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Abstract

We present an example of exploratory data analysis of dimaasurements using a
recently developed denoising source separation (DSS)eframk. We analyzed a com-
bined dataset containing daily measurements of threeblasasurface temperature, sea
level pressure and precipitation around the globe, for @gearf 56 years. Components
exhibiting slow temporal behavior were extracted using 8B linear denoising. The
first component, most prominent in the interannual timeesaaptured the well-known El
Nifilo—Southern Oscillation (ENSO) phenomenon and thermbcomponent was close to
the derivative of the first one. The slow components extthttea wider frequency range
were further rotated using a frequency-based separaii@nion implemented by DSS with
nonlinear denoising. The rotated sources give a meanimgfuesentation of the slow cli-
mate variability as a combination of trends, interannualliagions, the annual cycle and
slowly changing seasonal variations. Again, componefsae to the ENSO phenomenon
emerge very clearly among the found sources.
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1 Introduction

One of the main goals of statistical analysis of climate dste extract physi-
cally meaningful patterns of climate variability from highmultivariate weather
measurements. The classical technique for defining suclndotpatterns is prin-
cipal component analysis (PCA), or empirical orthogonaktions (EOF) as it is
called in climatology (see, e.g., von Storch and Zwiers,9)9Blowever, many re-
searchers have pointed out that the maximum remainingnaieriterion used in
PCA can lead to such problems as mixing different physicahpimena in one ex-
tracted component (Richman, 1986; Kim and Wu, 1999). Thisea&CA a useful
tool for information compression but limits its ability tedlate individual modes
of climate variation.

To overcome this problem, rotation of the principal compuaéas proven useful.
The different rotation criteria reviewed by Richman (1986 based on the general
“simple structure” idea aimed at, for example, spatial ongeral localization of
the rotated components. The rotation of EOFs can be eithigogwnal or oblique,
which potentially leads to better interpretability of theéracted components.

Independent component analysis (ICA) is a recently dewslgpatistical technique
for component extraction which can also be used for rotgimipal components.
The basic assumption made in ICA is the statistical indepeocel of the extracted
components, which may lead to a meaningful data represemtata number of

applications (see, e.g., Hyvarinen et al., 2001, for miction). ICA is based on
higher-order statistics and in this respect bears somdssityito classical rotation

techniques such as the Varimax orthogonal rotation (Richrh@86). Several at-
tempts to apply ICA in climate research have already beererf@ides et al., 2000;

Lotsch et al., 2003).

In this paper, we analyze weather measurements using a extezision of ICA
called denoising source separation (DSS) (Sarela anpolal 2005). DSS is a
general separation framework which does not necessaplpiexhe independence
assumption but rather looks for hidden components whicle liateresting” prop-
erties. The interestingness of the properties is conttde means of a temporal
filtering or denoising procedure.

In the first experiment, we show that the sources with the mpao®ninent inter-
annual oscillations can be identified using DSS with lindgerfng as denoising.
The leading components are clearly related to the well-kmBWNifio—Southern
Oscillation (ENSO) phenomenon.

In the second experiment, we use DSS with linear denoisitigedfirst, preprocess-
ing step of climate data analysis. A wider frequency bandédenoising filter is
used to identify the slow subspace of the climate system.fédted slow com-
ponents are further rotated using an iterative DSS proeedased on nonlinear



denoising. The rotation aims to find components with distoower spectra.

The extracted components turn out to represent the subgpdice slow climate

phenomena as a linear combination of trends, decadakimeal oscillations, the
annual cycle and other phenomena with distinct spectraiects. Using this ap-
proach, the known climate phenomena are identified as nestdispaces of the
climate system and some other interesting phenomena hiddea weather mea-
surements are found.

The contents of this paper is as follows: in the next secti@explain the modeling
assumptions of the source separation methods and preskattargroduction to

DSS. Section 3 describes the climate measurements useel @xpleriments. Sec-
tion 4 explains how DSS is tuned to extract components wighntlost prominent
interannual oscillations and present the experimentaltegvhich were partly re-
ported by llin et al., 2005). In Section 5, we give the degaripof the frequency-

based separation algorithm implemented in the DSS franmeamd report the cli-

mate phenomena found with this method. Preliminary resiltsis analysis were
published in a conference paper by Ilin and Valpola (200&)ally, we discuss the
results and possible future directions in Section 6.

