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Abstract

We present a probabilistic factor analysis model which camded for studying
spatio-temporal datasets. The spatial and temporal ateiis modeled by using
Gaussian process priors both for the loading matrix andatiefs. The posterior
distributions are approximated using the variational Bée framework. High

computational cost of Gaussian process modeling is redogeding sparse ap-
proximations. The model is used to compute the reconstmgtof the global

sea surface temperatures from a historical dataset. Thésesiggest that the
proposed model can outperform the state-of-the-art réngton systems.

1 Introduction

Factor analysis and principal component analysis (PCAjédely used linear techniques for find-
ing dominant patterns in multivariate datasets. These adstfind the most prominent correlations
in the data and therefore they facilitate studies of the fesesystem. The found principal pat-
terns can also give an insight into the observed data véitialhh many applications, the quality of
this kind of modeling can be significantly improved if extnadwledge about the data structure is
used. For example, taking into account the temporal inftionaypically leads to more accurate
modeling of time series.

In this work, we present a factor analysis model which makses af both temporal and spatial
information for a set of collected data. The method is baseithe standard factor analysis model

D
Y = WX + noise= Z W.gX.. + Noise, (1)
d=1

whereY is a matrix of spatio-temporal data in which each row corgtaieasurements in one spatial
location and each column corresponds to one time instaneee &hd in the following, we denote

by a;. anda.; thei-th row and column of a matriA, respectively (both are column vectors). Thus,
eachx,. represents the time series of one of ihéactors whereas .4 is a vector of loadings which

are spatially distributed. The matfi can contain missing values and the samples can be unevenly
distributed in space and tinte.

We assume that both the factogg and the corresponding loadings,; have prominent structures.
We describe them by using Gaussian processes (GPs) whicHeisilale and theoretically solid
tool for smoothing and interpolating non-uniform data [8lsing separate GP models fry. and
w4 facilitates analysis of large spatio-temporal datasetse dpplication of the GP methodology
to modeling dat&d” directly could be unfeasible in real-world problems beesthh® computational

In practical applications, it may be desirable to diminisé effect of uneven sampling over space or time
by, for example, using proper weights for different datangmi



complexity of inference scales cubically w.r.t. the numbédata points. The advantage of the
proposed approach is that we perform GP modeling only eithire spatial or temporal domain at
a time. Thus, the dimensionality can be remarkably reducéedaodeling large datasets becomes
feasible. Also, good interpretability of the model makesasy to explore the results in the spatial
and temporal domain and to set priors reflecting our modagsymptions. The proposed model is
symmetrical w.r.t. space and time.

Our model bears similarities with the latent variable medgeksented in [13, 16]. There, GPs were
used to describe the factors and the mixing matrix was pestitnated. Therefore the observations
Y were modeled with a GP. In contrast to that, our model is noPantddel for the observations
because the marginal distribution ¥f is not Gaussian. This makes the posterior distribution of
the unknown parameters intractable. Therefore we use amxépption based on the variational
Bayesian methodology. We also show how to use sparse eerg@tapproximations to reduce the
computational load. Models which use GP priors for béhandX in (1) have recently been pro-
posed in [10, 11]. The function factorization model in [18]éarned using a Markov chain Monte
Carlo sampling procedure, which may be computationallgasfble for large-scale datasets. The
nonnegative matrix factorization model in [11] uses p@stimates for the unknown parameters,
thus ignoring posterior uncertainties. In our method, we timto account posterior uncertainties,
which helps reduce overfitting and facilitates learning aeraxcurate model.

In the experimental part, we use the model to compute reaarigin of missing values in a real-
world spatio-temporal dataset. We use a historical seaceitemperature dataset which contains
monthly anomalies in the 1856-1991 period to reconstriegibbal sea surface temperatures. The
same dataset was used in designing the state-of-the-angteaction methodology [5]. We show the
advantages of the proposed method as a Bayesian technideleegim incorporate all assumptions
in one model and which uses all available data. Since reagr&in of missing values can be an
important application for the method, we give all the foramiassuming missing values in the data
matrix Y.

