
Analysis of the Linux Random
Number Generator

Patrick Lacharme, Andrea Röck, Vincent Stubel, Marion Videau

October 23, 2009 - Rennes

Outline

Random Number Generators

The Linux Random Number Generator

Building Blocks

I Entropy Estimation

I Mixing Function

I Output Function

Security Discussion

Conclusion

Part 1

Random Number Generators

Random Numbers in Computer Science

Where do we need random numbers ?

I Simulation of randomness, e.g. Monte Carlo method

I Key generation (session key, main key)

I Protocols

I IV, Nonce generation

I Online gambling

How can we generate them ?

I True Random Number Generators (TRNG)

I Pseudo Random Number Generators (PRNG)

I PRNG with entropy input

1/40

True Random Number Generators (TRNG) :
Properties :
I Based on physical effects
I Needs often post-processing
I Often slow
I Needs often extra hardware

2/40

True Random Number Generators (TRNG) :
Properties :
I Based on physical effects
I Needs often post-processing
I Often slow
I Needs often extra hardware

Applications
I High security keys
I One-Time Pad

2/40

True Random Number Generators (TRNG) :
Properties :
I Based on physical effects
I Needs often post-processing
I Often slow
I Needs often extra hardware

Applications
I High security keys
I One-Time Pad

Examples :
I Coin flipping, dice
I Radioactive decay
I Thermal noise in Zener diodes
I Quantum random number generator

2/40

Pseudo Random Number Generators (PRNG)
Properties :
I Based on a short seed and a completely deterministic algorithm
I Allows theoretical analysis
I Can be fast
I Entropy not bigger than size of seed

3/40

Pseudo Random Number Generators (PRNG)
Properties :
I Based on a short seed and a completely deterministic algorithm
I Allows theoretical analysis
I Can be fast
I Entropy not bigger than size of seed

Applications :
I Monte Carlo method
I Stream cipher

3/40

Pseudo Random Number Generators (PRNG)
Properties :
I Based on a short seed and a completely deterministic algorithm
I Allows theoretical analysis
I Can be fast
I Entropy not bigger than size of seed

Applications :
I Monte Carlo method
I Stream cipher

Examples :
I Linear congruential generators
I Blum Blum Shub generator
I Block cipher in counter mode
I Dedicated stream cipher (eSTREAM project)

3/40

PRNG with Entropy Input

Properties :

I Based on hard to predict events (entropy input)

I Apply deterministic algorithms

I Few examples of theoretical models [Barak Halevi 2005]

4/40

PRNG with Entropy Input

Properties :

I Based on hard to predict events (entropy input)

I Apply deterministic algorithms

I Few examples of theoretical models [Barak Halevi 2005]

Applications :

I Fast creation of unpredictable keys

I When no additional hardware is available

4/40

PRNG with Entropy Input

Properties :

I Based on hard to predict events (entropy input)

I Apply deterministic algorithms

I Few examples of theoretical models [Barak Halevi 2005]

Applications :

I Fast creation of unpredictable keys

I When no additional hardware is available

Examples :

I Linux RNG : /dev/random

I Yarrow, Fortuna

I HAVEGE

4/40

Model of a PRNG with Entropy Input

internal state deterministic
RNG

entropy
extraction:
(re)seeding

entropy sources

output

5/40

Model of a PRNG with Entropy Input

internal state deterministic
RNG

entropy
extraction:
(re)seeding

entropy sources

output

Resilience/Pseudorandom Security :
The output looks random without knowledge of internal state

I Direct attacks : an attacker has no control on entropy inputs

I Known input attacks : an attacker knows a part of the entropy

inputs

I Chosen input attacks : an attacker is able to chose a part of

entropy inputs

5/40

Cryptanalytic Attacks - After Compromised State

Compromised state :
The internal state is compromise if an attacker is able to recover a

part of the internal state (for whatever reasons) [Kelsey et al. 1998]

Forward security/Backtracking resistance :

I Earlier output looks random with knowledge of current state

Backward security/Prediction resistance :

I Future output looks random with knowledge of current state

I Backward security requires frequent reseeding of the current

state

6/40

Same Remarks about Entropy (1)

(Shannon’s) entropy is a measure of unpredictability :

Average number of binary questions to guess a value

Shannon’s Entropy for a probability distribution p1, p2, . . . , pn :

H = −
n∑

i=1

pi log2 pi ≤ log2(n)

Min-entropy is a worst case entropy :

Hmin = − log2

(
max

1≤i≤n
(pi)
)
≤ H

7/40

Same Remarks about Entropy (2)

Collecting k bits of entropy :

After processing the unknown data into a known state S1, an

observer would have to try on average 2k times to guess the new

value of the state.