2 Source Separation Methods
2.1 Blind source separation and independent component analysis

The basic modeling assumption of linear source separatethads is that there
are some hidden component signals or time sefie$ (also called sources, factors
or latent variables) which are linearly combined into thdtmariate measurements

;(t):
N
ij(t) = zaﬂsi(t), j = 1, ,N (1)

The indexj runs over the measurement sensors (typically spatialitotat and
discretized time runs over the observation period= 1, ..., 7. This can be ex-
pressed in matrix formulation by denoting the matrix of alkagons by X, where
the sensor index denotes the rows and the time indedenotes the columns. The
matrix of sources$ is defined likewise, and the coefficients of the linear com-
binations make up a matriX. Using these matrices, (1) becomes

X = AS. )



If we denote the columns of matriX by a; and the columns of matriX by x(¢),
then (2) can be further written as

x(t) = Y asi(t). (3)

The mappingA is called the mixing matrix in the ICA terminology or the loag
matrix in the context of PCA. In climate data analysis, thegiseries; (¢) usually
correspond to the time-varying states of the climate syséeahthe loading vectors
a; are the spatial maps showing the typical weather pattemesqmonding to the
components.

The goal of the analysis is to estimate the unknown compsngft) and the cor-
responding loading vectoes from the observed datX . With minimum a priori
assumptions about the sources, the problem is called unds separation (BSS).

Independent component analysis (ICA) is a popular methosbbfing the BSS
problem. In ICA, the only assumption is the statistical ipeledence of the sources:
eachs;(t) is regarded as a sample from a random variaflend these variables are
mutually independent. There are a large variety of algorgfor solving the mixing
matrix A and the sources (Hyvarinen et al., 2001; Cichocki and An2002).
One of the most popular methods is the FastICA algorithm.iftlependence of
the sources is measured by their mutual information whishilte in a minimum
entropy criterion. In practice the separation is achiewerbbating the observations
into directions that are as non-Gaussian as possible (fheraet al., 2001).

2.2 Denoising source separation

ICA is a powerful tool for exploratory data analysis, wheméttle is known
about the underlying source processgs). Independence is the only assumption.
Sometimes however, such prior information exists, sucthasggeneral shape of
the time curves or their frequency contents. For exampléhenclimate data we
might be interested in some phenomena that would be cycicaeertain period,
or exhibit slow changes. It would be very useful if such phkoowledge could
be incorporated into the separation algorithm directlyplgiting prior knowledge
about the sources may significantly help in finding a goodesgmtation of the
data, and fully blind algorithms are not the best choice.

This kind of problem setting, with some prior knowledge #aalie, is called semi-
blind. One of the methods for solving it is a recently introdd method called
denoising source separation (Sarela and Valpola, 2005).

DSS is a general algorithmic framework which can identifg thodel in Eg. (1)



exploiting prior knowledge about its unknowns. In DSS, teipendence criterion
of ICA is replaced by the assumption that the sources shqudd tincorrelated and
2) maximize some desired properties (e.g., non-Gausgjatiivness etc). In this
respect, DSS can be seen as an extension of ICA without ticeisttependence
assumption.

The first requirement is assured in DSS by using a preproagstp called whiten-
ing or sphering. The goal of whitening is to make the covamastructure of the
data uniform in such a way that any linear projection of thead®as unit vari-

ance. The positive effect of such a transformation is thgt@thogonal basis in
the whitened space defines uncorrelated sources. Therefbitening is used as
a preprocessing step in many ICA algorithms, which allovesrigting the mixing

matrix to be orthogonal afterwards.

Whitening is usually implemented by PCA. Assuming that tlemsurements; (¢)
have been normalized to zero mean, the matrix of sphered¥d@aalculated as

Y =D '2VTX, (4)

whereD is the diagonal matrix of eigenvalues of the data covariana#ix, de-
fined as%XXT. The columns of matriXvV are the corresponding eigenvectors.
The dimensionality of the data can also be reduced at thie gig retaining only
the principal components corresponding to the largestngajaes inD. It is easy
to show that it now holds th#YYT = I. Matrix Y is not unique, though; any
orthogonal rotation of its columns produces a matrix the &las unit covariance.

The rotational ambiguity of the whitened data matrix is fixisthg the second DSS
requirement, which implements the source separatiorricnitel his requirement is
usually introduced in the algorithm in the form oflenoising function. The purpose
of denoising is to emphasize the desired properties in threrusource estimates,
which assures gradual maximization of these properties.

