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Part 1
Random Number Generators



Random Numbers in Computer Science

@ Where do we need random numbers ?
» Simulation of randomness, e.g. Monte Carlo method
» Key generation (session key, main key)
» Protocols
» |V, Nonce generation
» Online gambling

@ How can we generate them?
» True Random Number Generators (TRNG)
» Pseudo Random Number Generators (PRNG)
» PRNG with entropy input
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True Random Number Generators (TRNG) :

@ Properties :
» Based on physical effects
» Needs often post-processing
» Often slow
» Needs often extra hardware
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True Random Number Generators (TRNG) :

@ Properties :
» Based on physical effects
» Needs often post-processing
» Often slow
» Needs often extra hardware

@ Applications
» High security keys
» One-Time Pad

@ Examples :
» Coin flipping, dice
» Radioactive decay
» Thermal noise in Zener diodes
» Quantum random number generator
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Pseudo Random Number Generators (PRNG)

@ Properties :
» Based on a short seed and a completely deterministic algorithm
» Allows theoretical analysis
» Can be fast
» Entropy not bigger than size of seed
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Pseudo Random Number Generators (PRNG)

@ Properties :
» Based on a short seed and a completely deterministic algorithm
» Allows theoretical analysis
» Can be fast
» Entropy not bigger than size of seed

@ Applications :
» Monte Carlo method
» Stream cipher

@ Examples :
» Linear congruential generators
» Blum Blum Shub generator
» Block cipher in counter mode
» Dedicated stream cipher (eSTREAM project)
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PRNG with Entropy Input

@ Properties :
» Based on hard to predict events (entropy input)
» Apply deterministic algorithms
» Few examples of theoretical models [Barak Halevi 2005]
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PRNG with Entropy Input

@ Properties :
» Based on hard to predict events (entropy input)
» Apply deterministic algorithms
» Few examples of theoretical models [Barak Halevi 2005]

@ Applications :
» Fast creation of unpredictable keys
» When no additional hardware is available

@ Examples :
» Linux RNG : /DEV/RANDOM

» Yarrow, Fortuna
» HAVEGE
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Model of a PRNG with Entropy Input

entropy sources

(re)seeding RNG

I ! I !
I I I I
l entropy ! > ! !
I extraction: internal state ‘;: | deterministic Ly gytput
I < I '
| |
I | |
|
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Model of a PRNG with Entropy Input

entropy sources

(re)seeding RNG

| I |
| I |
entropy ! > ! !
extraction: internal state ‘;: | deterministic Ly gytput
< I I
|
| |
|

—————————

@ Resilience/Pseudorandom Security :
The output looks random without knowledge of internal state
» Direct attacks : an attacker has no control on entropy inputs
» Known input attacks : an attacker knows a part of the entropy
Inputs
» Chosen input attacks : an attacker is able to chose a part of
entropy Inputs
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Cryptanalytic Attacks - After Compromised State

Compromised state :
The internal state is compromise if an attacker is able to recover a
part of the internal state (for whatever reasons) [Kelsey et al. 1998]

@ Forward security/Backtracking resistance :
» Earlier output looks random with knowledge of current state

@ Backward security/Prediction resistance :
» Future output looks random with knowledge of current state
» Backward security requires frequent reseeding of the current
state
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Same Remarks about Entropy (1)

@ (Shannon’s) entropy is a measure of unpredictability :
Average number of binary questions to guess a value

@ Shannon's Entropy for a probability distribution py,pa,...,py :

H=— sz' logy p; < logy(n)
i=1

@ Min-entropy Is a worst case entropy :

Hyin = — 10g2 (112?<Xn(pz)) < H
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Same Remarks about Entropy (2)

@ Collecting k bits of entropy :
After processing the unknown data into a known state Sy, an

observer would have to try on average 2 times to guess the new
value of the state.

@ Transferring k bits of entropy from state 5; to state 55 :
After generating data from the unknowing state S; and mixing it
into the known state S5 an adversary would have to try on average
2% times to guess the new value of state Ss.

By learning the generated data from S; an observer would increase
his chance by the factor 2% of guessing the value of S;.

