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were further rotated using a frequency-based separation criterion implemented by DSS with
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emerge very clearly among the found sources.
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1 Introduction

One of the main goals of statistical analysis of climate datais to extract physi-
cally meaningful patterns of climate variability from highly multivariate weather
measurements. The classical technique for defining such dominant patterns is prin-
cipal component analysis (PCA), or empirical orthogonal functions (EOF) as it is
called in climatology (see, e.g., von Storch and Zwiers, 1999). However, many re-
searchers have pointed out that the maximum remaining variance criterion used in
PCA can lead to such problems as mixing different physical phenomena in one ex-
tracted component (Richman, 1986; Kim and Wu, 1999). This makes PCA a useful
tool for information compression but limits its ability to isolate individual modes
of climate variation.

To overcome this problem, rotation of the principal components has proven useful.
The different rotation criteria reviewed by Richman (1986)are based on the general
“simple structure” idea aimed at, for example, spatial or temporal localization of
the rotated components. The rotation of EOFs can be either orthogonal or oblique,
which potentially leads to better interpretability of the extracted components.

Independent component analysis (ICA) is a recently developed statistical technique
for component extraction which can also be used for rotatingprincipal components.
The basic assumption made in ICA is the statistical independence of the extracted
components, which may lead to a meaningful data representation in a number of
applications (see, e.g., Hyvärinen et al., 2001, for introduction). ICA is based on
higher-order statistics and in this respect bears some similarity to classical rotation
techniques such as the Varimax orthogonal rotation (Richman, 1986). Several at-
tempts to apply ICA in climate research have already been made (Aires et al., 2000;
Lotsch et al., 2003).

In this paper, we analyze weather measurements using a novelextension of ICA
called denoising source separation (DSS) (Särelä and Valpola, 2005). DSS is a
general separation framework which does not necessarily exploit the independence
assumption but rather looks for hidden components which have “interesting” prop-
erties. The interestingness of the properties is controlled by means of a temporal
filtering or denoising procedure.

In the first experiment, we show that the sources with the mostprominent inter-
annual oscillations can be identified using DSS with linear filtering as denoising.
The leading components are clearly related to the well-known El Niño–Southern
Oscillation (ENSO) phenomenon.

In the second experiment, we use DSS with linear denoising asthe first, preprocess-
ing step of climate data analysis. A wider frequency band in the denoising filter is
used to identify the slow subspace of the climate system. Thefound slow com-
ponents are further rotated using an iterative DSS procedure based on nonlinear
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denoising. The rotation aims to find components with distinct power spectra.

The extracted components turn out to represent the subspaceof the slow climate
phenomena as a linear combination of trends, decadal-interannual oscillations, the
annual cycle and other phenomena with distinct spectral contents. Using this ap-
proach, the known climate phenomena are identified as certain subspaces of the
climate system and some other interesting phenomena hiddenin the weather mea-
surements are found.

The contents of this paper is as follows: in the next section,we explain the modeling
assumptions of the source separation methods and present a short introduction to
DSS. Section 3 describes the climate measurements used in the experiments. Sec-
tion 4 explains how DSS is tuned to extract components with the most prominent
interannual oscillations and present the experimental results (which were partly re-
ported by Ilin et al., 2005). In Section 5, we give the description of the frequency-
based separation algorithm implemented in the DSS framework and report the cli-
mate phenomena found with this method. Preliminary resultsof this analysis were
published in a conference paper by Ilin and Valpola (2005). Finally, we discuss the
results and possible future directions in Section 6.

2 Source Separation Methods

2.1 Blind source separation and independent component analysis

The basic modeling assumption of linear source separation methods is that there
are some hidden component signals or time seriessi(t) (also called sources, factors
or latent variables) which are linearly combined into the multivariate measurements
xj(t):

xj(t) =
N∑

i=1

ajisi(t), j = 1, ..., N . (1)

The indexj runs over the measurement sensors (typically spatial locations), and
discretized timet runs over the observation period:t = 1, ..., T . This can be ex-
pressed in matrix formulation by denoting the matrix of observations byX, where
the sensor indexj denotes the rows and the time indext denotes the columns. The
matrix of sources,S is defined likewise, and the coefficientsaji of the linear com-
binations make up a matrixA. Using these matrices, (1) becomes

X = AS . (2)
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If we denote the columns of matrixA by ai and the columns of matrixX by x(t),
then (2) can be further written as

x(t) =
N∑

i=1

aisi(t) . (3)

The mappingA is called the mixing matrix in the ICA terminology or the loading
matrix in the context of PCA. In climate data analysis, the time seriessi(t) usually
correspond to the time-varying states of the climate system, and the loading vectors
ai are the spatial maps showing the typical weather patterns corresponding to the
components.

