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Abstract

We present a probabilistic factor analysis model which can be used for studying
spatio-temporal datasets. The spatial and temporal structure is modeled by using
Gaussian process priors both for the loading matrix and the factors. The posterior
distributions are approximated using the variational Bayesian framework. High
computational cost of Gaussian process modeling is reducedby using sparse ap-
proximations. The model is used to compute the reconstructions of the global
sea surface temperatures from a historical dataset. The results suggest that the
proposed model can outperform the state-of-the-art reconstruction systems.

1 Introduction

Factor analysis and principal component analysis (PCA) arewidely used linear techniques for find-
ing dominant patterns in multivariate datasets. These methods find the most prominent correlations
in the data and therefore they facilitate studies of the observed system. The found principal pat-
terns can also give an insight into the observed data variability. In many applications, the quality of
this kind of modeling can be significantly improved if extra knowledge about the data structure is
used. For example, taking into account the temporal information typically leads to more accurate
modeling of time series.

In this work, we present a factor analysis model which makes use of both temporal and spatial
information for a set of collected data. The method is based on the standard factor analysis model

Y = WX + noise=

D
∑

d=1

w:dx
T
d: + noise, (1)

whereY is a matrix of spatio-temporal data in which each row contains measurements in one spatial
location and each column corresponds to one time instance. Here and in the following, we denote
by ai: anda:i thei-th row and column of a matrixA, respectively (both are column vectors). Thus,
eachxd: represents the time series of one of theD factors whereasw:d is a vector of loadings which
are spatially distributed. The matrixY can contain missing values and the samples can be unevenly
distributed in space and time.1

We assume that both the factorsxd: and the corresponding loadingsw:d have prominent structures.
We describe them by using Gaussian processes (GPs) which is aflexible and theoretically solid
tool for smoothing and interpolating non-uniform data [8].Using separate GP models forxd: and
w:d facilitates analysis of large spatio-temporal datasets. The application of the GP methodology
to modeling dataY directly could be unfeasible in real-world problems because the computational

1In practical applications, it may be desirable to diminish the effect of uneven sampling over space or time
by, for example, using proper weights for different data points.
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complexity of inference scales cubically w.r.t. the numberof data points. The advantage of the
proposed approach is that we perform GP modeling only eitherin the spatial or temporal domain at
a time. Thus, the dimensionality can be remarkably reduced and modeling large datasets becomes
feasible. Also, good interpretability of the model makes iteasy to explore the results in the spatial
and temporal domain and to set priors reflecting our modelingassumptions. The proposed model is
symmetrical w.r.t. space and time.

Our model bears similarities with the latent variable models presented in [13, 16]. There, GPs were
used to describe the factors and the mixing matrix was point-estimated. Therefore the observations
Y were modeled with a GP. In contrast to that, our model is not a GP model for the observations
because the marginal distribution ofY is not Gaussian. This makes the posterior distribution of
the unknown parameters intractable. Therefore we use an approximation based on the variational
Bayesian methodology. We also show how to use sparse variational approximations to reduce the
computational load. Models which use GP priors for bothW andX in (1) have recently been pro-
posed in [10, 11]. The function factorization model in [10] is learned using a Markov chain Monte
Carlo sampling procedure, which may be computationally infeasible for large-scale datasets. The
nonnegative matrix factorization model in [11] uses point-estimates for the unknown parameters,
thus ignoring posterior uncertainties. In our method, we take into account posterior uncertainties,
which helps reduce overfitting and facilitates learning a more accurate model.

In the experimental part, we use the model to compute reconstruction of missing values in a real-
world spatio-temporal dataset. We use a historical sea surface temperature dataset which contains
monthly anomalies in the 1856-1991 period to reconstruct the global sea surface temperatures. The
same dataset was used in designing the state-of-the-art reconstruction methodology [5]. We show the
advantages of the proposed method as a Bayesian technique which can incorporate all assumptions
in one model and which uses all available data. Since reconstruction of missing values can be an
important application for the method, we give all the formulas assuming missing values in the data
matrixY.

