Analysis of the Linux Random Number Generator

Patrick Lacharme, Andrea Röck, Vincent Stubel, Marion Videau

October 23, 2009 - Rennes
Outline

Random Number Generators

The Linux Random Number Generator

Building Blocks
- Entropy Estimation
- Mixing Function
- Output Function

Security Discussion

Conclusion
Part 1

Random Number Generators
Random Numbers in Computer Science

Where do we need random numbers?
- Simulation of randomness, e.g. Monte Carlo method
- Key generation (session key, main key)
- Protocols
- IV, Nonce generation
- Online gambling

How can we generate them?
- True Random Number Generators (TRNG)
- Pseudo Random Number Generators (PRNG)
- PRNG with entropy input
True Random Number Generators (TRNG) :

Properties :

- Based on physical effects
- Needs often post-processing
- Often slow
- Needs often extra hardware
True Random Number Generators (TRNG):

Properties:
▶ Based on physical effects
▶ Needs often post-processing
▶ Often slow
▶ Needs often extra hardware

Applications
▶ High security keys
▶ One-Time Pad
True Random Number Generators (TRNG):

Properties:
- Based on physical effects
- Needs often post-processing
- Often slow
- Needs often extra hardware

Applications:
- High security keys
- One-Time Pad

Examples:
- Coin flipping, dice
- Radioactive decay
- Thermal noise in Zener diodes
- Quantum random number generator
Pseudo Random Number Generators (PRNG)

Properties:
- Based on a short seed and a completely deterministic algorithm
- Allows theoretical analysis
- Can be fast
- Entropy not bigger than size of seed
Pseudo Random Number Generators (PRNG)

Properties:
- Based on a short seed and a completely deterministic algorithm
- Allows theoretical analysis
- Can be fast
- Entropy not bigger than size of seed

Applications:
- Monte Carlo method
- Stream cipher
Pseudo Random Number Generators (PRNG)

Properties:
- Based on a short seed and a completely deterministic algorithm
- Allows theoretical analysis
- Can be fast
- Entropy not bigger than size of seed

Applications:
- Monte Carlo method
- Stream cipher

Examples:
- Linear congruential generators
- Blum Blum Shub generator
- Block cipher in counter mode
- Dedicated stream cipher (eSTREAM project)
PRNG with Entropy Input

Properties:
- Based on hard to predict events (entropy input)
- Apply deterministic algorithms
- Few examples of theoretical models [Barak Halevi 2005]
PRNG with Entropy Input

Properties:
- Based on hard to predict events (entropy input)
- Apply deterministic algorithms
- Few examples of theoretical models [Barak Halevi 2005]

Applications:
- Fast creation of unpredictable keys
- When no additional hardware is available
PRNG with Entropy Input

Properties:
- Based on hard to predict events (entropy input)
- Apply deterministic algorithms
- Few examples of theoretical models [Barak Halevi 2005]

Applications:
- Fast creation of unpredictable keys
- When no additional hardware is available

Examples:
- Linux RNG: `/DEV/RANDOM`
- Yarrow, Fortuna
- HAVEGE
Model of a PRNG with Entropy Input

entropy sources → entropy extraction: (re)seeding → internal state → deterministic RNG → output
Model of a PRNG with Entropy Input

- entropy sources
- internal state
- deterministic RNG
- output

Resilience/Pseudorandom Security:
The output looks random without knowledge of internal state

- Direct attacks: an attacker has no control on entropy inputs
- Known input attacks: an attacker knows a part of the entropy inputs
- Chosen input attacks: an attacker is able to chose a part of entropy inputs
Cryptanalytic Attacks - After Compromised State

Compromised state:
The internal state is compromise if an attacker is able to recover a part of the internal state (for whatever reasons) [Kelsey et al. 1998]

- **Forward security/Backtracking resistance:**
 - Earlier output looks random with knowledge of current state