The goal of the analysis is to estimate the unknown components si(t) and the cor-
responding loading vectorsai from the observed dataX. With minimum a priori
assumptions about the sources, the problem is called blind source separation (BSS).

Independent component analysis (ICA) is a popular method ofsolving the BSS
problem. In ICA, the only assumption is the statistical independence of the sources:
eachsi(t) is regarded as a sample from a random variablesi, and these variables are
mutually independent. There are a large variety of algorithms for solving the mixing
matrix A and the sources (Hyvärinen et al., 2001; Cichocki and Amari, 2002).
One of the most popular methods is the FastICA algorithm. Theindependence of
the sources is measured by their mutual information which results in a minimum
entropy criterion. In practice the separation is achieved by rotating the observations
into directions that are as non-Gaussian as possible (Hyvärinen et al., 2001).

2.2 Denoising source separation

ICA is a powerful tool for exploratory data analysis, when very little is known
about the underlying source processessi(t). Independence is the only assumption.
Sometimes however, such prior information exists, such as the general shape of
the time curves or their frequency contents. For example, inthe climate data we
might be interested in some phenomena that would be cyclic over a certain period,
or exhibit slow changes. It would be very useful if such priorknowledge could
be incorporated into the separation algorithm directly. Exploiting prior knowledge
about the sources may significantly help in finding a good representation of the
data, and fully blind algorithms are not the best choice.

This kind of problem setting, with some prior knowledge available, is called semi-
blind. One of the methods for solving it is a recently introduced method called
denoising source separation (Särelä and Valpola, 2005).

DSS is a general algorithmic framework which can identify the model in Eq. (1)
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exploiting prior knowledge about its unknowns. In DSS, the independence criterion
of ICA is replaced by the assumption that the sources should 1) be uncorrelated and
2) maximize some desired properties (e.g., non-Gaussianity, slowness etc). In this
respect, DSS can be seen as an extension of ICA without the strict independence
assumption.

The first requirement is assured in DSS by using a preprocessing step called whiten-
ing or sphering. The goal of whitening is to make the covariance structure of the
data uniform in such a way that any linear projection of the data has unit vari-
ance. The positive effect of such a transformation is that any orthogonal basis in
the whitened space defines uncorrelated sources. Therefore, whitening is used as
a preprocessing step in many ICA algorithms, which allows restricting the mixing
matrix to be orthogonal afterwards.

Whitening is usually implemented by PCA. Assuming that the measurementsxj(t)
have been normalized to zero mean, the matrix of sphered dataY is calculated as

Y = D
−1/2

V
T
X , (4)

whereD is the diagonal matrix of eigenvalues of the data covariancematrix, de-
fined as 1

T
XX

T . The columns of matrixV are the corresponding eigenvectors.
The dimensionality of the data can also be reduced at this stage by retaining only
the principal components corresponding to the largest eigenvalues inD. It is easy
to show that it now holds that1

T
Y Y

T = I. Matrix Y is not unique, though; any
orthogonal rotation of its columns produces a matrix that also has unit covariance.

The rotational ambiguity of the whitened data matrix is fixedusing the second DSS
requirement, which implements the source separation criterion. This requirement is
usually introduced in the algorithm in the form of adenoising function. The purpose
of denoising is to emphasize the desired properties in the current source estimates,
which assures gradual maximization of these properties.

2.2.1 Linear denoising

In the simplest case, the denoising function can be implemented by a linear tempo-
ral filter, operating on the rows of matrixY and giving another matrixf(Y ) = Y F

with F the filtering matrix. Denoising renders the variances of thesphered com-
ponents different: the covariance matrix off(Y ) equals1

T
Y FF

T
Y

T which is no
more equal to the unit matrix. Now PCA can identify the directions which maxi-
mize the properties of interest. The eigenvalues obtained from PCA give the ratio of
the variances of the sources after and before filtering whichis the objective func-
tion of DSS with linear denoising. The components are rankedaccording to the
prominence of the desired properties the same way as the principal components in
PCA are ranked according to the amount of variance they explain. The separation
thus consists of three steps: whitening, linear denoising (filtering) and PCA on the
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Fig. 1. The steps of the DSS algorithm in case of linear denoising.

denoised data, as shown in Fig. 1.

The DSS algorithms implemented by linear denoising optimize the same type of
cost function as the maximum noise fraction (MNF) transformproposed by Green
et al. (1988). However, in DSS framework the computations are structured such
that it is easier to generalize the method for nonlinear denoising.

