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Céline Blondeau
Aalto University

March 2016

Spring School on Symmetric Cryptography, Bochum, Germany



Complexity of Statistical Attacks

2/71

Outline

Introduction

Key-Recovery Attacks

Statistical Tests

Some Distributions

Success Probability and Data Complexity

The Linear Context

More Distributions

Multiple/Multidimensional Linear Attacks (χ2 test)

LLR Attacks



Complexity of Statistical Attacks

3/71

Key-Alternating Iterative Cipher

We consider iterative block ciphers

I operating on n-bit messages
I using a master key K
I with round function F using subkeys Ki

I

y = EK (x) = FKr ◦ FKr−1 ◦ · · · ◦ FK1(x ⊕ K0),

with FKi (x) = F (x ⊕ Ki)
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Differential Cryptanalysis [Biham Shamir 90]

Difference between plaintext and ciphertext pairs

--

--

EKEK

x ′x

y ′y

6?

6?

a

b

Input difference : a
Output difference : b

Differential probability :
pR(K ) = P[a→ b]

= PX[ EK (x)⊕ EK (x ⊕ a) = b ]

Expected differential probability :
pR = ExpK[pR(K )]

= PX,K[ EK (x)⊕ EK (x ⊕ a) = b ]

Uniform probability :
pW = 2−n
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Truncated Differential Attacks [Knudsen 94]

I Set of input differences : a ∈ A

I Set of output differences : b ∈ B

I

P[A→ B] =
1
|A|
∑
a∈A

∑
b∈B

P[a→ b]

I Uniform probability : pW =
|B|
2n

Exercise :
I Why averaging over the input differences
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Linear Attacks
Linear relation involving plaintext, key and ciphertext bits

x

y = EK (x)
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Input mask : u
(Key mask : κ)
Output mask : v

Bias :

ε(K ) = 2−n#{x ∈Fn
2|u · x(⊕κ·K )⊕v · y = 0}−1

2

Correlation :

corX(u, v)(K ) = 2ε(K )

Expected correlation :

corX,K(u, v)(K ) = ExpX,K
[
corX(u, v)(K )

]
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Last Rounds Linear Attack (Matsui’s Algorithm 2)

I A linear approximation with masks (u, v) on r rounds
I Partially decrypt the last rounds to find information on the

key

-x - -zk - yFKr ◦ · · · ◦ FK1
FKr+1

F−1
k

' $
?

There are 2κ last round key candidates

Initialize a counter for each key candidate : T (k)

Increment T (k) if u · x ⊕ v · zk = 0
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Last Rounds Differential Attack
I A differential (a,b) on r rounds
I Partially decrypt the last rounds to find information on the

key

-
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There are 2κ last round key candidates.
Initialize a counter for each key candidate : T (k)
Increment T (k) if zk ⊕ zk ′ = b
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Analyzing Phase

I Sort the 2κ key counters T (k) according to their value

I kR : the good one

I The key candidate corresponding to the good one kR is
among the first ones

I Build the list L of the #L most likely candidates and try all
corresponding master keys (exhaustive search phase)

Data complexity : Number of used plaintexts (denoted by N)

Success probability : Probability that the good key candidate kR
is in the list (denoted by PS)
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The Last-Round Trick

I Wrong Key Assumption in the differential context If on the
last round a wrong key candidate is used to decrypt the
ciphertext then the differences with a fixed plaintext
difference are uniformly distributed

I Wrong Key Assumption in the linear context If on the last
round a wrong key candidate is used to decrypt the
ciphertext then the linear approximation is equal to zero for
“half” of the plaintext/ciphertext pairs
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Hypothesis Testing

I The attacker performs a guess on a subkey K of the cipher
and wishes to know whether this guess is correct or not

I There are two possibilities :
I HR : k is the correct guess (the right key is denoted by kR)
I HW : k is not the correct guess (a wrong key is denoted by

kW )

The attacker has a certain way of distinguishing the right
subkey and a certain amount of plaintext/ciphertext pairs
from which he is able to calculate N binary values X1, X2, .
. . , XN which are independent and identically distributed
and satisfy

pR = P(Xi = 1|HR), pW = P(Xi = 1|HW )
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Hypothesis Testing

I From the samples X1, X2, . . . , XN the attacker either
decides that HR holds or that HW is true. Two kind of errors
are possible :

I Non-detection : Occurs if one decides that k is a wrong
subkey when HR holds

I We denote by α the non-detection error probability

I False alarm : Occurs if one decides that k is the right
subkey when HW holds

I We denote by β the false alarm error probability

I In the literature α and β are sometimes denoted by α0 and
α1
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Relation between Terminologies

I To which quantities relate the non-detection and the
false-alarm error probability?
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Relation between Terminologies

I To which quantities relate the non-detection and the
false-alarm error probability?