Transferring k bits of entropy from state S1 to state S2 :

After generating data from the unknowing state S1 and mixing it

into the known state S2 an adversary would have to try on average

2k times to guess the new value of state S2.

By learning the generated data from S1 an observer would increase

his chance by the factor 2k of guessing the value of S1.

8/40

Model of [Barak Halevi 2005]

State of size m

Extractor for a family H of probability distributions, such that for

any distribution D ∈ H and any y ∈ {0, 1}m :

2−m(1− 2−m) ≤ Pr[extr(XD) = y)] ≤ 2−m(1 + 2−m)

G is a cryptographic PRNG producing 2m bits

Supposes regular input with given minimal entropy

Proven security in theory, hard to use in practice

9/40

Part 2

The Linux Random Number Generator

The Linux Random Number Generator

Part of the Linux kernel since 1994

From Theodore Ts’o and Matt Mackall

Only definition in the code (with comments) :

I About 1700 lines

I Underly changes

(www.linuxhq.com/kernel/file/drivers/char/random.c)

I We refer to kernel version 2.6.30.7

Pseudo Random Number Generator (PRNG) with entropy input

10/40

www.linuxhq.com/kernel/file/drivers/char/random.c

Analysis

Previous Analysis :

I [Barak Halevi 2005] :

Almost no mentioning of the Linux RNG

I [Gutterman Pinkas Reinman 2006] :

They show some weaknesses of the generator which are now

corrected

Why a new analysis :

I As part of the Linux kernel, the RNG is widely used

I The implementation has changed in the meantime

I Want to give more details

11/40

General

Two different versions :

I /dev/random :

Limits the number of generated bits by the estimated entropy

I /dev/urandom :

Generates as many bits as the user asks for

Two asynchronous procedures :

I The entropy accumulation

I The random number generation

12/40

Structure

entropy
counter

entropy
sources

mixing

input pool output

output

output

blocking
pool

nonblocking
pool

entropy
counter

entropy
counter

entropy extraction random number
generation

mixing

mixing

/dev/random

/dev/urandom

transfer

entropy
estimation

Size of input pool : 128 32-bit words

Size of blocking/unblocking pool : 32 32-bit words

13/40

Functionality (1)

Entropy input :

Entropy sources :

I User input like keyboard and mouse movements

I Disk timing

I Interrupt timing

Each event contains 3 values :

I A number specific to the event

I Cycle count

I Jiffies count (count of time ticks of system timer interrupt)

14/40

Functionality (2)

Entropy accumulation :

Independent to the output generation

Algorithm :

I Estimate entropy

I Mix data into input pool

I Increase entropy count

Must be fast

15/40

Functionality (3)

Output generation

Generates data in 80 bit steps

Algorithm to generate n bytes :

I If not enough entropy in the pool ask input pool for n bytes

I If necessary, input pool generates data and mixes it into the

corresponding output pool

I Generate random number from output pool

Differences between the two version :

I /dev/random : Stops and waits if entropy count of its pool is 0

I /dev/urandom : Leaves ≥ 128 bits of entropy in the input pool

16/40

Functionality (4)

Initialization :

Boot process does not contain much entropy

Script recommended that

I At shutdown :

Generate data from /dev/urandom and save it

I At startup :

Write to /dev/urandom the saved data

This mixes the same data into the blocking and nonblocking

pool without increasing the entropy count

Problem for Live CD versions

17/40

Part 3

Building Blocks

The Entropy Estimation

Crucial point for /dev/random

Must be fast (after interrupts)

Uses the jiffies differences to previous event

Separate differences for user input, interrupts and disks

Estimator has no direct connection to Shannon’s entropy

18/40

The Entropy Estimation - The Estimator

Let tA(n) denote the jiffies of the n’th event of source A

∆A
1 (n) = tA(n)− tA(n− 1)

∆A
2 (n) = ∆A

1 (n)−∆A
1 (n− 1)

