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Abstract

We propose simple transformation of the hidden states iat@anal Bayesian factor analysis models to speed up thaileapro-
cedure. The speed-up is achieved by using proper paraaagten of the posterior approximation which allows jointiopzation
of its individual factors, thus the transformation is thetarally justified. We derive the transformation formulae Yariational
Bayesian factor analysis and show experimentally thatritsignificantly improve the rate of convergence. The progdsans-
formation basically performs centering and whitening & tiidden factors taking into account the posterior unatitss. Similar
transformations can be applied to other variational Bayefdactor analysis models as well.
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1. Introduction the latent variable§x,} are assigned priors which express our
modeling assumptions. Then, the goal is to evaluate thé join

Probabilistic latent variable models is a powerful tool of u distribution over all the unknown variables given the okaer

supervised data analysis which cafiaently be used for data

compression, feature extraction and dynamical modeling. |t|ons{_yn%. i _
this article, we consider a latent variable model caflector ~ Variational Bayesian (VB) methods have been widely used
analysis[3, 4], in which observed data vectoys are assumed N FA and its extensions (see, e.g., [5, 8, 15]). Perhaps tie m
to be constructed from variables using a linear mapping: argument for using VB methods is a typically large number of
unknown parameters in latent variable models, which caremak
Yn=Wxn+p+e, n=1....N, (1) sampling methods computationally prohibitive. VB meth-

where matrixV and vectom are adaptive parameters agds ~ 0ds approximate the true posterior probability densityctiom

a noise term. The latent latent variables) are modelled to be  (Pdf) p({Xn}, n. W, &, ...|{yn}) of the unknown variables using a

zero-mean Gaussian with uncorrelated and unit-varianee co Simpler pdf which is factorized with respect to groups ofivar

ponents, while the noise tere is also a zero-mean Gaussian ables (see, e.g., [7]).

with a diagonal covariance matrix. The variational approximation usually assumes that the hid
Factor analysis (FA) can be seen as a basic latent variabtien factorgx,} and the rows of the loading mati¥ are inpen-

model which has been extended in many ways. Probabilistident a posteriori, which is done mainly for computationai-co

principal component analysis (PCA) [24] is a FA model with venience. However, all the variables in the original FA mode

isotropic noisex, [6]. Linear state-space models (see, e.g., [11])are strongly coupled. This often causes slow convergence of

use the linear generative model (1) but include dynamias int VB methods in practice.

the prior model for the latent variables. Mixtures of factoa- Parameter-expanded VB (PX-VB) methods were proposed
Iyzers allow diferent local FA models in ffierent I’egions of the recenﬂy to address the slow convergence pr0b|em [23] The
input space [10]. Non-Gaussian factors yield a noisy indepe general idea is to use auxiliary parameters in the origireaeh
dent component analysis model [2]. A nonlinear mapping fromg reduce the féect of strong couplings betweenfigirent vari-
the hidden faCtoan to Observations'n is assumed in nonlin- ables. The auxiliary parameters are Optimized during Ieg[n
ear factor analysis models [12, 15, 16], exponential faPBA  which corresponds tgoint optimization of diferent compo-
[21] or nonlinear state-space models [25]. nents of the variational approximation of the true posteriio
Bayesian methods provide a principled way for learning la+thjs way strong functional couplings between the compaent
tent variable models. The main advantages of Bayesian techye reduced, which facilitates faster convergence. Onaeof t
niques include easy handling of missing data, resistan@esto  main challenges for applying the PX-VB methodology is to use

fitting and natural ways of model comparison. In Bayesian inproper reparameterization of the original model.

ference, both the adaptive parameters, includingndy, and In this paper, we present a very similar idea in the context

" . of learning VB factor analysis (VBFA) models. Similarly to
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our presentation, the auxiliary variables reparametehieep- _ _ @ >
proximating posterior pdf rather than the original modéius, = (logp(¥1©)) <Iog p®)/’ ®)
the adaptation of the auxiliary variables correspondsaosy ] o ]
formations of the latent variables in our terminology rathen ~ Where(:) denotes the expectation over thelistribution. This
to reparameterization of the original model in the PX-VB ter OPtimization results in the following forms for the factq8:
minology. Similarly to examples of PX-VB [23], our proposed N M
family of possible transformations may look ad-hoc but we-pr _ % _ - =
vide a rigorous proof that the optimal transformation (With ax) l;[ Nl o). alk) HN(#mI#m,,um), “)
the proposed family) always maximizes the lower bound of the M D
marginal likelihood. Thus, the propsed transformatiomdifa ~ q(w) = HN(WmIWm, w,), q(e) = HQ(adé«rd’ by,). (5)
tate faster convergence. m=1 d=1

