 @ a», how many
pairs can we form with 4 chosen messages?
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The Notion of Structure

>

Given the 3 input differences ay, a», a; @ a», how many
pairs can we form with 4 chosen messages?

6 pairs
A structure : a set of messages
(X, X @ ar,Xda,xda ®a)

The number of messages depends on the number of
structures, and on the partially encrypted rounds (at the
beginning)

In some cases, | will denote by Ns the number of available
samples (number of pairs which can be formed using N
plaintexts)

For the statistical model the notation N corresponds to the
number of samples

School of Science
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Scoring Function

» T (k) : Scoring function (depends on the data)

» This value is obtained by the analysis of the different
samples

» To know the number of plaintexts necessary to the attack,
we have to simulate the behavior of this function

» We usually model it using some random variable which
follows some well known statistical distribution

» T (k) : random variable associated to T (k)
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How to Determine the Right Key

Two approaches which lead to similar results :
» We fix the size #L of the list L of kept key candidates
kel k' ¢ L= T(k)> T(K)
Use order statistic tools : [Selcuk 08]
» We fix the threshold © and we keep all keys k with counter

T(k)>©
L= {k, T(k)> 0O}

a = Pr(Tg<9)
B = Pr(Tw > ©)

Aalto University Complexity of Statistical Attacks
A School of Science

1971



Outline

Some Distributions
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Bernoulli Distribution

» If 7 is a random variable with Bernoulli distribution, we
have:
P(T=1)=1-Pr(T=0)=p

» The probability mass function (pmf or pdf) of this
distribution is

(o) = p if the condition is fulfilled,
P)= 1 — p if the condition is not fullfilled

» Equivalently forj=0o0r1 f(p,j)=p (1 -p)'~/
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Binomial Distribution

» A sum of Bernoulli random variables follows a Binomial
distribution 7 ~ B(N, p)

v

The pmf of this distribution is

f(N.p.j) = PIT =] = (’j\.’)du N

» The cumulative distribution function (cdf) is
/NN . .
Fp.) =PI <i1=3 (1)o - P
j=0

v

Mean : Exp[T] = Np
Variance : Var[T] = Np(1 — p)

v

Aalto University Complexity of Statistical Attacks
A School of Science

2271



Poisson Distribution

» T ~ P(A) if the pmf of T is
Ne™*
J!
» Mean: Exp(T) =X \Variance: Var(T) =\

FA)) =PHT =)) =

» Can be applied when we have a large number of events
which are rare

» The binomial distribution converges towards the Poisson
distribution as the number of trials goes to infinity while the
product Np remains fixed, in this case A = Np

Complexity of Statistical Attacks
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Normal Distribution

» T ~ N(N, p) if the probability density function (pdf) of T is

1 _ =P
f(u, 0%, x) = e 2

ovV2n
with 1« = Exp(7) and ¢ = Var(T)

» The binomial distribution is approximated by a normal
distribution for any fixed p (even if p is small) as N is taken
to infinity (usually when the product Np is large)

» In this case ;1 = Np and ¢ = Np(1 — p)
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Binomial PMF and Approximations

N = 1000 and p = 0.003 (Np = 3)

0.246816

Binomial 4+
Normal
0.222135 Poisson []
0.197453 b
0.172772 B
0.14809 b
=
2 0.123408 4
@
°
0.0987266 B
0.0740449 R
0.04936335 B
0.0246816 i
0 R ™ ST S Sy = s s
0 5 10 15 20
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Binomial PMF and Approximations

0.138314

N = 1000 and p = 0.01 (Np = 10)

0.124483

0.110651

0.09682

0.0829885

0.0691571

density

0.0553257

0.0414943

0.0276628

0.0138314

)

3

Binomial
Normal
Poisson

+
O

0H

A
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Binomial PMF and Approximations

N =1000 and p = 0.1 (Np = 100)

