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Abstract—In this work, reconstructions of historical global
sea surface temperatures (SST) are performed using Bayesia
principal component analysis (PCA). Two PCA models are
examined: a model with isotropic noise and a model which
takes into account data uncertainty due to sampling errors.
Inference is done by variational Bayesian learning. The métods
are compared with a more traditional technique, reduced
space optimal interpolation (RSOI), that is currently usedin
producing standard historical SST analyses. New methods we
applied to the MOHSSTS5, an observational data set for 1856—
1991 period from the United Kingdom Meteorological Office,
that was used in a previously published application of the
RSOI. Data uncertainty specification was also identical to hie
one used in that RSOI application, hence the performances
of all reconstructions are directly comparable. Reconstration
results for 1982—-1991 period are tested via their compariso
with the NOAA monthly 1° Ol (version 2) that blends in situ
observations with the much better sampled satellite data. Bw
reconstructions slightly outperform the published RSOI recon-
struction in this test and suggest that further improvemenst are
possible.

I. INTRODUCTION

estimation ([1], [2], [4], [6]) is now a central element in
all globally complete analyses of historical SST that are
currently in wide use, that is United Kingdom (U.K.) Hadley
Centre sea ice and SST data set, version 1 (HadISST1 [5])
and United States National Climate Data Center (NCDC)
Extended Reconstructed SST data set (ERSST, version 2 [7]
and version 3 [8]). HadISST1 [5] uses reduced space optimal
interpolation (RSOI) [3] for their reduced space estimatio
step, and ERSST products ([7], [8]) use a somewhat different
version of a reduced space analysis [6]. Systematic compari
son of these approaches for a common set of inputs has never
been performed and is in plans for near future [9].

The starting point of any version of the reduced space
analysis is to find a low-dimensional vector space in which
target climate fields can be accurately approximated. RSOI
[2] uses empirical orthogonal functions (EOFs) found by
principal component analysis (PCA). PCA is performed
by eigen-decomposition of the data covariance matrix es-
timated from available measurements. Hereinafter term EOF
is reserved for spatial patterns found in the PCA analysis,

One of the most significant problems in contemporarwhile principal component (PC) refers to an amplitude time

climatology is to evaluate recent climate trends in the exint
of longer climate variability. Therefore, studies of camntal

series corresponding to an individual EOF. All PCs have
variance one and are uncorrelated with each other. Since

and decadal variability of global surface temperaturesshaEOFs capture correlations between measurements in differe
acquired great importance. These studies are complicateplatial locations, they can be used to compute reconsinscti
by scarce coverage and often poor quality of historical clin places of missing data.

matological measurements. Relatively complete obsensti

The reduced space method developed in [2] for SST

of global ocean temperatures became possible only afterconstruction also used the following assumptions: (&) th
1981, with the advent of satellite measurements. Prior target variable (SST) is characterized by long-range abati
this period most of ocean surface observations were egttactand temporal correlations; (2) even though the quality of
from ship logs. In pre-satellite era, the period after 1950 imeasurements can vary considerably due to sampling errors,
characterized by systematically more abundant obsengticthe variance of these errors can be roughly estimated
and more complete spatial coverage than earlier periodwiori. In [3], the method was applied to a global historical

Buoy observations constitute a significant portion of thalto

SST data set of in situ measurements (satellite-based data

in situ (buoy and ship) measurements taken in the post-19p€oducts were used later for verification of these analyses)

period.

The procedure was as follows:

Since sea surface temperature (SST) is one of the mostl) Estimate elements of the data covariance maix

visible variables in the climate change discussion, siggifi

efforts have been devoted to reconstructing its historical 2)

spatial and temporal variability using statistical privies
(e.qg., [1], [2], [3], [4], [B], [6], [7], [8])- Reduced space
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from available measurements.

Correct the elements & by taking into account the
information on data quality (sampling errors) and the
spatial structure of data (by smoothing the covariances
in both the longitudinal and latitudinal directions).
Compute EOFs by eigen-decomposition(@f

Compute time series of principal components using a
set of leading EOFs (“reduced space basis”) and the
data quality information.

Rescale EOFs based on the computed principal com-
ponents.