In the experimental part, we consider the VB PCA model [8] M .
and show that the proposed methodology can lead to signifi- q(T) = 1_[ G(tmla:,, b)), (6)
cantly faster convergence. The preliminary results ofwask m=1

were presented in our conference paper [20]. , .
wherew] is themth row of W. In the variational EM algo-

rithm, the optimization is done by alternate updates of the i
2. Transformationsfor variational Bayesian factor analysis  dividual factors in (4)-(6) while keeping the rest of thetfars

fixed. The update rules for the parameters are as follows:
2.1. Learning VBFA model by variational EM algorithm

-1 _ T
Let us denote b){yn}r';‘:l a set of M-dimensional observa- I =1+ Z <Tm><Wme>’
tionsy,. The data are assumed to be generated from hidden MEOrmn
D-dimensional staten}N_: Xn = Xy, Z (Tm)Wm)(Ymn — (um)),
meomn
N -1 _ . T
POYIW, X, 1, %) = [ | A (yalWxo + s, diagie) ), (2) B, = dlag(e) + () ), o)
n=1 mn

W = z:wm<7'm> Z <Xn>(ymn - <ﬂm>)»

NeOmn

/7# =B+ Nm{Tm),

whereN (alb, C) denotes a Gaussian probability density func-
tion overawith mearb and covariance matri€, W is anMxD
loading matrix,u is a bias term and diagj is a diagonal preci-

sion matrix with elements;, on the diagonal. A = HmlTm) Z (ymn - (Wm)T<xn)),
The prior models for the unknown variables are N€Omn

1

N D M 8oy = Au + EM,

p¥) = [ [[ [NCarl0.2). p(w) = [ [N (uml.57Y), LM

n=1 d=1 m=1 —
M D D Baq = b + 2 o] <Wr2"d>’

pWIe) = [ [[ [NV Wmdl0, @), p(e) = | [ G(anlan, be), 1

m=1 d=1 d=1 &, =ar + =Np,

" i :
— Pl _ T
P9 = | | oteni. 0o b =bcs 5 3 (- whio - )

whereg(y|a, b) is a Gamma density function which has the ex-whereOn, is the set of indecesr n) for which the correspond-
pectations(y) = a/b and(logy) = y(a) - log(b), with ¥(8)  ing y;,, is not missing, and\n, is the number of non-missing
being the digamma function, and the hyperparamedees,,  gpservations in thexth row of Y.
b« ac, andb. are fixed to small values (e.g., T resulting in
broad priors. _ 3 _ ~ 2.2. Transformations of the posterior distributions

In VBFA, the joint posterior probability density function
(pdf) of the unknown variable® = {X,u,W, «, T} is ap-
proximated with a suitable pdf(®). The approximate pdf . X e
is often chosen to factorize with respect to the variables ab expressed in the likelihood ter(tog p(Y1@)). It should also

_ - gt flect our prior model because the second term is simply the

(@) = q(X)a(n)a(W)ag(x)q(T). The approximate distribution refiect . . .

q(®) is found by maximizing the lower bound of the marginal negative of the Kullback-Leibler divergence between therpr
distribution and the posterior approximation.

The two terms of£(q) in (3) suggest that the optimal approx-
imation g(®) should provide good explanation of data, which

log-likelihood o .
However, the maximization af’(q) can be quite slow be-
p(Y,®) cause discarding posterior correlations between manghias
log p(Y) = £(q) = fq(@)) log q©) do in the posterior approximation often leads to zigzagginthef



update trajectories in the parameter space. Thiececan be Thisyields the transformed distributions parameterizitd the
reduced by transformations of the model parameters, asave prD x D rotation matrixR:
pose in the following. Such transformations can be perfarme "
after each iteration step of the EM learning algorithm osles q.(W) = l_[N(WmIRTWm, R, R),
frequently. ho1

The additional computational cost is rather small because t N
transformations are performed in the lower-dimensionak su 9.(X) = HN(XnIR’lYn, R RT),
space ofk,. One cycle of the VB updates has a computational =)
cost of O(DN M) without missing values an@(D?N M) in the D