2.2.2 Nonlinear denoising

More complex separation criteria usually require nonlinear denoising (see Särelä
and Valpola, 2005; Valpola and Särelä, 2004, for several examples). Then, DSS re-
quires an algorithm presented in Fig. 2. Here, whitening is followed by an iterative
procedure with three successive steps:

(1) source estimation using the current estimate of the demixing matrixW :

S = WY ;

(2) applying the denoising function to the source estimates:

Ŝ = f(S) ;

(3) reestimation of the demixing matrix

W
T = orth(Y Ŝ

T
) .

The iterations continue until the source estimates do not change. In Step 3,orth(.)

is an operator giving the orthogonal projection of the matrix Y Ŝ
T

onto the set of
orthogonal matrices.

Without denoising, this procedure is equivalent to the power method for com-
puting the principal components ofY , because then Steps 1 and 3 giveW

T =
orth(Y Y

T
W

T ). SinceY is white, all the eigenvalues are equal and the solution
without denoising becomes degenerate. Therefore, even slightest changes made by
denoising can determine the DSS rotation. Since the denoising procedure empha-
sizes the desired properties of the sources, DSS can find the rotation where the
properties of interest are maximized.

In case of nonlinear denoising, the DSS objective function is usually expressed
implicitly in the denoising function. Therefore, ranking the components according
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Fig. 2. The steps of the DSS algorithm in the general case of nonlinear denoising.

to the prominence of the desired properties is more difficultand depends on the
exact separation criterion used in the denoising procedure.

In the applications, we are interested not only in the sources (rows of matrixS),
but also in the matrixA in Eq. (2). Thei-th column ofA is a spatial map showing
how the effect of thei-th source is distributed over the sensor array. Noting thatin
DSS it holdsS = WY , we obtain from Eqs. (2) and (4)

X = AS = AWY = AWD
−1/2

V
T
X . (5)

ThusA should be chosen as the (pseudo)inverse ofWD
−1/2

V
T which is

A = VD
1/2

W
T . (6)

Since the extracted componentssi(t) are normalized to unit variances, the columns
of A have a meaningful scale.

Note that the signs of the extracted components cannot generally be determined
by DSS, which is a well-known property of the classical ICA problem. DSS with
nonlinear denoising can determine the sign if the signal is not symmetric. More
details about the DSS method, including rigorous derivations and analysis were
reported by Särelä and Valpola (2005).

2.3 Extracting sources of climate variability

2.3.1 ICA in climate data analysis

Climate is a very complex system where different phenomena constantly interact
with each other. For example, the annual cycle naturally affects other climate pro-
cesses, the El Niño effect has great impact on global weather but also tends to
phase-lock with the annual cycle, and so on. Therefore, the existence of any truly
independent climate phenomena is an implausible assumption.

ICA can still be a useful tool for climate data representation providing, for exam-
ple, temporally or spatially localized components. Several researchers have shown
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that ICA can extract meaningful components from climate andweather data (Aires
et al., 2000; Lotsch et al., 2003; Basak et al., 2004). However, due to a great amount
of noise in climate data, naive ICA can often produce overfitted solutions (see
Hyvärinen et al., 1999; Särelä and Vigário, 2003, for discussion of this problem)
and one would require a very long observation period in orderto find a meaningful
ICA solution.

2.3.2 Tuning DSS for climate data analysis

DSS is a much more flexible tool as one can choose the separation criterion that
gives the most meaningful or interpretable representationof the data. In this work,
we search for physically meaningful states of the climate system which would pos-
sessslow behavior. The slowness of the components assures their larger long-term
effect on global weather and possibly facilitates making predictions of their future
development. By physically meaningful states we mean such components whose
dynamics are as weakly coupled as possible. Climate phenomena with distinct time
scales of their variability (e.g., the annual cycle, El Niño–Southern Oscillation or
slow climate trends) would intuitively be such components.

First, we concentrate on finding components which exhibit prominent variability in
the slow timescale. In Section 4, we show how DSS can be tuned to extract such
components based on a criterion that we term clarity. This approach can be useful
for identifying the subspace of slow phenomena and sometimes it can also find a
meaningful representation within the found subspace. However, it does not gener-
ally provide a good separation criterion, which may lead to mixtures of different
climate phenomena still existing in any one component. Therefore, we propose a
more complex DSS-based algorithm which tries to separate slow climate compo-
nents based on their frequency contents. The exposition of this algorithm is done in
Section 5.1.