> k bits known > k bits known
data
S S Y |—>| S
source { / ]_’ ! ! { i ]_’ °
collecting entropy transferring entropy
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Model of [Barak Halevi 2005]

i state

_____________________

___________

@ State of size m

@ Extractor for a family ‘H of probability distributions, such that for
any distribution D € 'H and any y € {0, 1} :

271 =27") < Prlextr(Xp) =y)] <27 (1 +277)

@ G is a cryptographic PRNG producing 2m bits
@ Supposes regular input with given minimal entropy

@ Proven security in theory, hard to use in practice
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Part 2
The Linux Random Number Generator



The Linux Random Number Generator

@ Part of the Linux kernel since 1994
@ From Theodore Ts'o and Matt Mackall

@ Only definition in the code (with comments) :
» About 1700 lines
» Underly changes
(www.linuxhq.com/kernel/file/drivers/char/random.c)
» We refer to kernel version 2.6.30.7

@ Pseudo Random Number Generator (PRNG) with entropy input
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www.linuxhq.com/kernel/file/drivers/char/random.c

Analysis

@ Previous Analysis :
» [Barak Halevi 2005] :
Almost no mentioning of the Linux RNG
» [Gutterman Pinkas Reinman 2006] :
They show some weaknesses of the generator which are now
corrected

@ Why a new analysis :
» As part of the Linux kernel, the RNG is widely used
» [ he implementation has changed in the meantime
» Want to give more details
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General

@ Two different versions :
» /dev/random :
Limits the number of generated bits by the estimated entropy
» /dev/urandom :
Generates as many bits as the user asks for

@ Two asynchronous procedures :
» [ he entropy accumulation
» The random number generation
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Structure

entropy
sources

entropy
estimation

ST N > entropy
l : " counter
.| mixing entropy < ' 3
! counter
l - blockin
| mixing pool 9 /dev/random
input pool
| . nonblocking-
| mixing 00Ol /dev/urandom
l } entropy} - - - -
I ——P» .
! transfer [ counter <
entropy extraction random number

generation

@ Size of input pool : 128 32-bit words
@ Size of blocking/unblocking pool : 32 32-bit words
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Functionality (1)

Entropy input :

@ Entropy sources :
» User input like keyboard and mouse movements
» Disk timing
» Interrupt timing

@ Each event contains 3 values :
» A number specific to the event
» Cycle count
» Jiffies count (count of time ticks of system timer interrupt)
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Functionality (2)

Entropy accumulation :
@ Independent to the output generation

@ Algorithm :
» Estimate entropy
» Mix data into input pool
» Increase entropy count

@ Must be fast
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Functionality (3)

Output generation

@ Generates data in 80 bit steps

@ Algorithm to generate n bytes :
» If not enough entropy in the pool ask input pool for n bytes
» If necessary, input pool generates data and mixes it into the
corresponding output pool
» Generate random number from output pool

@ Differences between the two version :
» /dev/random : Stops and waits if entropy count of its pool is 0
» /dev/urandom : Leaves > 128 bits of entropy in the input pool
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Functionality (4)

Initialization :

@ Boot process does not contain much entropy

@ Script recommended that
» At shutdown :
Generate data from /dev/urandom and save it
» At startup :
Write to /dev/urandom the saved data
This mixes the same data into the blocking and nonblocking
pool without increasing the entropy count

@ Problem for Live CD versions
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Part 3
Building Blocks



The Entropy Estimation

@ Crucial point for /dev/random

@ Must be fast (after interrupts)

@ Uses the jiffies differences to previous event

@ Separate differences for user input, interrupts and disks

@ Estimator has no direct connection to Shannon’s entropy
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The Entropy Estimation - The Estimator

@ Let t“(n) denote the jiffies of the n'th event of source A

Adn) = t*n) -t (n—-1)

Af(n) = Afn) - Af(n-1)

Af(n) = Ag(n) - Af(n-1)

AAn) = min (]Af(n)], A% ()], |A3 ()

@ Estimated Entropy : H4(n) = H (A(n), Af(n —1),A{{(n — 2))

.