2 Factor analysis model with Gaussian process priors

We use the factor analysis model (1) in whichY has dimensionalityM × N and the number of
factorsD is much smaller than the number of spatial locationsM and the number of time instances
N . Them-th row of Y corresponds to a spatial locationlm (e.g., a location on a two-dimensional
map) and then-th column corresponds to a time instancetn.

We assume that each time signalxd: contains values of a latent functionχ(t) computed at time
instancestn. We use independent Gaussian process priors to describe each signalxd::

p(X) = N (X: |0,Kx ) =

D
∏

d=1

N (xd: |0,Kd ) , [Kd]ij = ψd(ti, tj ; θd) , (2)

whereX: denotes a long vector formed by concatenating the columns ofX, Kd is the part of the
large covariance matrixKx which corresponds to thed-th row of X andN (a |b,C) denotes the
Gaussian probability density function for variablea with meanb and covarianceC. The ij-th
element ofKd is computed using the covariance functionψd with the kernel hyperparametersθd.

The priors forW are defined similarly assuming that each spatial patternw:d contains measurements
of a functionω(l) at different spatial locationslm:

p(W) =

D
∏

d=1

N (w:d |0,K
w

d ) , [Kw

d ]ij = ϕd(li, lj; φd) , (3)

whereϕd is a covariance function with hyperparametersφd. Any valid (positive semidefinite) ker-
nels can be used to define the covariance functionsψd andϕd. A good list of possible covariance
functions is given in [8]. The prior model reduces to the one used in probabilistic PCA [14] when
Kd = I and a uniform prior is used forW.

The noise term in (1) is modeled with a Gaussian distribution, resulting in a likelihood function

p(Y|W,X,σ) =
∏

mn∈O

N
(

ymn

∣

∣w
T
m:x:n, σ

2
mn

)

, (4)
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where the product is evaluated over the observed elements inY whose indices are included in the set
O. We will refer to the model (1)–(4) as GPFA. In practice, the noise level can be assumed spatially
(σmn = σm) or temporally (σmn = σn) varying. One can also use spatially and temporally varying
noise levelσ2

mn if this variability can be estimated somehow.

There are two main difficulties which should be addressed when learning the model: 1) The posterior
p(W,X|Y) is intractable and 2) the computational load for dealing with GPs can be too large for
real-world datasets. We use the variational Bayesian framework to cope with the first difficulty and
we also adopt the variational approach when computing sparse approximations for the GP posterior.

3 Learning algorithm

In the variational Bayesian framework, the true posterior is approximated using some restricted class
of possible distributions. An approximate distribution which factorizes as

p(W,X|Y) ≈ q(W,X) = q(W)q(X) .

is typically used for factor analysis models. The approximation q(W,X) can be found by minimiz-
ing the Kullback-Leibler divergence from the true posterior. This optimization is equivalent to the
maximization of the lower bound of the marginal log-likelihood:

log p(Y) ≥

∫

q(W)q(X) log
p(Y|W,X)p(W)p(X)

q(W)q(X)
dWdX . (5)

Free-form maximization of (5) w.r.t.q(X) yields that

q(X) ∝ p(X) exp〈log p(Y|W,X)〉
q(W) ,

where〈·〉 refers to the expectation over the approximate posterior distributionq. Omitting the deriva-
tions here, this boils down to the following update rule:

q(X) = N
(

X:

∣

∣

∣

(

K
−1
x

+ U
)−1

Z:,
(

K
−1
x

+ U
)−1

)

, (6)

whereZ: is aDN × 1 vector formed by concatenation of vectors

z:n =
∑

m∈On

σ−2
mn〈wm:〉ymn . (7)

The summation in (7) is over a setOn of indicesm for whichymn is observed. MatrixU in (6) is a
DN ×DN block-diagonal matrix with the followingD ×D matrices on the diagonal:

Un =
∑

m∈On

σ−2
mn

〈

wm:w
T
m:

〉

, n = 1, . . . , N . (8)

Note that the form of the approximate posterior (6) is similar to the regular GP regression: One
can interpretU−1

n z:n as noisy observations with the corresponding noise covariance matricesU−1
n .