2.21 Linear denoising

In the simplest case, the denoising function can be implésadry a linear tempo-
ral filter, operating on the rows of matri and giving another matrik(Y') = Y'F
with F' the filtering matrix. Denoising renders the variances ofgpkered com-
ponents different: the covariance matrixfgd”) equals: Y FF”Y” which is no
more equal to the unit matrix. Now PCA can identify the dir@e$ which maxi-
mize the properties of interest. The eigenvalues obtaired PCA give the ratio of
the variances of the sources after and before filtering wisithe objective func-
tion of DSS with linear denoising. The components are rard@mbrding to the
prominence of the desired properties the same way as tha@galtomponents in
PCA are ranked according to the amount of variance they explae separation
thus consists of three steps: whitening, linear denoiditigr{ng) and PCA on the
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Fig. 1. The steps of the DSS algorithm in case of linear dampis

denoised data, as shown in Fig. 1.

The DSS algorithms implemented by linear denoising op&ntiee same type of
cost function as the maximum noise fraction (MNF) transfamoposed by Green
et al. (1988). However, in DSS framework the computatiomsstructured such
that it is easier to generalize the method for nonlinear chemg.

2.2.2 Nonlinear denoising

More complex separation criteria usually require nonlirgenoising (see Sarela
and Valpola, 2005; Valpola and Sarela, 2004, for severatgples). Then, DSS re-
quires an algorithm presented in Fig. 2. Here, whiteningli®ved by an iterative
procedure with three successive steps:

(1) source estimation using the current estimate of the xiagpmatrix W':
S=WY;

(2) applying the denoising function to the source estimates

~

S =1(S);
(3) reestimation of the demixing matrix
T ’\T
W' =orth(YS ).

The iterations continue until the source estimates do namgé. In Step 3rth(.)

. .o . . ~T
is an operator giving the orthogonal projection of the nxa¥iS  onto the set of
orthogonal matrices.

Without denoising, this procedure is equivalent to the pomethod for com-
puting the principal components &f, because then Steps 1 and 3 giie’ =
orth(YYTW7). SinceY is white, all the eigenvalues are equal and the solution
without denoising becomes degenerate. Therefore, evgnesit changes made by
denoising can determine the DSS rotation. Since the dewpmocedure empha-
sizes the desired properties of the sources, DSS can fincbtaton where the
properties of interest are maximized.

In case of nonlinear denoising, the DSS objective functouisually expressed
implicitly in the denoising function. Therefore, rankingetcomponents according
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Fig. 2. The steps of the DSS algorithm in the general caserdfnear denoising.

to the prominence of the desired properties is more diffiantd depends on the
exact separation criterion used in the denoising procedure

In the applications, we are interested not only in the saufo@vs of matrixS),
but also in the matripA in EQ. (2). Thei-th column ofA is a spatial map showing
how the effect of the-th source is distributed over the sensor array. Notingithat
DSS it holdsS = WY, we obtain from Egs. (2) and (4)

X =AS=AWY = AWD /?2VTX (5)
ThusA should be chosen as the (pseudo)inversBdd >V which is
A =VD"2wWT. (6)

Since the extracted componegjé&) are normalized to unit variances, the columns
of A have a meaningful scale.

Note that the signs of the extracted components cannot gignee determined

by DSS, which is a well-known property of the classical ICAlpem. DSS with

nonlinear denoising can determine the sign if the signabissymmetric. More

details about the DSS method, including rigorous derivatiand analysis were
reported by Sarela and Valpola (2005).

2.3 Extracting sources of climate variability

2.3.1 ICAinclimate data analysis

Climate is a very complex system where different phenomemnatantly interact
with each other. For example, the annual cycle naturallycsdfother climate pro-
cesses, the El Nifio effect has great impact on global wedahiealso tends to
phase-lock with the annual cycle, and so on. Therefore, Xfstemce of any truly
independent climate phenomena is an implausible assumptio

ICA can still be a useful tool for climate data representapooviding, for exam-
ple, temporally or spatially localized components. Seveasearchers have shown



that ICA can extract meaningful components from climatewedther data (Aires
etal., 2000; Lotsch et al., 2003; Basak et al., 2004). Howelee to a great amount
of noise in climate data, naive ICA can often produce oveditsolutions (see
Hyvarinen et al., 1999; Sarela and Vigario, 2003, facdission of this problem)
and one would require a very long observation period in or@énd a meaningful
ICA solution.

2.3.2 Tuning DSSfor climate data analysis

DSS is a much more flexible tool as one can choose the sepatatierion that
gives the most meaningful or interpretable representatidhe data. In this work,
we search for physically meaningful states of the climastesy which would pos-
sessslow behavior. The slowness of the components assures their larger &ng-t
effect on global weather and possibly facilitates makingdpstions of their future
development. By physically meaningful states we mean soahponents whose
dynamics are as weakly coupled as possible. Climate phemwmi¢h distinct time
scales of their variability (e.g., the annual cycle, El disouthern Oscillation or
slow climate trends) would intuitively be such components.