2 Factor analysis model with Gaussian process priors

We use the factor analysis model (1) in whi¥hhas dimensionalityy/ x N and the number of
factorsD is much smaller than the number of spatial locatidngnd the number of time instances
N. Them-th row of Y corresponds to a spatial locatidp (e.g., a location on a two-dimensional
map) and the:-th column corresponds to a time instarge

We assume that each time signal contains values of a latent functigy(¢) computed at time
instances,,. We use independent Gaussian process priors to describsigaalx.:

D
p(X) = N(X |07 Kx) = HN(Xd: |07 Kd) ) [Kd]’LJ = ’djd(tut]a 0(1) ) (2)
d=1
whereX. denotes a long vector formed by concatenating the columi§, &€ is the part of the
large covariance matriK, which corresponds to théth row of X and A (a |b, C) denotes the
Gaussian probability density function for variakdewith meanb and covarianc&C. Theij-th
element ofKK; is computed using the covariance functiopwith the kernel hyperparametefig.

The priors forW are defined similarly assuming that each spatial pattegrtontains measurements
of a functionw(l) at different spatial locations,

D
p(W) =[N (walo,K¥),  [KY],; = @alli,1j; a) ®)
d=1
wherep, is a covariance function with hyperparametgégs Any valid (positive semidefinite) ker-
nels can be used to define the covariance functignandyy. A good list of possible covariance
functions is given in [8]. The prior model reduces to the orsediin probabilistic PCA [14] when
K, = I and a uniform prior is used faW.

The noise term in (1) is modeled with a Gaussian distribytiesulting in a likelihood function

p(Y|WaX70) = H N(ymn ‘WT’];L:X:R,U,?nn), (4)

mn€eQ



where the product is evaluated over the observed elemeltsihose indices are included in the set
O. We will refer to the model (1)—(4) as GPFA. In practice, tloése level can be assumed spatially
(0mn = o) or temporally 6,,,, = o,,) varying. One can also use spatially and temporally varying
noise levelb?  if this variability can be estimated somehow.

There are two main difficulties which should be addressedMésrning the model: 1) The posterior
p(W,X]Y) is intractable and 2) the computational load for dealindw@Ps can be too large for
real-world datasets. We use the variational Bayesian fnarieto cope with the first difficulty and

we also adopt the variational approach when computing sgagroximations for the GP posterior.

3 Learning algorithm

In the variational Bayesian framework, the true postes@pproximated using some restricted class
of possible distributions. An approximate distributionielhfactorizes as

(W, X[Y) = ¢(W, X) = ¢(W)q(X).

is typically used for factor analysis models. The approxioreg(W, X) can be found by minimiz-
ing the Kullback-Leibler divergence from the true posteribhis optimization is equivalent to the
maximization of the lower bound of the marginal log-likedid:

(YW, X)p(W)p(X)

T W)g(X) dWdX. (5)

logp(Y) > /Q(W)Q(X) log ”
Free-form maximization of (5) w.r.4(X) yields that

4(X) o p(X) expEPY WXy

where(-) refers to the expectation over the approximate posterstriduitiong. Omitting the deriva-
tions here, this boils down to the following update rule:

aX) =N (X | (K +U) 7z, (K +0) ) (6)
whereZ. isaDN x 1 vector formed by concatenation of vectors
Z.y, = Z O’;«Li<wm>ymn (7)
meO,

The summation in (7) is over a s&, of indicesm for whichy,,,, is observed. MatribU in (6) is a
DN x DN block-diagonal matrix with the followind x D matrices on the diagonal:

U, = Z a;ﬁxwm:wﬁ), n=1,...,N. (8)
me0y,

Note that the form of the approximate posterior (6) is simiathe regular GP regression: One
can interprelU; !z.,, as noisy observations with the corresponding noise cavegienatricedJ; *.
Then,q(X) in (6) is simply the posterior distribution of the latent fiions values,(t,, ).

The optimalg(W') can be computed using formulas symmetrical to (6)—(8) ircivBd andW are
appropriately exchanged. The variational EM algorithmléarning the model consists of alternate
updates ofy(W) andq(X) until convergence. The noise level can be estimated by wsipgint
estimate or adding a factor factgfo,,,) to the approximate posterior distribution. For example,
the update rules for the case of isotropic neigg, = o2 are given in [2].

3.1 Component-wise factorization

In practice, one may need to factorize further the postepproximation in order to reduce the
computational burden. This can be done in two ways: by néglgthe posterior correlations be-
tween different factors,;. (and between spatial patterms,, respectively) or by neglecting the
posterior correlations between different time instancgs(and between spatial locatioss,,., re-

spectively). We suggest to use the first way which is commutally more expensive but allows to



Method | Approximation | Update rule| Complexity

GP onY O(N3M?3)
GPFA q(X.) (6) O(D3N3 + D3M?3)
GPFA q(xa) 9) O(DN?® + DM?3)

GPFA | g(xa.), inducing inputs (12) O N2N + 0 M2M)

