Online Entropy Estimator

Andrea Röck

Aalto University, School of Science
Department of Information and Computer Science

Crypto research seminar, April 18, 2011
Outline

Introduction

Estimator for Unknown Entropy Sources

New Estimator

Empirical Results

Conclusion
Introduction
PRNG with Entropy Input

- Pseudo Random Number Generator with entropy sources

- PRNG is deterministic: A specific state will always produce the same output
- Uncertainty come from entropy sources
- When "enough uncertainty is collected" reseed the state
 - How do we know when to reseed?

Online Entropy Estimator
A. Röck
Aalto University - ICS

Aalto University
School of Science

April 18, 2011
Crypto research seminar
Entropy - Information Theoretical Model

- **Entropy Source**

- Outputs element from **sample space** \mathcal{X}

- **Concrete output** at time t: $x_t \in \mathcal{X}$

- Source represents sequence of identical and independent distributed **random variables** X_1, X_2, \ldots

 $$\Pr(X_t = \eta) = p_\eta \text{ for all } t, \ p = (p_\eta)_{\eta \in \mathcal{X}}$$

- **Sequence of random variables** $X_{[t_1, t_2]} = X_{t_1}, X_{t_1+1}, \ldots, X_{t_2}$

- **Sequence of concrete outputs** $x_{[t_1, t_2]} = x_{t_1}, x_{t_1+1}, \ldots, x_{t_2}$

- **Empirical distribution** of $x_{[1, n]}$: $\hat{p}_\eta = \frac{\# \{ t : x_t = \eta \}}{n}$
Entropy - Definitions

- **Shannon entropy**: Measure of average number of binary questions before guessing the output
 \[H(p) = - \sum_{\eta \in \mathcal{X}} p_\eta \log_2 p_\eta \]

- **Rényi entropy**: Measure of correlation probability
 \[H_\alpha(p) = \frac{1}{1 - \alpha} \log_2 \left(\sum_{\eta \in \mathcal{X}} p_\eta^\alpha \right) \]

- **Min entropy**: Lower bound for all entropy measures
 \[H_\infty(p) = - \log_2 \left(\max_{\eta \in \mathcal{X}} p_\eta \right) \]

- **Relation** for \(\alpha > 1 \):
 \[H_\infty(p) \leq H_\alpha(p) \leq H(p) \leq \log_2 |\mathcal{X}| \]
Estimator for Unknown Entropy Sources
Requirements

- Estimator \hat{H} should:
 - Work with **unknown sources**
 - Be **pessimistic** $E(\hat{H}) \leq H(p)$
 - Be **efficient**
 - Given an estimate for **each output**
 - Want \hat{H} such that $\frac{1}{n-r} \sum_{t=r+1}^{n} \hat{H}(X_{[t-r,t]}) \xrightarrow{n \to \infty} H(p)$
 - Work with **any source**
Known Estimators (1)

- **Plug-in or maximum-likelihood** estimator: use $H(\hat{p})$
 - Estimate only for **whole data set**
 - Need counter for each $\eta \in \mathcal{X}$
 - Can be applied on a data window but still not efficient

- **Compression** based on **frequency counting**:
 e.g. Huffman coding, arithmetic coding
 - **Not efficient** (Huffman coding need tree of size $|\mathcal{X}|$)
Known Estimators (2)

- **Compression** based on **match length** [Lempel Ziv]

\[L_t^r(x) = 1 + \max_{t-r \leq j \leq t-1} \{ k : x_{[t,t+k-1]} = x_{[j,j+k-1]} \} \]

- **Classical estimator:**

\[\frac{L_t^r(X)}{\log_2 r} \to \frac{1}{H} \quad \text{a.s.} \quad (r \to \infty) \]

- Estimate only for **whole data set**
- Need **future values**, no upper bound for \(L_t^r(x) \)
Known Estimators (3)

- **LZ estimator** with intermediate values,
 \[\hat{H}_{LZ}^r(x_{[t,n]}) = \log_2 \frac{r}{L_t(x)} \]

 \[\frac{1}{n - r} \sum_{t=r+1}^{n} \hat{H}_{LZ}^r(x_{[t,n]}) \rightarrow H \text{ a.s. } (n, r \rightarrow \infty) \]