3 Data and Preprocessing Method

We apply the proposed DSS tools to measurements of three major atmospheric vari-
ables: surface temperature, sea level pressure and precipitation. This set of variables
is often used for describing global climate phenomena such as ENSO (Trenberth
and Caron, 2000). The datasets are provided by the reanalysis project of the Na-
tional Centers for Environmental Prediction–National Center for Atmospheric Re-
search (NCEP/NCAR) (Kalnay et al., 1996; NCEP data, 2004).

The data represent globally gridded measurements over a long period of time. The
spatial grid is regularly spaced over the globe with2.5◦×2.5◦ resolution. Although
the quality of the data is worse for the beginning of the reanalysis period and it
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considerably varies throughout the globe, we used the wholeperiod of 1948–2004.
Thus, the data is very high-dimensional: more than 10,000 spatial locations by more
than 20,000 time instances for each of the three data sets.

The main drawback of the reanalysis data is that it is not fully real. The measure-
ments missing in some spatial locations or time instances have been reestimated
based on the available data and approximation models. Yet, the data is as close to
the real measurements as possible and its regularity makes this data particularly
suitable for the source separation methods applied in this work.

To preprocess the data, the long-term mean was removed and the data points were
weighted to diminish the effect of a denser sampling grid around the poles: each
data point was multiplied by a weight proportional to the square root of the cor-
responding area of its location. This produced the originaldata matrixX. The
spatial dimensionality of the data was then reduced using the PCA/EOF analysis
applied to the weighted data. For each dataset, we retained 100 principal compo-
nents. This means that in Eq. (4), the columns ofY have dimension 100, while
those of the originalX are over 10,000 dimensional. Yet the principal components
explain more than90% of the total variance, which is due to the high spatial corre-
lation between nearby points on the global grid. The DSS-based analysis was then
applied to the combined data containing the measurements ofthe three variables.

4 ENSO as Component with Most Prominent Interannual Oscillations

Components with prominent slow behavior can be extracted from the data using
DSS with low-pass or band-pass filtering as denoising. This type of denoising is
linear and therefore the simple algorithm described in Section 2.2.1 is applicable
here. The extracted slow components are ranked according totheir clarity which
is defined as the ratio of the variance of the component filtered in the desired fre-
quency range and the variance of the non-filtered component:

clarity =
var{sf}

var{s}
.

That is, the first component contains the least relative amount of other frequencies
in its power spectrum. The presented algorithm is functionally identical to MNF
(Green et al., 1988) with the noise defined as the spectral components lying outside
the desired frequency range.

In this section, we aim at finding components which exhibit prominent variability in
the interannual timescale. Therefore, the band-pass filterwhose frequency response
is shown in Fig. 3 is used here.

The four most prominent interannual components extracted from the combined data
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Fig. 3. The frequency response of the filter used in DSS with linear denoising for find-
ing components with the most prominent interannual oscillations. The abscissa is linear in
frequency but is labeled in terms of periods, in years.
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Fig. 4. Four components with the most prominent interannualoscillations extracted from
the combined data. Top four: The time course of the leading components found by DSS
(black) and their filtered versions (gray). The non-filteredcomponents are normalized to
unit variance. Bottom two: The Niño 3 SST index (Niño 3 SST,2004) and its derivative
bear similarities to the first and second components respectively.

are shown in Fig. 4. The time course of the first component (upper curve in Fig. 4)
shows striking resemblance with the El Niño index calculated from the sea surface
temperature (SST) in the Niño 3 region (lower curve). The correlation coefficients
between the extracted component and the Niño 3 SST index is 0.9323. Note that
the upper components are extracted from climate data consisting of daily mea-
surements from the whole globe, with the only constraint being the emphasis on
strong interannual oscillations. Also note that the valuesof the Niño 3 SST index
are monthly averages and consequently appear smoother thanthe daily averages of
DSS components.
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Fig. 5. Top four: The spatial patterns of the four leading interannual components extracted
from the combined data. Bottom: The regression coefficientscalculated from the combined
data using the Niño 3 SST index. The maps are weighted by the square root of the clarity
values of the components.

The spatial patterns corresponding to the four leading components are shown1 in
Fig. 5. The first surface temperature map contains many features traditionally as-
sociated with El Niño (Trenberth and Caron, 2000): the strongest pattern in central
and eastern tropical Pacific with broader regions along the eastern Pacific coast, a
negatively correlated ”boomerang”-shaped region at20◦–40◦ latitude in both hemi-
spheres linked in the far western equatorial Pacific, positive values in the Indian
Ocean, and negative values in the North Pacific and around NewZealand.