I α = 1− Ps

I β =
#L− 1

2κ
≈ #L

2κ
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Relation between Terminologies

I To which quantities relate the non-detection and the
false-alarm error probability?

I α = 1− Ps

I β =
#L− 1

2κ
≈ #L

2κ

I Advantage a : number of key bits “won” in an attack

2−a = β
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Sample

I A sample is a set of collected data necessary to measure
the involved quantity

I What is a sample in the classical linear context? in the
classical differential context?
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Sample

I A sample is a set of collected data necessary to measure
the involved quantity

I What is a sample in the classical linear context? in the
classical differential context?

I For example in a last round key-recovery attack
I Linear S = {x , zk}
I Differential S = {(x , x ′), (zk , z ′k )}
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The Notion of Structure
I Given the 3 input differences a1,a2,a1 ⊕ a2, how many

pairs can we form with 4 chosen messages?

I 6 pairs
I A structure : a set of messages

(x , x ⊕ a1, x ⊕ a2, x ⊕ a1 ⊕ a2)

I The number of messages depends on the number of
structures, and on the partially encrypted rounds (at the
beginning)

I In some cases, I will denote by NS the number of available
samples (number of pairs which can be formed using N
plaintexts)

I For the statistical model the notation N corresponds to the
number of samples
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Scoring Function

I T (k) : Scoring function (depends on the data)

I This value is obtained by the analysis of the different
samples

I To know the number of plaintexts necessary to the attack,
we have to simulate the behavior of this function

I We usually model it using some random variable which
follows some well known statistical distribution

I T (k) : random variable associated to T (k)
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How to Determine the Right Key
Two approaches which lead to similar results :

I We fix the size #L of the list L of kept key candidates

k ∈ L, k ′ /∈ L⇒ T (k) > T (k ′)

Use order statistic tools : [Selçuk 08]

I We fix the threshold Θ and we keep all keys k with counter
T (k) ≥ Θ

L = {k ,T (k) ≥ Θ}

α = Pr(TR < Θ)

β = Pr(TW ≥ Θ)
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Bernoulli Distribution
I If T is a random variable with Bernoulli distribution, we

have:
Pr(T = 1) = 1− Pr(T = 0) = p

I The probability mass function (pmf or pdf) of this
distribution is

f (p) =

{
p if the condition is fulfilled,
1− p if the condition is not fullfilled

I Equivalently for j = 0 or 1 f (p, j) = pj(1− p)1−j
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Binomial Distribution
I A sum of Bernoulli random variables follows a Binomial

distribution T ∼ B(N,p)

I The pmf of this distribution is

f (N,p, j) = P[T = j ] =

(
N
j

)
pj(1− p)N−j

I The cumulative distribution function (cdf) is

F (p, i) = P[T ≤ i ] =
i∑

j=0

(
N
j

)
pj(1− p)N−j

I Mean : Exp[T ] = Np

I Variance : Var [T ] = Np(1− p)
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Poisson Distribution

I T ∼ P(λ) if the pmf of T is

f (λ, j) = Pr(T = j) =
λje−λ

j!

I Mean : Exp(T ) = λ Variance : Var(T ) = λ

I Can be applied when we have a large number of events
which are rare

I The binomial distribution converges towards the Poisson
distribution as the number of trials goes to infinity while the
product Np remains fixed, in this case λ = Np
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Normal Distribution

I T ∼ N (N,p) if the probability density function (pdf) of T is

f (µ, σ2, x) =
1

σ
√

2π
e−

(x−µ)2

2σ2

with µ = Exp(T ) and σ2 = Var(T )

I The binomial distribution is approximated by a normal
distribution for any fixed p (even if p is small) as N is taken
to infinity (usually when the product Np is large)

I In this case µ = Np and σ2 = Np(1− p)
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Binomial PMF and Approximations

N = 1000 and p = 0.003 (Np = 3)
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Binomial PMF and Approximations

N = 1000 and p = 0.01 (Np = 10)
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Binomial PMF and Approximations