0 if Ad(n) =0
H%(n) =< 11 if Ad(n) > 212
\ log, (A% (n))| otherwise
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The Entropy Estimation - Uniform Case

Q Agn], A[ln_l], Agn—z] uniformly distributed with support {0, 1} for
H(1<m=H<I11):

@ Compare E{ﬁ (A[ln], Al AQ”‘Q]) }

Entropy estimation in the best case

12 i | | |
10 [~ —
> o L o
S8
g -
el .- -
E _--
3 4 /,/ _
20 ,”/ real entropy H ———
_--" estimated entropy E[H| —— — -
| - | | | |
0
2 4 6 8 10 12

log, size of sample space
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The Entropy Estimation - Worst Case

@ Predictable input which maximizes H :

@ Then foralln>1and 1 <4 < 212

A1<n) Ag(n) Ag(n)
n=2m—1 0 —0 —20
n =2m 20 0 20

A

H(n) = [log,(0)]

@ For Al AP A2l ynigormly distributed

E[H (2C-A[1”], oc. Al QC-A[ln_Z]) } - c-E[ﬁf (A[{”, A

n—1] A[n—m) }

1 » =1
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The Entropy Estimation - Empirical Data

@ More than 7M of samples of user input events :

Empirical histogramm of A; of user input
0.2 I I I [ [ [ [
empirical frequency

015 7]

0.1 7]

0.05 L _
L | L il l l

0
0 20 40 60 80 100 120 140

@ Comparison (H and H,,;, based on empirical frequencies) :
jiffies | cycles | num

s S H(n) || 1.85 | 10.62 | 5.55
H 3.42 | 14.89 | 7.31
Homin 0.68 | 9.69 | 4.97
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The Entropy Estimation - Levels of A

A

@ H;(n) : estimator where A(n) depends on i levels of differences.

Comparision of H; for A; uniformly distributed

bits of entropy

1 2 3 4 5 6 7

log, size of sample space
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The Entropy Estimation - Levels of A

A

@ H;(n) : estimator where A(n) depends on i levels of differences.

Comparision of H; for A; uniformly distributed

bits of entropy

1 2 3 4 5 6 7

log, size of sample space

@ Comparison for empirical data :

1 1 & 1 & 1 &
H NZHH(”) ﬁzﬂz(”) mzﬂs(n) N——BZH"“(H)
n=1 n=2 n=3 n=4
jiffies || 3.42 1.99 1.99 1.85 1.47
N N N N
1 A 1 1 A 1
_ -~ N"# - - -
N 44 ) ¥ Z o) | ¥ 6 s ORI Z s(n)
jiffies 1.36 1.27 1.10 0.99
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The Mixing Function

@ Mixes one byte at a time
» Completes it to 32 bits and rotates it by a changing factor

@ Uses a shift register

@ Diffuses entropy in each pool

@ Same mechanism for each pool, according to the size of the pool
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The Mixing Function - Description

@ Inspired by Twisted GFSR [Matsumoto Kurita 1992]
@ Applies CRC-32-IEEE 802.3 polynomial in twisted table

@ Works on 32-bit words

0 127

|

I

|

| multiplication
0 ' in GF(232)

|

I

|

|

___________________
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The Mixing Function - Analysis Without Input (1)

@ The Twisted GFSR is defined for trinomials : Xy, + Xp1,, + X/A
@ Uses polynomial on 32-bit words (primitive in GF'(2))

P(X) = X128 L x103 L X764 X514 X254+ X 4+ 1 input pool
X324 X264 X204 XML X7+ X +1 output pool

@ Whole method can be written as : o”(P(X) — 1) +1
where « is from GF(232) defined by the CRC-32 polynomial

@ This polynomial is not irreducible in GF(2°%), thus no maximal
period

p < 292%32 _ 1 jnstead of 212%*32 — 1 for the input pool
p < 220%32 _ 1 jnstead of 232*32 — 1 for the output pool
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The Mixing Function - Analysis Without Input (2)
@ We can make it irreducible by just changing one feedback position,
e.g. :

P(X) X128 L x104 L X764 X514 X254+ X 4+ 1 input pool
X324 X264 X4 XM X7+ X +1 output pool

have respectively periods of (2128*32 — 1) /3 and (2°%*32 —1)/3

@ We can achieve a primitive polynomial by using a*(P(X)—1) +1,
with ged(4,2°% — 1) =1, eg. 1 =1,2,4,7, ...
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The Mixing Function - Analysis With Input