∆A
3 (n) = ∆A

2 (n)−∆A
2 (n− 1)

∆A(n) = min
(
|∆A

1 (n)|, |∆A
2 (n)|, |∆A

3 (n)|
)

Estimated Entropy : ĤA(n) = Ĥ
(
∆A

1 (n),∆A
1 (n− 1),∆A

1 (n− 2)
)

ĤA(n) =

0 if ∆A(n) = 0

11 if ∆A(n) ≥ 212⌊
log2

(
∆A(n)

)⌋
otherwise

19/40

The Entropy Estimation - Uniform Case

∆[n]
1 ,∆[n−1]

1 ,∆[n−2]
1 uniformly distributed with support {0, 1}m for

H (1 ≤ m = H ≤ 11) :

Compare E
[
Ĥ
(

∆[n]
1 ,∆[n−1]

1 ,∆[n−2]
1

)]
:

 0

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12

20/40

The Entropy Estimation - Worst Case

Predictable input which maximizes Ĥ :
∆1(n) ∆2(n) ∆3(n)

n = 2m− 1 δ −δ −2δ
n = 2m 2δ δ 2δ

Then for all n ≥ 1 and 1 ≤ δ < 212

Ĥ(n) = blog2(δ)c

For ∆[n]
1 ,∆[n−1]

1 ,∆[n−2]
1 uniformly distributed :

E
[
Ĥ
(

2c·∆[n]
1 , 2c·∆[n−1]

1 , 2c·∆[n−2]
1

)]
= c·E

[
Ĥ
(

∆[n]
1 ,∆[n−1]

1 ,∆[n−2]
1

)]

21/40

The Entropy Estimation - Empirical Data

More than 7M of samples of user input events :

 0

 0.05

 0.1

 0.15

 0.2

 0 20 40 60 80 100 120 140

empirical frequency

Comparison (H and Hmin based on empirical frequencies) :
jiffies cycles num

1
N−2

∑N
n=3 Ĥ(n) 1.85 10.62 5.55
H 3.42 14.89 7.31
Hmin 0.68 9.69 4.97

22/40

The Entropy Estimation - Levels of ∆

Ĥi(n) : estimator where ∆(n) depends on i levels of differences.

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7

23/40

The Entropy Estimation - Levels of ∆

Ĥi(n) : estimator where ∆(n) depends on i levels of differences.

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7

Comparison for empirical data :
H

1
N

N∑
n=1

Ĥ1(n)
1

N − 1

N∑
n=2

Ĥ2(n)
1

N − 2

N∑
n=3

Ĥ3(n)
1

N − 3

N∑
n=4

Ĥ4(n)

jiffies 3.42 1.99 1.99 1.85 1.47

1
N − 4

N∑
n=5

Ĥ5(n)
1

N − 5

N∑
n=6

Ĥ6(n)
1

N − 6

N∑
n=7

Ĥ7(n)
1

N − 7

N∑
n=8

Ĥ8(n)

jiffies 1.36 1.27 1.10 0.99

23/40

The Mixing Function

Mixes one byte at a time

I Completes it to 32 bits and rotates it by a changing factor

Uses a shift register

Diffuses entropy in each pool

Same mechanism for each pool, according to the size of the pool

24/40

The Mixing Function - Description

Inspired by Twisted GFSR [Matsumoto Kurita 1992]

Applies CRC-32-IEEE 802.3 polynomial in twisted table

Works on 32-bit words

0 127

0

29

3
twisttable

<<< rot input data

25/40

The Mixing Function - Analysis Without Input (1)

The Twisted GFSR is defined for trinomials : X`+n +X`+m +X`A

Uses polynomial on 32-bit words (primitive in GF (2)) :

P (X) =

{
X128 +X103 +X76 +X51 +X25 +X + 1 input pool

X32 +X26 +X20 +X14 +X7 +X + 1 output pool

Whole method can be written as : α3(P (X)− 1) + 1
where α is from GF (232) defined by the CRC-32 polynomial

This polynomial is not irreducible in GF (232), thus no maximal

period

I ≤ 292∗32 − 1 instead of 2128∗32 − 1 for the input pool

I ≤ 226∗32 − 1 instead of 232∗32 − 1 for the output pool

26/40

The Mixing Function - Analysis Without Input (2)

We can make it irreducible by just changing one feedback position,

e.g. :

P (X) =

{
X128 +X104 +X76 +X51 +X25 +X + 1 input pool

X32 +X26 +X19 +X14 +X7 +X + 1 output pool

have respectively periods of (2128∗32 − 1)/3 and (232∗32 − 1)/3

We can achieve a primitive polynomial by using αi(P (X)− 1) + 1,

with gcd(i, 232 − 1) = 1, e.g. i = 1, 2, 4, 7, ...