N = 1000 and p = 0.1 (Np = 100)
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Binomial PMF and Approximations

N = 1000 and p = 0.1 (Zoom)
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Binomial PMF and Approximations

N = 1000 and p = 0.5 (Np = 500)
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Binomial PMF and Approximations

N = 1000 and p = 0.5 (Zoom)
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Binomial PMF and Approximations

N = 1000 and p = 0.01 (Np = 10)
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Binomial PMF and Approximations

N = 1000 and p = 0.01 (Zoom around mean)
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Binomial PMF and Approximations

N = 1000 and p = 0.01 (Zoom tail)
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The CDF’s

N = 100 and p = 0.01 (Np = 1)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5 10 15 20

Binomial

Normal

Poisson



Complexity of Statistical Attacks

27/71

Convergence of the Binomial Distribution (Crypto)

I The binomial distribution is “hard” to manipulate

I Classically approximations are used

I In the linear context, the use of the normal distribution is
relatively accurate

I In the differential case, we can sometimes use the Poisson
distribution

I Exercise : Convergence of a Binomial distribution to a
Poisson distribution
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Kullback Divergence (1)
I Binomial tail :

P [T ≤ Θ] =
Θ∑

i=0

(
N
i

)
pi(1− p)N−i

I Relative threshold : τ = Θ/N
I Kullback-Leibler divergence :

Kull(p||q) = p ln
(

p
q

)
+ (1− p) ln

(
1− p
1− q

)
.

I Theorem :

P [T ≤ τN] ∼
N→∞

p
√

1− τ
(p − τ)

√
2πNτ

· 2−N·Kull(τ ||p)
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Kullback Divergence (2)

I Exercise :

P(T = bτNc) ≈

√
1

2πN(1− τ)τ
e−N·Kull(τ ||p)
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Kullback Divergence (3)

N = 1000 and p = 0.01 (Np = 10)
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Kullback Divergence (3)

N = 1000 and p = 0.01 (Zoom around mean)
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Kullback Divergence (3)

N = 1000 and p = 0.01 (Zoom tail)
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Kullback Divergence (3)

N = 1000 and p = 0.01
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Normal Distribution Facts

I If X follows a normal distribution N (µ, σ2), then
X − µ
σ2

follows a normal distribution N (0,1)

I Central limit theorem : Suppose X1,X2, · · · ,Xm is a
sequence of i.i.d. random variables with E [Xi ] = µ and
Var [Xi ] = σ2

Let Sm =
X1 + X2 + · · ·+ Xm

m
As m approaches infinity, the random variable

√
m(Sm − µ)

converges in distribution (the cdfs converge) to a normal
N (0, σ2)
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Attack Models

Which information is collected?

I known ciphertexts

I · · ·
I known plaintexts
I

I chosen plaintexts
I chosen plaintexts/ciphertexts
I · · ·
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Attack Models
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I known ciphertexts
I · · ·
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Attack Models

Which information is collected?

I known ciphertexts
I · · ·
I known plaintexts (KP)
I distinct known plaintexts (DKP)
I chosen plaintexts (CP)
I chosen plaintexts/ciphertexts
I · · ·
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The Setting (in the Normal Distribution Case)

I Two random variables TW and TR such that

TW ∼ N (µW , σ
2
W ) and TR ∼ N (µR, σ

2
R),

where N is the normal distribution with mean µW (or µR)
and variance σ2

W (or σ2
R)

I The scoring value T computed from a sample drawn from
either the distribution of TW or the one of TR

I The task is to decide which one of the two

I In some cases, we will identify the scoring value with its
associated random variable
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Success of the Attack (in the Normal Distribution
Case) (1)

I Threshold value Θ :
I T < Θ ⇒ T is drawn from the distribution of TW
I T ≥ Θ ⇒ T is drawn from the distribution of TR

Assume first µW < µR

I We set bounds on the error probabilities

P[ T ≥ Θ | T = TW ] ≤ β and P[ T < Θ | T = TR ] ≤ α,

which are satisfied if

µW + σWΦ
−1(1− β) ≤ Θ ≤ µR − σRΦ

−1(1− α),

where Φ is the cumulative distribution function of the
standard normal distribution
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Illustration

µW µR
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Success of the Attack (2)
I The case µR < µW (red and blue curves) is analogical

µWµR

de
ns

ity

x

Θ

β α
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An Algorithm for Finding N and τ (1)

Some properties :

I For a fixed relative threshold τ = Θ/N, error probabilities
decrease when N increases.