@ The feedback function L(xo, Ti,, Tiy, Tig, T4y, i) is linear

@ The input can be seen as :

0 127

}
Va
VYV

@ If we have g @D a in the first cell we can write :
L(CEO) Lij1y Ligy xig) Liys lei5) S> L(CL, Lij1y Ligy xiga Liys C6755)

@ If we know nothing about a or xy we cannot guess the next
feedback more easily than guessing the unknown value
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The Output Function

@ Uses Sha-1 with feedback

@ Is identical for each pool, according the size of the pool

@ Is used for the resilience property

@ Is used to avoid cryptanalytic attacks
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The Output Function - Description

16 32-bit words 16 32-bit words
output pool
Sha 1

5 word hash

5 words
output pool I

16 wor<%>D

» Sha 1

5 word hash

80 bit output
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The Output Function - Analysis

@ Changed since paper of Gutterman et al.

@ Feedback is used for the Forward Security

@ Changes 2k bits for every k bits of output

@ Hard to give a mathematical analysis
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Part 4

Security Discussion



Major Changes Since Analysis of Gutterman et al.

@ Mixes bytes into the pool and no 32bit words

@ Output function mixes all 5 words of the hash back at once and
not one word after each hashing of 16 words

@ /dev/urandom cannot empty the input pool
@ The input is only mixed into the input pool

@ Use not only the cycles but also the jiffies as a timestamp and
estimate entropy over the jiffies
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Forward Security

@ Let M be the size of the pool and C the entropy count

@ For generating £ < % bits we change 2k bits in the pool
» If we know the state, guessing the previous output is easier than
finding the previous state

@ /dev/urandom : |f we have previously generated k > M bits
without new entropy input, guessing the previous state might be
easier than guessing the previous output

@ /dev/random : For generating k& > C bits we need k bits from the
input pool, especially if £ > M
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Backward Security

@ If the attacker knows the state and we input 1 unknown word, the
attacker looses the knowledge of one word in the register

@ If an observer knows the input but not the state, he can not learn
anything of the state

@ The period of the register without input is not maximal but large
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Resilience

@ If we assume that there is enough unknown input and a correct
entropy estimation, then the output should not be distinguishable
from a random sequence

@ What happens if there are no good entropy sources ?

@ Uses the pseudorandom assumption of a cryptographic hash func-
tion

@ Both output pools are fed from the same pool but we do not see
a concrete way to exploit this fact
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The Entropy Estimation

@ No direct connection to Shannon’s entropy

@ Gives no information about knowledge of observer

@ Underestimates entropy of a uniform source and of empirical data
@ Uses few resources

@ Other entropy estimators in literature generally use all samples and
need more storage
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Comparison with other models (1)

@ [Kelsey et al. 2000] present the general model Yarrow
» One output state (key and counter) and two input pools (fast
and slow pool)
» Uses a hash function for entropy extraction and a block cipher
for the PRNG
» Separate entropy count for each pool and each input source
» Designed to prevent specific attacks

@ Their updated version Fortuna does not use entropy estimation
anymore
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Comparison with other models (2)

@ NIST SP 800-90 [Barker Kelsey 2007]
» Has one state
» Allows multiple instances
» Recommends personalization string for initialization
» Regular tests during generation
» Specific systems based on one primitive :
e.g. hash function, HMAC, block cipher, or dual elliptic curves
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Part 5
Conclusion



Conclusion

@ The Linux random number generator changed a lot since the last
analysis

@ It is important to have good entropy sources

@ The entropy estimator is fast and works not “too bad” for unknown
data even if there is no direct connection to the entropy

@ The mixing function is a non irreducible polynomial over GF(2?)
and is not really a twisted GFSR

@ The output function resists previous attacks and changes 160 bits
In each step
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Open Problems

@ Is there a better mixing function ?

@ Is there a better entropy estimator ?

@ Can we say anything more mathematical about the output func-
tion ?

@ Can we make a proof similar to [Barak Halevi 2005] ?
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