Then,q(X) in (6) is simply the posterior distribution of the latent functions valuesχd(tn).

The optimalq(W) can be computed using formulas symmetrical to (6)–(8) in whichX andW are
appropriately exchanged. The variational EM algorithm forlearning the model consists of alternate
updates ofq(W) andq(X) until convergence. The noise level can be estimated by usinga point
estimate or adding a factor factorq(σmn) to the approximate posterior distribution. For example,
the update rules for the case of isotropic noiseσ2

mn = σ2 are given in [2].

3.1 Component-wise factorization

In practice, one may need to factorize further the posteriorapproximation in order to reduce the
computational burden. This can be done in two ways: by neglecting the posterior correlations be-
tween different factorsxd: (and between spatial patternsw:d, respectively) or by neglecting the
posterior correlations between different time instancesx:n (and between spatial locationswm:, re-
spectively). We suggest to use the first way which is computationally more expensive but allows to

3



Method Approximation Update rule Complexity
GP onY O(N3M3)

GPFA q(X:) (6) O(D3N3 +D3M3)
GPFA q(xd:) (9) O(DN3 +DM3)

GPFA q(xd:), inducing inputs (12) O(
∑D

d=1N
2
dN +

∑D

d=1M
2
dM)

Table 1: The computational complexity of different algorithms

capture stronger posterior correlations. This yields a posterior approximationq(X) =
∏D

d=1 q(xd:)
which can be updated as follows:

q(xd:) = N
(

xd:

∣

∣

∣

(

K
−1
d + Vd

)−1
cd,

(

K
−1
d + Vd

)−1
)

, d = 1, . . . , D , (9)

wherecd is anN × 1 vector whosen-th component is

[cd]n =
∑

m∈On

σ−2
mn〈wmd〉

(

ymn −
∑

j 6=d

〈wmj〉〈xjn〉

)

(10)

andVd is anN×N diagonal matrix whosen-th diagonal element is[Vd]nn =
∑

m∈On

σ−2
mn

〈

w2
md

〉

.
The main difference to (6) is that each component is fitted to the residuals of the reconstruction based
on the rest of the components. The computational complexityis now reduced compared to (9), as
shown in Table 1.

The component-wise factorization may provide a meaningfulrepresentation of data because the
model is biased in favor of solutions with dynamically and spatially decoupled components. When
the factors are modeled using rather general covariance functions, the proposed method is somewhat
related to the blind source separation techniques using time structure (e.g., [1]). The advantage here
is that the method can handle more sophisticated temporal correlations and it is easily applicable to
incomplete data. In addition, one can use the method in semi-blind settings when prior knowledge
is used to extract components with specific types of temporalor spatial features [9]. This problem
can be addressed using the proposed technique with properlychosen covariance functions.

3.2 Variational learning of sparse GP approximations

One of the main issues with Gaussian processes is the high computational cost with respect to the
number of observations. Although the variational learningof the GPFA model works only in either
spatial or temporal domain at a time, the size of the data may still be too large in practice. A common
way to reduce the computational cost is to use sparse approximations [7]. In this work, we follow
the variational formulation of sparse approximations presented in [15].

The main idea is to introduce a set of auxiliary variables{w,x} which contain the values of the
latent functionsωd(l), χd(t) in some locations{l = λd

m|m = 1, . . . ,Md}, {t = τd
n |n = 1, . . . , Nd}

called inducing inputs. Assuming that the auxiliary variables{w,x} summarize the data well, it
holds thatp(W,X|w,x,Y) ≈ p(W,X|w,x) , which suggests a convenient form of the approxi-
mate posterior:

q(W,X,w,x) = p(W|w)p(X|x)q(w)q(x) , (11)

wherep(W|w), p(X|x) can be easily computed from the GP priors. Optimalq(w), q(x) can be
computed by maximizing the variational lower bound of the marginal log-likelihood similar to (5).