I For a fixed N, non-detection error increases with τ .
I For a fixed N, false alarm error decreases when τ

increases.

Idea
Dichotomic search for τ .
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An Algorithm for finding N and τ (2)

Input : (α, β) and (pR ,pW )
Output : N and τ the minimum number of samples and the
corresponding relative threshold to reach error probabilities less
than (α, β).

τm ← pW and τM ← pR .
repeat

τ ← τm + τM

2
.

Compute Nnd such that ∀N > Nnd, P(TR < Nτ )≤ α.
Compute Nfa such that ∀N > Nfa, P(TW ≥ Nτ )≤ β.
if Nnd > Nfa then τM = τ else τm = τ

until Nnd = Nfa.
return N and τ .
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Linear Attack

I One linear approximation: (u, v)

I Empirical correlation: ˆcor(D, k)

I The distribution of ˆcor(D, k) depends on the data D and on
the key candidate k

I c: Absolute value of the expected correlation for the right
key

ExpD,K[ ˆcor(D, kR)] = ±c

I KP model
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Randomization Hypothesis
I Wrong-key randomization hypothesis: If the key candidate

is wrong then ˆcor(D, kW ) follows a normal distribution with
parameters

ExpD,K[ ˆcor(D, kW )] = 0 and

VarD,K[ ˆcor(D, kW )] =
1
N

I Hypothesis of right-key equivalence: For all kR, ˆcor(D, kR)
follows a normal distribution with parameters

ExpD,K ( ˆcor(D, kR)) = ±c,

VarD,K ( ˆcor(D, kR)) =
1
N

(1− c2) ≈ 1
N

I Since ExpD,K[ ˆcor(D, kR)] = ±c we have β = 2−(a+1)
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Error Probabilities

µW = 0µR = −c µR = c
de

ns
ity

x

Θ−Θ
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Data Complexity of a Matsui Algorithm-2 Attack (1)

I We use the formula

σR · Φ−1(1− α) = |µR − µW | − σW · Φ−1(1− β)

I β = 2−(a+1)

I Data complexity: [Matsui] [Selçuk 08]

N ≥
(ϕβ +

√
(1− c2) · ϕα)2

c2 ,

where ϕβ = Φ−1(1− β) and ϕα = Φ−1(1− α)
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Adjusting the Wrong-Key Randomization
Hypothesis

I [Bogdanov and Tischhauser 13] If the key candidate is
wrong then ˆcor(D, kW ) follows normal distribution with
parameters

ExpD,K[ ˆcor(D, kW )] = 0 and
VarD,K[ ˆcor(D, kW )] = 1/N +2−n

I Idea
I For a fixed key kW , the empirical correlation varies with the

data sample meaning that VarD[ ˆcor(D, kW )] = 1/N

I The empirical correlation varies also with the key kW
[Daemen Rijmen 07]
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Adjusting the Right-Key Randomization
Hypothesis

I Assuming independent round key and linear approximation
with a single dominant trail

I ELP: the expected linear potential ELP = ExpK[cor(k)2]

I Hypothesis of right-key equivalence: In the context of a
linear key-recovery attack of a long-key iterated cipher
described in this section, the empirical correlation

ˆcor(D, kR) computed from KP sample is approximately
normally distributed with parameters

ExpD,K[ ˆcor(D, kR)] = ±c and

VarD,K[ ˆcor(D, kR)] =
1
N

+ ELP − c2
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Data Complexity of a Matsui Algorithm-2 Attack (2)

I In practice, it is difficult to compute ELP exactly, and
therefore it has often been estimated by c2

I We can show that ELP − c2 ≥ 2−n

I By taking ELP = c2 + 2−n we obtain the following
complexity bound

N ≥
(ϕβ + ϕα)2

c2 − 2−n(ϕβ + ϕα)2

I Other settings: Work in progress [Nyberg Dagstuhl 16]
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χ2 distribution
I If X1, · · · ,X` are independent standard normal random

variables Xi ∼ N (0,1), then the sum of their squares,

Q =
∑̀
i=1

X 2
i ,

is distributed according to the chi-squared distribution with
` degrees of freedom

Q ∼ χ2
`

I The probability density function (pdf) of the chi-squared
distribution is

f (x ; `) =


x (`/2−1)e−`/2

2`/2Γ( `2 )
, x > 0;