First, we concentrate on finding components which exhilmtpnent variability in
the slow timescale. In Section 4, we show how DSS can be tunegttact such
components based on a criterion that we term clarity. This@grh can be useful
for identifying the subspace of slow phenomena and somstitmen also find a
meaningful representation within the found subspace. Kewé does not gener-
ally provide a good separation criterion, which may lead tatames of different
climate phenomena still existing in any one component. dfloee, we propose a
more complex DSS-based algorithm which tries to separate cimate compo-
nents based on their frequency contents. The expositidnoélgorithm is done in
Section 5.1.

3 Dataand Preprocessing Method

We apply the proposed DSS tools to measurements of three atajospheric vari-
ables: surface temperature, sea level pressure and patioipi This set of variables
is often used for describing global climate phenomena ssdBNSO (Trenberth
and Caron, 2000). The datasets are provided by the reanagggect of the Na-
tional Centers for Environmental Prediction—National éefior Atmospheric Re-
search (NCEP/NCAR) (Kalnay et al., 1996; NCEP data, 2004).

The data represent globally gridded measurements ovegelemod of time. The
spatial grid is regularly spaced over the globe Wit x 2.5° resolution. Although
the quality of the data is worse for the beginning of the rées period and it



considerably varies throughout the globe, we used the wieried of 1948-2004.
Thus, the data is very high-dimensional: more than 10,0@60apocations by more
than 20,000 time instances for each of the three data sets.

The main drawback of the reanalysis data is that it is noy ftdbl. The measure-
ments missing in some spatial locations or time instances baen reestimated
based on the available data and approximation models.hetdta is as close to
the real measurements as possible and its regularity mhalkeddta particularly

suitable for the source separation methods applied in tr&.w

To preprocess the data, the long-term mean was removed amth points were
weighted to diminish the effect of a denser sampling griduatbthe poles: each
data point was multiplied by a weight proportional to the aguroot of the cor-
responding area of its location. This produced the origdwth matrixX. The
spatial dimensionality of the data was then reduced usiag?tBA/EOF analysis
applied to the weighted data. For each dataset, we reta@@grincipal compo-
nents. This means that in Eq. (4), the columnsyohave dimension 100, while
those of the originaX are over 10,000 dimensional. Yet the principal components
explain more than0% of the total variance, which is due to the high spatial corre-
lation between nearby points on the global grid. The DS®damalysis was then
applied to the combined data containing the measuremethg dfiree variables.

4 ENSO as Component with Most Prominent Interannual Oscillations

Components with prominent slow behavior can be extracteah fthe data using
DSS with low-pass or band-pass filtering as denoising. Tips bf denoising is
linear and therefore the simple algorithm described iniBe@.2.1 is applicable
here. The extracted slow components are ranked accorditigeitoclarity which
is defined as the ratio of the variance of the component fdter¢he desired fre-
guency range and the variance of the non-filtered component:

var{sy}

clarity = var{s}

That is, the first component contains the least relative arhoiuother frequencies
in its power spectrum. The presented algorithm is functigndentical to MNF
(Green et al., 1988) with the noise defined as the spectrgbonents lying outside
the desired frequency range.

In this section, we aim at finding components which exhilmipinent variability in
the interannual timescale. Therefore, the band-passwiliese frequency response
is shown in Fig. 3 is used here.

The four most prominent interannual components extracted the combined data
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Fig. 3. The frequency response of the filter used in DSS witkai denoising for find-
ing components with the most prominent interannual oditila. The abscissa is linear in
frequency but is labeled in terms of periods, in years.
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Fig. 4. Four components with the most prominent interanosalllations extracted from

the combined data. Top four: The time course of the leadingpoments found by DSS

(black) and their filtered versions (gray). The non-filtemanponents are normalized to
unit variance. Bottom two: The Nifio 3 SST index (Nifio 3 SQU04) and its derivative

bear similarities to the first and second components reispbct

are shown in Fig. 4. The time course of the first componentdupprve in Fig. 4)
shows striking resemblance with the El Nifio index caledarom the sea surface
temperature (SST) in the Nifio 3 region (lower curve). Thealation coefficients
between the extracted component and the Nifio 3 SST inde®828. Note that
the upper components are extracted from climate data d¢omngisf daily mea-
surements from the whole globe, with the only constrainhpehe emphasis on
strong interannual oscillations. Also note that the valofethe Nifio 3 SST index
are monthly averages and consequently appear smoothdahthdaily averages of
DSS components.
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Fig. 5. Top four: The spatial patterns of the four leadingiahnual components extracted
from the combined data. Bottom: The regression coefficiealtsulated from the combined
data using the Nifio 3 SST index. The maps are weighted bygirs root of the clarity
values of the components.