- Gives an estimate for **each** \(t \geq r \)
- Need **future values**, no upper bound for \(L_t^r(x) \)
Known Estimators (4)

- Based on **transition frequencies** [Bucci Luzzi 2005]
- **Count transitions** from 0 to 1 or from 1 to 0
- **Expected number of transition** in \(n + 1 \) bits: \(n2p_0(1 - p_0) \)
- Use: \(-\log_2 y \geq \frac{1}{\ln(2)}(1 - y)\) for \(0 < y < 1 \)
- **Entropy:**

\[
-\rho_0 \log_2 \rho_0 - (1 - \rho_0) \log_2 (1 - \rho_0) \geq \frac{1}{\ln(2)}2\rho_0(1 - \rho_0)
\]

- **Only binary sources**

- **Our idea:** Extend to **non-binary case**
New Estimator
Idea

- **Number of comparisons** before finding **last occurrence** of **current element**:

\[
el_t^r = \begin{cases}
 r & \text{if } x_t \neq x_{t-j}, 1 \leq j \leq r, \\
 \min \{0 \leq j \leq r - 1 : x_{t-1-t} = x_t\} & \text{otherwise.}
\end{cases}
\]

- **Estimator**:

\[
\hat{H}_{pv}^r(x_{[t-r,t]}) = \frac{1}{\ln(2)} \sum_{j=1}^{\ell_t^r} \frac{1}{j}
\]
Expected value: $E \left(\hat{H}_{pv}^r(X_{[t-r,t]}) \right) = \frac{1}{\ln(2)} \sum_{\eta \in \mathcal{X}} p_{\eta} \sum_{i=1}^{r} \frac{(1 - p_{\eta})^i}{i}$

Using results on (r+1)-dependent random variables:

$$\frac{1}{n-r} \sum_{t=r+1}^{n} \hat{H}_{pv}^r(x_{[t,n]}) \rightarrow E \left(\hat{H}_{pv}^r(X_{[t-r,t]}) \right) \text{ a.s. (n} \rightarrow \infty)$$

Taylor series of logarithm ($0 < x < 1$):

$$\ln \frac{1}{x} = \sum_{i=1}^{\infty} \frac{(1 - x)^i}{i} \geq \sum_{i=1}^{r} \frac{(1 - x)^i}{i}$$

Lower bound for entropy:

$$E \left(\hat{H}_{pv}^r(X_{[t-r,t]}) \right) \leq \sum_{\eta \in \mathcal{X}} p_{\eta} \log_2 \frac{1}{p_{\eta}} = H(p)$$
Empirical Results
Test Data

- Input data for **Linux random number generator**
 - Cooperation with Lacharme, Strubel, Videau
 - Time between interrupts from **user input (mouse, keyboard)**
 - Time measured in **jiffies** and **cycles**

- Data from **iPhone GPS** device
 - Cooperation with Lauradoux, Ponge
 - Measurement of altitude, longitude, latitude, acceleration and compass (heading)
 - **Indoor** (less movement) and **outdoor** (more movement) measurements

- Compare to **LZ estimator**
Linux RNG - Cycle Count Difference

Entropy

Cycles Differences

Number of comparisons

- LZ estimator has complexity as good as our estimator
Linux RNG - Jiffies Count Difference

Entropy

- Shannon entr
- Renyi entr
- Min entr
- New estim, $r = 1$
- New estim, $r = 2$
- Lz estim, $r = 2$
- New estim, $r = 10$
- New estim, $r = 100$
- Lz estim, $r = 10$
- New estim, $r = 100$
- Lz estim, $r = 100$

Number of comparisons

- Better complexity than LZ estimator
Extreme case for LZ estimator if source has (almost) no entropy
Estimated entropy of new estimator **not far from LZ estimate**
Better complexity than LZ estimator
Conclusion
Conclusion

- Entropy estimator for unknown entropy sources with changing behavior
- At most r comparisons
- For independent sequences the expected value of the estimator is lower bound for entropy
- Gives estimate for each output value

- Only Shannon entropy, not Rényi or Min entropy
- Proof not for correlated sources
- Estimates lower bound, exact value only for $r \to \infty$