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Abstract— In this work, reconstructions of historical global
sea surface temperatures (SST) are performed using Bayesian
principal component analysis (PCA). Two PCA models are
examined: a model with isotropic noise and a model which
takes into account data uncertainty due to sampling errors.
Inference is done by variational Bayesian learning. The methods
are compared with a more traditional technique, reduced
space optimal interpolation (RSOI), that is currently used in
producing standard historical SST analyses. New methods were
applied to the MOHSST5, an observational data set for 1856–
1991 period from the United Kingdom Meteorological Office,
that was used in a previously published application of the
RSOI. Data uncertainty specification was also identical to the
one used in that RSOI application, hence the performances
of all reconstructions are directly comparable. Reconstruction
results for 1982–1991 period are tested via their comparison
with the NOAA monthly 1 ◦ OI (version 2) that blends in situ
observations with the much better sampled satellite data. New
reconstructions slightly outperform the published RSOI recon-
struction in this test and suggest that further improvements are
possible.

I. I NTRODUCTION

One of the most significant problems in contemporary
climatology is to evaluate recent climate trends in the context
of longer climate variability. Therefore, studies of centennial
and decadal variability of global surface temperatures have
acquired great importance. These studies are complicated
by scarce coverage and often poor quality of historical cli-
matological measurements. Relatively complete observations
of global ocean temperatures became possible only after
1981, with the advent of satellite measurements. Prior to
this period most of ocean surface observations were extracted
from ship logs. In pre-satellite era, the period after 1950 is
characterized by systematically more abundant observations
and more complete spatial coverage than earlier periods.
Buoy observations constitute a significant portion of the total
in situ (buoy and ship) measurements taken in the post-1950
period.

Since sea surface temperature (SST) is one of the most
visible variables in the climate change discussion, significant
efforts have been devoted to reconstructing its historical
spatial and temporal variability using statistical principles
(e.g., [1], [2], [3], [4], [5], [6], [7], [8]). Reduced space
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estimation ([1], [2], [4], [6]) is now a central element in
all globally complete analyses of historical SST that are
currently in wide use, that is United Kingdom (U.K.) Hadley
Centre sea ice and SST data set, version 1 (HadISST1 [5])
and United States National Climate Data Center (NCDC)
Extended Reconstructed SST data set (ERSST, version 2 [7]
and version 3 [8]). HadISST1 [5] uses reduced space optimal
interpolation (RSOI) [3] for their reduced space estimation
step, and ERSST products ([7], [8]) use a somewhat different
version of a reduced space analysis [6]. Systematic compari-
son of these approaches for a common set of inputs has never
been performed and is in plans for near future [9].

The starting point of any version of the reduced space
analysis is to find a low-dimensional vector space in which
target climate fields can be accurately approximated. RSOI
[2] uses empirical orthogonal functions (EOFs) found by
principal component analysis (PCA). PCA is performed
by eigen-decomposition of the data covariance matrix es-
timated from available measurements. Hereinafter term EOF
is reserved for spatial patterns found in the PCA analysis,
while principal component (PC) refers to an amplitude time
series corresponding to an individual EOF. All PCs have
variance one and are uncorrelated with each other. Since
EOFs capture correlations between measurements in different
spatial locations, they can be used to compute reconstructions
in places of missing data.

The reduced space method developed in [2] for SST
reconstruction also used the following assumptions: (1) the
target variable (SST) is characterized by long-range spatial
and temporal correlations; (2) even though the quality of
measurements can vary considerably due to sampling errors,
the variance of these errors can be roughly estimateda
priori . In [3], the method was applied to a global historical
SST data set of in situ measurements (satellite-based data
products were used later for verification of these analyses).
The procedure was as follows:

1) Estimate elements of the data covariance matrixC

from available measurements.
2) Correct the elements ofC by taking into account the

information on data quality (sampling errors) and the
spatial structure of data (by smoothing the covariances
in both the longitudinal and latitudinal directions).

3) Compute EOFs by eigen-decomposition ofC.
4) Compute time series of principal components using a

set of leading EOFs (“reduced space basis”) and the
data quality information.

5) Rescale EOFs based on the computed principal com-
ponents.



To reduce the error of EOF estimation, these five steps were
performed only on the time period from 1951 on, which
was characterized by relatively good observational coverage.
Note that in principle steps (4) and (5) could require iterating
until convergence, but in practical applications ([2], [3]) the
convergence occurred after the first iteration. RSOI then used
resulting EOFs and the data quality information to compute
reconstructions for the entire period of available historical
SST observations. Another method, reduced space optimal
smoother (RSOS), performs an extra step in order to further
improve reconstructions:

6) Fit a first-order auto-regressive model to each principal
component.