Table 1: The computational complexity of different algbnits

capture stronger posterior correlations. This yields agus approximatiory(X) = Hle q(X4:)
which can be updated as follows:

q(Xd;):N(Xd:‘(Kd_l-i-Vd)_lCd,(K;1+Vd)_1) ) d:17"'aDa (9)

wherec, is anN x 1 vector whose:-th component is

il = 3 o) (v — 3 (s} ) (10
meO0, j#£d
andV; is anN x N diagonal matrix whose-th diagonal elementi&V ], = >_,.co, Tma(w2,q) -
The main difference to (6) is that each componentis fitteéaésiduals of the reconstruction based
on the rest of the components. The computational compléxitypw reduced compared to (9), as
shown in Table 1.

The component-wise factorization may provide a meaninggptesentation of data because the
model is biased in favor of solutions with dynamically anatigly decoupled components. When
the factors are modeled using rather general covarianctiéuns, the proposed method is somewhat
related to the blind source separation techniques usirgdtnacture (e.g., [1]). The advantage here
is that the method can handle more sophisticated tempomalations and it is easily applicable to
incomplete data. In addition, one can use the method in séimd-settings when prior knowledge
is used to extract components with specific types of temprapatial features [9]. This problem
can be addressed using the proposed technique with pragrerden covariance functions.

3.2 Variational learning of sparse GP approximations

One of the main issues with Gaussian processes is the highutational cost with respect to the
number of observations. Although the variational learrahthe GPFA model works only in either
spatial or temporal domain at a time, the size of the data filllyestoo large in practice. A common
way to reduce the computational cost is to use sparse appatioins [7]. In this work, we follow
the variational formulation of sparse approximations enésd in [15].

The main idea is to introduce a set of auxiliary variables =} which contain the values of the
latent functionsuy(1), xa(t) in some location§l = A\ jm =1,..., My}, {t = 7¢n =1,..., N4}
called inducing inputs. Assuming that the auxiliary valésl{w, } summarize the data well, it
holds thatp(W, X|w, z,Y) ~ p(W, X|w, x) , which suggests a convenient form of the approxi-
mate posterior:

(W, X, w,z) = p(W|w)p(X|z)q(w)q(z), (11)
wherep(W|w), p(X|x) can be easily computed from the GP priors. Optig(ab), ¢(x) can be
computed by maximizing the variational lower bound of thegiraal log-likelihood similar to (5).

Free-form maximization w.r.tz(x) yields the following update rule:
g(x) = N (2 |ZK; ' KonZ:, B) , == (K3' + K3 ' Kox UK K3 ), (12)

wherex is the vector of concatenated auxiliary variables for attdas, K, is the GP prior co-
variance matrix ofc andK is the covariance betweeanandX.. This equation can be seen as a
replacement of (6). A similar formulais applicable to thelate ofq(w). The advantage here is that
the number of inducing inputs is smaller than then the nurobeéata samples, that i3/, < M and
Ny < N, and therefore the required computational load can be ezt(see more details in [15]).
Eqg. (12) can be quite easily adapted to the component-wiserfaation of the posterior in order to
reduce the computational load of (9). See the summary farahgutational complexity in Table 1.



3.3 Update of GP hyperparameters

The hyperparameters of the GP priors can be updated quitdjno the standard GP regression
by maximizing the lower bound of the marginal log-likelitbhadOmitting the derivations here, this
lower bound for the temporal covariance functidns;(t)}2_, equals (up to a constant) to

N
log N (U™ Z: [0, U™ + Koo K3 ' Ko ) — %tr[z U,D|, (13)
n=1

whereU andZ. have the same meaning as in (6) ddds a D x D (diagonal) matrix of variances

of x.,, given the auxiliary variableg. The required gradients are shown in the appendix. The
equations without the use of auxiliary variables are sinekecept thatK,, K, 'K.x = Kx and

the second term disappears. A symmetrical equation canrbeddor the hyperparameters of the
spatial functionsy,4(t). The extension of (13) to the case of component-wise fadtapproximation

is straightforward. The inducing inputs can also be treatedariational parameters and they can be
changed to optimize the lower bound (13).