0, otherwise

where Γ(·) denotes the Gamma function
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Non-Central χ2

I Let (X1,X2, . . . ,Xi , . . . ,X`) be ` independent normally
distributed random variables Xi ∼ N (µi ,1)

I Then the random variable
∑`

i=1 X 2
i is distributed according

to the non-central chi-squared distribution with parameters
` specifying the number of degrees of freedom and
λ =

∑`
i=1 µ

2
i the mean of the means

I λ is sometimes called the non-centrality parameter
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Gamma Distribution

I Gamma function:
I for an integer value n, Γ(n) = (n − 1)!
I for a real value t > 0, Γ(t) =

∫∞
0 x t−1e−x dx

I Γ(1/2) = π

I pdf of X ∼ Γ(ρ, θ):

f (x) =
1

Γ(ρ)θρ
xρ−1e−x/θ

I Exp[X ] = ρθ

I Var[X ] = ρθ2

I If X ∼ χ2(`), and c > 0 then cX ∼ Γ(ρ = `/2, θ = 2c)
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Gamma Distribution

Γ(ρ, θ)
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Gamma Distribution

Γ(ρ, θ)

0.0

0.0

0.0

0.1

0.1

0.1

0.1

0.1

10.0 15.0 20.0 25.0 30.0

d
e

n
s
it
y

i

rho = 10.0, theta = 2.0
Normal



Complexity of Statistical Attacks

52/71

Gamma Distribution

Γ(ρ, θ)
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Gamma Distribution

Γ(ρ, θ)
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Hypergeometric Distribution
I Probability of i successes in N draws, without replacement,

from a finite population of size 2n that contains exactly p2n

successes, wherein each draw is either a success or a
failure

I X ∼ H(p2n,2n,N)

I pmf:

f (i) =

(2np
i

)(2n−i
N−i

)(2n

N

)
I Exp[X ] = Np Var(X ) = Np(1− p)

2n − N
2n − 1

I B =
2n − N
2n − 1
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Illustration
I N = 1000, p = 0.5
I Exp[X ] = 500 both in the Binomial and Hypergeometric

case
I 2n = 2000,1100,1024
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Distinct Plaintexts Attacks

I When performing the attack, we have to make sure that the
plaintexts are not repeated

I Appear first for ZC attacks [Bogdanov et al 12]

I KP attacks↔ binomial distribution B = 1

I DKP attacks↔ hypergeometric distribution B =
2n − N
2n − 1

I Variance: Var(X ) = Np(1− p)B
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Multiple/Multidimensional Linear Attacks

I Set of masks (u, v) ∈ U × V \ {0,0}

I Capacity : C =
∑

u∈U

∑
v∈V

cor2
x (u, v)

I Two approaches
I Multiple linear attacks [Kaliski and Robshaw 01] [Biryukov

et al 04]
I Multidimensional linear attacks[Hermelin et al 08]

I Two types of tests:
I χ2 statistical test
I LLR statistical test
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Zero-Correlation (ZC) Linear Cryptanalysis

[Bogdanov et al 12, 13,14], [Soleimany, Nyberg 13]

The distinguisher takes advantage of linear approximation(s)
with no bias

I Single approximation (u, v) with cor(u, v) = 0 for all keys

I Multiple approximations:

C =
∑

u∈U,v∈V

cor2(u, v) = 0,

I multiple ZC: U and V without structure

I multidimensional ZC: U and V linear (affine) spaces
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Multidimensional Linear Attack
I We have 3 output masks (v ||01, v ||10, v ||11) which form a

linear space if we include the trivial mask 0

I Instead of measuring the empirical correlations
ˆcor(u, v ||01), ˆcor(u, v ||10), ˆcor(u, v ||11)

I we can store (assuming that u · x is fixed to 0 for all
plaintexts x) the frequency of the two output bits

j ∗||00 ∗||01 ∗||10 ∗||11
V [j] 10 8 7 12

Exercise:
Compute the corresponding correlations

I The second approach is preferred in the multidimensional
case
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The Scoring Function
I ` linear approximations with empirical correlation ˆcor i

I Scoring function:

T = N
∑̀
i=1

ˆcor2
i

I In multidimensional linear attacks T is equivalent (Walsh
Transform) to:

T =
∑̀
j=0

(V [j]− N/(`+ 1))2

N/(`+ 1)
,

where V [j] corresponds to the number of occurrences of
the j-th element of the multidimensional distribution
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Capacity for a Fixed Key