Thus, the RSOS reconstructions take into account the tem-
poral information as well. Both methods produce reconstruc-
tions that are linear combinations of a set of leading EOFs.

There are certain technical problems in the described
procedure that were solved ad-hoc in [2], [3]. First, the
estimation quality for different elements of the covariance
matrix is varying, hence the estimated “covariance” matrix
has some negative eigenvalues. Second, the information
about the data quality is taken into account directly when
computing principal components (step 4), but when EOFs
are initially calculated, it is used only in a limited aggregated
way (step 2). Therefore, EOFs are later readjusted to the
estimated principal components.

There are significant problems in practical applications as
well. Since reduced space estimation methods ([2], [6]) are
most efficient for sparsely sampled ship and buoy data sets,
they are usually not applied in the same form to the data
sets containing much more abundant satellite data. They also
produce relatively sparse (4◦-5◦ spatial resolution) gridded
fields, leave permanent “holes” in the locations where poor
data sampling makes the existing methods of covariance and
EOF estimation unfeasible, and do not explicitly account
for the long-term variability (trends) in the data. Because
of users’ demand, both HadISST and ERSST products in-
corporate a few additional steps in their procedures on top
of the reduced space estimation. These steps use various
heuristic approaches to blend in satellite data, to increase
grid resolution, to account for long-term variability, andto
interpolate remaining gaps in poorly sampled areas.

The development of new reduced space estimation meth-
ods that would outperform the RSOI application [3] and pos-
sibly solve some of aforementioned problems in a method-
ologically coherent way will clearly be beneficial for the
future versions of HadISST and possibly ERSST as well. In
particular, in the form proposed in this paper, probabilistic
latent variable models provide a practical way to overcome
at least some of these difficulties by avoiding a problem with
negative eigenvalues, by accounting for data uncertainty dur-
ing covariance estimation, and by producing reconstructions
for the complete data domain.

It is possible to bring all the available knowledge (the
two basic assumptions) into a single probabilistic model. The
identified model would then optimally explain the data and

incorporate all types of prior information. A well-defined
optimization criterion allows to estimates different parts of
the model (e.g., EOFs and the principal components) in the
same procedure. Other advantages include natural handling
of missing values, means to reduce overfitting, possibility
to include in the analysis regions even with very little data,
estimation of the uncertainty of the produced results (e.g.
reconstructions), criteria for automatic determination of the
right number of the principal components.

In this paper, we demonstrate how to compute reconstruc-
tions of global SST using a basic probabilistic PCA model
and its extension that incorporates data quality information.
The performance of the new methods needs to be evaluated
by comparison with a well-established existing method, e.g.
RSOI [3]. While one of the current state-of-the-art analyses,
HadISST1 [5], uses RSOI in the reduced space estimation
step, unfortunately, neither the data set of in situ observations
that is used in their analysis nor the outcome of the RSOI
step alone have been released as publicly available data sets.
Therefore we chose to apply the new reconstruction methods
to the older observational data set which was used in [3]
for their RSOI reconstruction, so that a performance of new
methods can be compared to that of RSOI on the same set
of inputs.

The paper is organized as follows. Section II describes
the data sets used for computing historical reconstructions
and for validating their results. The proposed reconstruc-
tion method is described in Section III. The results of its
trial application and performance comparison versus [3] are
presented in Section IV. Finally, we discuss the results and
introduce directions for future research in Section V.

II. I NPUT AND VALIDATION DATA

In this paper, we compare the skill of the proposed
new methodology with that of the RSOI analysis [3]. As
described below, reconstructions of global SST are computed
here using exactly the same observational data set and data
uncertainty specifications as were used in [3], so that all
reconstructions are directly comparable.