T
Binomial ——
Normal ——
Poisson ——

0.0462185

0.0415966

0.0369748 - B

0.0323529

0.0277311 | b

0.0231092

density

0.0184874 - B

0.0138655

0.00924369 B

0.00462185

0 I I I I I I I I I
0 20 40 60 80 100 120 140 160 180
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Binomial PMF and Approximations

N = 1000 and p = 0.1 (Zoom)

0.05
Binomial —+—
Normal
Poisson
0.045 - B

0.04

0.035 -

density

0.03

0.025

0.02 L L L
90 95 100 105 110
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Binomial PMF and Approximations

N = 1000 and p = 0.5 (Np = 500)

T
Binomial

Normal
Poisson 4

0.0277475

0.0249728

0.022198 - b

0.0194233 4

0.0166485 - b

0.0138738 4

density

0.011099 - b

0.00832426 4

0.0055495 b

0.00277475 |- i

0
200 300 400 500 600 700 800
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Binomial PMF and Approximations

N =1000 and p = 0.5 (Zoom)
Binomial —|—

Normal
Poisson 4
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Binomial PMF and Approximations

0.138314

N = 1000 and p = 0.01 (Np = 10)

0.124483

0.110651

0.09682

0.0829885

0.0691571

density

0.0553257

0.0414943

0.0276628

0.0138314

)

3

Binomial
Normal
Poisson

+
O

0H

A
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Binomial PMF and Approximations

N = 1000 and p = 0.01 (Zoom around mean)
Binomial —j—

0.14 T T T
Normal
Poisson

0.126

0.112 -

density

0.098

0.084 -

0.07
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Binomial PMF and Approximations

N =1000 and p = 0.01 (Zoom tail)
sx10” Binomial ‘—'—

Normal
45x107 | Poisson 4

ax107 | R
3.5x107 E
3x107 | R

25x107 E

density

2x107 | R
1.5x107 |- E
1x107 R

5x10°® P 1
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The CDF’s

e R R e =B o= = e = M = = = = M = = S = R = = =
oo oo O O O oo o5 OO b oo o o o g

0.1 | Binomial 4+

Normal

o ) ) Poisson  [-]

0 5 10 15 20
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Convergence of the Binomial Distribution (Crypto)

» The binomial distribution is “hard” to manipulate
» Classically approximations are used

» In the linear context, the use of the normal distribution is
relatively accurate

» |In the differential case, we can sometimes use the Poisson
distribution

» Exercise : Convergence of a Binomial distribution to a
Poisson distribution

Aalto University Complexity of Statistical Attacks
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Kullback Divergence (1)

» Binomial tail :

M e

P[T<0©]=

3 <':I> pl(1—p)N

» Relative threshold : 7 = ©/N
» Kullback-Leibler divergence :

p 1-p
Kull =pn({=]+(1-=p)In ()
(pllg)=p (q> (1=p)in{ 1,
» Theorem :

_PVI—T SNkl lp)

PIT <N N o0 (p—T71)VerNT

School of Science
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Kullback Divergence (2)

» Exercise :

1 —N- T
P(T =N ~ 27N(1 —7)7 e~ ltrle)

Aalto Umverslty Complexity of Statistical Attacks
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Kullback Divergence (3)

N =1000 and p

0.01 (Np = 10)

0.138314

0.124483

0.110651 |

0.09682

0.0829885

0.0691571

density

0.0553257

0.0414943

0.0276628

0.0138314
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Kullback
Poisson

+

0F
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A
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Kullback Divergence (3)
N = 1000 and p = 0.01 (Zoom around mean)

0.14

Binomial  +
Kullback
Poisson
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0.112 -

density

0.098

0.084 -

0.07

Complexity of Statistical Attacks

Aalto University
School of Science 3071



Kullback Divergence (3)

N =1000 and p = 0.01 (Zoom tail)
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Kullback Divergence (3)
N =1000 and p = 0.01

6x10® 7
Binomial 4
il Kullback
5.4x10°8 Poisson []
a8x1 - b

4.2x10°®
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density
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Normal Distribution Facts

» If X follows a normal distribution A/(;, o2), then X —
g
follows a normal distribution (0, 1)

» Central limit theorem : Suppose Xi, Xo,--- , X is a
sequence of i.i.d. random variables with E[X;] = ¢ and
Var[Xj] = o?