3)
4)

5)



To reduce the error of EOF estimation, these five steps welrecorporate all types of prior information. A well-defined
performed only on the time period from 1951 on, whichoptimization criterion allows to estimates different jgadf

was characterized by relatively good observational caera the model (e.g., EOFs and the principal components) in the
Note that in principle steps (4) and (5) could require itagat same procedure. Other advantages include natural handling
until convergence, but in practical applications ([2],)[#je of missing values, means to reduce overfitting, possibility
convergence occurred after the first iteration. RSOI thed usto include in the analysis regions even with very little data
resulting EOFs and the data quality information to computestimation of the uncertainty of the produced results (e.g.
reconstructions for the entire period of available histalri reconstructions), criteria for automatic determinatidrite

SST observations. Another method, reduced space optimaht number of the principal components.

smoother (RSOS), performs an extra step in order to furtherIn this paper, we demonstrate how to compute reconstruc-

improve reconstructions: tions of global SST using a basic probabilistic PCA model
6) Fit a first-order auto-regressive model to each princip@nd its extension that incorporates data quality inforamati
component. The performance of the new methods needs to be evaluated

by comparison with a well-established existing method, e.g

poral information as well. Both methods produce reconstrurf_|SOI [3]. While one of the current state-of-the-art anadyse

. . L : adISST1 [5], uses RSOI in the reduced space estimation
tions that are linear combinations of a set of leading EOFs, ) - ;
. . . _Step, unfortunately, neither the data set of in situ obdEms
There are certain technical problems in the describ

procedure that were solved ad-hoc in [2], [3]. First, th at is used in their analysis nor the outcome of the RSOI

estimation quality for different elements of the covari ncestep alone have been released as publicly available data set
q Y RNC Therefore we chose to apply the new reconstruction methods

matrix is varying, hence the estimated “covariance’ matr|>t<o the older observational data set which was used in [3]

has some negatlve_ e|genvalue_s. Second, th(_a mformatl%} their RSOI reconstruction, so that a performance of new
about the data quality is taken into account directly when ethods can be compared to that of RSOl on the same set
computing principal components (step 4), but when EO S inputs P

are initially caleulated, itis used only in a limited aggated The paper is organized as follows. Section Il describes

way (step 2).' Therefore, EOFs are later readjusted to ﬂ@ﬁe data sets used for computing historical reconstrustion
estimated principal components.

T . . L and for validating their results. The proposed reconstruc-
There are significant problems in practical applications 3fon method is described in Section IIl. The results of its

well Sm_c_e reduced space estimation _methods (2], [6]) Al application and performance comparison versus [8] ar
most efficient for sparsely sampled ship and buoy data se sented in Section IV. Finally, we discuss the results and

they are U.Sl.Ja”y not applied in the same -form to the da'f’itroduce directions for future research in Section V.
sets containing much more abundant satellite data. They als

produce relatively sparse (46° spatial resolution) gridded Il. INPUT AND VALIDATION DATA

fields, leave permanent “holes” in the locations where poor |y this paper, we compare the skill of the proposed
data sampling makes the existing methods of covariance apg,, methodology with that of the RSOI analysis [3]. As
EOF estimation unfeasible, and do not explicitly accourdescribed below, reconstructions of global SST are congpute

for the I,ong-term variability (trends) in the data. Becaus@ere using exactly the same observational data set and data
of users’ demand, both HadISST and ERSST products igncertainty specifications as were used in [3], so that all

corporate a few additional steps in their procedures on tQ@constructions are directly comparable.
of the reduced space estimation. These steps use various
heuristic approaches to blend in satellite data, to ineread. Historical Sea Surface Temperature Data
grid resolution, to account for long-term variability, atml The original source of historical SST data is a collec-
interpolate remaining gaps in poorly sampled areas. tion of measurements made on ships and buoys. For use
The development of new reduced space estimation metin- climate research these irregularly spaced observations
ods that would outperform the RSOI application [3] and posare usually averaged, with some quality control, in reg-
sibly solve some of aforementioned problems in a methodHar longitude-latitude bins. Some other intrabin stafist
ologically coherent way will clearly be beneficial for the(number of observations, their standard deviation, qlemti
future versions of HadISST and possibly ERSST as well. lof their distribution) is often calculated as well. Followii
particular, in the form proposed in this paper, probalidist [3], we use here the U.K. Meteorological Office historical
latent variable models provide a practical way to overcom8ST data set (MOHSST5) [10] that contains monthly SST
at least some of these difficulties by avoiding a problem witanomalies in the 1856-1991 period 8¢ x 5° longitude-
negative eigenvalues, by accounting for data uncertainty d latitude bins. These anomalies are deviations from 1980619
ing covariance estimation, and by producing reconstrastio climatological means provided by the U.K. Meteorological
for the complete data domain. Office Global Ocean Surface Temperature Atlas (GOSTA)
It is possible to bring all the available knowledge (thg11]. The producers of the MOHSST5 data set also applied to
two basic assumptions) into a single probabilistic modee T it the corrections for time-varying biases based on thersehe
identified model would then optimally explain the data andleveloped in [12] (“bucket corrections”). This correction