A. Historical Sea Surface Temperature Data

The original source of historical SST data is a collec-
tion of measurements made on ships and buoys. For use
in climate research these irregularly spaced observations
are usually averaged, with some quality control, in reg-
ular longitude-latitude bins. Some other intrabin statistics
(number of observations, their standard deviation, quantiles
of their distribution) is often calculated as well. Following
[3], we use here the U.K. Meteorological Office historical
SST data set (MOHSST5) [10] that contains monthly SST
anomalies in the 1856-1991 period for5◦ × 5◦ longitude-
latitude bins. These anomalies are deviations from 1951-1980
climatological means provided by the U.K. Meteorological
Office Global Ocean Surface Temperature Atlas (GOSTA)
[11]. The producers of the MOHSST5 data set also applied to
it the corrections for time-varying biases based on the scheme
developed in [12] (“bucket corrections”). This correction
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Fig. 1. The number of measurements for different spatial locations (above)
and months (below) in the MOHSST5 data set.

method compensates historical SST values for spurious water
temperature reductions that typically occur in a measuring
bucket due to its heat exchange with the air during the time
interval that the bucket stays on a ship deck before the water
temperature measurement is taken. Corrections are computed
as a function of year, calendar month, bucket type and ship
speed for the period before 1941 (in the later period bucket
measurements were mostly replaced by other techniques).

The number of available measurements in the MOHSST5
data set varies a great deal in space and time. While the
data coverage is good during the last years, there are few
observations before 1880 and during the two World Wars (see
Fig. 1). There are naturally more measurements along the
typical ship routes. In total there are 1280018 measurements
in 1727 spatial locations.

B. Data Uncertainty

The quality of the data also significantly varies in space
and time. One source of effective observational error is a
sampling error caused by a limited number of measurements
available for estimating the SST mean over one month and
a 5◦ × 5◦ area. In [3], the sampling error for an observation
yit in the i-th spatial location and montht is evaluated as

rit = σ2

i /Nit , (1)

whereNit is a number of individual measurements contained
during montht in the 5◦ × 5◦ bin i, andσ2

i is the intrabin
variance. Values of the intrabin variancesσ2

i were estimated
in [3] using the Comprehensive Ocean-Atmosphere Data Set
(COADS), release 1 (1854-1979) [13] extended by standard
release 1a (1980-1992) [14], because intrabinσ2 statistics
was not available for MOHSST5. While newer versions of
COADS data set, renamed ICOADS in 2001, include many
additional observations [15], the older version is used here
for a direct comparability with [3]. Also, as in [3], since

valuesNit were not available for MOHSST5, they are taken
from its closest upgrade, MOHSST6 [16].

C. Validation Data Set

We validate reconstruction results by comparing them to
the U.S. National Oceanic and Atmospheric Administration
(NOAA) monthly 1◦ Optimal Interpolation (OI) data set,
version 2 [17] for the period 1982–1991. This validation data
set is a blend of satellite and in situ data and is considered
to be the best available SST analysis for the 1982-1991
period (more recent NOAA Daily 0.25◦ OI product [18] does
not cover the period before 1985). Since the original spatial
resolution of validation fields is 1◦, in order to perform our
comparisons they were averaged onto the 5◦ grid that was
used for reconstructions. The quality of reconstructions is
assessed by computing root-mean-square differences with the
validation data.

III. R ECONSTRUCTIONMETHOD

A. Bayesian PCA Model

The starting point in our analysis is a simple probabilistic
PCA model first discussed in [19]. The vector of observations
in time t is assumed to be generated from a vector of latent
variablesxt using a simple transformation:

yt = Wxt + µ + nt ,

where the dimensionc of vector xt is smaller than the
dimensiond of the observed vectoryt. For incomplete data,
it is convenient to rewrite the model for each observed value:

yit = wT
i xt + µi + nit ,

wherewT
i denotes thei-th row of matrixW andµi, nit are

the elements ofµ, nt, respectively.
The latent variablesxt are assumed to be uncorrelated

Gaussian variables with zero means and unit variances:

p(xt) = N (0, I) .

We use the notationN (z,Σ) for the Gaussian probability
density function (pdf) with meanz and covariance matrix
Σ. The elementsnit of the noise term are assumed to be
independent and Gaussian:

p(nt) = N (0, diag(vt)) ,

where vt is a vector with elements{vit, ∀i} and diag(v)
denotes a diagonal matrix with the elements ofv on the main
diagonal. Here, we assume individual variancesvit while the
basic PCA model in [19] assumes equal noise variances, that
is vit = v for all i, t.

In order to reduce overfitting (which is possible when
this simple model is applied to incomplete data [20]) and
to prune out unnecessary components inxt, we introduce
simple Gaussian priors for the model parameters:

p(µ) =

d∏

i=1

p(µi) , p(µi) = N (0, α0) ,

p(W) =

d∏

i=1

c∏

k=1

p(wik) , p(wik) = N (0, αk) ,



wherewik denotes an element ofW. These priors were used
for the basic PCA model in [21]. The formulas for learning
this model for data sets with missing values are given in [20].