Free-form maximization w.r.t.q(x) yields the following update rule:

q(x) = N
(

x
∣

∣ΣK
−1
x

KxxZ:,Σ
)

, Σ =
(

K
−1
x

+ K
−1
x

KxxUKxxK
−1
x

)−1
, (12)

wherex is the vector of concatenated auxiliary variables for all factors,Kx is the GP prior co-
variance matrix ofx andKxx is the covariance betweenx andX:. This equation can be seen as a
replacement of (6). A similar formula is applicable to the update ofq(w). The advantage here is that
the number of inducing inputs is smaller than then the numberof data samples, that is,Md < M and
Nd < N , and therefore the required computational load can be reduced (see more details in [15]).
Eq. (12) can be quite easily adapted to the component-wise factorization of the posterior in order to
reduce the computational load of (9). See the summary for thecomputational complexity in Table 1.

4



3.3 Update of GP hyperparameters

The hyperparameters of the GP priors can be updated quite similarly to the standard GP regression
by maximizing the lower bound of the marginal log-likelihood. Omitting the derivations here, this
lower bound for the temporal covariance functions{ψd(t)}D

d=1 equals (up to a constant) to

logN
(

U
−1

Z:
∣

∣0,U−1 + KxxK
−1
x

Kxx

)

−
1

2
tr

[

N
∑

n=1

UnD

]

, (13)

whereU andZ: have the same meaning as in (6) andD is aD ×D (diagonal) matrix of variances
of x:n given the auxiliary variablesx. The required gradients are shown in the appendix. The
equations without the use of auxiliary variables are similar except thatKxxK

−1
x

Kxx = Kx and
the second term disappears. A symmetrical equation can be derived for the hyperparameters of the
spatial functionsϕd(t). The extension of (13) to the case of component-wise factorial approximation
is straightforward. The inducing inputs can also be treatedas variational parameters and they can be
changed to optimize the lower bound (13).

4 Experiments

4.1 Artificial example

We generated a dataset withM = 30 sensors (two-dimensional spatial locations) andN = 200
time instances using the generative model (1) with a moderate amount of observation noise, as-
sumingσmn = σ. D = 4 temporal signalsxd: were generated by taking samples from GP priors
with different covariance functions: 1) a squared exponential function to model a slowly changing
component:

k(r; θ1) = exp

(

−
r2

2θ21

)

, (14)

2) a periodic function with decay to model a quasi-periodic component:

k(r; θ1, θ2, θ3) = exp

(

−
2 sin2(πr/θ1)

θ22
−

r2

2θ23

)

, (15)

wherer = |tj − ti|, and 3) a compactly supported piecewise polynomial function to model two fast
changing components with different timescales:

k(r; θ1) =
1

3
(1 − r)b+2

(

(b2 + 4b+ 3)r2 + (3b+ 6)r + 3
)

, (16)

wherer = min(1, |tj − ti|/θ1) and b = 3 for one-dimensional inputs with the hyperparameter
θ1 defining a threshold such thatk(r) = 0 for |tj − ti| ≥ θ1. The loadings were generated from
GPs over the two-dimensional space using the squared exponential covariance function (14) with an
additional scale parameterθ2:

k(r; θ1, θ2) = θ22 exp
(

−r2/(2θ21)
)

. (17)

We randomly selected 452 data points fromY as being observed, thus most of the generated data
points were marked as missing (see Fig. 1a for examples). We also removed observations from all
the sensors for a relatively long time interval. Note a resulting gap in the data marked with vertical
lines in Fig. 1a. The hyperparameters of the Gaussian processes were initialized randomly close
to the values used for data generation, assuming that a good guess about the hidden signals can be
obtained by exploratory analysis of data.