. . 1 15/ 1

presence of missing values, but the presented transfamnsati 0. () = ng(ad|a“ + =M, by + _rd<w W>rd),
do not even excee@(D?N + D?M) although they speed up the d=1 2 2

convergence significantly.
g g y whererq is thed-th column ofR. The transformed distribu-

2.2.1. Removing the bias froxn tion g.(«) is motivated by the update rule gfx). Again, the

We note that one can move a constant bias term betWeen original distributions can be recovered by settig: |.
The lower bound (3) to be maximized can be written as a

q .
andu asin function ofR as

Yn=Wxn+p=W(X,—b) + (Wb +p) = Wxn, + pe, (7) —<Iog q*(X)> ~ < a.(W) > ~ < q*(a)> + const (9)
whereb is aD x 1 bias vector. This motivates a transformation p(X) /.. p(Wix)/, p(e) /.,

of the approximating posterior pdfs to where the expectations are taken over the transfogqnédtri-

N butions. The constant term represents the terms indepeoflen
g.(X) = l_[ N(XnlXn — b, Zx.), the rotation pargmetﬁ. _ _
n=1 As we show in Appendix B, the transformation matfix

M : which maximizes (9) can be found from the requirements
() = [ | Ml + Wi, Fiw), .
el ST, =1 (10)

where the biad parameterizes the transformed distributions.
Note that the original distributions are recovered by sgthi =
0.

The lower bound (3) to be maximized with respecbtbe-
comes

(WTW>* = diagonal matrix. (11)

The resulting rotation matrix is formed & = UAV with or-
thogonal matrixJ and diagonal matriA found from the eigen-
decomposition

UA2UT = %{xxw (12)

ogp(vio)). - {iog B57) - (1og B

p(X) p(w) : ) ,
and V is an orthogonal matrix computed from the eigen-
where the expectation is taken over the transformetistribu-  decomposition
tions and the constant term represents the terms indepesiden
b. AUT(WTW)UA = VDVT. (13)
As we show in the Appendix A, the bias tefmthat maxi-
mizes (8) can be reasonably approximated by Thus, the transformation basically whitens the hidderestat
and orthogonalizes the columns of the loading matvixvhile
taking into account the posterior uncertainties.

>+const (8)

2.2.3. Relation to parameter expanded VB

Thus, the expected mean of the latent variabigshould be Our speed-up methodology is closely related to the general
transformed to zero. In our experiments, we use this approxiramework of parameter expanded variational Bayesian (PX-
mate translation. However, if a very large portion of theadat VB) methods [23], which are similar to the parameter expan-
Y is missing, one may obtain better performace with the exacgions for MCMC [18, 26] and EM algorithm [17]. The main

formulae (18) as discussed in the Appendix A. difference is that we use proper parameterization of the approx-
imate posterior distributio(®) in order to optimize jointly
2.2.2. Rotation of the latent subspace the individual factors of the variational approximation.don-

Similarly, one can rotate the latent variabksvith a proper ~ trast, in PX-VB one parameterizes the prior distributiond a
rotation of the loading matri%V such that the likelihood term the likelihood function with the auxiliary variables whictre

(log p(Y|®)) remains constant: then optimized to decrease the VB cost function.
Despite the dterences, our methodology and PX-VB lead
VYn=WX,+u= (WR)(R’lxn) +u=W.Xn, + 1. to the same transformations. The bias removal can be seen as



augmenting the model with auxiliary varialdedoy exchanging i(XXT> - (15)
the original variables as N

(WTW) = diag) (16)
Xn = Xns — b,
s=s, k<lI, 7)
u=pu, + (Wb,
o ) o where diag§) denotes a diagonal matrix with diagonal elements
resulting in a new prior and likelihood s«. Here, we ordered the columns of the loading matac-
N cording to their expected norms in order to remove the remain
pOG.IB) = [ [ A (xoufo 1), ing ambigulty. _ o _
nel Thus, the VBPCA solution allows intuitive interpretation
_ B 1 similar to standard PCA: The principal components are adler
P(uIb) = N(”* (Wb, 571 ) according to the amount of data variance they explain, wisich

p(Y10) = [T A (ymn

W (Xne — D) + s + <W;>b, diag(*r)’l). estimated using the computed posterior approximationtisn
(mn)€Omn