The corresponding sea level pressure map is similar to the classical Southern Os-
cillation pattern (Trenberth and Caron, 2000): there is a major seesaw structure
in the tropics and subtropics, large pressure departures inthe North Pacific, and a
quadrupole-like structure in the Australasia–South Pacific region. The precipitation
map also contains many features associated with the ENSO phenomenon: the dom-
inant effects are clearly seen throughout the tropical Pacific with maximum values

1 The maps are plotted using the mapping toolbox developed by Pawlowicz (2000).
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in the Niño 3 region. The clear patterns here are the intertropical convergence zone
(ITCZ) and South Pacific convergence zone (SPZC), a “boomerang”-shaped nega-
tively correlated area in mid-latitudal Pacific merged overIndonesia, positive values
in the Indian Ocean and subtropical and tropical Atlantic.

Similar ENSO features are observed from the regression patterns (shown at the
bottom of Fig. 5) calculated using the Niño 3 SST index. Notethat there are some
differences in the extracted maps compared to the regression patterns, for example,
a stronger teleconnection pattern in southern Africa in surface temperature and a
stronger positive center in the South Pacific in sea level pressure.

The second extracted component also appears to be related toENSO and roughly
corresponds to the time derivative of the first component (see Fig. 4). The corre-
sponding precipitation pattern has an interesting localization in the Niño 3 region
and mostly negative loadings in the rest of the tropical and subtropical areas. The
third and the fourth components show weaker oscillations inthe interannual time
scale. Similar components will be discussed in Section 5.1.Table 1 lists the clarity
values of the found components. Since this index is used as the objective function
for extracting the components, the first component always has the largest value in
all conditions.

We also applied the same analysis to the three data sets separately (see Ilin et al.,
2005) and the first extracted component was always a good ENSOindex. Somewhat
surprisingly even the component extracted from sea-level-pressure data resembled
more the Niño 3 SST index than Southern Oscillation Index (SOI) although SOI is
defined in terms of sea level pressure.

Table 1
Clarity values of DSS components and regression componentsobtained from ENSO indices
Niño 3 SST (2004) and SOI (2005).

Comp. 1 0.7484
Comp. 2 0.5105
Comp. 3 0.3376
Comp. 4 0.3014

Niño 3 SST 0.6853
SOI 0.5354

5 Extracting Slow Components with Distinct Power Spectra

5.1 Frequency-based separation of sources

The algorithm described in the previous section is useful for extracting components
which are dominant in a certain frequency range. This requires some knowledge
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about the expected power spectrum of the extracted component in order to use a
proper frequency mask in the denoising filter. In blinder settings, however, this
information does not exist and the frequency masks such as the one presented in
Fig. 3 should be estimated automatically.

In this section, we present an algorithm which can be seen as an extension of the
previous approach. It assumes that different extracted components are dominant in
different frequencies (hence, they have distinct power spectra) and automatically
estimates an individual frequency mask for each component.The adaptation of the
masks is practically implemented using a competition mechanism involving the
smoothed power spectra of the current sources estimates: A mask is increased in
the frequencies where the corresponding component prevails over the other sources
and it is decreased where the corresponding components is dominated by other
sources. The sources are then reestimated using the adaptedfrequency masks.

The corresponding denoising procedure is nonlinear and therefore the iterative pro-
cedure described in Section 2.2.2 is used here. The exact steps of the denoising
functionŜ = f(S) are listed below:

(1) Compute discrete cosine transformSDCT of the sourcesS and retain only
the DCT coefficients important for the source separation. Inthis section, the
separation is done in the low frequencies and therefore the mask from Fig. 6
is applied to the DCT coefficients.

(2) Calculate smoothed DCT power spectraC (by, e.g., low-pass filtering of the
squares ofSDCT) and normalize it in such a way that the average (across
sources) values ofC are same for different frequency bins. This is done to
increase the competition in relatively weak frequencies.

(3) Apply the competition mechanism by partially whiteningC to a degreeα with
a symmetric whitening matrix:

MDCT = VCD
−α/2

C V
T
C C (7)

whereVC is the orthogonal eigenvector matrix of the covariance ofC, andDC

is the diagonal matrix of the corresponding eigenvalues. Whitening is done
without removing the mean ofC. This competition mechanism is somewhat
similar to the whitening-based estimation of the source variances proposed by
Valpola and Särelä (2004).

(4) Calculate denoised sourcesŜ by applying inverse DCT toSDCT masked with
the positive parts ofMDCT.