4 Experiments

4.1 Artificial example

We generated a dataset wili = 30 sensors (two-dimensional spatial locations) avd= 200
time instances using the generative model (1) with a modexatount of observation noise, as-
sumingo.., = o. D = 4 temporal signals,. were generated by taking samples from GP priors
with different covariance functions: 1) a squared expoiaéfinction to model a slowly changing
component:

7“2
k(r;01) = exp (—2—9%) , (14)
2) a periodic function with decay to model a quasi-periodimponent:
2 si 2 2
k(r;01,02,03) = exp —M - T_g ; (15)
65 203

wherer = |t; —t;|, and 3) a compactly supported piecewise polynomial fundtiomodel two fast
changing components with different timescales:

Brs61) = 5= P2 (8 + 46+ 3)% + (34 6)r +3) (16)

wherer = min(1,|t; — ¢;|/61) andb = 3 for one-dimensional inputs with the hyperparameter
6, defining a threshold such thafr) = 0 for |t; — ¢;| > 61. The loadings were generated from
GPs over the two-dimensional space using the squared expalrevariance function (14) with an
additional scale parametey:

k(r;01,02) = 03 exp (—7’2/(29%)) ) a7

We randomly selected 452 data points fr&fmas being observed, thus most of the generated data
points were marked as missing (see Fig. 1a for examples).l8Wa@moved observations from all
the sensors for a relatively long time interval. Note a risglgap in the data marked with vertical
lines in Fig. 1a. The hyperparameters of the Gaussian psesesere initialized randomly close

to the values used for data generation, assuming that a gaes$ @bout the hidden signals can be
obtained by exploratory analysis of data.

Fig. 1b shows the components recovered by GPFA using theteipdle (6). Note that the algo-
rithm separated the four signals with the different vatigbtimescales. The posterior predictive
distributions of the missing values presented in Fig. lansti@at the method was able to capture
temporal correlations on different timescales. Note disd &lthough some of the sensors contain
very few observations, the missing values are reconsulymretty well. This is a positive effect of
the spatially smooth priors.
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Figure 1: Results for the artificial experiment. (a) Postepredictive distribution for four randomly
selected locations with the observations shown as croisegap with no training observations
marked with vertical lines and some test values shown atesirqb) The posteriors of the four
latent signalsc,.. In both figures, the solid lines show the posterior mean aag ¢plor shows two
standard deviations.
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4.2 Reconstruction of global SST using the MOHSSTS5 dataset

We demonstrate how the presented model can be used to nemiigdbbal sea surface temperatures
(SST) from historical measurements. We use the U.K. Metegital Office historical SST data set
(MOHSST5) [6] that contain monthly SST anomalies in the 18961 period fob° x 5° longitude-
latitude bins. The dataset contains in total approximaté30 time instances and700 spatial
locations. The dataset is sparse, especially during thecEsttury and the World Wars, having%

of the values missing, and thus, consisting of more ttéfrobservations in total.

We used the proposed algorithm to estim@te- 80 components, the same number was used in [5].
We withdrew 20% of the data from the training set and usedgaisfor testing the reconstruction
accuracy. We used five time signalg with the squared exponential function (14) to describe cli-
mate trends. Another five temporal components were modeitibdte quasi-periodic covariance
function (15) to capture periodic signals (e.g. relatedchtoannual cycle). We also used five compo-
nents with the squared exponential function to model premiimterannual phenomena such as El
Niflo. Finally we used the piecewise polynomial functiomglescribe the rest 65 time signalg.
These dimensionalities were chosen ad hoc. The covariamotidn for each spatial pattesn. 4
was the scaled squared exponential (17). The distafetween the locations and/; was mea-
sured on the surface of the Earth using the spherical lawsihes. The use of the extra parameter
02 in (17) allowed automatic pruning of unnecessary factotsciwvhappens whefy, = 0.

We used the component-wise factorial approximation of the&tgxior described in Section 3.1. We
also introduced00 inducing inputs for each spatial functian({) in order to use sparse variational
approximations. Similar sparse approximations were usethé 15 temporal functiong(¢) which
modeled slow climate variability: the slowest, quasi-pdit and interannual components H&j
300 and300 inducing inputs, respectively. The inducing inputs weligdtized by taking a random
subset from the original inputs and then kept fixed througtearning because their optimization
would have increased the computational burden substigntalr the rest of the temporal phenom-
ena, we used the piecewise polynomial functions (16) thedyre priors with a sparse covariance
matrix and therefore allow efficient computations.