Thus, the RSOS reconstructions take into account the te



valuesN;; were not available for MOHSSTS5, they are taken
from its closest upgrade, MOHSST6 [16].

C. Validation Data Set

We validate reconstruction results by comparing them to
the U.S. National Oceanic and Atmospheric Administration
(NOAA) monthly 1° Optimal Interpolation (Ol) data set,
version 2 [17] for the period 1982—-1991. This validationadat
set is a blend of satellite and in situ data and is considered
to be the best available SST analysis for the 1982-1991
period (more recent NOAA Daily 0.250I product [18] does
not cover the period before 1985). Since the original spatia
resolution of validation fields is°] in order to perform our
comparisons they were averaged onto tRegfd that was
used for reconstructions. The quality of reconstructias i
assessed by computing root-mean-square differencesheith t
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Fig. 1. The number of measurements for different spatiations (above) Ill. RECONSTRUCTIONMETHOD
and months (below) in the MOHSSTS5 data set. A. Bayesian PCA Model

The starting point in our analysis is a simple probabilistic

method com . . FCA model first discussed in [19]. The vector of observations
pensates historical SST values for spurioug wate ™. :

temperature reductions that typically occur in a measurin t!me tis ass_umed FO be generated ff"m_ a vector of latent

bucket due to its heat exchange with the air during the time riablesx; using a simple transformation:

interval that the bucket stays on a ship deck before the water ye = Wx; + p+ny
temperature measurement is taken. Corrections are compu\l;ﬂqere the dimension: of vector x; is smaller than the

as a function of year, calendar month, bucket type and shignensiong of the observed vectoy,. For incomplete data,
speed for the period before 1941 (in the later period bucket

. filis convenient to rewrite the model for each observed value
measurements were mostly replaced by other techniques). T

The number of available measurements in the MOHSST5 Yit = W X¢ + Hi + Nt
data set varies a great deal in space and time. While tWherewiT denotes the-th row of matrix W and 1, n;; are
data coverage is good during the last years, there are feMée elements ofs, n,, respectively.
observations before 1880 and during the two World Wars (seeThe latent variablex; are assumed to be uncorrelated
Fig. 1). There are naturally more measurements along ti®@aussian variables with zero means and unit variances:
typical ship routes. In total there are 1280018 measuresnent
YP P p(xt) =N (0,1) .

in 1727 spatial locations.

We use the notatiolV (z, X) for the Gaussian probability
B. Data Uncertainty density function (pdf) with meam and covariance matrix
\.E' The elementsy;; of the noise term are assumed to be

The quality of the data also significantly varies in spac :
|gdependent and Gaussian:

and time. One source of effective observational error is
sampling error caused by a limited number of measurements p(ng) = N (0, diag(vy)) ,

available for estimating the SST mean over one month and v, is a vector with element§v;;,Vi} and diag(v)

a5ci X 57 grea. In .[3]’ the _samplmg error_for an Observat'orbenotes a diagonal matrix with the elements afn the main
yx I thei-th spatial location and monthis evaluated as diagonal. Here, we assume individual variancgsvhile the
rio = 02 /Ny, (1) pasic PCA mode'l in [19] assumes equal noise variances, that

is vy = v for all 1, ¢.

whereN;; is a number of individual measurements contained In order to reduce overfitting (which is possible when

during montht in the 5° x 5° bin 4, ando? is the intrabin this simple model is applied to incomplete data [20]) and

variance. Values of the intrabin variancgswere estimated to prune out unnecessary componentskjn we introduce

in [3] using the Comprehensive Ocean-Atmosphere Data Sstnple Gaussian priors for the model parameters:

(COADS), release 1 (1854-1979) [13] extended by standard d

release la (1980-1992) [14], because intrabinstatistics p(p) = Hp(,ui), p(pi) =N (0,a0) ,

was not available for MOHSST5. While newer versions of i=1

COADS data set, renamed ICOADS in 2001, include many d ¢

additional observations [15], the older version is useceher p(W) = H Hp(wik), p(wir) =N (0,ak) ,

for a direct comparability with [3]. Also, as in [3], since i=1k=1



wherew,;, denotes an element &. These priors were used density of the posterior, and therefore it often provideseno

for the basic PCA model in [21]. The formulas for learningrobust solutions.

this model for data sets with missing values are given in.[20] VB learning is usually performed by minimizing the
With separate noise variances it is easy to take into Kullback-Leibler divergence between the posterior and the

account the information about the data quality. Let us assurapproximate pdf of a predefined tractable form. The VB cost

that the observation error is a combination of two errorgunction is

ng = ny, +nl,, wheren/, is the sampling error caused by a

limited number of data to estimate exactly the mean over a Cyg = /q(@)logﬂde,

montht in box i andn}; is the noise term which models both p(Y,0l5)

measurement and modeling errors. By the modeling eMQhere Y denotes all observed dat® contains all the

we mean the error of reproducing the observations from Shknown variables angd are the model hyperparameters (pa-

truncated number of principal components. We assume th%‘i’neters defining the priors) which are either fixed or point-

both n;, and nj; are independe/nt and Gaussian. We alsQqimateq. Because of the tractability issues, the apraei
assume that the varianeg; of n}, can be estimated using posterior pdf is usually factorized:

(1) and the variance of, is a constant. In Bayesian
terms, the variance;; can be seen as the uncertainty of each 9(©) = H a(8,).
measurement. ;
In the experiments, we consider two versions of the PCA
model: a simple model with;; = v and a model which takes In models with conjugate priors, one can easily find indi-
into account the uncertainty information with, = r;; +v.  vidual factorsq(8;) which minimize the VB cost function
. o when the rest of the factors fixed. The update rules for the
B. Maximum A Posteriori Cost hyperparameters can also be derived for fix¢®). Thus,
The maximum a posteriori (MAP) estimation of the dedearning iterates between alternate updates of individual
scribed model yields maximization of the posterior probabi¢(6,) and ¢ until convergence. See more details on VB
ity density of the unknown variables. This is equivalent tdearning, for example, in [22].
minimizing the cost function

D. The Update Rules

d
1 . 1
Cmap = Z v__t(yit — §i)” + o0 ZM%‘F In the Bayesian PCA model, we use point estimatessfor
iteo i=1 and oy and therefored® = {u, W, x;|t}. It is convenient to

c d A use the following factorization:
+Zi2w?k+ZZIﬁt+C(vit,ak), 2 J
=1 Y% o1 k=1 t=1 d n
where §;; = w]x; + p; is the reconstruction ofy;; and a(p, W, X) = q(“)Hq(Wi)HQ(Xt)'
C(vit, ) denote the terms which depend on the variance =t =1
parameters (see the full expression for isotropic obsemvat  Then the marginal posterior approximations are Gaussian
noise in [20]). The summationt € O is done over the whose parameters can be updated as follows. For the hidden
observed elements;. variables g(x;) = N (X;, Ly, ) with
The cost function (2) is simply a weighted sum-square
reconstruction error plus the penalty terms corresponding 1 -t
to the priors. Thus, the uncertainty information is taken Xx, = [I+ Z — <WiWI>‘|
into account naturally by weighting correspondingly the ico, Ut
contribution of each measurement into the optimized cost. %, = 5., i(yit — )W, t=1,....m,
There are several problems with the MAP estimation ico, Vit
approach. First, the MAP cost function goes to minus infinity '
whenay — 0, 2%, w? — 0 and thereforey, should be where the summation € O, is done over all spatial
restricted in practice. Second, the MAP solutions are knowlncations for whicty;, is observed. For the bias terg{u) =
to suffer often from the overfitting problem. Therefore, we]_[lej\f(ﬁi,ﬁi) with
use a more sophisticated procedure. )
1 1
Qo * Z it‘|