case, the normalized columns\&f and their squared nornsg
play the role of the eigenvectors and eigenvalues of claksic
First, the approximate posteriaf(W, X, u.,7, &) is eval- PCA.
uated with the original model (i.e.p = 0). Next, Similarly to this, we can define the PCA basis for related
KL(q(W, X, w., 7, ¥)lIp(Y, W, X,, 1., 7, &, b)) is minimized  probabilistic models which converge to some basis in the-pri
with respect to the auxiliary variable It can be shown that cipal subspace and therefore have rotational ambiguityefo
this cost function is actually identical to (8), thus resgtin ~ ample, it is easy to show (see Appendix C) that the solution
the same optimal translation. provided by probabilistic PCA [24] always satisfies at |§ag)
Similar relation holds for the rotational transformatiathe  and (15). We can use the additional requirements (16)-f17) i
rotation can be interpreted as augmenting the model with aorder to define a practically unique solution. Again, thikiso
auxiliary variableR by exchanging the original variables as  tion allows interpretation similar to standard PCA.
One can perfornexplicitly a transformation of the solution

W =W.R, provided by [24] such that the requirements (14)—(17) ake fu
X = R1X,, filed. The only diference to the transformations discussed in
a3t = 1] diag(ec.) ra. the previous section would be using point-estimatédwhich

yields, for exampleW W instead of WTW ) in (13). Perform-
Updating the prior and the likelihood appropriately, thenimi N9 such a transformation can also speed up learning, which i
mization of KL(q(W., X., u, 7, ) [Ip(Y, W, X., . 7, &, R)) motlvate_d by the v_anatlonal view of the EM-algorithm, as we
with respect tR is identical to the maximization of (9). discuss in Appendix C. . _

The diference between PX-VB and our methodology is in Smplay transformations to the PCA basis are straightfedwa
the viewpoint rather than in the resulting transformatichise ~ for principal subspace methods which compute point esésat
transformations to the posterior distribution can be seem a for parameter$W, x,, u} of model (1) and which use the only
model augmentation. However, we suggest that it can be mo@SSumption that the noise tergis Gaussian with fixed vari-
convenient to parameterize the approximate posteriorinlist ~ance. One simply needs to repla¢X ™) and (WTW) with
tion directly rather than indirectly through the prior ahé tike-  point estimateXXT andW™W in (12) and (13).
lihood. In some cases, it might beflitult to see what model The formulation of the PCA solution in terms of (14)—(17)
augmentation corresponds to a particular parameterizdiie ~ allows to extend the idea of the PCA basis to the case when
stead of auxiliary variables, the transformations can berin data vectory, have missing values. There is an important dif-
preted as parameterized joint optimization of multiplddasin  ference, though: The-dimensional PCA basis found for com-
g(@®). Forinstance, the speeding up of VB with pattern searcheplete data has the property that the fiksk ¢ columns ofW
can be seen as one special case of doing parameterizedgeint always correspond to thiedimensional PCA solution. This
timization [13]. property does not generally hold for incomplete data: Tl pr
cipal subspace estimated with the same algorithm usingrfewe
components may ffer from the leading directions of the PCA

3. The PCA solution for probabilistic PCA models basis found in the subspace with more components.

The results reported in the previous section suggest tkat th
solution found by VBPCA always satisfies the requirementst. Experiments
that the principal components are zero-mean and mutuaily un
correlated and the loading mati% has mutually orthogonal 4.1. Artificial data

columns: In this section, we use an artificial experiment to illustrat
N the dfect of the transformations on the speed of convergence of
1 Zi” -0 (14) VBPCA. We generated threeftirent datasets withl = 200
N & i data points from the multivariate Gaussian distributionhwi
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Figure 1: The square roots of the eigenvalues of the cowsgian
matrices which were used to generate the three datasets.

M = 50 dimensions with the means drawn from a Gaussian
distribution with zero mean and unit variance. The covaréan
matrix for the first dataset contained ten eigenvalues’ il o
the rest of the eigenvalues equaled unity (see Fig. 1). The co o o 23 40 50 v o 2% 4050
variance matrix for the second dataset had ten larger eddrenv ’ (b) Second dataset e
ues 2,...,11? and the remaining eigenvalues equaled unity. , ,
The third covariance matrix had eigenvalués. 1., 50 thus /
having no prominent low-dimensional subspace. 20% of the
values were removed from the datasets. Those data poings wer
used for validation of trained models in the problem of nrigsi
value reconstruction. ;
The VBPCA model was trained using the variational EM al- 5 20 3 1 s 5 20 3 4 s
gorithm presented in [8]. We ran the experiments for two-vari number of components, number of components.
ants of the prior foW: 1) the hierarchical prior explained in (c) Third dataset