The spatial patterns corresponding to the four leading comapts are shownin
Fig. 5. The first surface temperature map contains many riestuaditionally as-
sociated with El Nifio (Trenberth and Caron, 2000): thergjest pattern in central
and eastern tropical Pacific with broader regions along #iséeen Pacific coast, a
negatively correlated "boomerang”-shaped regio20at40° latitude in both hemi-
spheres linked in the far western equatorial Pacific, p@sitalues in the Indian
Ocean, and negative values in the North Pacific and around2éesand.

The corresponding sea level pressure map is similar to #ssiclal Southern Os-
cillation pattern (Trenberth and Caron, 2000): there is gomseesaw structure
in the tropics and subtropics, large pressure departurgmiilorth Pacific, and a
qguadrupole-like structure in the Australasia—South Rafjion. The precipitation
map also contains many features associated with the ENS@ptenon: the dom-
inant effects are clearly seen throughout the tropicalfleagith maximum values

I The maps are plotted using the mapping toolbox developedibyaicz (2000).
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in the Niflo 3 region. The clear patterns here are the imgital convergence zone
(ITCZ) and South Pacific convergence zone (SPZC), a “boamgérshaped nega-
tively correlated area in mid-latitudal Pacific merged dmelonesia, positive values
in the Indian Ocean and subtropical and tropical Atlantic.

Similar ENSO features are observed from the regressiommpati{shown at the
bottom of Fig. 5) calculated using the Nifio 3 SST index. Nbtd there are some
differences in the extracted maps compared to the regrepaiterns, for example,
a stronger teleconnection pattern in southern Africa ifiesar temperature and a
stronger positive center in the South Pacific in sea leveigune.

The second extracted component also appears to be relai&dSIO and roughly

corresponds to the time derivative of the first componerd {5g. 4). The corre-

sponding precipitation pattern has an interesting loatibn in the Nifio 3 region

and mostly negative loadings in the rest of the tropical aratrepical areas. The
third and the fourth components show weaker oscillatiorthéninterannual time
scale. Similar components will be discussed in SectionTalile 1 lists the clarity

values of the found components. Since this index is usedeashijective function

for extracting the components, the first component alwagstia largest value in
all conditions.

We also applied the same analysis to the three data setatdpdsee Ilin et al.,
2005) and the first extracted component was always a good ENtE®. Somewhat
surprisingly even the component extracted from sea-Ilpxetsure data resembled
more the Nifio 3 SST index than Southern Oscillation Inde&xlj&lthough SOl is
defined in terms of sea level pressure.

Table 1

Clarity values of DSS components and regression componbtased from ENSO indices
Nifio 3 SST (2004) and SOI (2005).

Comp. 1 0.7484
Comp. 2 0.5105
Comp. 3 0.3376
Comp. 4 0.3014
Nifio 3 SST 0.6853
SOl 0.5354

5 Extracting Slow Components with Distinct Power Spectra

5.1 Frequency-based separation of sources

The algorithm described in the previous section is usefubktracting components
which are dominant in a certain frequency range. This regusome knowledge

12



about the expected power spectrum of the extracted componender to use a
proper frequency mask in the denoising filter. In blindetisgs, however, this
information does not exist and the frequency masks sucheasrtb presented in
Fig. 3 should be estimated automatically.

In this section, we present an algorithm which can be seem agtansion of the
previous approach. It assumes that different extractegoooents are dominant in
different frequencies (hence, they have distinct powectsgaeand automatically
estimates an individual frequency mask for each compoféetadaptation of the
masks is practically implemented using a competition med&ma involving the
smoothed power spectra of the current sources estimatesask i increased in
the frequencies where the corresponding component psexah the other sources
and it is decreased where the corresponding componentsrighdied by other
sources. The sources are then reestimated using the adisgafeency masks.

The corresponding denoising procedure is nonlinear andfibre the iterative pro-
cedure described in Section 2.2.2 is used here. The exax stethe denoising
function S = f(.S) are listed below:

(1) Compute discrete cosine transfoiapcr of the sourcesS and retain only
the DCT coefficients important for the source separatiorhis section, the
separation is done in the low frequencies and therefore eekiimom Fig. 6
is applied to the DCT coefficients.

(2) Calculate smoothed DCT power spediréby, e.g., low-pass filtering of the

squares ofSpct) and normalize it in such a way that the average (across

sources) values af are same for different frequency bins. This is done to
increase the competition in relatively weak frequencies.