I Explanation for the multidimensional linear case

I Let [pj ]j=0,...,` be a probability distribution with pj
representing the probability of a check in the j-th box

pj = 2−n|{x ∈ Fn
2 | f (x) = j }|,

for a given function f

I The capacity is defined by

C =
∑̀
j=0

(
pj − 1

`+1

)2

1
`+1
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Distribution of T (D)
I The distribution of V [j] is approximated by a normal

distribution with parameters

ExpD(V [j]) = Npj

VarD(V [j]) = B · Npj(1− pj) ≈ B · N
`+ 1

T =
∑̀
j=0

(V [j]− N 1
`+1)2

N 1
`+1

= B
∑̀
j=0

(V [j]− N 1
`+1)2

VarD(V [j])

I B−1T (D) follows a non-central χ2 distribution with `
degrees of freedom and non-centrality parameter B−1NC

I

ExpD[B−1T (D)] = `+ B−1NC and
VarD[B−1T (D)] = 2`+ 4B−1NC
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Expected Capacity for the Wrong Keys (1)

I The capacity varies with the key

I For a given linear approximation, the expected correlation
in the uniform case is ExpD,K[cori(D,K )] = 0

I Up to recently, it was assumed that for ` linear
approximations the expected capacity

ExpD,K[C(D,K )] =
∑

i

ExpD,K[cor2
i (D,K )]

is equal to 0

I However this is not true
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Expected Capacity for the Wrong Keys (2)

I (Wrong-Key Hypothesis - Multiple) The correlations
cori(K ), i = 1, . . . , ` over the wrong keys K are i.i.d. and

cori(K ) ∼ N
(
0,2−n)

I 2nCW (K ) follows a χ2 distribution with ` degree of freedom

I CW (K ) ∼ Γ
(
`
2 ,2

1−n)
I The mean and the variance are :

ExpK[CW (K )] = 2−n`

VarK[CW (K )] =
2
`

ExpK[CW (K )]2 = 21−2n`
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Combined Mean and Variance

I Combined mean and variance

ExpD,K[T (D,K )] = ExpK[ExpD[T (D,K )]],

VarD,K[T (D,K )] = ExpK[VarD[T (D,K )]] + VarK[ExpD[T (D,K )]]

I For the wrong keys,

ExpD,K [TW (D,K )] ≈ B`+ NCW and

VarD,K [TW (D,K )] ≈ 2
`

(B`+ NCW )2

I with CW = 2−n`

I and B =
2n − N
2n − 1

≈ 1− N
2n or B = 1
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The Right Key Case

I Assuming the right-key randomization hypothesis we have

ExpD,K [TR(D,K )] = B`+ NCR and

VarD,K [TR(D,K )] =
2
`

(B`+ NCR)2 ,

with B =
2n − N
2n − 1

≈ 1− N
2n or B = 1
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Experiments Distinct / Non-Distinct Plaintexts
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Success Probability of Multiple/Multidimensional
Linear Attacks

I Success probability:

PS = 1− α ≈ Φ

(
N|CR − CW | −

√
2/`(B`+ NCW )ϕβ√

2/`(B`+ NCR)

)
then,

N
(
|CR − CW | −

√
2/`(CWϕβ + CRϕα)

)
≈
√

2`B(ϕα + ϕβ)

I Data complexity for a KP attack (B = 1):

Nnon−distinct ≈
√

2`(ϕα + ϕβ)

|CR − CW | −
√

2/`(CWϕβ + CRϕα)
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LLR Statistical Test
I p = [pw ]w∈W : the expected probability distribution vector
θ: the uniform one
q(k): the observed one for a key candidate k

I The Neyman-Pearson lemma gives the optimal form of the
acceptance region on which is derived the LLR method.
The optimality requires that both p and θ distributions are
known (or at least the values pw/θw ).

I For a given number of sample N, the optimal statistical test
consists in comparing the following statistic to a fixed
threshold

LLR(q(k),p, θ) = N
∑

w∈W

qw (k)log(
pw

θw
)
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Remarks on the LLR Statistical Test

I For this test “to work” we should have a good estimate of
the involved probabilities (correlations)

I In practice this is really complicated to estimate the
expected probabilities (correlations):

I From the linear trails we only obtain a underestimate of the
correlations

I A given key probability differs from the expected one this
test can fail

Exercise: Example of LLR test
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