With separate noise variancesvit it is easy to take into
account the information about the data quality. Let us assume
that the observation error is a combination of two errors:
nit = n′

it + n′′

it, wheren′

it is the sampling error caused by a
limited number of data to estimate exactly the mean over a
montht in box i andn′′

it is the noise term which models both
measurement and modeling errors. By the modeling error
we mean the error of reproducing the observations from a
truncated number of principal components. We assume that
both n′

it and n′′

it are independent and Gaussian. We also
assume that the variancerit of n′

it can be estimated using
(1) and the variance ofn′′

it is a constantv. In Bayesian
terms, the variancerit can be seen as the uncertainty of each
measurement.

In the experiments, we consider two versions of the PCA
model: a simple model withvit = v and a model which takes
into account the uncertainty information withvit = rit + v.

B. Maximum A Posteriori Cost

The maximum a posteriori (MAP) estimation of the de-
scribed model yields maximization of the posterior probabil-
ity density of the unknown variables. This is equivalent to
minimizing the cost function

CMAP =
∑

it∈O

1

vit

(yit − ŷit)
2 +

1

α0

d∑

i=1

µ2

i +

+

c∑

k=1

1

αk

d∑

i=1

w2

ik +

c∑

k=1

n∑

t=1

x2

kt + C(vit, αk) , (2)

where ŷit = wT
i xt + µi is the reconstruction ofyit and

C(vit, αk) denote the terms which depend on the variance
parameters (see the full expression for isotropic observation
noise in [20]). The summationit ∈ O is done over the
observed elementsyit.

The cost function (2) is simply a weighted sum-square
reconstruction error plus the penalty terms corresponding
to the priors. Thus, the uncertainty information is taken
into account naturally by weighting correspondingly the
contribution of each measurement into the optimized cost.

There are several problems with the MAP estimation
approach. First, the MAP cost function goes to minus infinity
when αk → 0,

∑d

i=1
w2

ik → 0 and thereforeαk should be
restricted in practice. Second, the MAP solutions are known
to suffer often from the overfitting problem. Therefore, we
use a more sophisticated procedure.

C. Variational Bayesian Learning

Variational Bayesian (VB) learning [22] is known to be
more resistant against the overfitting problem compared to
the MAP estimation. Instead of using point estimates, VB
is based on fitting an approximate pdf to the true posterior
pdf of the unknown variables. Thus, the VB estimation is
more sensitive to the probability mass than to the probability

density of the posterior, and therefore it often provides more
robust solutions.

VB learning is usually performed by minimizing the
Kullback-Leibler divergence between the posterior and the
approximate pdf of a predefined tractable form. The VB cost
function is

CVB =

∫
q(Θ) log

q(Θ)

p(Y,Θ|ξ)
dΘ ,

where Y denotes all observed data,Θ contains all the
unknown variables andξ are the model hyperparameters (pa-
rameters defining the priors) which are either fixed or point-
estimated. Because of the tractability issues, the approximate
posterior pdf is usually factorized:

q(Θ) =
∏

j

q(θj) .

In models with conjugate priors, one can easily find indi-
vidual factorsq(θj) which minimize the VB cost function
when the rest of the factors fixed. The update rules for the
hyperparameters can also be derived for fixedq(Θ). Thus,
learning iterates between alternate updates of individual
q(θj) and ξ until convergence. See more details on VB
learning, for example, in [22].

D. The Update Rules

In the Bayesian PCA model, we use point estimates forv
andαk and thereforeΘ = {µ,W,xt|t}. It is convenient to
use the following factorization:

q(µ,W,X) = q(µ)

d∏

i=1

q(wi)

n∏

t=1

q(xt) .

Then the marginal posterior approximations are Gaussian
whose parameters can be updated as follows. For the hidden
variables,q(xt) = N (xt,Σxt

) with

Σxt
=

[
I +

∑

i∈Ot

1

vit

〈
wiw

T
i

〉
]−1

xt = Σxt

∑

i∈Ot

1

vit

(yit − µi)wi , t = 1, . . . , n ,

where the summationi ∈ Ot is done over all spatial
locations for whichyit is observed. For the bias term,q(µ) =∏d

i=1
N (µi, µ̃i) with

µ̃i =

[
1

α0

+
∑

t∈Oi

1

vit

]−1

µi = µ̃i

∑

t∈Oi

1

vit

(yit − wT
i xt) , i = 1, . . . , d ,

where the summationt ∈ Oi is done over all months for
which yit is observed. For matrixW, q(wi) = N (wi,Σwi

)



with

Σwi
=

[
diag(α1..c)

−1 +
∑

t∈Oi

1

vit

〈
xtx

T
t

〉
]−1

wT
i = Σwi

∑

t∈Oi

1

vit

(yit − µi)xt , i = 1, . . . , d .