_Sectlon 2 and 2) the broad prior which was achieved by fIX'Figure 2: Convergence time for thredfdrent artificial datasets
ing hyperparametersy to small values. For each dataset, we

learned the model with all possible dimensionalities fer I using hierarchichal prior (left) and fixed broad prior (tifor
tent subspace, ranging @ = 1 50, We measured the W. Thex-axis corresponds to flerent number of latent com-

; . . . . onents. The black dotted curve with the shaded area and the
running time until convergence, which was the point when th hree solid red curves show the worst, the best and the median
relative relative dference to the converged value of the log- . S ) .

S convergence times out of ten experiments with and withaait th
likelihood lower bound was less than£0

In all experiments, we initialized the hyperparametdefin- transformations respectively.
ing the inverse variance of the noise in (2) to a large valles T
was done to avoid underfitting when the noise variance is es-

timated to be too large and many components are estimated to _ )
have zero variance. More detailed analysis of the results suggests that perform

Fig. 2 shows the results for the three datasets and for ten eX19 the transformatlon can reduce Fhe overf|tt|m’“g.aet during
periments with and without applying the proposed transterm '€arning. Fig. 3 shows the VB cost (i.e., the negative of %323
tions after each iteration of the variational EM-algorithor 1€ rootmean squared error (RMSE)n(Ymn ~ WXn — i) ?
the first two datasets, the convergence of the algorithm wteen for the training set durl_ng_the Iear_nl_ng. RMSE is estimated t
transformations were used was approximately ten timeerfast be too small a_t the begmnln_g and itis later increased toveco
depending on the dimensionality of the latent SUbSpaCG.-HOV\Irom an overfltte_d SOIUt'On,'n orde.r FO decre_ase the RMSE for
ever, the transformations had small or almost flea in the the test set in Fig. 3c. Thls overfittingtect is smaller-when .
third experiment when the data had no prominent latent sugh® Proposed transformations are used. For both hieraichic
space. We also see that the transformations become more ifi?d Proad priors, the convergence was 10-100 faster with the
portant for models with a larger number of latent components transformations.

We also observed a greater significance of the transforma- When the noise variance was initialized to be large, that is,
tions for higher-dimensional datasets. For 200-dimeraion a small value was used farin (2), the improvement of con-
Gaussian data, the convergence with the transformatioss waergence obtained using the transformations can be mildi-Ho
1000 times faster than without them. In that experiment, theVer, in our experiments, this type of initialization tygiiy led
covariance matrix had eigenvalues?2A(?, ...,22,1,1,...,1, toslower convergence compared to the initialization witfal
the number of samples wa$ = 2000 and the number of esti- hoise variance. Also, the risk of converging to a bad locéitop
mated components wés = 50. mum was increased: Initialization with large variance cseb

vation noise may lead to pruning out some of the components.

1The optimal transformation in case of broad priors is sonzawdiferent |1 this case, using the transforr_natlonS may spee_d up Fhmun
from the one presented in Section 2, as we explain in Section 5 process, which can be a negatikeet. Therefore, initialization

time (seconds)
time (seconds)

time (seconds)
time (seconds)
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Figure 3: Experimental results obtained for an artificidbdat  Figure 4: Experimental results obtained for MNIST (leftdan
when using hierarchichal prior (left) or fixed broad pridgfit)  MovieLens (right) datasets. The dotted and solid curves rep
for W. The dotted and solid curves represent the results withesent the results with and without the transformationgees
and without the transformations respectively. The VB cest i tively. The VB cost is minus lower bound of the log marginal
minus lower bound of the log marginal likelihood (3), that is likelihood, that is, the VB cost is minimized during leargin

the VB cost is minimized during learning.

of noise variance with small values seems to be a more robust o hoth datasets, we discarded 20% of the data and used
approach. Although it is possible to converge to a pooralloc hat as a test set. We us&d= 50 andD = 100 components
optimum with the transformations, this happened very yarel {5, MNIST and MovieLens datasets respectively. In both ex-

our experiments. If this appears to be a problem, itis pt&s&b  periments, we used a hierarchical prior T, as presented in
start using the transformations after a few cyclic updat®&h gection 2.