(3) Apply the competition mechanism by partially whitentgp a degreer with
a symmetric whitening matrix:

Mpcr = VeDy*?VEie 7)

whereV¢ is the orthogonal eigenvector matrix of the covariancé,&ndD.
is the diagonal matrix of the corresponding eigenvaluesit&iing is done
without removing the mean af. This competition mechanism is somewhat
similar to the whitening-based estimation of the sourcewvaes proposed by
Valpola and Sarela (2004).

(4) Calculate denoised sourc8y applying inverse DCT t&pcr masked with
the positive parts oMpcr.

At the beginning of learning the denoising function alsoersdthe components
according to the mean frequencies in their power spectrierLéne topographic
idea (similarly to Hyvarinen et al., 2001) is used to relag tompetition in the
power spectra of the neighboring sources. Note also thae dDCT is a linear
orthogonal transformation, steps 1 and 4 are only requiréaesbeginning and at
the end of learning respectively. Performing step 4 on eteshtion is useful for

13



1 J
0.5 \ 1
0

10 3 2 1 12 13

Fig. 6. The frequency response of the filter used in the freqidased separation of slow
climate components. The abscissa is linear in frequencisbabeled in terms of periods,
in years.

tracking the time course of the source estimates duringilegyr

The presented algorithm essentially performs ICA in thgdency domain. Sim-
ilar frequency-based separation criteria were used bydckihand Belouchrani
(2001) and by Gharieb and Cichocki (2003) (see also Cichaxx#iAmari, 2002).
For example, the algorithm presented by Cichocki and Bdimama (2001) uses
analogues of the frequency masks which are restricted ta@pass type. In prac-
tice, solutions produced by the frequency-based ICA dligors can be similar to
results obtained with other ICA algorithms based on tempsiracture such as
SOBI (Belouchrani et al., 1997) or TDSEP (Ziehe and Mull&98).

5.2 Application on climate data

This section describes how we performed frequency-bagearatton of climate
components in a wide, slow frequency range (see Fig. 6)t, kirs applied the
DSS-based analysis described in Section 4 to extract coemp®which exhibit the
most prominent variability in the desired slow time scalbeTigital filter from

Fig. 6 was used in this step as linear denoising. This praeedusimilar to the
maximum autocorrelation factor transform proposed by &wi{1985) and linear
slow feature analysis (Wiskott and Sejnowski, 2002). Tfuees we refer to this
step as slow feature analysis (SFA) in the following.

Then, the frequency-based separation algorithm was abpdieseveral leading
components extracted by SFA. We retained only sixteen ekdatbmponents at
this stage as the produced results were easily interpestabthis number of com-
ponents. This procedure roughly identified three subspé&essls, interannual and
annual oscillations.

Based on the obtained results, we found it possible to imgtbe representation
within the found subspaces. We used the clarity criteridroduced in Section 4
to order the subspace of trends and applied the frequersgdb@tation for the
subspace of interannual oscillations separately. Theégjlence of the undertaken
steps is schematically shown in Fig. 7.

14
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Fig. 7. The steps undertaken to find slow components withindispower spectra. The
numbers above arrows indicate the spatial dimensiondiitijeodata. SFA stands for slow
feature analysis described in Section 4 and FBS blockssjuorel to frequency-based sep-
aration described in Section 5.1.

5.3 Experimental results

5.3.1 Identifying the subspace of slow climate phenomena

Several cleanest components were first extracted from gidyhinultidimensional
data. The annual cycle appeared in the two leading comps@nthe cleanest
slow source of climate variability (for depictions of theéime courses, see llin
and Valpola, 2005). The following components also had estng slow behav-
ior but they appeared to be mixtures of several climate pimema. For example,
the prominent ENSO oscillations were mixed with trends. pbeer spectra of
many components contained prominent slowest, decadal lagd-to-annual fre-
guencies. Except for the two annual cycle sources, noneeotdimponents had a
clear dominant peak in its power spectrum.

5.3.2 Fregquency-based separation of slow climate phenomena

The first sixteen slow components extracted at the first stage further rotated
using frequency-based DSS described in Section 5.1. Tamidugh-frequency
noise, the monthly averages of the slow components were tUi$edtime course
of the rotated sources is presented in Fig. 8 (for depictidrspatial patterns cor-
responding to some of the components found after this st&gellin and Valpola,
2005). The rotated components have a clearer interpretatimpared to the orig-
inal slow components. The power spectra of the rotated coemts are more dis-
tinct (see the middle column of Fig. 8). However, some of tbevgr spectra look
quite similar and we can roughly categorize the found sauird® three subspaces
with different variability time scales: trends (comporei+5), interannual oscilla-
tions (components 6—-11) and components 12—16 with domipatose-to-annual
frequencies in their spectra. The subspaces are identdlebly due to the dis-
tinct differences in the corresponding power spectra eitimponents within the
subspaces may remain mixed.