Let S, — X4 +X2—ri-n'”+Xm

As m approaches infinity, the random variable /m(Sy, — u)
converges in distribution (the cdfs converge) to a normal
N(0,02)

Complexity of Statistical Attacks
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Attack Models

Which information is collected?

» known ciphertexts
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Attack Models

Which information is collected?

» known ciphertexts

> ...

v

known plaintexts (implicitly plaintext-ciphertext pairs)

v

chosen plaintexts
chosen plaintexts/ciphertexts

v
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Attack Models

Which information is collected?

» known ciphertexts

> ...

v

known plaintexts (implicitly plaintext-ciphertext pairs)
distinct known plaintexts

chosen plaintexts

chosen plaintexts/ciphertexts

v

v

v
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Attack Models

Which information is collected?

v

known ciphertexts

v

known plaintexts (KP)

distinct known plaintexts (DKP)
chosen plaintexts (CP)

chosen plaintexts/ciphertexts

v

v

v

School of Science
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Success Probability and Data Complexity
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The Setting (in the Normal Distribution Case)
» Two random variables 7y and Tg such that

TW ~ N(Mw,asv) and TR ~ N(MR,O’ZH),

where N is the normal distribution with mean pyy (or ©g)
and variance %, (or 0%)

» The scoring value T computed from a sample drawn from
either the distribution of 7y, or the one of 75

» The task is to decide which one of the two

» In some cases, we will identify the scoring value with its
associated random variable

Aalto University Complexity of Statistical Attacks
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Success of the Attack (in the Normal Distribution
Case) (1)

» Threshold value 6 :

» T < © = T isdrawn from the distribution of Ty
» T > 6 = T is drawn from the distribution of Tg

Assume first pyw < pg
» We set bounds on the error probabilities

P[T>0|T=Ty]<pandP[T<O|T=Tg]<a,
which are satisfied if
pw +ow® (1 —B8) <O <pg—opd (1 - a),

where @ is the cumulative distribution function of the
standard normal distribution

School of Science
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lHlustration

“w KR

density
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lllustration

“w KR

density

Aalto University Complexity of Statistical Attacks
School of Science
36/71



Success of the Attack (2)

» The case ug < pw (red and blue curves) is analogical

density

LR

)

fw

Complexity of Statistical Attacks
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An Algorithm for Finding N and 7 (1)

Some properties :

» For a fixed relative threshold =~ = ©/N, error probabilities
decrease when N increases.

» For a fixed N, non-detection error increases with 7.

» For a fixed N, false alarm error decreases when 7
increases.

Idea
Dichotomic search for .

Aalto University Complexity of Statistical Attacks
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An Algorithm for finding N and 7 (2)

InPUt : (aaﬁ) and (pHapW)
Output : N and 7 the minimum number of samples and the
corresponding relative threshold to reach error probabilities less

than (o, B).

Tm  pw and 7y < Pg.

repeat
T+
Compute N,q such that YN > Nyg, P(Tg < N7)< a.
Compute Ny, such that YN > Ny, P(Tw > N7)< 8.
if N\g > N then 7y =relse 7, =1

until Ny = Nj.

return N and 7.

Tm+ ™™

School of Science
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The Linear Context
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Linear Attack

v

One linear approximation: (u, v)

v

Empirical correlation: cor(D, k)

v

The distribution of cor(D, k) depends on the data D and on
the key candidate k

» c: Absolute value of the expected correlation for the right
key
Expp k[cor(D, kg)] = +c
» KP model

Aalto University Complexity of Statistical Attacks
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Randomization Hypothesis

» Wrong-key randomization hypothesis: If the key candidate
is wrong then cor(D, k) follows a normal distribution with
parameters