been completed.
Fig. 4 shows the results for both datasets obtained with and
4.2, Real-world data without the transformations. In both cases, the transftona
made the convergence faster and more stable. Learning Was 10
We also tested theffiect of the transformations on two real- and 10 times faster for MNIST and MovieLens respectively.
world datasets. The first dataset consisted of images of-han@®ne can also notice that the algorithm converged to tuiedi
written digits, extracted from the MNIST databAs®/e chose ent solutions for the MNIST dataset and the solution obthine
N = 100 images of digit 5 as the training data. Images aravithout the transformations was slightly better. Howeveis
in grayscale and have a size of 288 pixels, resulting in  result should not be interpreted as a drawback of usingainsr
dimensionalityM = 784. The second dataset consisted offormations.

movie ratings from a set of users extracted from the MovieLen

database We used the smallest dataset. which had 100.000 Note also that the convergence of the runs without the trans-
ratings forN = 1682 movies byM = 943 users, resulting in an formations can get stuck in afficult region of the optimized
extremely sparse matrix. parameter space (see the I.h.s. plots in Fig. 4). This intesl

a risk of too early stopping when an automatic stopping <crite

rion is used. On the contrary, the runs with the transforometi
2pvailable online at httgyann.lecun.corexdbmnist. seem to avoid this problem: in all our experiments they con-
3Available online at httgfwww.grouplens.ornodg73. verged very fast to the vicinity of a local optimum.




5. Conclusions and discussion

In this paper, we showed how simple transformations of the
latent space can speed up leaning of variational Bayestorfa
analysis models. The presented approach resembles the m
general idea of using auxiliary parameters in VB learnirgj.[
We gave theoretical justification and showed experimentall
that the proposed transformations can significantly imptbe
rate of convergence. The transformations become more sigtl]
nificant for large-scale datasets and larger number of cempo
nents. Fast convergence is especially important when cetsne
the computed lower bound of the log marginal likelihood to do [2]
model comparison. Another possible approach to speeding ug[)S]
learning of variational PCA is explicitly incorporatingetor-
thogonality restrictions into the model [27].

Apart from a possible speed-up of learning, the proposed
transformation produces an intuitive representation eflth
tent space, similarly to standard PCA. This allows, for exam
ple, to use the computed meagsas the analogue of the princi-
pal components in algorithms which require preprocessitig w
whitening (see, e.g. [14]). 7

Similar transformations can improve the algorithms foreoth
related variational Bayesian latent variable models. Ttece (€]
formulae for other models can be derived using the presented
methodology. For example, when the model in Section 2 is[qg]
restricted to have fixed broad prior fd¢, that is, hyperparame-
tersay are fixed to some small values, the optimal rotation can
be shown to yieIdﬁ(XXTL = |, with N > M, instead of
(10).

Transformations can easily be derived for robust PCA modelg1]
which use heavy-tailed Studentistribution for the observa-
tion noise [19] and for latent componextsas well [1]. When
the Gaussian prior is used to descr¥¢19], the rotation de-
fined by (10) and (11) remains optimal. When the prior model
for the hidden components is described using the multiteria

(4]
5]

(6]

10]

[12]

13
Studentt distribution, one can use a hierarchical prior model 13
N N [14]
X) =] [ Sxnl0,1,v) = N (Xnl0, us'1) G (Unl%, %) A,
p(X) ]nl(m v) ]n:”(d 1) G (unl. 3) dun 15
wherev denotes the degrees of freedom apdare auxiliary
latent variables. Integrating out variables results in the 14

Studentt prior for X. Then, the optimal rotation can be shown
to yield

1 _ . [17]
N<X diagu)X >* =1, 18]
which should be used instead of (10). Here, diggg a diago- [19]

nal matrix with elements, on its diagonal.

The presented ideas might be extended to VB learning of
other factor analysis models in which the latent variables a [20]
pear in the data model in the fod X, as in (2). For example,
a relevant transformation for blind source separation oazh
based on dynamical generative models [9] might be applyin?
fast separation algorithms [28] during learning. Simikdeas 21]
might also be used in nonlinear and mixture models as well
[5, 10, 12, 21, 25].
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M log|R| + const

The broad prior forx yields (aq), = M/(rE(WTW>rd), and

A. Derivation of the transation therefore the latter term iflog p(W|«)), is a constant:

In this section, we derive the optimal translatibnwhich - }tr diag(oc)*RT<WTW>R)
maximizes the log-likelihood lower bound in (8). [f has 2 5 5
a broad prior, the term{log p(u)), is constant. The terms 1 ThoT 1 B
—(logq(X)), and—{logq(w)), are entropies of Gaussian distri- "2 dz_; <ad>*rd<w W>rd ) dz_; M = const

butions, which are in general constant with respect to therme

parameter. Therefore these terms are also constant withaes and can be discarded.