- **Backward security/Prediction resistance:**
 - Future output looks random with knowledge of current state
 - Backward security requires frequent reseeding of the current state
Same Remarks about Entropy (1)

- **(Shannon’s) entropy** is a measure of unpredictability:
 Average number of binary questions to guess a value

- **Shannon’s Entropy** for a probability distribution \(p_1, p_2, \ldots, p_n \):
 \[
 H = - \sum_{i=1}^{n} p_i \log_2 p_i \leq \log_2 (n)
 \]

- **Min-entropy** is a worst case entropy:
 \[
 H_{\text{min}} = - \log_2 \left(\max_{1 \leq i \leq n} p_i \right) \leq H
 \]
Same Remarks about Entropy (2)

- **Collecting** \(k \) bits of entropy:
 After processing the unknown data into a known state \(S_1 \), an observer would have to try on average \(2^k \) times to guess the new value of the state.

- **Transferring** \(k \) bits of entropy from state \(S_1 \) to state \(S_2 \):
 After generating data from the unknowing state \(S_1 \) and mixing it into the known state \(S_2 \) an adversary would have to try on average \(2^k \) times to guess the new value of state \(S_2 \).

By learning the generated data from \(S_1 \) an observer would increase his chance by the factor \(2^k \) of guessing the value of \(S_1 \).
Model of [Barak Halevi 2005]

- State of size m
- **Extractor** for a family \mathcal{H} of probability distributions, such that for any distribution $\mathcal{D} \in \mathcal{H}$ and any $y \in \{0, 1\}^m$:

 $$2^{-m}(1 - 2^{-m}) \leq Pr[\text{extr}(X_\mathcal{D}) = y] \leq 2^{-m}(1 + 2^{-m})$$

- G is a **cryptographic PRNG** producing 2^m bits
- Supposes regular input with given minimal entropy
- Proven security in theory, hard to use in practice
Part 2

The Linux Random Number Generator
The Linux Random Number Generator

- Part of the Linux kernel since 1994
- From Theodore Ts’o and Matt Mackall

Only definition in the code (with comments):
- About 1700 lines
- Underly changes
 - (www.linuxhq.com/kernel/file/drivers/char/random.c)
- We refer to kernel version 2.6.30.7

- Pseudo Random Number Generator (PRNG) with entropy input
Analysis

Previous Analysis:

- [Barak Halevi 2005]:
 Almost no mentioning of the Linux RNG

- [Gutterman Pinkas Reinman 2006]:
 They show some weaknesses of the generator which are now corrected

Why a new analysis:

- As part of the Linux kernel, the RNG is widely used
- The implementation has changed in the meantime
- Want to give more details
General

- **Two different versions:**
 - `/dev/random`:
 - Limits the number of generated bits by the estimated entropy
 - `/dev/urandom`:
 - Generates as many bits as the user asks for

- **Two asynchronous procedures:**
 - The entropy accumulation
 - The random number generation
Structure

Size of input pool: 128 32-bit words
Size of blocking/unblocking pool: 32 32-bit words
Functionality (1)

Entropy input:

- Entropy sources:
 - User input like **keyboard** and **mouse** movements
 - **Disk** timing
 - **Interrupt** timing

Each event contains 3 values:

- A number specific to the event
- Cycle count
- Jiffies count (count of time ticks of system timer interrupt)
Functionality (2)

Entropy accumulation:

- Independent to the output generation

Algorithm:
- Estimate entropy
- Mix data into input pool
- Increase entropy count

- Must be fast
Functionality (3)

Output generation

- Generates data in 80 bit steps

Algorithm to generate n bytes:
- If not enough entropy in the pool ask input pool for n bytes
- If necessary, input pool generates data and mixes it into the corresponding output pool
- Generate random number from output pool

Differences between the two version:
- `/dev/random`: Stops and waits if entropy count of its pool is 0
- `/dev/urandom`: Leaves ≥ 128 bits of entropy in the input pool
Functionality (4)