Expp k[cor(D, kw)] = 0and
1

Varp k[cor(D, kw)] =

2|

» Hypothesis of right-key equivalence: For all kg, cor(D, kg)
follows a normal distribution with parameters
Exppk (cor(D,kg)) = =c,
" 1 5 1
Varpk (cor(D, k)) = {(1-c) =g

» Since ExpD,K[cbr(D, kg)] = £c we have § = o—(at+1)

School of Science
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Error Probabilities

MR = —C

density

Complexity of Statistical Attacks
437
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Data Complexity of a Matsui Algorithm-2 Attack (1)

» We use the formula

op- & '(1—a)=|ug—pw| —ow -2 '(1 - B)

| 4 /B = 2_(a+1)

» Data complexity: [Matsui] [Selcuk 08]

N> (ps + /(1 ;CZ)-%)2
C

i

where o3 =@ '(1 — ) and o, = o7 '(1 — a)

Aalto University Complexity of Statistical Attacks
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Adjusting the Wrong-Key Randomization
Hypothesis

» [Bogdanov and Tischhauser 13] If the key candidate is
wrong then cor(D, ky) follows normal distribution with
parameters

Expp k[cor(D, kw)] = 0 and
VaI’D,K[CAOI’(D, kw)] = 1/N 42N

» |dea
» For a fixed key ky, the empirical correlation varies with the
data sample meaning that Varp[cor(D, kw)] = 1/N

» The empirical correlation varies also with the key ky
[Daemen Rijmen 07]

Complexity of Statistical Attacks
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Adjusting the Right-Key Randomization
Hypothesis

» Assuming independent round key and linear approximation
with a single dominant trail

» ELP: the expected linear potential ELP = Expg[cor(k)?]

» Hypothesis of right-key equivalence: In the context of a
linear key-recovery attack of a long-key iterated cipher
described in this section, the empirical correlation
cor(D, kg) computed from KP sample is approximately
normally distributed with parameters

Expp k[cor(D, kg)] = £¢ and
Varp k[cor(D, kg)] = 1N +ELP - ¢

Aalto University Complexity of Statistical Attacks
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Data Complexity of a Matsui Algorithm-2 Attack (2)
» In practice, it is difficult to compute ELP exactly, and
therefore it has often been estimated by ¢

» We can show that ELP — ¢2 > 2"

» By taking ELP = ¢? + 2~" we obtain the following
complexity bound

(905 + 9004)2
€2 — 275 + @a)?

N>

» Other settings: Work in progress [Nyberg Dagstuhl 16]

Complexity of Statistical Attacks
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More Distributions
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v? distribution
» If Xq,---, Xy are independent standard normal random
variables X; ~ N (0, 1), then the sum of their squares,

V4
Q=> X7,
i=1

is distributed according to the chi-squared distribution with
¢ degrees of freedom
Q~ x2

» The probability density function (pdf) of the chi-squared
distribution is

x(£/2—1)g—£/2

e " x>0
fx; )= 27°1(3)

0, otherwise

where I'(-) denotes the Gamma function

Complexity of Statistical Attacks
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Non-Central 2

» Let (X1, Xo,..., X, ..., Xy) be £ independent normally
distributed random variables X; ~ A/ (u;, 1)

» Then the random variable Zf:1 X? is distributed according
to the non-central chi-squared distribution with parameters
¢ specifying the number of degrees of freedom and
A = >, 42 the mean of the means

» )\ is sometimes called the non-centrality parameter

Complexity of Statistical Attacks
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Gamma Distribution

» Gamma function:
» for an integer value n, I'(n) = (n—1)!
» forarealvalue t > 0, I(t) = [;~ x'~"e ¥ dx
» F(1/2) =7

v

pdf of X ~ I'(p, 0):

)= Fper
> Exp[X] = pf
» Var[X] = pb?
» If X ~ x2(¢),and ¢ > 0then cX ~ T(p = £/2,6 = 2¢)

Aalto University Complexity of Statistical Attacks
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Gamma Distribution

F(p,0)