to b. Removing the constant terms, the following remaining We represenR using its singular value decomposition as

terms form the non-constant part of the lower bound: R = UAV, whereU andV are orthogonal matrices and is
diagonal. MatrixV cancels out in most of the termfecting

N
(log p(Y1@)), = _% S G- Y B, (- b)+cons 0Ny the term
n=1 meOmn M D M D 1
1o o - — » (logag), ~ ——log| [ Zri{WTW)rq4+ const

(log p(X)). = -5 >R = b)" (% — b) + const 2 dz:; 2 g 2 < )

=1
" Thus,V can be found by maximizing this term, which is equiv-

whereOm, is the set of indicesn for which ym, is observed, 4jent to minimization of the product of the diagonal elersent
that is, missing values are ignored. Taking the derivatiite W ¢ \,T A yT/WTW)UAV. For a positive definite and symmetric
respect tdb and equating the result to zero yields the optimaly, 4ty the product of the diagonal elements is boundedbelo
transformation by the determinafitand it equals the determinant if the matrix
N 1N is diagonal. Since an orthogonal rotation does not change th
b= (Z ‘I’n] (Z ‘I’nin] , (18) determinant, the optima/ is obtained when
n=1 n=1

T T T — T — di
where¥, = | + Yo, (T)Zw,. This formula can be approxi- VAU <W W>UAV B <W W> = diagonal matrix.

mated in order to reduce the computational cost. Assumig th Now, applying the result that the product of the diagonal ele
¥ is approximately constant with respecticthat is there are  ments equals the determinant, we obtain
few missing values or the posterior covaria@kg, is small, ¥,
is cancelled out and the formula reduces to
N

Xn .
n=1

M M
> Z (logaa), ~ - log|RT(WTW)R| + const
d=1

Zl-

= —MIlog|R| + const,

B. Derivation of therotation 4This can be seen using the Cholesky decomposition of a y®siéfinite

. . . . . . and symmetric matrixC = LLT, whereL is lower triangular, and therefore
In this section, we derive the optimal rotati®which max- || 722 = M5, 12, < [12, 3¢, 12, which is the product of the diagonal

imizes the log-likelihood lower bound in (9). Assuming bdoa elements ofC. i
8



which cancels out-({logg(W)),. Therefore the lower bound
maximized w.r.tU andA simplifies to

(log p(X)). — {logq(X)), + const
—_ %tr((UA)’1<XXT>(UA)’T) — Nlog|UA| + const

Equating the derivative w.r.tUA to zero yields the following
requirements for the matricésandA

1
21T _ T
UA2UT = —N(xx )
or equivalently

%(XXT) =VTA-IUT 1(xxT>UAv =1.

C. Rotation tothe PCA basisfor Probabilistic PCA

The variational view of the EM algorithm [22] allows for an
interpretation of the learning algorithm for probabilisCA
[24] in which the following function

q(x)
(X>> (19)

is maximized w.r.t. to the model paramet&/s u, r and the pdf
q(X) which is defined as in (4).

We consider the same transformations (7), (2.2.2) which do
not change the first term in (19). The second term in (19) is
minus Kullback-Leibler divergence betwegX) andp(X):

aX)\ < q(Xn)
<'°g (><>> } Zlf Aba)log iy o

W, p.7.G(X)) = (log pCYIW. X. 1. 7)) — <Iog

1 —T—
=3 Z[tr():xn) + xTxn log |):Xn|] (20)
n=1
because(xn) = N(xnl0, ). Transformation (7) changes (20) to
1 N
D=3 Z[tr():xn) + (% — b)T(Xn — b) — log [, |
n=1

Now taking the derivative w.r.b and equating it to zero yields

1 N
= N Z Xn .
n=1
Similarly, transformation (2.2.2) with = R™! gives

1 N
D= Zz;[tr(AZXnAT)+ X, ATAX, — logl AL, AT

n
= tr(A(xxT)AT Z log|AZ, AT|.
Taking the derivative w.r.tA gives
A(XXT) = N(AT) ' =0
which implies that the following holds for optimal:

A%(XXT>AT = %(XXT) =1.