27/40

The Mixing Function - Analysis With Input

The feedback function L(x0, xi1, xi2, xi3, xi4, xi5) is linear

The input can be seen as :

If we have x0 ⊕ a in the first cell we can write :

L(x0, xi1, xi2, xi3, xi4, xi5)⊕ L(a, xi1, xi2, xi3, xi4, xi5)

If we know nothing about a or x0 we cannot guess the next

feedback more easily than guessing the unknown value

28/40

The Output Function

Uses Sha-1 with feedback

Is identical for each pool, according the size of the pool

Is used for the resilience property

Is used to avoid cryptanalytic attacks

29/40

The Output Function - Description

16 32-bit words

Sha 1

Sha 1

mixing

output pool

5 word hash

output pool

16 32-bit words

fold

5 word hash

80 bit output

16 words

5 words

30/40

The Output Function - Analysis

Changed since paper of Gutterman et al.

Feedback is used for the Forward Security

Changes 2k bits for every k bits of output

Hard to give a mathematical analysis

31/40

Part 4

Security Discussion

Major Changes Since Analysis of Gutterman et al.

Mixes bytes into the pool and no 32bit words

Output function mixes all 5 words of the hash back at once and

not one word after each hashing of 16 words

/dev/urandom cannot empty the input pool

The input is only mixed into the input pool

Use not only the cycles but also the jiffies as a timestamp and

estimate entropy over the jiffies

32/40

Forward Security

Let M be the size of the pool and C the entropy count

For generating k ≤ M
2 bits we change 2k bits in the pool

I If we know the state, guessing the previous output is easier than

finding the previous state

/dev/urandom : If we have previously generated k > M bits

without new entropy input, guessing the previous state might be

easier than guessing the previous output

/dev/random : For generating k > C bits we need k bits from the

input pool, especially if k > M

33/40

Backward Security

If the attacker knows the state and we input 1 unknown word, the

attacker looses the knowledge of one word in the register

If an observer knows the input but not the state, he can not learn

anything of the state

The period of the register without input is not maximal but large

34/40

Resilience

If we assume that there is enough unknown input and a correct

entropy estimation, then the output should not be distinguishable

from a random sequence

What happens if there are no good entropy sources ?

Uses the pseudorandom assumption of a cryptographic hash func-

tion

Both output pools are fed from the same pool but we do not see

a concrete way to exploit this fact

35/40

The Entropy Estimation

No direct connection to Shannon’s entropy

Gives no information about knowledge of observer

Underestimates entropy of a uniform source and of empirical data

Uses few resources

Other entropy estimators in literature generally use all samples and

need more storage

36/40

Comparison with other models (1)

[Kelsey et al. 2000] present the general model Yarrow

I One output state (key and counter) and two input pools (fast

and slow pool)

I Uses a hash function for entropy extraction and a block cipher

for the PRNG

I Separate entropy count for each pool and each input source

I Designed to prevent specific attacks

Their updated version Fortuna does not use entropy estimation

anymore

37/40

Comparison with other models (2)

NIST SP 800-90 [Barker Kelsey 2007]

I Has one state

I Allows multiple instances

I Recommends personalization string for initialization

I Regular tests during generation

I Specific systems based on one primitive :

e.g. hash function, HMAC, block cipher, or dual elliptic curves

38/40

Part 5

Conclusion

Conclusion

The Linux random number generator changed a lot since the last

analysis

It is important to have good entropy sources

The entropy estimator is fast and works not “too bad” for unknown

data even if there is no direct connection to the entropy

The mixing function is a non irreducible polynomial over GF (232)
and is not really a twisted GFSR

The output function resists previous attacks and changes 160 bits

in each step

39/40

Open Problems

Is there a better mixing function ?

Is there a better entropy estimator ?

Can we say anything more mathematical about the output func-

tion ?

Can we make a proof similar to [Barak Halevi 2005] ?

40/40