At the beginning of learning the denoising function also orders the components
according to the mean frequencies in their power spectra. Later, the topographic
idea (similarly to Hyvärinen et al., 2001) is used to relax the competition in the
power spectra of the neighboring sources. Note also that since DCT is a linear
orthogonal transformation, steps 1 and 4 are only required at the beginning and at
the end of learning respectively. Performing step 4 on each iteration is useful for
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Fig. 6. The frequency response of the filter used in the frequency-based separation of slow
climate components. The abscissa is linear in frequency butis labeled in terms of periods,
in years.

tracking the time course of the source estimates during learning.

The presented algorithm essentially performs ICA in the frequency domain. Sim-
ilar frequency-based separation criteria were used by Cichocki and Belouchrani
(2001) and by Gharieb and Cichocki (2003) (see also Cichockiand Amari, 2002).
For example, the algorithm presented by Cichocki and Belouchrani (2001) uses
analogues of the frequency masks which are restricted to a band-pass type. In prac-
tice, solutions produced by the frequency-based ICA algorithms can be similar to
results obtained with other ICA algorithms based on temporal structure such as
SOBI (Belouchrani et al., 1997) or TDSEP (Ziehe and Müller,1998).

5.2 Application on climate data

This section describes how we performed frequency-based separation of climate
components in a wide, slow frequency range (see Fig. 6). First, we applied the
DSS-based analysis described in Section 4 to extract components which exhibit the
most prominent variability in the desired slow time scale. The digital filter from
Fig. 6 was used in this step as linear denoising. This procedure is similar to the
maximum autocorrelation factor transform proposed by Switzer (1985) and linear
slow feature analysis (Wiskott and Sejnowski, 2002). Therefore, we refer to this
step as slow feature analysis (SFA) in the following.

Then, the frequency-based separation algorithm was applied to several leading
components extracted by SFA. We retained only sixteen cleanest components at
this stage as the produced results were easily interpretable for this number of com-
ponents. This procedure roughly identified three subspaces: trends, interannual and
annual oscillations.

Based on the obtained results, we found it possible to improve the representation
within the found subspaces. We used the clarity criterion introduced in Section 4
to order the subspace of trends and applied the frequency-based rotation for the
subspace of interannual oscillations separately. The fullsequence of the undertaken
steps is schematically shown in Fig. 7.
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Fig. 7. The steps undertaken to find slow components with distinct power spectra. The
numbers above arrows indicate the spatial dimensionality of the data. SFA stands for slow
feature analysis described in Section 4 and FBS blocks correspond to frequency-based sep-
aration described in Section 5.1.

5.3 Experimental results

5.3.1 Identifying the subspace of slow climate phenomena

Several cleanest components were first extracted from the highly multidimensional
data. The annual cycle appeared in the two leading components as the cleanest
slow source of climate variability (for depictions of theirtime courses, see Ilin
and Valpola, 2005). The following components also had interesting slow behav-
ior but they appeared to be mixtures of several climate phenomena. For example,
the prominent ENSO oscillations were mixed with trends. Thepower spectra of
many components contained prominent slowest, decadal and close-to-annual fre-
quencies. Except for the two annual cycle sources, none of the components had a
clear dominant peak in its power spectrum.

5.3.2 Frequency-based separation of slow climate phenomena

The first sixteen slow components extracted at the first stagewere further rotated
using frequency-based DSS described in Section 5.1. To discard high-frequency
noise, the monthly averages of the slow components were used. The time course
of the rotated sources is presented in Fig. 8 (for depictionsof spatial patterns cor-
responding to some of the components found after this stage,see Ilin and Valpola,
2005). The rotated components have a clearer interpretation compared to the orig-
inal slow components. The power spectra of the rotated components are more dis-
tinct (see the middle column of Fig. 8). However, some of the power spectra look
quite similar and we can roughly categorize the found sources into three subspaces
with different variability time scales: trends (components 1–5), interannual oscilla-
tions (components 6–11) and components 12–16 with dominating close-to-annual
frequencies in their spectra. The subspaces are identified reliably due to the dis-
tinct differences in the corresponding power spectra but the components within the
subspaces may remain mixed.

The rightmost column of Fig. 8 shows the frequency masks at the final stage of
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Fig. 8. The time course (a) and power spectra (b) of the components obtained after the fre-
quency-based rotation of slow components. (c): The frequency masks at the end of learning.
The abscissa in power spectra and frequency masks is linear in frequency but is labeled in
terms of periods, in years.

learning. The large values of the masks indicate the frequencies in which the corre-
sponding sources are expected to prevail over the other sources.