Fig. 1b shows the components recovered by GPFA using the update rule (6). Note that the algo-
rithm separated the four signals with the different variability timescales. The posterior predictive
distributions of the missing values presented in Fig. 1a show that the method was able to capture
temporal correlations on different timescales. Note also that although some of the sensors contain
very few observations, the missing values are reconstructed pretty well. This is a positive effect of
the spatially smooth priors.
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Figure 1: Results for the artificial experiment. (a) Posterior predictive distribution for four randomly
selected locations with the observations shown as crosses,the gap with no training observations
marked with vertical lines and some test values shown as circles. (b) The posteriors of the four
latent signalsxd:. In both figures, the solid lines show the posterior mean and gray color shows two
standard deviations.

4.2 Reconstruction of global SST using the MOHSST5 dataset

We demonstrate how the presented model can be used to reconstruct global sea surface temperatures
(SST) from historical measurements. We use the U.K. Meteorological Office historical SST data set
(MOHSST5) [6] that contain monthly SST anomalies in the 1856-1991 period for5◦×5◦ longitude-
latitude bins. The dataset contains in total approximately1600 time instances and1700 spatial
locations. The dataset is sparse, especially during the 19th century and the World Wars, having55%
of the values missing, and thus, consisting of more than106 observations in total.

We used the proposed algorithm to estimateD = 80 components, the same number was used in [5].
We withdrew 20% of the data from the training set and used thispart for testing the reconstruction
accuracy. We used five time signalsxd: with the squared exponential function (14) to describe cli-
mate trends. Another five temporal components were modeled with the quasi-periodic covariance
function (15) to capture periodic signals (e.g. related to the annual cycle). We also used five compo-
nents with the squared exponential function to model prominent interannual phenomena such as El
Niño. Finally we used the piecewise polynomial functions to describe the rest 65 time signalsxd:.
These dimensionalities were chosen ad hoc. The covariance function for each spatial patternw:d

was the scaled squared exponential (17). The distancer between the locationsli andlj was mea-
sured on the surface of the Earth using the spherical law of cosines. The use of the extra parameter
θ2 in (17) allowed automatic pruning of unnecessary factors, which happens whenθ2 = 0.

We used the component-wise factorial approximation of the posterior described in Section 3.1. We
also introduced500 inducing inputs for each spatial functionωd(l) in order to use sparse variational
approximations. Similar sparse approximations were used for the 15 temporal functionsχ(t) which
modeled slow climate variability: the slowest, quasi-periodic and interannual components had80,
300 and300 inducing inputs, respectively. The inducing inputs were initialized by taking a random
subset from the original inputs and then kept fixed throughout learning because their optimization
would have increased the computational burden substantially. For the rest of the temporal phenom-
ena, we used the piecewise polynomial functions (16) that produce priors with a sparse covariance
matrix and therefore allow efficient computations.

The dataset was preprocessed by weighting the data points bythe square root of the corresponding
latitudes in order to diminish the effect of denser samplingin the polar regions, then the same noise
level was assumed for all measurements (σmn = σ). Preprocessing by weighting data pointsymn

with weightssm is essentially equivalent to assuming spatially varying noise levelσmn = σ/sm.
The GP hyperparameters were initialized taking into account the assumed smoothness of the spa-
tial patterns and the variability timescale of the temporalfactors. The factorsX were initialized
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Figure 2: Experimental results for the MOHSST5 dataset. Thespatial and temporal patterns of the
four most dominating principal components for GPFA (above)and VBPCA (below). The solid lines
and gray color in the time series show the mean and two standard deviations of the posterior distri-
bution. The uncertainties of the spatial patterns are not shown, and we saturated the visualizations
of the VBPCA spatial components to reduce the effect of the uncertain pole regions.

randomly by sampling from the prior and the weightsW were initialized to zero. The variational
EM-algorithm of GPFA was run for 200 iterations. We also applied the variational Bayesian PCA
(VBPCA) [2] to the same dataset for comparison. VBPCA was initialized randomly as the initial-
ization did not have much effect on the VBPCA results. Finally, we rotated the GPFA components
such that the orthogonal basis in the factor analysis subspace was ordered according to the amount of
explained data variance (where the variance was computed byaveraging over time). Thus, “GPFA
principal components” are mixtures of the original factorsfound by the algorithm. This was done
for comparison with the most prominent patterns found with VBPCA.