Initialization:
- Boot process does not contain much entropy

Script recommended that
 - At shutdown:
 Generate data from `/dev/urandom` and save it
 - At startup:
 Write to `/dev/urandom` the saved data
 This mixes the same data into the blocking and nonblocking pool without increasing the entropy count

Problem for Live CD versions
Part 3

Building Blocks
The Entropy Estimation

- Crucial point for /dev/random
- Must be fast (after interrupts)
- Uses the jiffies differences to previous event
- Separate differences for user input, interrupts and disks
- Estimator has no direct connection to Shannon’s entropy
The Entropy Estimation - The Estimator

Let $t^A(n)$ denote the jiffies of the n’th event of source A

\[
\Delta^A_1(n) = t^A(n) - t^A(n - 1)
\]
\[
\Delta^A_2(n) = \Delta^A_1(n) - \Delta^A_1(n - 1)
\]
\[
\Delta^A_3(n) = \Delta^A_2(n) - \Delta^A_2(n - 1)
\]
\[
\Delta^A(n) = \min \left(|\Delta^A_1(n)|, |\Delta^A_2(n)|, |\Delta^A_3(n)| \right)
\]

Estimated Entropy: $\hat{H}^A(n) = \hat{H} (\Delta^A_1(n), \Delta^A_1(n - 1), \Delta^A_1(n - 2))$

\[
\hat{H}^A(n) = \begin{cases}
0 & \text{if } \Delta^A(n) = 0 \\
11 & \text{if } \Delta^A(n) \geq 2^{12} \\
\lceil \log_2 (\Delta^A(n)) \rceil & \text{otherwise}
\end{cases}
\]
The Entropy Estimation - Uniform Case

- \(\Delta_{1}^{[n]}, \Delta_{1}^{[n-1]}, \Delta_{1}^{[n-2]}\) uniformly distributed with support \(\{0, 1\}^{m}\) for \(H\) (1 ≤ \(m = H\) ≤ 11):

- Compare \(E[\hat{H} (\Delta_{1}^{[n]}, \Delta_{1}^{[n-1]}, \Delta_{1}^{[n-2]})]\):

Entrophy estimation in the best case
The Entropy Estimation - Worst Case

- Predictable input which maximizes \hat{H}:

<table>
<thead>
<tr>
<th></th>
<th>$\Delta_1(n)$</th>
<th>$\Delta_2(n)$</th>
<th>$\Delta_3(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 2m - 1$</td>
<td>δ</td>
<td>$-\delta$</td>
<td>-2δ</td>
</tr>
<tr>
<td>$n = 2m$</td>
<td>2δ</td>
<td>δ</td>
<td>2δ</td>
</tr>
</tbody>
</table>

- Then for all $n \geq 1$ and $1 \leq \delta < 2^{12}$

$$\hat{H}(n) = \lfloor \log_2(\delta) \rfloor$$

- For $\Delta_1^n, \Delta_1^{n-1}, \Delta_1^{n-2}$ uniformly distributed:

$$E\left[\hat{H}\left(2^c \cdot \Delta_1^n, 2^c \cdot \Delta_1^{n-1}, 2^c \cdot \Delta_1^{n-2}\right)\right] = c \cdot E\left[\hat{H}\left(\Delta_1^n, \Delta_1^{n-1}, \Delta_1^{n-2}\right)\right]$$
The Entropy Estimation - Empirical Data

More than 7M of samples of user input events:

![Empirical histogramm of Δ_1 of user input](image)

Comparison (H and H_{min} based on empirical frequencies):

<table>
<thead>
<tr>
<th></th>
<th>jiffies</th>
<th>cycles</th>
<th>num</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{N-2} \sum_{n=3}^{N} \hat{H}(n)$</td>
<td>1.85</td>
<td>10.62</td>
<td>5.55</td>
</tr>
<tr>
<td>H</td>
<td>3.42</td>
<td>14.89</td>
<td>7.31</td>
</tr>
<tr>
<td>H_{min}</td>
<td>0.68</td>
<td>9.69</td>
<td>4.97</td>
</tr>
</tbody>
</table>
\(\hat{H}_i(n) \) : estimator where \(\Delta(n) \) depends on \(i \) levels of differences.
The Entropy Estimation - Levels of Δ

- $\hat{H}_i(n)$: estimator where $\Delta(n)$ depends on i levels of differences.