Variational Bayesian (VB) learning [22] is known to be ico; !
more resistant against the overfitting problem compared to _ _ ~ 1 —T=— .
. - . . . ;= M — (yit — W; X¢t), i=1,...,d,
the MAP estimation. Instead of using point estimates, VB s tezo Vit (g i)
is based on fitting an approximate pdf to the true posterior '
pdf of the unknown variables. Thus, the VB estimation isvhere the summation € O; is done over all months for
more sensitive to the probability mass than to the prokgbiliwhich y;; is observed. For matridV, ¢(w;) = N (W;, 2w,;)

C. Variational Bayesian Learning i =

K2



TABLE |

with
WEIGHTED RMS ERRORS OF RECONSTRUCTIONS
-1
1
Y. — |diag(a -1 — (x,xT Area from [3] | Larger area
wi l glane) ™+ Vit (xex;) RSOl 0.4590

. LEO; VBPCA 0.4549 0.5379
. N . VBPCA-OE 0.4510 0.5339
W’L:2W1 F(yit_ui)xta Zzla"'vd'

te0; it

For the model withv;, = r;; + v, the variance parameter o
can be updated by minimizing the following cost functior@"d similarly for monthy as
by line search methods: 1

{ ) rms = <ﬁ > Wiz — ?Jz‘t)2> ; ®)

Cus(v) = Y - (i — pa — wix)®) +log | - i€V,
ieo whereV; is a set of monthg for which z;; exists in the
Whenv;; = v, the optimalv can be computed exactly: validation data set antl; is defined likewise.
1 T 9 Table | presents the overall rms error (3) obtained with
v= 10] Z ((ir = ps = wix)?) VBPCA and VBPCA-OE in comparison with the RSOI
1 iteo method used in [3]. The first column shows the errors
= — Z [(ir — ) (yir — F; — 2W, %) + B averaged over the locations where the RSOI reconstructions
0| iteO are available. The second column contains rms errors for a
+tr ((wiws) (xex]))] larger area considered in the present study. Fig. 2 disjiteys
differences of the rms errors computed for different spatia
where|O| denotes the number of observed data. locations and months using (4) and (5), respectively, for

VBPCA and VBPCA-OE in comparison with RSOI. Similar

comparison results for VBPCA and VBPCA-OE are shown

in Fig. 3. Note that the area covered by VBPCA and VBPCA-
We estimated 80 principal components for the MOHSSTBE (Fig. 3) is larger than the area covered by RSOI (Fig. 2).

data set using two versions of the PCA model: with isotropithe results indicate that VBPCA outperforms RSOI, while

noise v;; = v (we call this model VBPCA) and with VBPCA-OE is the best among the three methods.

individual variance®;; = r;;+v in whichr;; were computed

by (1) (we call this model VBPCA-OE). The number of V. CONCLUSIONS ANDFUTURE WORK

principal components was chosen to be the same as in [3].

. In this work, we computed global reconstructions of
The data were preprocessed prior to PCA to account f?fﬁtorical SST using Bayesian PCA models learned by vari-
i

uneven density of measurement locations on the globe: ea% bnal methods. The reconstructions produced in thisystud

data p_omt was multiplied by the square root of the cosine c())utperformed the RSOI method used in [3] by 1.7% on
the latitude of the corresponding location.

. the weighted rms error. In addition, the new reconstrustion
The reconstructions were computed as cover a larger area than in the previous studies. The good
Gt = T; + WXy | performan_ce of the prop_osed techniques can be explained by
their principal way of using all available measurements and
where the elements of; were properly scaled to remove theijr resistance to the overfitting problem.
the effect of the data preprocessing. The results are promising because the presented approach
The reconstruction quality was assessed by the weightggl not make use of the temporal and spatial (geographical)
root-mean-square (rms) errors w.r.t. the validation datgyycture of the data. This knowledge can be incorporated by
{zie|it € V'}, wherez; is the validation SST measurementintroducing more sophisticated priors for the model parame
in the i-th location for monthi. The overall rms error was ters. The reconstruction may also be improved by increasing

IV. TRIAL APPLICATION AND PERFORMANCE
ASSESSMENT

computed as the number of estimated principal components because a
1 1 larger area is covered in the present analysis compared to
rms= (W > Wiz — Qit)z) : @) 3l
iteV
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