For the model withvit = rit + v, the variance parameterv
can be updated by minimizing the following cost function
by line search methods:

CVB(v) =
∑

it∈O

[
1

vit

〈
(yit − µi − wT

i xt)
2
〉

+ log vit

]
.

Whenvit = v, the optimalv can be computed exactly:

v =
1

|O|

∑

it∈O

〈
(yit − µi − wT

i xt)
2
〉

=
1

|O|

∑

it∈O

[
(yit − µi)

T(yit − µi − 2wT
i xt) + Σµ

+ tr
(〈

wT
i wi

〉 〈
xtx

T
t

〉)]
,

where|O| denotes the number of observed data.

IV. T RIAL APPLICATION AND PERFORMANCE

ASSESSMENT

We estimated 80 principal components for the MOHSST5
data set using two versions of the PCA model: with isotropic
noise vit = v (we call this model VBPCA) and with
individual variancesvit = rit+v in whichrit were computed
by (1) (we call this model VBPCA-OE). The number of
principal components was chosen to be the same as in [3].

The data were preprocessed prior to PCA to account for
uneven density of measurement locations on the globe: each
data point was multiplied by the square root of the cosine of
the latitude of the corresponding location.

The reconstructions were computed as

ŷit = µi + wT
i xt ,

where the elements ofwi were properly scaled to remove
the effect of the data preprocessing.

The reconstruction quality was assessed by the weighted
root-mean-square (rms) errors w.r.t. the validation data
{zit|it ∈ V }, wherezit is the validation SST measurement
in the i-th location for montht. The overall rms error was
computed as

rms=

(
1

|V |

∑

it∈V

ω2

i (zit − ŷit)
2

) 1

2

, (3)

where|V | denotes the number of the validation data points
andωi are the corresponding weights (the square root of the
cosine of the latitude). The rms errors for spatial locationi
were computed as

rmsi =

(
1

|Vi|

∑

t∈Vi

(zit − ŷit)
2

) 1

2

(4)

TABLE I

WEIGHTED RMS ERRORS OF RECONSTRUCTIONS

Area from [3] Larger area
RSOI 0.4590

VBPCA 0.4549 0.5379
VBPCA-OE 0.4510 0.5339

and similarly for montht as

rmst =

(
1

|Vt|

∑

i∈Vt

ω2

i (zit − ŷit)
2

) 1

2

, (5)

where Vi is a set of monthst for which zit exists in the
validation data set andVt is defined likewise.

Table I presents the overall rms error (3) obtained with
VBPCA and VBPCA-OE in comparison with the RSOI
method used in [3]. The first column shows the errors
averaged over the locations where the RSOI reconstructions
are available. The second column contains rms errors for a
larger area considered in the present study. Fig. 2 displaysthe
differences of the rms errors computed for different spatial
locations and months using (4) and (5), respectively, for
VBPCA and VBPCA-OE in comparison with RSOI. Similar
comparison results for VBPCA and VBPCA-OE are shown
in Fig. 3. Note that the area covered by VBPCA and VBPCA-
OE (Fig. 3) is larger than the area covered by RSOI (Fig. 2).
The results indicate that VBPCA outperforms RSOI, while
VBPCA-OE is the best among the three methods.

V. CONCLUSIONS ANDFUTURE WORK

In this work, we computed global reconstructions of
historical SST using Bayesian PCA models learned by vari-
ational methods. The reconstructions produced in this study
outperformed the RSOI method used in [3] by 1.7% on
the weighted rms error. In addition, the new reconstructions
cover a larger area than in the previous studies. The good
performance of the proposed techniques can be explained by
their principal way of using all available measurements and
their resistance to the overfitting problem.

The results are promising because the presented approach
did not make use of the temporal and spatial (geographical)
structure of the data. This knowledge can be incorporated by
introducing more sophisticated priors for the model parame-
ters. The reconstruction may also be improved by increasing
the number of estimated principal components because a
larger area is covered in the present analysis compared to
[3].
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