Comparison for empirical data:

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>$\frac{1}{N} \sum_{n=1}^{N} \hat{H}_1(n)$</th>
<th>$\frac{1}{N-1} \sum_{n=2}^{N} \hat{H}_2(n)$</th>
<th>$\frac{1}{N-2} \sum_{n=3}^{N} \hat{H}_3(n)$</th>
<th>$\frac{1}{N-3} \sum_{n=4}^{N} \hat{H}_4(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>jiffies</td>
<td>3.42</td>
<td>1.99</td>
<td>1.99</td>
<td>1.85</td>
<td>1.47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$\frac{1}{N-4} \sum_{n=5}^{N} \hat{H}_5(n)$</th>
<th>$\frac{1}{N-5} \sum_{n=6}^{N} \hat{H}_6(n)$</th>
<th>$\frac{1}{N-6} \sum_{n=7}^{N} \hat{H}_7(n)$</th>
<th>$\frac{1}{N-7} \sum_{n=8}^{N} \hat{H}_8(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>jiffies</td>
<td>1.36</td>
<td>1.27</td>
<td>1.10</td>
<td>0.99</td>
</tr>
</tbody>
</table>
The Mixing Function

- Mixes **one byte** at a time
 - Completes it to 32 bits and rotates it by a changing factor

- Uses a shift register

- Diffuses entropy in each pool

- Same mechanism for each pool, according to the size of the pool
The Mixing Function - Description

- Inspired by Twisted GFSR [Matsumoto Kurita 1992]
- Applies CRC-32-IEEE 802.3 polynomial in twisted table
- Works on 32-bit words
The Mixing Function - Analysis Without Input (1)

The Twisted GFSR is defined for trinomials: $X_{\ell+n} + X_{\ell+m} + X_{\ell}A$

Uses polynomial on 32-bit words (primitive in $GF(2)$):

$$P(X) = \begin{cases} X^{128} + X^{103} + X^{76} + X^{51} + X^{25} + X + 1 & \text{input pool} \\ X^{32} + X^{26} + X^{20} + X^{14} + X^{7} + X + 1 & \text{output pool} \end{cases}$$

Whole method can be written as: $\alpha^3(P(X) - 1) + 1$

where α is from $GF(2^{32})$ defined by the CRC-32 polynomial.

This polynomial is not irreducible in $GF(2^{32})$, thus no maximal period

- $\leq 2^{92*32} - 1$ instead of $2^{128*32} - 1$ for the input pool
- $\leq 2^{26*32} - 1$ instead of $2^{32*32} - 1$ for the output pool
We can make it irreducible by just changing one feedback position, e.g.:

\[
P(X) = \begin{cases}
X^{128} + X^{104} + X^{76} + X^{51} + X^{25} + X + 1 & \text{input pool} \\
X^{32} + X^{26} + X^{19} + X^{14} + X^{7} + X + 1 & \text{output pool}
\end{cases}
\]

have respectively periods of \((2^{128*32} - 1)/3\) and \((2^{32*32} - 1)/3\).