0.5 T
rho = 1.0, theta=2.0 ——
rho = 2.0, thet: 0 ——
rho = 3.0, thet: 0 —
rho = 5.0, thet: 0
rho = 9.0, thet: .5 —
04 rho = 7.5, thet: 00—
: rho=0.5, theta=1.0 ——
03 B
=
@
2
5]
o°
0.2 B
041 | ]
\: ‘
0.0 &
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A
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Gamma Distribution

F(p,0)

o1 F tho = 10.0, theta = 2.0 —+— |
Normal
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Gamma Distribution

F(p,0)

tho = 100.0, theta = 2.0 ——
Normal
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Gamma Distribution

F(p,0)

tho = 1000.0, theta = 2.0 ——
Normal
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Hypergeometric Distribution

» Probability of i successes in N draws, without replacement,
from a finite population of size 2" that contains exactly p2”
successes, wherein each draw is either a success or a
failure

» X ~ H(p2",2" N)

» pmf:

() ()

f(l) = on
(W)
2N - N
> Exp[X]=Np  Var(X) = Np(1—-p)5,—
2n _ N
> B=%
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lHlustration

» N=1000,p=0.5
» Exp[X] = 500 both in the Binomial and Hypergeometric

case

» 27 = 2000, 1100, 1024

density

017

0.15 -

0.14 |-

0.02 |

Binomial

Hypergeometric 2000
Hypergeometric 1100

Hypergeometric 1024 ——

0.00
400

450 500 550

600
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Distinct Plaintexts Attacks

v

When performing the attack, we have to make sure that the
plaintexts are not repeated

v

Appear first for ZC attacks [Bogdanov et al 12]

KP attacks <+ binomial distribution B = 1

v

20— N
21 —1

v

DKP attacks <> hypergeometric distribution B =

v

Variance: Var(X) = Np(1 — p)B
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Outline

Multiple/Multidimensional Linear Attacks (x? test)
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Multiple/Multidimensional Linear Attacks

» Set of masks (u,v) € U x V\ {0,0}

» Capacity : C= > 3" cor(u,v)

uelU veV

» Two approaches

» Multiple linear attacks [Kaliski and Robshaw 01] [Biryukov
et al 04]
» Multidimensional linear attacks[Hermelin et al 08]

» Two types of tests:

» ° statistical test
» [ [ R statistical test

Aalto University Complexity of Statistical Attacks
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Zero-Correlation (ZC) Linear Cryptanalysis

[Bogdanov et al 12, 13,14], [Soleimany, Nyberg 13]

The distinguisher takes advantage of linear approximation(s)
with no bias

» Single approximation (u, v) with cor(u, v) = 0 for all keys

» Multiple approximations:

C= Y cor’(u,v)=0,

uel,veV

» multiple ZC: U and V without structure
» multidimensional ZC: U and V linear (affine) spaces
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Multidimensional Linear Attack

» We have 3 output masks (v||01, v||10, v||11) which form a
linear space if we include the trivial mask 0

» Instead of measuring the empirical correlations
cor(u, v||01), cor(u, v|[10), cor(u, v||11)

» we can store (assuming that u - x is fixed to 0 for all
plaintexts x) the frequency of the two output bits
J #||00  «||01 «||10 x||11
V[jj 10 8 7 12

Exercise:
Compute the corresponding correlations

» The second approach is preferred in the multidimensional
case
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The Scoring Function
» / linear approximations with empirical correlation cor;

» Scoring function:

¢
T=NYcor:
i—1

» In multidimensional linear attacks T is equivalent (Walsh
Transform) to:

N/(€+1))2
(L+1) ’

¢ .
o~ (VI -
j=0 N/
where V[j] corresponds to the number of occurrences of
the j-th element of the multidimensional distribution
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Capacity for a Fixed Key