The dataset was preprocessed by weighting the data poirnitelsguare root of the corresponding
latitudes in order to diminish the effect of denser sampiintipe polar regions, then the same noise
level was assumed for all measurements,{ = o). Preprocessing by weighting data points,
with weightss,, is essentially equivalent to assuming spatially varyingadevelo,,, = o/sp,.
The GP hyperparameters were initialized taking into actthmassumed smoothness of the spa-
tial patterns and the variability timescale of the tempdaators. The factorX were initialized



Figure 2: Experimental results for the MOHSSTS dataset. Sfjagial and temporal patterns of the
four most dominating principal components for GPFA (abare) VBPCA (below). The solid lines
and gray color in the time series show the mean and two stdmidaiations of the posterior distri-
bution. The uncertainties of the spatial patterns are nmvehand we saturated the visualizations
of the VBPCA spatial components to reduce the effect of treertain pole regions.

randomly by sampling from the prior and the weigWé were initialized to zero. The variational
EM-algorithm of GPFA was run for 200 iterations. We also &pthe variational Bayesian PCA
(VBPCA) [2] to the same dataset for comparison. VBPCA wasdllized randomly as the initial-
ization did not have much effect on the VBPCA results. Finalle rotated the GPFA components
such that the orthogonal basis in the factor analysis sulespas ordered according to the amount of
explained data variance (where the variance was computesidraging over time). Thus, “GPFA
principal components” are mixtures of the original factfmsnd by the algorithm. This was done
for comparison with the most prominent patterns found wiBPCA.

Fig. 2 shows the spatial and temporal patterns of the fout gmminant principal components for
both models. The GPFA principal components and the correfipg spatial patterns are generally
smoother, especially in the data-sparse regions, for ebainghe period before 1875. The first and
the second principal components of GPFA as well as the fidtaa third components of VBPCA
are related to El Nifio. We should make a note here that tlaioatwithin the principal subspace
may be affected by noise and therefore the components mayenditectly comparable. Another
observation was that the model efficiently used only somé®fl6 slow components: about three
very slow and two interannual components had relativelgdareights in the loading matri¥v.
Therefore the selected number of slow components did nettafhe results significantly. None



of the periodic components had large weights, which suggbst the fourth VBPCA component
might contain artifacts.

Finally, we compared the two models by computing a weightet mean square reconstruction
error on the test set, similarly to [4]. The prediction esrovere 0.5714 for GPFA and 0.6180
for VBPCA. The improvement obtained by GPFA can be consitlengte significant taking into
account the substantial amount of noise in the data.

5 Conclusions and discussion

In this work, we proposed a factor analysis model which candss for modeling spatio-temporal
datasets. The model is based on using GP priors for bothaspatiterns and time signals corre-
sponding to the hidden factors. The method can be seen asldradion of temporal smoothing,

empirical orthogonal functions (EOF) analysis and krigifidpe latter two methods are popular in
geostatistics (see, e.g., [3]). We presented a learnirgyitign that can be applicable to relatively
large datasets.

The proposed model was applied to the problem of recongiruof historical global sea surface
temperatures. The current state-of-the-art reconstmuatiethods [5] are based on the reduced space
(i.e. EOF) analysis with smoothness assumptions for thdas@and temporal patterns. That ap-
proach is close to probabilistic PCA [14] with fitting a sire@uto-regressive model to the posterior
means of the hidden factors. Our GPFA model is based on pildtialformulation of essentially
the same modeling assumptions. The gained advantage iSf## takes into account the uncer-
tainty about the unknown parameters, it can use all availdata and it can combine all modeling
assumptions in one estimation procedure. The reconsirusults obtained with GPFA are very
promising and they suggest that the proposed model mighbleeta improve the existing SST
reconstructions. The improvement is possible because #ibau is able to model temporal and
spatial phenomena on different scales by using propergcted GPs.

A The gradients for the updates of GP hyperparameters

The gradient of the first term of (13) w.r.t. a hyperparam@emducing inputp of any covariance
function is given by

1 0K 0K 1. 0K 0K
S| (Kot - A1) L2 4 —=b" b+ b —(Z, - UK,;b
5 tr] 2 T g9 ) T3P ag PP gy (% )
whereA = K, + Koy UK., b = A7'K_.Z.. This part is similar to the gradient reported in
[12]. Without the sparse approximation, it holds tlhét = Kx = Kg.x = K« and the equation
simplifies to the regular gradient in GP regression for miaje observation&/ ~! Z. with the noise
covariancdJ~!. The second part of (13) results in the extra terms

} —tr [UKMN1

00 00 00

The terms in (18) cancel out when the sparse approximatiootisised. Both parts of the gra-
dient can be efficiently evaluated using the Cholesky deasitipn. The positivity constraints of
the hyperparameters can be taken into account by optimigitigrespect to the logarithms of the
hyperparameters.

Ky K Ky,
tr<8 U)+tr<8 nglexUKmK;1>2tr<a wKlesz). (18)
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