We can achieve a primitive polynomial by using \(\alpha^i(P(X) - 1) + 1\), with \(gcd(i, 2^{32} - 1) = 1\), e.g. \(i = 1, 2, 4, 7, \ldots\)
The Mixing Function - Analysis With Input

- The feedback function \(L(x_0, x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}, x_{i_5}) \) is linear
- The input can be seen as:

\[
L(x_0, x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}, x_{i_5}) \oplus L(a, x_{i_1}, x_{i_2}, x_{i_3}, x_{i_4}, x_{i_5})
\]

- If we have \(x_0 \oplus a \) in the first cell we can write:

- If we know nothing about \(a \) or \(x_0 \) we cannot guess the next feedback more easily than guessing the unknown value
The Output Function

- Uses Sha-1 with feedback
- Is identical for each pool, according the size of the pool
- Is used for the resilience property
- Is used to avoid cryptanalytic attacks
The Output Function - Description

16 32-bit words

output pool

16 32-bit words

Sha 1

5 word hash

mixing

5 words

output pool

16 32-bit words

fold

5 word hash

80 bit output
The Output Function - Analysis

- Changed since paper of Gutterman et al.
- Feedback is used for the Forward Security
- Changes $2k$ bits for every k bits of output
- Hard to give a mathematical analysis
Major Changes Since Analysis of Gutterman et al.

- Mixes bytes into the pool and no 32bit words
- Output function mixes all 5 words of the hash back at once and not one word after each hashing of 16 words
- /dev/urandom cannot empty the input pool
- The input is only mixed into the input pool
- Use not only the cycles but also the jiffies as a timestamp and estimate entropy over the jiffies
Forward Security

- Let M be the size of the pool and C the entropy count.

- For generating $k \leq \frac{M}{2}$ bits we change $2k$ bits in the pool.
 - If we know the state, guessing the previous output is easier than finding the previous state.

- `/dev/urandom`: If we have previously generated $k > M$ bits without new entropy input, guessing the previous state might be easier than guessing the previous output.

- `/dev/random`: For generating $k > C$ bits we need k bits from the input pool, especially if $k > M$.

Backward Security

- If the attacker knows the state and we input 1 unknown word, the attacker loses the knowledge of one word in the register.

- If an observer knows the input but not the state, he cannot learn anything of the state.

- The period of the register without input is not maximal but large.
Resilience

- If we assume that there is enough unknown input and a correct entropy estimation, then the output should not be distinguishable from a random sequence.

- What happens if there are no good entropy sources?

- Uses the pseudorandom assumption of a cryptographic hash function.

- Both output pools are fed from the same pool but we do not see a concrete way to exploit this fact.
The Entropy Estimation

- No direct connection to Shannon’s entropy
- Gives no information about knowledge of observer

- Underestimates entropy of a uniform source and of empirical data

- Uses few resources

- Other entropy estimators in literature generally use all samples and need more storage
Comparison with other models (1)

- [Kelsey et al. 2000] present the general model Yarrow
 - One output state (key and counter) and two input pools (fast and slow pool)
 - Uses a hash function for entropy extraction and a block cipher for the PRNG
 - Separate entropy count for each pool and each input source
 - Designed to prevent specific attacks

- Their updated version Fortuna does not use entropy estimation anymore
Comparison with other models (2)

- NIST SP 800-90 [Barker Kelsey 2007]
 - Has one state
 - Allows multiple instances
 - Recommends personalization string for initialization
 - Regular tests during generation
 - Specific systems based on one primitive:
 - e.g. hash function, HMAC, block cipher, or dual elliptic curves
Part 5

Conclusion
Conclusion

- The Linux random number generator changed a lot since the last analysis.

- It is important to have good entropy sources.

- The entropy estimator is fast and works not “too bad” for unknown data even if there is no direct connection to the entropy.

- The mixing function is a non irreducible polynomial over $GF(2^{32})$ and is not really a twisted GFSR.

- The output function resists previous attacks and changes 160 bits in each step.
Open Problems

- Is there a better mixing function?

- Is there a better entropy estimator?

- Can we say anything more mathematical about the output function?

- Can we make a proof similar to [Barak Halevi 2005]?