The rightmost column of Fig. 8 shows the frequency masksafittal stage of
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learning. The large values of the masks indicate the fregjasrin which the corre-
sponding sources are expected to prevail over the othecesur

5.3.3 Rotation of the subspace of trends using the clarity criterion

The first five sources are the slowest trends found in the d@atir power spectra
look very similar, which means that their good separatiomisguaranteed by the
frequency-based criterion. One would naturally requireuaimionger observation
period in order to distinguish differences in the frequenoyntents of the slow-

est climate phenomena. Some other criteria such as thalsjoathlization of the

components might help separate the trends. However, wetdtdtempt to achieve
good separation of the trends in this work. We rather stredhis subspace using
the clarity criterion explained in Section 4 with the freqag mask shown in Fig. 6.
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Fig. 10. The spatial patterns of the five slowest componenEsdfter the clarity-based
rotation. The maps are weighted by the square root of thiyclelues of the corresponding
components.

The time course of the structured (rotated) slowest compisrtegether with their
power spectra is shown in Fig. 9. The spatial patterns qooreding to these com-
ponents are shown in Fig. 10. The first component with theteotly increasing
time course is most prominent among these sources. Thisawnp may be re-
lated to global warming as the corresponding surface teatyper map has mostly
positive values all over the globe. The highest temperdtagings of this compo-
nent are mainly concentrated around the North and Soutrs Roleé the sea level
pressure map has a clear localization around the South Haerecipitation load-
ings are mostly located in the tropical regions with negati@lues over the oceans
and North Africa and with prominent positive values in thesfalian-Indonesian
region, near the Peruvian coast and in South Africa. Ther @teacted trends also
contain interesting patterns both in the time course ankdrspatial patterns. They
may be related to climate phenomena oscillating in the ohedthdal time scale
such as, for example, the Atlantic Multidecadal Oscillat{&nfield et al., 2001).
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5.3.4 Frequency-based rotation of the subspace of interannual oscillations

The following six components 6—11 exhibit prominent ostdry behavior in the
interannual time scale. Though their power spectra lootegiistinct, we apply the
frequency-based rotation to this subspace separatelyder 6o improve the sep-
aration. This approach can be justified by inspecting thguieacy masks shown
in Fig. 8: The masks corresponding to the slowest and closahual frequencies
were naturally large for components 1-5, 12—-16 and closer for components
6—11. Taking into account these frequencies can be useftihfting a better rep-
resentation within components 6-11.

The time course of the rotated components 6-11 is shown ingand the cor-

responding spatial patterns are presented in Fig. 11. Tre# prominent sources
here are components 7 and 8 which are obviously related #&NXS8O oscillations

both in the time course and spatial localization. These @orapts are very sim-
ilar to the first two components with the most prominent iaterual oscillations
presented in Section 4 (see Fig. 4-5 for comparison). Coenpod is similar to

the ENSO index and component 7 bears resemblance with tleeedifial ENSO

index (see the bottom of Fig. 9 for their time course). Theaation coefficient of

component 8 is 0.90 for the Nifilo 3 SST index and -0.67 for @& correlation

coefficient between component 7 and the differential EIN&10.40.

Components 6 and 11 resemble the third and fourth compopesgented in Sec-
tion 4. Component 6 may be related to slowly changing aspédtee ENSO phe-

nomenon as its loadings are mostly localized in the ENSQnagiComponent 11
has quite distinct spatial patterns with a prominent teraoee dipole in the North-
ern Hemisphere and a dominating sea level pressure dipoievgoat resembling
the North Atlantic Oscillation or Arctic Oscillation pattes. This component may
be related to slowly changing aspects of these phenomeacdrrelation coeffi-

cient to the Arctic Oscillation index shown at the bottom af.P is 0.42.

The dominant pattern of component 9 is two precipitationteenover the Sahel
area in Africa and over the Chaco plain in South America. Thimponent shows
prominent decadal variability but it is difficult to judge efer it corresponds to a
meaningful climate phenomenon.