5.3.3 Rotation of the subspace of trends using the clarity criterion

The first five sources are the slowest trends found in the data.Their power spectra
look very similar, which means that their good separation isnot guaranteed by the
frequency-based criterion. One would naturally require a much longer observation
period in order to distinguish differences in the frequencycontents of the slow-
est climate phenomena. Some other criteria such as the spatial localization of the
components might help separate the trends. However, we do not attempt to achieve
good separation of the trends in this work. We rather structure this subspace using
the clarity criterion explained in Section 4 with the frequency mask shown in Fig. 6.
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subspaces (top sixteen) and different climate indices (last five): EN – Niño 3 SST index
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Niño calculated from the Niño 3 SST index, AO – Arctic Oscillation index (AO, 2005),
mEN – the Niño 3 SST index modulated by annual oscillations.The abscissa in power
spectra is linear in frequency but is labeled in terms of periods, in years.
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Fig. 10. The spatial patterns of the five slowest components 1–5 after the clarity-based
rotation. The maps are weighted by the square root of the clarity values of the corresponding
components.

The time course of the structured (rotated) slowest components together with their
power spectra is shown in Fig. 9. The spatial patterns corresponding to these com-
ponents are shown in Fig. 10. The first component with the constantly increasing
time course is most prominent among these sources. This component may be re-
lated to global warming as the corresponding surface temperature map has mostly
positive values all over the globe. The highest temperatureloadings of this compo-
nent are mainly concentrated around the North and South Poles and the sea level
pressure map has a clear localization around the South Pole.The precipitation load-
ings are mostly located in the tropical regions with negative values over the oceans
and North Africa and with prominent positive values in the Australian-Indonesian
region, near the Peruvian coast and in South Africa. The other extracted trends also
contain interesting patterns both in the time course and in the spatial patterns. They
may be related to climate phenomena oscillating in the multidecadal time scale
such as, for example, the Atlantic Multidecadal Oscillation (Enfield et al., 2001).
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5.3.4 Frequency-based rotation of the subspace of interannual oscillations

The following six components 6–11 exhibit prominent oscillatory behavior in the
interannual time scale. Though their power spectra look quite distinct, we apply the
frequency-based rotation to this subspace separately in order to improve the sep-
aration. This approach can be justified by inspecting the frequency masks shown
in Fig. 8: The masks corresponding to the slowest and close-to-annual frequencies
were naturally large for components 1–5, 12–16 and close to zero for components
6–11. Taking into account these frequencies can be useful for finding a better rep-
resentation within components 6–11.

The time course of the rotated components 6-11 is shown in Fig. 9 and the cor-
responding spatial patterns are presented in Fig. 11. The most prominent sources
here are components 7 and 8 which are obviously related to theENSO oscillations
both in the time course and spatial localization. These components are very sim-
ilar to the first two components with the most prominent interannual oscillations
presented in Section 4 (see Fig. 4-5 for comparison). Component 8 is similar to
the ENSO index and component 7 bears resemblance with the differential ENSO
index (see the bottom of Fig. 9 for their time course). The correlation coefficient of
component 8 is 0.90 for the Niño 3 SST index and -0.67 for SOI.The correlation
coefficient between component 7 and the differential El Niño is 0.40.

Components 6 and 11 resemble the third and fourth componentspresented in Sec-
tion 4. Component 6 may be related to slowly changing aspectsof the ENSO phe-
nomenon as its loadings are mostly localized in the ENSO regions. Component 11
has quite distinct spatial patterns with a prominent temperature dipole in the North-
ern Hemisphere and a dominating sea level pressure dipole somewhat resembling
the North Atlantic Oscillation or Arctic Oscillation patterns. This component may
be related to slowly changing aspects of these phenomena. The correlation coeffi-
cient to the Arctic Oscillation index shown at the bottom of Fig. 9 is 0.42.

The dominant pattern of component 9 is two precipitation centers over the Sahel
area in Africa and over the Chaco plain in South America. Thiscomponent shows
prominent decadal variability but it is difficult to judge whether it corresponds to a
meaningful climate phenomenon.