Fig. 2 shows the spatial and temporal patterns of the four most dominant principal components for
both models. The GPFA principal components and the corresponding spatial patterns are generally
smoother, especially in the data-sparse regions, for example, in the period before 1875. The first and
the second principal components of GPFA as well as the first and the third components of VBPCA
are related to El Niño. We should make a note here that the rotation within the principal subspace
may be affected by noise and therefore the components may notbe directly comparable. Another
observation was that the model efficiently used only some of the 15 slow components: about three
very slow and two interannual components had relatively large weights in the loading matrixW.
Therefore the selected number of slow components did not affect the results significantly. None
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of the periodic components had large weights, which suggests that the fourth VBPCA component
might contain artifacts.

Finally, we compared the two models by computing a weighted root mean square reconstruction
error on the test set, similarly to [4]. The prediction errors were 0.5714 for GPFA and 0.6180
for VBPCA. The improvement obtained by GPFA can be considered quite significant taking into
account the substantial amount of noise in the data.

5 Conclusions and discussion

In this work, we proposed a factor analysis model which can beused for modeling spatio-temporal
datasets. The model is based on using GP priors for both spatial patterns and time signals corre-
sponding to the hidden factors. The method can be seen as a combination of temporal smoothing,
empirical orthogonal functions (EOF) analysis and kriging. The latter two methods are popular in
geostatistics (see, e.g., [3]). We presented a learning algorithm that can be applicable to relatively
large datasets.

The proposed model was applied to the problem of reconstruction of historical global sea surface
temperatures. The current state-of-the-art reconstruction methods [5] are based on the reduced space
(i.e. EOF) analysis with smoothness assumptions for the spatial and temporal patterns. That ap-
proach is close to probabilistic PCA [14] with fitting a simple auto-regressive model to the posterior
means of the hidden factors. Our GPFA model is based on probabilistic formulation of essentially
the same modeling assumptions. The gained advantage is thatGPFA takes into account the uncer-
tainty about the unknown parameters, it can use all available data and it can combine all modeling
assumptions in one estimation procedure. The reconstruction results obtained with GPFA are very
promising and they suggest that the proposed model might be able to improve the existing SST
reconstructions. The improvement is possible because the method is able to model temporal and
spatial phenomena on different scales by using properly selected GPs.

A The gradients for the updates of GP hyperparameters

The gradient of the first term of (13) w.r.t. a hyperparameter(or inducing input)θ of any covariance
function is given by

1

2
tr

[

(

K
−1
x

− A
−1

) ∂Kx

∂θ

]

− tr
[

UKxxA
−1 ∂Kxx

∂θ

]

+−
1

2
b

T ∂Kx

∂θ
b+b

T ∂Kxx

∂θ
(Z: −UKxxb)

whereA = Kx + KxxUKxx , b = A
−1

KxxZ: . This part is similar to the gradient reported in
[12]. Without the sparse approximation, it holds thatKx = Kx = Kxx = Kxx and the equation
simplifies to the regular gradient in GP regression for projected observationsU−1

Z: with the noise
covarianceU−1. The second part of (13) results in the extra terms

tr

(

∂Kx

∂θ
U

)

+ tr

(

∂Kx

∂θ
K

−1
x

KxxUKxxK
−1
x

)

− 2 tr

(

∂Kxx

∂θ
K

−1
x

KxxU

)

. (18)

The terms in (18) cancel out when the sparse approximation isnot used. Both parts of the gra-
dient can be efficiently evaluated using the Cholesky decomposition. The positivity constraints of
the hyperparameters can be taken into account by optimizingwith respect to the logarithms of the
hyperparameters.
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