Component 10 is related to the interactions of ENSO with threual cycle. The
characteristic spikes happening during El Nifio episodesmalicators of this con-
nection. The frequency of these spindles corresponds foefeency of the ENSO
signal modulated by the annual oscillations. It is well kinatvat ENSO has dif-
ferent effects depending on the time of the year (TrenberthGaron, 2000). This
can be modeled by a varying mixing matx = A (¢) whose columns; change

throughout the year. The first order approximation yields

a;(t) = a;1 + a;25:(t) + a;35.(1),
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Fig. 11. The spatial patterns of the interannually osdiliaptcomponents 6-11 after the
frequency-based rotation within the subspace. The mapseighted by the square root of
the clarity values of the corresponding components.

wherea; ; are loading vectors of the constant effegtz) ands.(t) are the sine and
cosine components of the annual oscillations apg a; ; are the loading vectors
of the seasonally changing effects. This is equivalent tongaextra components
in the model (see Eg. (3)):

a;(t)s;(t) = a;15:(t) + a; 28, 2(t) + a; 35:3(t)

wheres; o(t) = ss(t)s;(t) ands; 3(t) = s.(t)s;(t) are the annual oscillations mod-
ulated (multiplied) by the climate souregt).

The last row of Fig. 9 shows the EIl Nifio index modulated byaheual frequency.
The phase of the modulating signal was chosen so as to maxthmezcorrelation
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coefficient to component 10 (its value is 0.49). Note theinlisive spikes dur-
ing El Nifio episodes. Note also that modulating a signal lsynasoid shifts the
power spectrum of the signal by the frequency of the sinugdic yields a power
spectrum such as the one shown in the last row of Fig. 9b. Teguéncy mask
corresponding to component 10 has a very similar structweshown here).

5.3.5 The subspace of seasonal variations

The last set of extracted sources are components 12—16 withient close-to-

annual frequencies in their power spectra. The correspgnspatial patterns are
shown in Fig. 12. The dominating components here are theahroscillations

(components 15-16). The rest of the sources resemble thkwstillations mod-

ulated (multiplied) by very slow components. Note the chtastic frequency

masks corresponding to these components shown in Fig. 8s, Tiis set of com-
ponents may be related to some phenomena slowly changiragthel cycle.

Since the power spectra of these components are quite sigolad separation may
not have been achieved here. Some other criteria may be fwttending a more
meaningful representation within this subspace.

6 Discussion and Future Directions

In this paper, we showed how the DSS framework can be tunedtwporate dif-
ferent separation criteria which proved useful for expiomna analysis of climate
data. We used a clarity criterion to extract components tighmost prominent
interannual oscillations and a frequency-based separatiterion to identify slow
varying climate phenomena with distinct variability timeates. The presented al-
gorithms can be used for both finding a physically meaningfpiesentation of the
data and for an easier interpretation of the complex clinaat&bility. The result-
ing components could also be useful for making long-termthereforecasts or for
detecting artifacts produced during the data acquisition.

Several extracted components were clearly related to thN&e-Southern Oscilla-
tion phenomenon: components resembling the ENSO indedeiitgative and mod-
ulated ENSO were found. These results suggest that ENSO idtalimensional
process which cannot be fully described by a single index. Mlost meaningful
combination of these components may not even exist. In #pep we showed that
the clarity criterion can give the component closest totidex used to characterize
ENSO in contemporary climatology.

Note that the proposed methods may sometimes identifyolglcanly the subspaces
of components having similar properties exploited for sapp@n. Then, the found
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Fig. 12. The spatial patterns of components 12—14 with pnenticlose-to-annual oscilla-
tions (above) and the two annual cycle components 15-16Whébund with the frequen-
cy-based separation. The maps are weighted by the squdreftbe clarity values of the
corresponding components.

rotation within the subspaces may not be most meaningfuheSother separa-
tion criteria could be helpful for improving the results.riexample, one could try
to separate components based on their distinct spatididatans (e.g., El Nifio
is known to happen in the tropical Pacific) or distinct timeusture (different cli-
mate phenomena may be active at different time instancesh Sparation criteria
could be used separately or in a combination.

Moreover, as the signals of interest are state variableshwiave a predictable time
course, an important future line of research will be to maeaeillinear dynamics of
the state variables. In the global climate system, evargtdepends on everything
else, and a sensible criterion for separation is that thesthould have as little
dynamic couplings as possible (cf. this physical indepandevith statistical inde-
pendence criterion in ICA). A similar separation criterivas used by Valpola and
Karhunen (2002).
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Nonlinear effects should also be taken into account bedheyeare known to exist
between the state variables. For example, some climateopiema may affect the
fast variations of the weather conditions in certain spai@ations. Also, the most
prominent phenomenon in the climate system is the annud @ it is quite
plausible to assume that climate phenomena may have diffefiects depending
on the time of the year. Then, the combined effect has a neslinomponent as
we showed in Section 5.3.4 for ENSO. Similar nonlinear é¢ffean be expected to
be present among all state variables and they could be egl/bgldynamic loading
matrices.
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