Component 10 is related to the interactions of ENSO with the annual cycle. The
characteristic spikes happening during El Niño episodes are indicators of this con-
nection. The frequency of these spindles corresponds to thefrequency of the ENSO
signal modulated by the annual oscillations. It is well known that ENSO has dif-
ferent effects depending on the time of the year (Trenberth and Caron, 2000). This
can be modeled by a varying mixing matrixA = A(t) whose columnsai change
throughout the year. The first order approximation yields

ai(t) = ai,1 + ai,2ss(t) + ai,3sc(t) ,
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Fig. 11. The spatial patterns of the interannually oscillating components 6–11 after the
frequency-based rotation within the subspace. The maps areweighted by the square root of
the clarity values of the corresponding components.

whereai,1 are loading vectors of the constant effect,ss(t) andsc(t) are the sine and
cosine components of the annual oscillations andai,2, ai,3 are the loading vectors
of the seasonally changing effects. This is equivalent to having extra components
in the model (see Eq. (3)):

ai(t)si(t) = ai,1si(t) + ai,2si,2(t) + ai,3si,3(t) ,

wheresi,2(t) = ss(t)si(t) andsi,3(t) = sc(t)si(t) are the annual oscillations mod-
ulated (multiplied) by the climate sourcesi(t).

The last row of Fig. 9 shows the El Niño index modulated by theannual frequency.
The phase of the modulating signal was chosen so as to maximize the correlation
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coefficient to component 10 (its value is 0.49). Note the distinctive spikes dur-
ing El Niño episodes. Note also that modulating a signal by asinusoid shifts the
power spectrum of the signal by the frequency of the sinusoid. This yields a power
spectrum such as the one shown in the last row of Fig. 9b. The frequency mask
corresponding to component 10 has a very similar structure (not shown here).

5.3.5 The subspace of seasonal variations

The last set of extracted sources are components 12–16 with prominent close-to-
annual frequencies in their power spectra. The corresponding spatial patterns are
shown in Fig. 12. The dominating components here are the annual oscillations
(components 15–16). The rest of the sources resemble the annual oscillations mod-
ulated (multiplied) by very slow components. Note the characteristic frequency
masks corresponding to these components shown in Fig. 8c. Thus, this set of com-
ponents may be related to some phenomena slowly changing theannual cycle.

Since the power spectra of these components are quite similar, good separation may
not have been achieved here. Some other criteria may be better for finding a more
meaningful representation within this subspace.

6 Discussion and Future Directions

In this paper, we showed how the DSS framework can be tuned to incorporate dif-
ferent separation criteria which proved useful for exploratory analysis of climate
data. We used a clarity criterion to extract components withthe most prominent
interannual oscillations and a frequency-based separation criterion to identify slow
varying climate phenomena with distinct variability time scales. The presented al-
gorithms can be used for both finding a physically meaningfulrepresentation of the
data and for an easier interpretation of the complex climatevariability. The result-
ing components could also be useful for making long-term weather forecasts or for
detecting artifacts produced during the data acquisition.

Several extracted components were clearly related to the ElNiño–Southern Oscilla-
tion phenomenon: components resembling the ENSO index, itsderivative and mod-
ulated ENSO were found. These results suggest that ENSO is a multidimensional
process which cannot be fully described by a single index. The most meaningful
combination of these components may not even exist. In this paper, we showed that
the clarity criterion can give the component closest to the index used to characterize
ENSO in contemporary climatology.

Note that the proposed methods may sometimes identify reliably only the subspaces
of components having similar properties exploited for separation. Then, the found
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Fig. 12. The spatial patterns of components 12–14 with prominent close-to-annual oscilla-
tions (above) and the two annual cycle components 15–16 (below) found with the frequen-
cy-based separation. The maps are weighted by the square root of the clarity values of the
corresponding components.

rotation within the subspaces may not be most meaningful. Some other separa-
tion criteria could be helpful for improving the results. For example, one could try
to separate components based on their distinct spatial localizations (e.g., El Niño
is known to happen in the tropical Pacific) or distinct time structure (different cli-
mate phenomena may be active at different time instances). Such separation criteria
could be used separately or in a combination.

Moreover, as the signals of interest are state variables which have a predictable time
course, an important future line of research will be to modelnonlinear dynamics of
the state variables. In the global climate system, everything depends on everything
else, and a sensible criterion for separation is that the states should have as little
dynamic couplings as possible (cf. this physical independence with statistical inde-
pendence criterion in ICA). A similar separation criterionwas used by Valpola and
Karhunen (2002).

22



Nonlinear effects should also be taken into account becausethey are known to exist
between the state variables. For example, some climate phenomena may affect the
fast variations of the weather conditions in certain spatial locations. Also, the most
prominent phenomenon in the climate system is the annual cycle and it is quite
plausible to assume that climate phenomena may have different effects depending
on the time of the year. Then, the combined effect has a nonlinear component as
we showed in Section 5.3.4 for ENSO. Similar nonlinear effects can be expected to
be present among all state variables and they could be revealed by dynamic loading
matrices.
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25