» Explanation for the multidimensional linear case

» Let [pj]j=o,.. ¢ be a probability distribution with p;
representing the probability of a check in the j-th box

pj=2"{x e F3|f(x) =]},
for a given function f

» The capacity is defined by

Complexity of Statistical Attacks
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Distribution of T(D)
» The distribution of V[j] is approximated by a normal
distribution with parameters
Expp(V[1) = Np
. N
Varp(V[j]) = B-Npi(1-pj)~B- 71

(VI - Ng)? (VI = Nt )P
T= /Z: £+1 Z Varp(V[j])

» B~'T(D) follows a non-central X2 distribution with ¢
degrees of freedom and non-centrality parameter B~'NC
| 2
Expp[B~'T(D)] = ¢+ B 'NCand
Varp[B~'T(D)] = 2¢+4B~'NC

Aalto University Complexity of Statistical Attacks
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Expected Capacity for the Wrong Keys (1)

» The capacity varies with the key

» For a given linear approximation, the expected correlation
in the uniform case is Expp g[cori(D, K)] = 0

» Up to recently, it was assumed that for ¢ linear
approximations the expected capacity

Expp x[C(D, K)] = Z Expp k[cor? (D, K)]

is equalto 0

» However this is not true
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Expected Capacity for the Wrong Keys (2)

» (Wrong-Key Hypothesis - Multiple) The correlations
cori(K),i=1,...,¢ over the wrong keys K are i.i.d. and

cori(K) ~ N (0,277)
» 2"Cyy(K) follows a x? distribution with ¢ degree of freedom
> Cw(K)~T (§,2"=m)
» The mean and the variance are :
Expk[Cw(K)] = 277¢

Var[Cu(K)] = SExpelCu(K)P = 2'-2"

School of Science
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Combined Mean and Variance

» Combined mean and variance

Exppk[T(D,K)] = Expx[Expo[T(D,K)]],
Varpk[T(D,K)] = Expk[Varp|[T(D, K)]] + Vark[Expp[T (D, K)]]

» For the wrong keys,

Exppk [Tw(D; K)]
Varpk [Tw(D, K)]

%

B¢ + NCy and

Q

% (Bl 4+ NCy)?

> with Cyy = 2-"¢

n_
2 Nz1—ﬁorB:1

>andB:2n_1 o
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The Right Key Case

» Assuming the right-key randomization hypothesis we have
Exppx [TR(D,K)] = B¢+ NCpgand
Varp [Ta(D.K)] = 2 (BL+ NCa)?.

2" - N N
on 1 ~1—§or8_1

with B =
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Experiments Distinct / Non-Distinct Plaintexts

105 +
Q
x
=
3
X
a
>
n
<
o)
o

10 +

9.5

8.5

(1 -N/2")+ NC ——
Exp. distinct ~ +
{4+ NC
Exp. non-distinct ~ +
26

32
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Success Probability of Multiple/Multidimensional
Linear Attacks

» Success probability:

N|Cgr — Cw| — \/2/(Bt + NCy)ps then
2/¢(Bt + NCg) ’

PS =1-ax?d <
N (ICa — Cwl = V/2/UCwis + Crga)) ~ V2(B(¢a + v3)

» Data complexity for a KP attack (B = 1):

ynon—distinct \/ﬂ(% + 90,8)
|Cr — Cw| — v2/U(Cws + Crya)
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Outline

LLR Attacks
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LLR Statistical Test

» p = [pw]wew: the expected probability distribution vector
6: the uniform one
g(k): the observed one for a key candidate k

» The Neyman-Pearson lemma gives the optimal form of the
acceptance region on which is derived the LLR method.
The optimality requires that both p and 6 distributions are
known (or at least the values py, /6w).

» For a given number of sample N, the optimal statistical test
consists in comparing the following statistic to a fixed
threshold

LLR(q(k =N qulk log

weW
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Remarks on the LLR Statistical Test

» For this test “to work” we should have a good estimate of
the involved probabilities (correlations)

» In practice this is really complicated to estimate the
expected probabilities (correlations):
» From the linear trails we only obtain a underestimate of the
correlations

» A given key probability differs from the expected one this
test can fail

Exercise: Example of LLR test
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